1
|
Yabuki Y, Hori K, Zhang Z, Matsuo K, Kudo K, Usuki S, Gadotti VM, Chen L, Ueno S, Chiba S, Fukunaga K, Zamponi GW, Shioda N. Cav3.1 T-Type Calcium Channel Acts as a Gateway for GABAergic Excitation in the Medial Prefrontal Cortex That Leads to Chronic Psychological Stress Responses in Mice. Acta Physiol (Oxf) 2025; 241:e70043. [PMID: 40197682 DOI: 10.1111/apha.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
AIM The molecular mechanisms of chronic stress-induced psychiatric disorders, including depression, remain unknown. The current study aimed to assess the role of Cav3.1 T-type calcium channels as a gateway for the chronic stress-induced activation of parvalbumin (PV)-positive gamma-aminobutyric acidergic (GABAergic) neurons in the medial prefrontal cortex (mPFC) of mice. METHODS The function of the Cav3.1 T-type calcium channel in the mouse mPFC following chronic stress was investigated using behavioral tests, electrophysiological analyses, transcriptome analyses, and optogenetic approaches. RESULTS Cav3.1-knockout (Cav3.1-/-) mice were resistant to chronic stress-induced depressive-like behaviors induced by repeated forced-swimming test or tail-suspension test. Immunohistochemical analysis revealed that Cav3.1 was predominantly localized in PV-positive GABAergic neurons in the mPFC. Based on transcriptomic and electrophysiological analyses, the excitatory-inhibitory (E-I) balance was disrupted by the chronic stress-induced activation of PV-positive GABAergic neurons in the mPFC of wild-type (WT) mice, but not in that of Cav3.1-/- mice. Optogenetic control of PV-positive GABAergic neurons in the mPFC revealed that they played a pivotal role in depressive-like behaviors. The administration of TTA-A2, a selective T-type calcium channel antagonist, reduced chronic stress-induced depressive-like behaviors. CONCLUSION The Cav3.1 T-type calcium channel acts as a gateway for the activation of GABAergic neurons in the mPFC of mice, thereby eliciting chronic psychobiological stress responses.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Chuo-ku, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Karin Hori
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Zizhen Zhang
- Department of Clinical Neurosciences, Cuming School of Medicine, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kazuya Matsuo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Chuo-ku, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Kenta Kudo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Chuo-ku, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Vinicius M Gadotti
- Department of Clinical Neurosciences, Cuming School of Medicine, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, University of Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Lina Chen
- Department of Clinical Neurosciences, Cuming School of Medicine, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shinya Ueno
- Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Shuji Chiba
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Cuming School of Medicine, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Chuo-ku, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
2
|
Qiu Q, Yang M, Gong D, Liang H, Chen T. Potassium and calcium channels in different nerve cells act as therapeutic targets in neurological disorders. Neural Regen Res 2025; 20:1258-1276. [PMID: 38845230 PMCID: PMC11624876 DOI: 10.4103/nrr.nrr-d-23-01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/18/2024] [Accepted: 04/07/2024] [Indexed: 07/31/2024] Open
Abstract
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channel-specific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood-brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Mengting Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Danfeng Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Haiying Liang
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| |
Collapse
|
3
|
Guo Q, Li ZF, Hu DY, Li PJ, Wu KN, Fan HH, Deng J, Wu HM, Zhang X, Zhu JH. The selenocysteine-containing protein SELENOT maintains dopamine signaling in the midbrain to protect mice from hyperactivity disorder. EMBO J 2025:10.1038/s44318-025-00430-3. [PMID: 40195499 DOI: 10.1038/s44318-025-00430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Dopaminergic neuron dysfunction has been implicated in multiple neurological and psychiatric disorders. SELENOT is a selenocysteine-containing protein of the ER membrane with antioxidant and neuroprotective activities, but its pathophysiological role in dopaminergic neurons remains unclear. In this study we show that male mice with SELENOT-deficient dopaminergic neurons exhibit attention deficit/hyperactivity disorder (ADHD)-like symptoms, including hyperlocomotion, recognition memory deficits, repetitive movements, and impulsivity. Dopamine metabolism, extrasynaptic dopamine levels, spontaneous excitatory postsynaptic currents in the striatum, and electroencephalography theta power are all enhanced in these animals, while dopaminergic neurons in the substantia nigra are slightly reduced but with normal firing and cellular stress levels. Our results also indicate that the expression of dopamine transporter (DAT) is significantly reduced in the absence of SELENOT. Both the development of ADHD-like phenotypes and DAT downregulation are also observed when SELENOT is absent from the whole brain, but not when its conditional knockout is restricted to astrocytes. Mechanistically, we show that SELENOT downregulates DAT expression via interaction with SERCA2 of the ER -but not with IP3R or RYR- to regulate the ER-cytosol Ca2+ flux and, subsequently, the activity of transcription factor NURR1 and the expression levels of DAT. Treatment with amphetamine or methylphenidate, which are commonly used to treat ADHD, reverses the hyperactivity observed in mice with SELENOT-deficient dopaminergic neurons. Our study demonstrates that SELENOT in mouse dopaminergic neurons maintains proper dopamine signaling in the midbrain against the development of ADHD-like behaviors.
Collapse
Affiliation(s)
- Qing Guo
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhao-Feng Li
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Dong-Yan Hu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Pei-Jun Li
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kai-Nian Wu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Hui-Hui Fan
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Jie Deng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hong-Mei Wu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Xiong Zhang
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Jian-Hong Zhu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China.
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Schneider SR, Spies JJ, Pretorius PJ, Rebello R, Cason ED. Seven loci associated with schizophrenia and bipolar I disorder in selected southern African population groups. Eur J Med Genet 2025; 74:105005. [PMID: 39999946 DOI: 10.1016/j.ejmg.2025.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
Two major psychiatric disorders, schizophrenia and bipolar I disorder, are regarded as distinct disorder entities; however, they share intricate connections through characteristic overlap and underlying genetic aetiology, challenging the traditional dichotomy. This convergence emerged as an essential area of investigation in understanding the genetic determinants of schizophrenia and bipolar I disorder. Moreover, psychiatric genetic research has revealed demographic disparities, with South African population groups notably underrepresented. Therefore, this preliminary targeted candidate gene association study of 20 single nucleotide polymorphisms implicated in schizophrenia and bipolar I disorder aimed to investigate association and overlap. Candidate loci for schizophrenia and bipolar I disorder were selected through an exploratory Illumina® Infinium PsychArray-24 analysis combined with literature and database searches. Genotyping of the selected loci was performed with the Agena Bioscience MassARRAY® platform on 96 cases (58 schizophrenia and 38 bipolar I disorder patients) and 44 controls of Afrikaner, Sotho, and Tswana descent. Association analysis was performed by comparing and combining population and phenotype groups. Significant (p < 0.05) loci in the ADAMTSL1, CACNA1B, CACNA1C, CDH13, CTNNA2, RBFOX1, and TRIO genes were identified as possible susceptibility factors, and differences were observed with the association between population and phenotype groups. Through further pathway analysis, the calcium and cadherin-catenin pathways were identified as possible role players in the aetiology of schizophrenia and bipolar I disorder. The study represented an essential step towards understanding the genetic contribution towards schizophrenia and bipolar I disorder in distinct population groups and has the potential to contribute towards the knowledge base and inform future research efforts.
Collapse
Affiliation(s)
- Sue-Rica Schneider
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Johannes Jacobus Spies
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Paul Janus Pretorius
- Department of Psychiatry, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Renate Rebello
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Errol Duncan Cason
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
5
|
Bozkaya-Yilmaz S, Olgac-Dundar N, Aliyeva N, Ersen A, Gencpinar P, Gungor M, Hiz AS, Yis U, Sarikaya-Uzan G, Sarigecili E, Kirik S, Erol I, Besen S, Kayilioglu H, Haspolat S, Kipoglu O, Ekici A, Turay S, Tosun A, Ayanoglu M, Danis A, Hancı F, Kutbay YB, Ozyilmaz B, Kara B. Phenotypic variability in cases with CACNA1A mutation. Eur J Pediatr 2025; 184:261. [PMID: 40111503 PMCID: PMC11926052 DOI: 10.1007/s00431-025-06062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
The purpose of this study was to enhance understanding of CACNA1A gene variants by elucidating the clinical profiles of patients with different variants. The overlapping features and varying phenotypic characteristics of these neurological disorders pose challenges for clinicians. A data collection form was utilized to gather clinical features, examination details, and treatment information associated with CACNA1A variants. Thirty-one patients were included in the study from 11 different clinics in Turkey. Cases were assessed by comparing their information with existing literature. The study initially included 32 patients from 29 families, with 31 patients meeting the inclusion criteria. Clinical manifestations ranged from congenital onset hypotonia to motor seizures. Within the group of patients, 87% were diagnosed with epilepsy, 61% had neurodevelopmental defects, 32% experienced ataxia, 22% had eye movement problems, 16% suffered from migraines, and 13% had recurrent encephalopathy. Thirty percent of individuals exhibited cerebellar atrophy. A subset of individuals exhibited various forms of cognitive impairment and different kinds of ataxia. CONCLUSION CACNA1A variants can lead to structural and functional abnormalities in the Cav2.1 channels, resulting in paroxysmal and/or chronic clinical presentations. The overlapping phenotypes and variable features among family members suggest the influence of environmental factors and modifier genes. A thorough understanding of the range of phenotypic variants and the difficulties encountered by medical professionals is essential for precise diagnosis and efficient treatment approaches in various neurological conditions. Additional research is necessary to clarify the underlying mechanisms that contribute to the various presentations of these variants. WHAT IS KNOWN • Variants in the CACNA1A gene disrupt calcium signaling, thereby impacting fundamental developmental processes such as neuronal differentiation, migration, and synapse formation. • Variants in the CACNA1A can lead to neurodevelopmental disorders characterized by intellectual disability, learning difficulties, memory challenges, and problems in social interaction. WHAT IS NEW • Instances of intrafamilial variability in CACNA1A variants have been identified, with differing clinical manifestations exhibited by affected family members. • Incomplete penetrance is a phenomenon that may occur, as neurodevelopmental or neuropsychiatric findings are not exhibited by some patients with CACNA1A variants.
Collapse
Affiliation(s)
| | - Nihal Olgac-Dundar
- Department of Pediatric Neurology, Faculty of Medicine, Katip Celebi University, Izmir, Turkey.
| | - Nargiz Aliyeva
- Department of Pediatric Neurology, Liv Bonadea Hospital, Baku, Azerbaijan
| | - Atilla Ersen
- Department of Pediatric Neurology, Private Clinic, Izmir, Turkey
| | - Pinar Gencpinar
- Department of Pediatric Neurology, Faculty of Medicine, Katip Celebi University, Izmir, Turkey
| | - Mesut Gungor
- Department of Pediatric Neurology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Ayse Semra Hiz
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Uluc Yis
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Gamze Sarikaya-Uzan
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Esra Sarigecili
- Department of Pediatric Neurology, Adana State Hospital, Adana, Turkey
| | - Serkan Kirik
- Department of Pediatric Neurology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ilknur Erol
- Department of Pediatric Neurology, Faculty of Medicine, Baskent University, Adana, Turkey
| | - Seyda Besen
- Department of Pediatric Neurology, Faculty of Medicine, Baskent University, Adana, Turkey
| | - Hulya Kayilioglu
- Department of Pediatric Neurology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Senay Haspolat
- Department of Pediatric Neurology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Osman Kipoglu
- Department of Pediatric Neurology, Mehmet Akif Training and Research Hospital, Sanliurfa, Turkey
| | - Arzu Ekici
- Department of Pediatric Neurology, Private Clinic, Bursa, Turkey
| | - Sevim Turay
- Department of Pediatric Neurology, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Ayse Tosun
- Department of Pediatric Neurology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Muge Ayanoglu
- Department of Pediatric Neurology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Aysegul Danis
- Department of Pediatric Neurology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Fatma Hancı
- Department of Pediatric Neurology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | | | - Berk Ozyilmaz
- Genetic Diseases Diagnosis Center, Izmır State Hospital, Izmir, Turkey
| | - Bulent Kara
- Department of Pediatric Neurology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
6
|
Zhang L, Chu Q, Jiang S, Shao B. Genetic evidence for amlodipine's protective role in gastroesophageal reflux disease: A focus on CACNB2. PLoS One 2025; 20:e0309805. [PMID: 39965006 PMCID: PMC11835245 DOI: 10.1371/journal.pone.0309805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/20/2024] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE This study aims to elucidate the causal relationship between genetically predicted amlodipine use and the risk of gastroesophageal reflux disease (GERD) using a bidirectional Mendelian Randomization (MR) approach and to explore the underlying genetic and molecular mechanisms through functional enrichment analysis and the construction of a competing endogenous RNA (ceRNA) network. METHODS Publicly available GWAS datasets from the Neale Lab consortium were used, including data on amlodipine (13,693 cases, 323,466 controls) and GERD (14,316 cases, 322,843 controls). Genome-wide significant SNPs were selected as instrumental variables and clustered by linkage disequilibrium. MR analysis was conducted using R software with all five methods. Sensitivity analyses assessed pleiotropy and heterogeneity. Drug target genes were analyzed using GO and KEGG pathways. GeneMANIA was used for network visualization, and a ceRNA network was constructed with Cytoscape. Differential gene expression analysis on GERD-related datasets from GEO validated the findings. RESULTS The MR analysis indicated a significant negative association between genetically predicted amlodipine use and GERD risk (IVW OR = 0.872, 95% CI = 0.812-0.937, P = 0.0002). Sensitivity analyses confirmed the robustness of these findings, showing no evidence of pleiotropy or heterogeneity. The enrichment analysis identified key biological processes and pathways involving calcium ion transport and signaling. The ceRNA network highlighted core targets such as CACNB2, which were further validated by differential expression analysis intersecting drug target genes with GERD-related gene expression changes. CONCLUSION This study provides robust evidence of a protective effect of amlodipine against GERD, supported by genetic and molecular analyses. The findings suggest that calcium channel blockers like amlodipine could be repurposed for GERD treatment. The identification of CACNB2 and other core targets in the ceRNA network offers novel insights into the pathophysiology of GERD and potential therapeutic targets, paving the way for personalized medicine approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Liuzhao Zhang
- Department of Critical Care Medicine, Anhui Jing’an Medicine Hospital, Hefei, China
| | - Quanwang Chu
- Department of Critical Care Medicine, Anhui Jing’an Medicine Hospital, Hefei, China
| | - Shuyue Jiang
- Department of Critical Care Medicine, Anhui Jing’an Medicine Hospital, Hefei, China
| | - Bo Shao
- Department of Pathology, Anhui Provincial Children’s Hospital, Hefei, China
| |
Collapse
|
7
|
Han S, Gilmartin M, Sheng W, Jin VX. Integrating rare variant genetics and brain transcriptome data implicates novel schizophrenia putative risk genes. Schizophr Res 2025; 276:205-213. [PMID: 39919691 DOI: 10.1016/j.schres.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
The etiology of schizophrenia is elusive, in part due to its polygenic nature. Genome-wide association studies (GWAS) have successfully identified hundreds of schizophrenia risk loci, that are pinpointed to over one hundred genes through fine mapping. Besides common variants with relatively small effect size from GWAS, rare variants or ultra rare variants also play a significant role in conferring the schizophrenia risk from SCHEMA (Schizophrenia Exome Sequencing Meta-Analysis) results. However, burden results from SCHEMA study indicate that more new risk genes remain hidden and to be discovered. To boost the power of identifying new risk genes, we integrated genetics from SCHEMA and transcriptome data from BrainSpan using a multi-omics integration tool, DAWN, through which we have identified 47 schizophrenia putative risk genes that include 19 new risk genes, in addition to nearly all SCHEMA risk genes with FDR < 5 %. GO functional enrichment reveals that 47 SCZ putative risk genes are significantly enriched in cell to cell signaling, cell communications, transporter, in line with the hypothesis of two hit schizophrenia model. SynGO analysis suggests 47 schizophrenia putative risk genes are enriched in pre-synapse, synapse and post-synapse, supporting the well established link between synapses and schizophrenia.
Collapse
Affiliation(s)
- Shengtong Han
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA.
| | - Marieke Gilmartin
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Wenhui Sheng
- Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Victor X Jin
- Data Science Institute and MCW Cancer Center, The Medical College of Wisconsin, Milwaukee, WI 53326, USA
| |
Collapse
|
8
|
Cano-Ramírez H, Hoffman KL. The role of rodent behavioral models of schizophrenia in the ongoing search for novel antipsychotics. Expert Opin Drug Discov 2025; 20:217-231. [PMID: 39874393 DOI: 10.1080/17460441.2025.2459807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Existing pharmacotherapies for schizophrenia have not progressed beyond targeting dopamine and serotonin neurotransmission. Rodent models of schizophrenia are a necessary tool for elucidating neuropathological processes and testing potential pharmacotherapies, but positive preclinical results in rodent models often do not translate to positive results in the clinic. AREAS COVERED The authors reviewed PubMed for studies that applied rodent behavioral models of schizophrenia to assess the antipsychotic potential of several novel pharmacotherapies currently under investigation. These included acetylcholinesterase inhibitors, muscarinic and nicotinic acetylcholine (ACh) receptor agonists and positive allosteric modulators (PAMs), histamine H3 receptor antagonist/inverse, calcium channel modulators, trace amino acid receptor (TAAR) agonists, and phosphodiesterase 10A (PDE10A) inhibitors. The authors discuss the extent to which the results of preclinical studies of these drugs in rodent models have predicted clinical efficacy. EXPERT OPINION Although published preclinical studies of these drugs were largely positive, clinical results were often modest or negative. This lack of correspondence is likely due to many factors, including differences in experimental design, poor translation of effective dosing from preclinical to clinical studies, and large inter-individual variation of the human population as compared to laboratory rodents. Closing the gap between preclinical and clinical studies will require strategies aimed at reducing the impact of these factors.
Collapse
Affiliation(s)
- Hugo Cano-Ramírez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México
| | - Kurt Leroy Hoffman
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México
| |
Collapse
|
9
|
Radhakrishna U, Kuracha MR, Hamzavi I, Saiyed N, Prajapati J, Rawal RM, Uppala LV, Damiani G, Ratnamala U, Nath SK. Impaired Molecular Mechanisms Contributing to Chronic Pain in Patients with Hidradenitis Suppurativa: Exploring Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2025; 26:1039. [PMID: 39940809 PMCID: PMC11817842 DOI: 10.3390/ijms26031039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic skin condition that primarily affects areas with dense hair follicles and apocrine sweat glands, such as the underarms, groin, buttocks, and lower breasts. Intense pain and discomfort in HS have been commonly noted, primarily due to the lesions' effects on nearby tissues. Pain is a factor that can influence DNA methylation patterns, though its exact role in HS is not fully understood. We aim to identify molecular markers of chronic pain in HS patients. We performed DNA methylome of peripheral blood DNA derived from a group of 24 patients with HS and 24 healthy controls, using Illumina methylation array chips. We identified 253 significantly differentially methylated CpG sites across 253 distinct genes regulating pain sensitization in HS, including 224 hypomethylated and 29 hypermethylated sites. Several genes with pleiotropic roles include transporters (ABCC2, SLC39A8, SLC39A9), wound healing (MIR132, FGF2, PDGFC), ion channel regulators (CACNA1C, SCN1A), oxidative stress mediators (SCN8A, DRD2, DNMT1), cytochromes (CYP19A, CYP1A2), cytokines (TGFB1, IL4), telomere regulators (CSNK1D, SMAD3, MTA1), circadian rhythm (IL1R2, ABCG1, RORA), ultradian rhythms (PHACTR1, TSC2, ULK1), hormonal regulation (PPARA, NR3C1, ESR2), and the serotonin system (HTR1D, HTR1E, HTR3C, HTR4, TPH2). They also play roles in glucose metabolism (POMC, IRS1, GNAS) and obesity (DRD2, FAAH, MMP2). Gene ontology and pathway enrichment analysis identified 43 pathways, including calcium signaling, cocaine addiction, and nicotine addiction. This study identified multiple differentially methylated genes involved in chronic pain in HS, which may serve as biomarkers and therapeutic targets. Understanding their epigenetic regulation is crucial for personalized pain management and could enhance the identification of high-risk patients, leading to better preventative therapies and improved maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Murali R. Kuracha
- Department of Internal Medicine, University of Nebraska Medicine, Omaha, NE 68198, USA;
| | - Iltefat Hamzavi
- Department of Dermatology, Henry Ford Hospital, Detroit, MI 48202, USA;
| | - Nazia Saiyed
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA;
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Sciences, Gujarat University, Ahmedabad 380009, India;
| | - Rakesh M. Rawal
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad 380006, India;
| | - Lavanya V. Uppala
- Peter Kiewit Institute, College of Information Science & Technology, The University of Nebraska at Omaha, Omaha, NE 68182, USA;
| | - Giovanni Damiani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy;
- Italian Center of Precision Medicine and Chronic Inflammation, University of Milan, 20122 Milan, Italy
| | - Uppala Ratnamala
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad 380009, India;
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| |
Collapse
|
10
|
Chen Y, Liu S, Ren Z, Wang F, Liang Q, Jiang Y, Dai R, Duan F, Han C, Ning Z, Xia Y, Li M, Yuan K, Qiu W, Yan XX, Dai J, Kopp RF, Huang J, Xu S, Tang B, Wu L, Gamazon ER, Bigdeli T, Gershon E, Huang H, Ma C, Liu C, Chen C. Cross-ancestry analysis of brain QTLs enhances interpretation of schizophrenia genome-wide association studies. Am J Hum Genet 2024; 111:2444-2457. [PMID: 39362218 PMCID: PMC11568756 DOI: 10.1016/j.ajhg.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
Research on brain expression quantitative trait loci (eQTLs) has illuminated the genetic underpinnings of schizophrenia (SCZ). Yet most of these studies have been centered on European populations, leading to a constrained understanding of population diversities and disease risks. To address this gap, we examined genotype and RNA-seq data from African Americans (AA, n = 158), Europeans (EUR, n = 408), and East Asians (EAS, n = 217). When comparing eQTLs between EUR and non-EUR populations, we observed concordant patterns of genetic regulatory effect, particularly in terms of the effect sizes of the eQTLs. However, 343,737 cis-eQTLs linked to 1,276 genes and 198,769 SNPs were found to be specific to non-EUR populations. Over 90% of observed population differences in eQTLs could be traced back to differences in allele frequency. Furthermore, 35% of these eQTLs were notably rare in the EUR population. Integrating brain eQTLs with SCZ signals from diverse populations, we observed a higher disease heritability enrichment of brain eQTLs in matched populations compared to mismatched ones. Prioritization analysis identified five risk genes (SFXN2, VPS37B, DENR, FTCDNL1, and NT5DC2) and three potential regulatory variants in known risk genes (CNNM2, MTRFR, and MPHOSPH9) that were missed in the EUR dataset. Our findings underscore that increasing genetic ancestral diversity is more efficient for power improvement than merely increasing the sample size within single-ancestry eQTLs datasets. Such a strategy will not only improve our understanding of the biological underpinnings of population structures but also pave the way for the identification of risk genes in SCZ.
Collapse
Affiliation(s)
- Yu Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sihan Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Zongyao Ren
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Feiran Wang
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Qiuman Liang
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Yi Jiang
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Fangyuan Duan
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Cong Han
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Zhilin Ning
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Xia
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Miao Li
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Kai Yuan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wenying Qiu
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences, Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Xin Yan
- Department of Human Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Engineering, South-Central Minzu University, Wuhan, China
| | - Richard F Kopp
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jufang Huang
- Department of Human Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lingqian Wu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Eric R Gamazon
- Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tim Bigdeli
- Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Elliot Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | | | - Chao Ma
- Institute of Basic Medical Sciences, Neuroscience Center, National Human Brain Bank for Development and Function, Chinese Academy of Medical Sciences, Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| |
Collapse
|
11
|
Borgarelli C, Klingl YE, Escamilla-Ayala A, Scarponi C, La Rovere RML, Stoklund Dittlau K, Bultynck G, Sampaolesi M, Schoenberger M, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Novel Far-Red Fluorescent 1,4-Dihydropyridines for L-Type Calcium Channel Imaging. J Med Chem 2024; 67:18038-18052. [PMID: 39388369 DOI: 10.1021/acs.jmedchem.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Upregulation of L-type calcium channels (LTCCs) is implicated in a range of cardiovascular and neurological disorders. Therefore, the development of toolboxes that unlock fast imaging protocols in live cells is coveted. Herein, we report a library of first-in-class far-red small-molecule-based fluorescent ligands (FluoDiPines), able to target LTCCs. All fluorescent ligands were evaluated in whole-cell patch-clamp and live-cell Ca2+ imaging whereby FluoDiPine 6 was found to be the best candidate for live-cell fluorescence imaging. Low concentration of FluoDiPine 6 (50 nM) and a quick labeling protocol (5 min) are successfully applied to fixed and live cells to image LTCCs with good specificity.
Collapse
Affiliation(s)
- Carlotta Borgarelli
- Sustainable Chemistry for Metals and Molecules (SCM2), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Abril Escamilla-Ayala
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5, box 602 Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5-box 602 Herestraat 49, 3000 Leuven, Belgium
| | - Carlotta Scarponi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA) Paseo Miramon, 20014 San Sebastian, Guipuzcoa, Spain
| | - Rita M L La Rovere
- Dep. Cellular & Molecular Medicine, KU Leuven, Lab. Molecular & Cellular Signaling, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Katarina Stoklund Dittlau
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Geert Bultynck
- Dep. Cellular & Molecular Medicine, KU Leuven, Lab. Molecular & Cellular Signaling, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Matthias Schoenberger
- Department for Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Sebastian Munck
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5, box 602 Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5-box 602 Herestraat 49, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Wim M De Borggraeve
- Sustainable Chemistry for Metals and Molecules (SCM2), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Ermal Ismalaj
- Sustainable Chemistry for Metals and Molecules (SCM2), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA) Paseo Miramon, 20014 San Sebastian, Guipuzcoa, Spain
| |
Collapse
|
12
|
Peraire M, Gimeno-Vergara R, Pick-Martin J, Boscá M, Echeverria I. Ziconotide and psychosis: from a case report to a scoping review. Front Mol Neurosci 2024; 17:1412855. [PMID: 39479264 PMCID: PMC11523125 DOI: 10.3389/fnmol.2024.1412855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Ziconotide is a non-opioid analgesic that acts on N-type voltage-gated calcium channels. Despite its proven effectiveness in pain treatment, it can induce neuropsychiatric symptoms. The aim of this article is to present a case of psychosis secondary to ziconotide and to explore the variety of neuropsychiatric symptoms it produces, exploring the relationship between these symptoms and the mechanism of action of ziconotide. For this purpose, a clinical case is presented as well as a scoping review of other cases published in the scientific literature. A search on Web of Science, Pubmed and Embase databases was performed on December 11, 2023, following the criteria of the PRISMA-ScR Statement. The clinical case presented shows the variety of neuropsychiatric symptomatology that ziconotide can cause in the same patient. On the other hand, 13 papers were retrieved from the scoping review (9 case reports, 4 case series), which included 21 cases of patients treated with ziconotide who presented adverse effects ranging from psychotic symptoms to delirium. In conclusion, the variety of neuropsychiatric symptoms derived from ziconotide could be related to the blockade of N-type voltage-gated calcium channels in glutamatergic and GABAergic neurons, in turn affecting dopaminergic pathways.
Collapse
Affiliation(s)
- Marc Peraire
- TXP Research Group, Universidad Cardenal Herrera-CEU, CEU Universities, Castellón de la Plana, Spain
- Department of Mental Health, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, Spain
| | - Rita Gimeno-Vergara
- TXP Research Group, Universidad Cardenal Herrera-CEU, CEU Universities, Castellón de la Plana, Spain
- Department of Mental Health, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, Spain
| | - Jennifer Pick-Martin
- TXP Research Group, Universidad Cardenal Herrera-CEU, CEU Universities, Castellón de la Plana, Spain
- Department of Mental Health, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, Spain
| | - Mireia Boscá
- TXP Research Group, Universidad Cardenal Herrera-CEU, CEU Universities, Castellón de la Plana, Spain
- Department of Mental Health, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, Spain
| | - Iván Echeverria
- TXP Research Group, Universidad Cardenal Herrera-CEU, CEU Universities, Castellón de la Plana, Spain
- Department of Mental Health, Consorcio Hospitalario Provincial de Castellón, Castellón de la Plana, Spain
- Department of Psychiatry, Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Peraire M, Gimeno-Vergara R, Pick-Martin J, Boscá M, Echeverria I. Ziconotide and psychosis: from a case report to a scoping review. Front Mol Neurosci 2024; 17. [DOI: https:/doi.org/10.3389/fnmol.2024.1412855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2024] Open
Abstract
Ziconotide is a non-opioid analgesic that acts on N-type voltage-gated calcium channels. Despite its proven effectiveness in pain treatment, it can induce neuropsychiatric symptoms. The aim of this article is to present a case of psychosis secondary to ziconotide and to explore the variety of neuropsychiatric symptoms it produces, exploring the relationship between these symptoms and the mechanism of action of ziconotide. For this purpose, a clinical case is presented as well as a scoping review of other cases published in the scientific literature. A search on Web of Science, Pubmed and Embase databases was performed on December 11, 2023, following the criteria of the PRISMA-ScR Statement. The clinical case presented shows the variety of neuropsychiatric symptomatology that ziconotide can cause in the same patient. On the other hand, 13 papers were retrieved from the scoping review (9 case reports, 4 case series), which included 21 cases of patients treated with ziconotide who presented adverse effects ranging from psychotic symptoms to delirium. In conclusion, the variety of neuropsychiatric symptoms derived from ziconotide could be related to the blockade of N-type voltage-gated calcium channels in glutamatergic and GABAergic neurons, in turn affecting dopaminergic pathways.
Collapse
|
14
|
Yin Q, Aryal SP, Song Y, Fu X, Richards CI. Quantitative Single-Molecule Analysis of Ryanodine Receptor 2 Subunit Assembly in Cardiac and Neuronal Tissues. Anal Chem 2024; 96:16298-16306. [PMID: 39359032 DOI: 10.1021/acs.analchem.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We developed a method for ex vivo receptor encapsulation and single-molecule imaging techniques from neuronal and cardiac tissues, illustrating the method's broad applicability for measuring membrane receptor assembly. Ryanodine receptor 2 (RyR2) is a tetrameric Ca2+ channel governing intracellular Ca2+ dynamics, which is critical for muscle contraction. Employing GFP-RyR2 knock-in mice, we isolated individual receptor proteins in tissue-specific nanovesicles and performed subunit counting analyses to yield quantitative assessment of stoichiometric distributions across different organs. With this method, we explored the potential heterogeneity of brain-derived RyR2, which has been reported to form heteromeric assemblies with other ryanodine receptor isoforms.
Collapse
Affiliation(s)
- Qianye Yin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Surya P Aryal
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yongwook Song
- Computational Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Xu Fu
- Light Microscopy Center, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Christopher I Richards
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
15
|
Huang Y, Gao Y, Huang Z, Liang M, Chen Y. Scavenger Receptor Class B Type I Modulates Epileptic Seizures and Receptor α2δ-1 Expression. Neurochem Res 2024; 49:2842-2853. [PMID: 39017956 DOI: 10.1007/s11064-024-04209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Scavenger receptor class B type I (SR-BI) is abundant in adult mouse and human brains, but its function in the central nervous system (CNS) remains unclear. This study explored the role of SR-BI in epilepsy and its possible underlying mechanism. Expression patterns of SR-BI in the brains of mice with kainic acid (KA)-induced epilepsy were detected using immunofluorescence staining, quantitative real-time polymerase chain reaction (qPCR), and Western blotting(WB). Behavioral analysis was performed by 24-hour video monitoring and hippocampal local field potential (LFP) recordings were employed to verify the role of SR-BI in epileptogenesis. RNA sequencing (RNA-seq) was used to obtain biological information on SR-BI in the CNS. WB, qPCR, and co-immunoprecipitation (Co-IP) were performed to identify the relationship between SR-BI and the gabapentin receptor α2δ-1.The results showed that SR-BI was primarily co-localized with astrocytes and its expression was down-regulated in the hippocampus of KA mice. Notably, overexpressing SR-BI alleviated the epileptic behavioral phenotype in KA mice. Hippocampal transcriptomic analysis revealed 1043 differentially expressed genes (DEGs) in the SR-BI-overexpressing group. Most DEGs confirmed by RNA-seq analysis were associated with synapses, neuronal projections, neuron development, and ion binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the DEGs were enriched in the glutamatergic synapse pathway. Furthermore, the gabapentin receptor α2δ-1 decreased with SR-BI overexpression in epileptic mice. Overall, these findings highlight the important role of SR-BI in regulating epileptogenesis and that the gabapentin receptor α2δ-1 is a potential downstream target of SR-BI.
Collapse
Affiliation(s)
- Yunyi Huang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Gao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongwen Huang
- Department of Neurology, Anyue County people's Hospital, Ziyang, China
| | - Minxue Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Han S. Bayesian Rare Variant Analysis Identifies Novel Schizophrenia Putative Risk Genes. J Pers Med 2024; 14:822. [PMID: 39202013 PMCID: PMC11355493 DOI: 10.3390/jpm14080822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
The genetics of schizophrenia is so complex that it involves both common variants and rare variants. Rare variant association studies of schizophrenia are challenging because statistical methods for rare variant analysis are under-powered due to the rarity of rare variants. The recent Schizophrenia Exome meta-analysis (SCHEMA) consortium, the largest consortium in this field to date, has successfully identified 10 schizophrenia risk genes from ultra-rare variants by burden test, while more risk genes remain to be discovered by more powerful rare variant association test methods. In this study, we use a recently developed Bayesian rare variant association method that is powerful for detecting sparse rare risk variants that implicates 88 new candidate risk genes associated with schizophrenia from the SCHEMA case-control sample. These newly identified genes are significantly enriched in autism risk genes and GO enrichment analysis indicates that new candidate risk genes are involved in mechanosensory behavior, regulation of cell size, neuron projection morphogenesis, and plasma-membrane-bounded cell projection morphogenesis, that may provide new insights on the etiology of schizophrenia.
Collapse
Affiliation(s)
- Shengtong Han
- School of Dentistry, Marquette University, Milwaukee, WI 53201-1881, USA
| |
Collapse
|
17
|
Zhang Y, Zhang C, Yi X, Wang Q, Zhang T, Li Y. Gabapentinoids for the treatment of stroke. Neural Regen Res 2024; 19:1509-1516. [PMID: 38051893 PMCID: PMC10883501 DOI: 10.4103/1673-5374.387968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/04/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Gabapentinoid drugs (pregabalin and gabapentin) have been successfully used in the treatment of neuropathic pain and in focal seizure prevention. Recent research has demonstrated their potent activities in modulating neurotransmitter release in neuronal tissue, oxidative stress, and inflammation, which matches the mechanism of action via voltage-gated calcium channels. In this review, we briefly elaborate on the medicinal history and ligand-binding sites of gabapentinoids. We systematically summarize the preclinical and clinical research on gabapentinoids in stroke, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, seizures after stroke, cortical spreading depolarization after stroke, pain after stroke, and nerve regeneration after stroke. This review also discusses the potential targets of gabapentinoids in stroke; however, the existing results are still uncertain regarding the effect of gabapentinoids on stroke and related diseases. Further preclinical and clinical trials are needed to test the therapeutic potential of gabapentinoids in stroke. Therefore, gabapentinoids have both opportunities and challenges in the treatment of stroke.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
18
|
Mosaddad SA, Talebi S, Keyhan SO, Fallahi HR, Darvishi M, Aghili SS, Tavahodi N, Namanloo RA, Heboyan A, Fathi A. Dental implant considerations in patients with systemic diseases: An updated comprehensive review. J Oral Rehabil 2024; 51:1250-1302. [PMID: 38570927 DOI: 10.1111/joor.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/27/2023] [Accepted: 03/02/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Various medical conditions and the drugs used to treat them have been shown to impede or complicate dental implant surgery. It is crucial to carefully monitor the medical status and potential post-operative complications of patients with systemic diseases, particularly elderly patients, to minimize the risk of health complications that may arise. AIM The purpose of this study was to review the existing evidence on the viability of dental implants in patients with systemic diseases and to provide practical recommendations to achieve the best possible results in the corresponding patient population. METHODS The information for our study was compiled using data from PubMed, Scopus, Web of Science and Google Scholar databases and searched separately for each systemic disease included in our work until October 2023. An additional manual search was also performed to increase the search sensitivity. Only English-language publications were included and assessed according to titles, abstracts and full texts. RESULTS In total, 6784 studies were found. After checking for duplicates and full-text availability, screening for the inclusion criteria and manually searching reference lists, 570 articles remained to be considered in this study. CONCLUSION In treating patients with systemic conditions, the cost-benefit analysis should consider the patient's quality of life and expected lifespan. The success of dental implants depends heavily on ensuring appropriate maintenance therapy, ideal oral hygiene standards, no smoking and avoiding other risk factors. Indications and contraindications for dental implants in cases of systemic diseases are yet to be more understood; broader and hardcore research needs to be done for a guideline foundation.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
- Maxillofacial Surgery & Implantology & Biomaterial Research Foundation, Tehran, Iran
| | - Sahar Talebi
- Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seied Omid Keyhan
- Maxillofacial Surgery & Implantology & Biomaterial Research Foundation, Tehran, Iran
- Department of Oral & Maxillofacial Surgery, Gangneung-Wonju National University, Gangneung, South Korea
- Department of Oral & Maxillofacial Surgery, College of Medicine, University of Florida, Jacksonville, FL, USA
- Iface Academy, Istanbul, Turkey
| | - Hamid Reza Fallahi
- Maxillofacial Surgery & Implantology & Biomaterial Research Foundation, Tehran, Iran
- Department of Oral & Maxillofacial Surgery, Gangneung-Wonju National University, Gangneung, South Korea
- Department of Oral & Maxillofacial Surgery, College of Medicine, University of Florida, Jacksonville, FL, USA
- Iface Academy, Istanbul, Turkey
| | - Mohammad Darvishi
- Faculty of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Tavahodi
- Student Research Committee, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Fathi
- Department of Prosthodontics, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
R HC, Datta A, S UK, Zayed H, D TK, C GPD. Decoding genetic and pathophysiological mechanisms in amyotrophic lateral sclerosis and primary lateral sclerosis: A comparative study of differentially expressed genes and implicated pathways in motor neuron disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:177-201. [PMID: 38960473 DOI: 10.1016/bs.apcsb.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Motor Neuron Disorders (MNDs), characterized by the degradation and loss of function of motor neurons, are recognized as fatal conditions with limited treatment options and no known cure. The present study aimed to identify the pathophysiological functions and affected genes in patients with MNDs, specifically Amyotrophic Lateral Sclerosis (ALS) and Primary Lateral Sclerosis (PLS). The GSE56808 dataset comprised three sample groups: six patients diagnosed with ALS (GSM1369650, GSM1369652, GSM1369654, GSM1369656, GSM1369657, GSM1369658), five patients diagnosed with PLS (GSM1369648, GSM1369649, GSM1369653, GSM1369655, GSM1369659), and six normal controls (GSM1369642, GSM1369643, GSM1369644, GSM1369645, GSM1369646, and GSM1369647). The application of computational analysis of microarray gene expression profiles enabled us to identify 346 significantly differentially expressed genes (DEGs), 169 genes for the ALS sample study, and 177 genes for the PLS sample study. Enrichment was carried out using MCODE, a Cytoscape plugin. Functional annotation of DEGs was carried out via ClueGO/CluePedia (v2.5.9) and further validated via the DAVID database. NRP2, SEMA3D, ROBO3 and, CACNB1, CACNG2 genes were identified as the gene of interest for ALS and PLS sample groups, respectively. Axonal guidance (GO:0007411) and calcium ion transmembrane transport (GO:0070588) were identified to be some of the significantly dysregulated gene ontology (GO) terms, with arrhythmogenic right ventricular cardiomyopathy (KEGG:05412) to be the top relevant KEGG pathway which is affected in MND patients. ROBO3 gene was observed to have distinctive roles in ALS and PLS-affected patients, hinting towards the differential progression of ALS from PLS. The insights derived from our comprehensive analysis accentuate the distinct variances in the underlying molecular pathogenesis of ALS and PLS. Further research should investigate the mechanistic roles of the identified DEGs and molecular pathways, leading to potential targeted therapies for ALS and PLS.
Collapse
Affiliation(s)
- Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ankur Datta
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India; Department of Medicine, Division Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar
| | - Thirumal Kumar D
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
20
|
Xia Y, Xia C, Jiang Y, Chen Y, Zhou J, Dai R, Han C, Mao Z, Liu C, Chen C. Transcriptomic sex differences in postmortem brain samples from patients with psychiatric disorders. Sci Transl Med 2024; 16:eadh9974. [PMID: 38781321 DOI: 10.1126/scitranslmed.adh9974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Many psychiatric disorders exhibit sex differences, but the underlying mechanisms remain poorly understood. We analyzed transcriptomics data from 2160 postmortem adult prefrontal cortex brain samples from the PsychENCODE consortium in a sex-stratified study design. We compared transcriptomics data of postmortem brain samples from patients with schizophrenia (SCZ), bipolar disorder (BD), and autism spectrum disorder (ASD) with transcriptomics data of postmortem control brains from individuals without a known history of psychiatric disease. We found that brain samples from females with SCZ, BD, and ASD showed a higher burden of transcriptomic dysfunction than did brain samples from males with these disorders. This observation was supported by the larger number of differentially expressed genes (DEGs) and a greater magnitude of gene expression changes observed in female versus male brain specimens. In addition, female patient brain samples showed greater overall connectivity dysfunction, defined by a higher proportion of gene coexpression modules with connectivity changes and higher connectivity burden, indicating a greater degree of gene coexpression variability. We identified several gene coexpression modules enriched in sex-biased DEGs and identified genes from a genome-wide association study that were involved in immune and synaptic functions across different brain cell types. We found a number of genes as hubs within these modules, including those encoding SCN2A, FGF14, and C3. Our results suggest that in the context of psychiatric diseases, males and females exhibit different degrees of transcriptomic dysfunction and implicate immune and synaptic-related pathways in these sex differences.
Collapse
Affiliation(s)
- Yan Xia
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cuihua Xia
- MOE Key Laboratory of Rare Pediatric Diseases and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha 410078, China
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Yi Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430064, China
| | - Yu Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- MOE Key Laboratory of Rare Pediatric Diseases and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha 410078, China
| | - Jiaqi Zhou
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Cong Han
- MOE Key Laboratory of Rare Pediatric Diseases and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha 410078, China
| | - Zhongzheng Mao
- Graduate School of Arts and Sciences, Yale University, New Haven, CT 06510, USA
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha 410078, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha 410078, China
- Furong Laboratory, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan 410000, China
| |
Collapse
|
21
|
Scala M, Khan K, Beneteau C, Fox RG, von Hardenberg S, Khan A, Joubert M, Fievet L, Musquer M, Le Vaillant C, Holsclaw JK, Lim D, Berking AC, Accogli A, Giacomini T, Nobili L, Striano P, Zara F, Torella A, Nigro V, Cogné B, Salick MR, Kaykas A, Eggan K, Capra V, Bézieau S, Davis EE, Wells MF. Biallelic loss-of-function variants in CACHD1 cause a novel neurodevelopmental syndrome with facial dysmorphism and multisystem congenital abnormalities. Genet Med 2024; 26:101057. [PMID: 38158856 PMCID: PMC11910193 DOI: 10.1016/j.gim.2023.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Kamal Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Claire Beneteau
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Rachel G Fox
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | | | - Ayaz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Madeleine Joubert
- CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU Nantes, Department of Anatomical Pathology, Nantes, France
| | - Lorraine Fievet
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC
| | - Marie Musquer
- CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU Nantes, Department of Anatomical Pathology, Nantes, France
| | | | | | - Derek Lim
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust and Birmingham Health Partners, Birmingham, United Kingdom; Department of Medicine, University of Birmingham, Birmingham, United Kingdom
| | | | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Thea Giacomini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Benjamin Cogné
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | | | | | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Valeria Capra
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Stéphane Bézieau
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| | - Michael F Wells
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA.
| |
Collapse
|
22
|
Chen Y, Liu S, Ren Z, Wang F, Jiang Y, Dai R, Duan F, Han C, Ning Z, Xia Y, Li M, Yuan K, Qiu W, Yan XX, Dai J, Kopp RF, Huang J, Xu S, Tang B, Gamazon ER, Bigdeli T, Gershon E, Huang H, Ma C, Liu C, Chen C. Brain eQTLs of European, African American, and Asian ancestry improve interpretation of schizophrenia GWAS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24301833. [PMID: 38405973 PMCID: PMC10888997 DOI: 10.1101/2024.02.13.24301833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Research on brain expression quantitative trait loci (eQTLs) has illuminated the genetic underpinnings of schizophrenia (SCZ). Yet, the majority of these studies have been centered on European populations, leading to a constrained understanding of population diversities and disease risks. To address this gap, we examined genotype and RNA-seq data from African Americans (AA, n=158), Europeans (EUR, n=408), and East Asians (EAS, n=217). When comparing eQTLs between EUR and non-EUR populations, we observed concordant patterns of genetic regulatory effect, particularly in terms of the effect sizes of the eQTLs. However, 343,737 cis-eQTLs (representing ∼17% of all eQTLs pairs) linked to 1,276 genes (about 10% of all eGenes) and 198,769 SNPs (approximately 16% of all eSNPs) were identified only in the non-EUR populations. Over 90% of observed population differences in eQTLs could be traced back to differences in allele frequency. Furthermore, 35% of these eQTLs were notably rare (MAF < 0.05) in the EUR population. Integrating brain eQTLs with SCZ signals from diverse populations, we observed a higher disease heritability enrichment of brain eQTLs in matched populations compared to mismatched ones. Prioritization analysis identified seven new risk genes ( SFXN2 , RP11-282018.3 , CYP17A1 , VPS37B , DENR , FTCDNL1 , and NT5DC2 ), and three potential novel regulatory variants in known risk genes ( CNNM2 , C12orf65 , and MPHOSPH9 ) that were missed in the EUR dataset. Our findings underscore that increasing genetic ancestral diversity is more efficient for power improvement than merely increasing the sample size within single-ancestry eQTLs datasets. Such a strategy will not only improve our understanding of the biological underpinnings of population structures but also pave the way for the identification of novel risk genes in SCZ.
Collapse
|
23
|
Meng J, Cai Y, Yao J, Yan H. Bidirectional causal relationship between psychiatric disorders and osteoarthritis: A univariate and multivariate Mendelian randomization study. Brain Behav 2024; 14:e3429. [PMID: 38361326 PMCID: PMC10869882 DOI: 10.1002/brb3.3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/11/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Observational studies have shown associations between psychiatric disorders and osteoarthritis (OA). However, the causal impact of different psychiatric disorder types on specific sites of osteoarthritis remains unclear. This study aimed to comprehensively understand the potential causal associations between psychiatric disorders and osteoarthritis using Mendelian randomization (MR) analysis. METHODS We collected data from genome-wide association studies of knee osteoarthritis (KOA) (n = 403,124), hip osteoarthritis (HOA) (n = 393,873), osteoarthritis of the knee or hip (KHOA) (n = 417,596), as well as three psychiatric disorders: bipolar disorder (n = 41,917), major depressive disorder (n = 170,756), and schizophrenia (n = 76,755) among European populations. We applied bidirectional univariate and multivariate MR analyses, including inverse variance weighted, Mendelian randomization-Egger, weighted median, simple mode, and weighted mode. We considered p < .05 as a criterion for identifying potential evidence of association. Bonferroni correction was used for multiple tests. RESULTS Our univariate MR analysis results demonstrated that bipolar disorder is a protective factor for KOA (OR = 0.90, 95% CI = 0.83 to 0.97, p = 0.0048) and may also be protective for KHOA (p = 0.02). Conversely, major depression has a positive causal effect on both KOA (OR = 1.27; 95% CI = 1.08 to 1.49; p = 0.0036) and KHOA (OR = 1.24; 95% CI = 1.12 to 1.37; p = 3.62×10-05 ). Furthermore, our analysis suggested that KHOA may be a risk factor for major depression (OR = 1.06; 95% CI = 1.00 to 1.12; p = 0.0469) in reverse MR. After adjusting smoking (OR = 1.46; 95% CI = 1.19 to 1.65; p = 0.0032) and body mass index (OR = 1.44; 95% CI = 1.09 to 1.81; p = 8.56×10-04 ), the casual association between major depression and KHOA remained. CONCLUSION Our study indicates that major depression is a great risk factor for KHOA, increasing the likelihood of their occurrence. However, further in-depth studies will be required to validate these results and elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jinzhi Meng
- Bone and Joint SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Youran Cai
- Department of OphthalmologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jun Yao
- Bone and Joint SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Haiwei Yan
- Department of Sports MedicineThe Fourth Affiliated Hospital of Guangxi Medical UniversityLiuzhouChina
| |
Collapse
|
24
|
Mukhopadhyay A, Deshpande SN, Bhatia T, Thelma BK. Significance of an altered lncRNA landscape in schizophrenia and cognition: clues from a case-control association study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1677-1691. [PMID: 37009928 DOI: 10.1007/s00406-023-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Genetic etiology of schizophrenia is poorly understood despite large genome-wide association data. Long non-coding RNAs (lncRNAs) with a probable regulatory role are emerging as important players in neuro-psychiatric disorders including schizophrenia. Prioritising important lncRNAs and analyses of their holistic interaction with their target genes may provide insights into disease biology/etiology. Of the 3843 lncRNA SNPs reported in schizophrenia GWASs extracted using lincSNP 2.0, we prioritised n = 247 based on association strength, minor allele frequency and regulatory potential and mapped them to lncRNAs. lncRNAs were then prioritised based on their expression in brain using lncRBase, epigenetic role using 3D SNP and functional relevance to schizophrenia etiology. 18 SNPs were finally tested for association with schizophrenia (n = 930) and its endophenotypes-tardive dyskinesia (n = 176) and cognition (n = 565) using a case-control approach. Associated SNPs were characterised by ChIP seq, eQTL, and transcription factor binding site (TFBS) data using FeatSNP. Of the eight SNPs significantly associated, rs2072806 in lncRNA hsaLB_IO39983 with regulatory effect on BTN3A2 was associated with schizophrenia (p = 0.006); rs2710323 in hsaLB_IO_2331 with role in dysregulation of ITIH1 with tardive dyskinesia (p < 0.05); and four SNPs with significant cognition score reduction (p < 0.05) in cases. Two of these with two additional variants in eQTL were observed among controls (p < 0.05), acting likely as enhancer SNPs and/or altering TFBS of eQTL mapped downstream genes. This study highlights important lncRNAs in schizophrenia and provides a proof of concept of novel interactions of lncRNAs with protein-coding genes to elicit alterations in immune/inflammatory pathways of schizophrenia.
Collapse
Affiliation(s)
- Anirban Mukhopadhyay
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Smita N Deshpande
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Triptish Bhatia
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
25
|
Lin S, Zhang C, Zhang Y, Chen S, Lin X, Peng B, Xu Z, Hou G, Qiu Y. Shared and specific neurobiology in bipolar disorder and unipolar disorder: Evidence based on the connectome gradient and a transcriptome-connectome association study. J Affect Disord 2023; 341:304-312. [PMID: 37661059 DOI: 10.1016/j.jad.2023.08.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Distinguishing bipolar disorder (BD) and unipolar disorder (UD) remains challenging. To identify the common and diagnosis-specific neuropathological alterations and their potential molecular mechanisms in patients with UD and BD (with a current depressive episode). METHODS Resting-state functional magnetic resonance imaging was obtained from 279 participants (95 BD patients, 107 UD patients and 77 health controls). Connectome gradients analysis was performed to explore the shared and diagnosis-specific gradient alterations in BD and UD. The Allen Human Brain Atlas data was used to explore the potential gene mechanisms of the gradient alterations. RESULTS BD and UD had shared hierarchical disorganisation, including downgrading and contraction from the unimodal sensory networks (vision and sensorimotor) to the transmodal cognitive networks (limbic, frontoparietal, dorsal attention, and default) (all P < 0.05, FDR corrected) in gradient 1 and gradient 2. The BD patients had specific connectome gradient dysfunction in the subcortical network. Moreover, the hierarchical disorganisation was closely correlated with profiles of gene expression specific to the neuroglial cells in the prefrontal cortex in BD and UD, while the most correlated gene ontology biological processes and function were concentrated in synaptic signalling, calcium ion binding, and transmembrane transporter activity. CONCLUSION These findings reveal the shared and diagnosis-specific neurobiological mechanism underlying BD and UD patients, which advances our understanding of the neuromechanisms of these disorders.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Chao Zhang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Yingli Zhang
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Bo Peng
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Ziyun Xu
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China.
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China.
| |
Collapse
|
26
|
Guo MG, Reynolds DL, Ang CE, Liu Y, Zhao Y, Donohue LKH, Siprashvili Z, Yang X, Yoo Y, Mondal S, Hong A, Kain J, Meservey L, Fabo T, Elfaki I, Kellman LN, Abell NS, Pershad Y, Bayat V, Etminani P, Holodniy M, Geschwind DH, Montgomery SB, Duncan LE, Urban AE, Altman RB, Wernig M, Khavari PA. Integrative analyses highlight functional regulatory variants associated with neuropsychiatric diseases. Nat Genet 2023; 55:1876-1891. [PMID: 37857935 PMCID: PMC10859123 DOI: 10.1038/s41588-023-01533-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Noncoding variants of presumed regulatory function contribute to the heritability of neuropsychiatric disease. A total of 2,221 noncoding variants connected to risk for ten neuropsychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, bipolar disorder, borderline personality disorder, major depression, generalized anxiety disorder, panic disorder, post-traumatic stress disorder, obsessive-compulsive disorder and schizophrenia, were studied in developing human neural cells. Integrating epigenomic and transcriptomic data with massively parallel reporter assays identified differentially-active single-nucleotide variants (daSNVs) in specific neural cell types. Expression-gene mapping, network analyses and chromatin looping nominated candidate disease-relevant target genes modulated by these daSNVs. Follow-up integration of daSNV gene editing with clinical cohort analyses suggested that magnesium transport dysfunction may increase neuropsychiatric disease risk and indicated that common genetic pathomechanisms may mediate specific symptoms that are shared across multiple neuropsychiatric diseases.
Collapse
Affiliation(s)
- Margaret G Guo
- Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - David L Reynolds
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Cheen E Ang
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Yingfei Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Laura K H Donohue
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Xue Yang
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Yongjin Yoo
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Smarajit Mondal
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Audrey Hong
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Jessica Kain
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Tania Fabo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ibtihal Elfaki
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Laura N Kellman
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Nathan S Abell
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yash Pershad
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | | | - Mark Holodniy
- Public Health Surveillance and Research, Department of Veterans Affairs, Washington, DC, USA
- Division of Infectious Disease & Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel H Geschwind
- Program in Neurobehavioral Genetics, Semel Institute, UCLA, Los Angeles, CA, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Laramie E Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Alexander E Urban
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Russ B Altman
- Stanford Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Marius Wernig
- Department of Pathology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA.
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
27
|
Bhattacherjee A, Zhang C, Watson BR, Djekidel MN, Moffitt JR, Zhang Y. Spatial transcriptomics reveals the distinct organization of mouse prefrontal cortex and neuronal subtypes regulating chronic pain. Nat Neurosci 2023; 26:1880-1893. [PMID: 37845544 PMCID: PMC10620082 DOI: 10.1038/s41593-023-01455-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
The prefrontal cortex (PFC) is a complex brain region that regulates diverse functions ranging from cognition, emotion and executive action to even pain processing. To decode the cellular and circuit organization of such diverse functions, we employed spatially resolved single-cell transcriptome profiling of the adult mouse PFC. Results revealed that PFC has distinct cell-type composition and gene-expression patterns relative to neighboring cortical areas-with neuronal excitability-regulating genes differently expressed. These cellular and molecular features are further segregated within PFC subregions, alluding to the subregion-specificity of several PFC functions. PFC projects to major subcortical targets through combinations of neuronal subtypes, which emerge in a target-intrinsic fashion. Finally, based on these features, we identified distinct cell types and circuits in PFC underlying chronic pain, an escalating healthcare challenge with limited molecular understanding. Collectively, this comprehensive map will facilitate decoding of discrete molecular, cellular and circuit mechanisms underlying specific PFC functions in health and disease.
Collapse
Affiliation(s)
- Aritra Bhattacherjee
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Brianna R Watson
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mohamed Nadhir Djekidel
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
28
|
Miao B, Xing X, Bazylianska V, Madden P, Moszczynska A, Zhang B. Methamphetamine-induced region-specific transcriptomic and epigenetic changes in the brain of male rats. Commun Biol 2023; 6:991. [PMID: 37758941 PMCID: PMC10533900 DOI: 10.1038/s42003-023-05355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Psychostimulant methamphetamine (METH) is neurotoxic to the brain and, therefore, its misuse leads to neurological and psychiatric disorders. The gene regulatory network (GRN) response to neurotoxic METH binge remains unclear in most brain regions. Here we examined the effects of binge METH on the GRN in the nucleus accumbens, dentate gyrus, Ammon's horn, and subventricular zone in male rats. At 24 h after METH, ~16% of genes displayed altered expression and over a quarter of previously open chromatin regions - parts of the genome where genes are typically active - showed shifts in their accessibility. Intriguingly, most changes were unique to each area studied, and independent regulation between transcriptome and chromatin accessibility was observed. Unexpectedly, METH differentially impacted gene activity and chromatin accessibility within the dentate gyrus and Ammon's horn. Around 70% of the affected chromatin-accessible regions in the rat brain have conserved DNA sequences in the human genome. These regions frequently act as enhancers, ramping up the activity of nearby genes, and contain mutations linked to various neurological conditions. By sketching out the gene regulatory networks associated with binge METH in specific brain regions, our study offers fresh insights into how METH can trigger profound, region-specific molecular shifts.
Collapse
Affiliation(s)
- Benpeng Miao
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Viktoriia Bazylianska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
29
|
Chen T, Cheng L, Ma J, Yuan J, Pi C, Xiong L, Chen J, Liu H, Tang J, Zhong Y, Zhang X, Liu Z, Zuo Y, Shen H, Wei Y, Zhao L. Molecular mechanisms of rapid-acting antidepressants: New perspectives for developing antidepressants. Pharmacol Res 2023; 194:106837. [PMID: 37379962 DOI: 10.1016/j.phrs.2023.106837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Major depressive disorder (MDD) is a chronic relapsing psychiatric disorder. Conventional antidepressants usually require several weeks of continuous administration to exert clinically significant therapeutic effects, while about two-thirds of the patients are prone to relapse of symptoms or are completely ineffective in antidepressant treatment. The recent success of the N-methyl-D-aspartic acid (NMDA) receptor antagonist ketamine as a rapid-acting antidepressant has propelled extensive research on the action mechanism of antidepressants, especially in relation to its role in synaptic targets. Studies have revealed that the mechanism of antidepressant action of ketamine is not limited to antagonism of postsynaptic NMDA receptors or GABA interneurons. Ketamine produces powerful and rapid antidepressant effects by affecting α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, adenosine A1 receptors, and the L-type calcium channels, among others in the synapse. More interestingly, the 5-HT2A receptor agonist psilocybin has demonstrated potential for rapid antidepressant effects in depressed mouse models and clinical studies. This article focuses on a review of new pharmacological target studies of emerging rapid-acting antidepressant drugs such as ketamine and hallucinogens (e.g., psilocybin) and briefly discusses the possible strategies for new targets of antidepressants, with a view to shed light on the direction of future antidepressant research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ling Cheng
- Hospital-Acquired Infection Control Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingwen Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiyuan Yuan
- Clinical trial center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China
| | - Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yueting Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of medicinal chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, Sichuan 646000, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan 646000, China
| | - Hongping Shen
- Clinical trial center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou 646000 China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000 China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan 646000, China; Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
30
|
Weigel B, Tegethoff JF, Grieder SD, Lim B, Nagarajan B, Liu YC, Truberg J, Papageorgiou D, Adrian-Segarra JM, Schmidt LK, Kaspar J, Poisel E, Heinzelmann E, Saraswat M, Christ M, Arnold C, Ibarra IL, Campos J, Krijgsveld J, Monyer H, Zaugg JB, Acuna C, Mall M. MYT1L haploinsufficiency in human neurons and mice causes autism-associated phenotypes that can be reversed by genetic and pharmacologic intervention. Mol Psychiatry 2023; 28:2122-2135. [PMID: 36782060 PMCID: PMC10575775 DOI: 10.1038/s41380-023-01959-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023]
Abstract
MYT1L is an autism spectrum disorder (ASD)-associated transcription factor that is expressed in virtually all neurons throughout life. How MYT1L mutations cause neurological phenotypes and whether they can be targeted remains enigmatic. Here, we examine the effects of MYT1L deficiency in human neurons and mice. Mutant mice exhibit neurodevelopmental delays with thinner cortices, behavioural phenotypes, and gene expression changes that resemble those of ASD patients. MYT1L target genes, including WNT and NOTCH, are activated upon MYT1L depletion and their chemical inhibition can rescue delayed neurogenesis in vitro. MYT1L deficiency also causes upregulation of the main cardiac sodium channel, SCN5A, and neuronal hyperactivity, which could be restored by shRNA-mediated knockdown of SCN5A or MYT1L overexpression in postmitotic neurons. Acute application of the sodium channel blocker, lamotrigine, also rescued electrophysiological defects in vitro and behaviour phenotypes in vivo. Hence, MYT1L mutation causes both developmental and postmitotic neurological defects. However, acute intervention can normalise resulting electrophysiological and behavioural phenotypes in adulthood.
Collapse
Affiliation(s)
- Bettina Weigel
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Jana F Tegethoff
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Sarah D Grieder
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Bryce Lim
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Bhuvaneswari Nagarajan
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Yu-Chao Liu
- Department of Clinical Neurobiology, University Hospital Heidelberg and DKFZ, Heidelberg, Germany
| | - Jule Truberg
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Dimitris Papageorgiou
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Juan M Adrian-Segarra
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Laura K Schmidt
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Janina Kaspar
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Eric Poisel
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Elisa Heinzelmann
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Manu Saraswat
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Marleen Christ
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Christian Arnold
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69115, Heidelberg, Germany
| | - Ignacio L Ibarra
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69115, Heidelberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Joaquin Campos
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, University Hospital Heidelberg and DKFZ, Heidelberg, Germany
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69115, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany.
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
31
|
Lokmer A, Alladi CG, Troudet R, Bacq-Daian D, Boland-Auge A, Latapie V, Deleuze JF, RajKumar RP, Shewade DG, Bélivier F, Marie-Claire C, Jamain S. Risperidone response in patients with schizophrenia drives DNA methylation changes in immune and neuronal systems. Epigenomics 2023; 15:21-38. [PMID: 36919681 DOI: 10.2217/epi-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Background: The choice of efficient antipsychotic therapy for schizophrenia relies on a time-consuming trial-and-error approach, whereas the social and economic burdens of the disease call for faster alternatives. Material & methods: In a search for predictive biomarkers of antipsychotic response, blood methylomes of 28 patients were analyzed before and 4 weeks into risperidone therapy. Results: Several CpGs exhibiting response-specific temporal dynamics were identified in otherwise temporally stable methylomes and noticeable global response-related differences were observed between good and bad responders. These were associated with genes involved in immunity, neurotransmission and neuronal development. Polymorphisms in many of these genes were previously linked with schizophrenia etiology and antipsychotic response. Conclusion: Antipsychotic response seems to be shaped by both stable and medication-induced methylation differences.
Collapse
Affiliation(s)
- Ana Lokmer
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, F-94000, France.,Fondation FondaMental, Créteil, F-94000, France
| | - Charanraj Goud Alladi
- Université de Paris, INSERM UMRS 1144, Optimisation Thérapeutique en Neuropsychopharmacologie (OTeN), Paris, F-75006, France
| | - Réjane Troudet
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, F-94000, France.,Fondation FondaMental, Créteil, F-94000, France
| | - Delphine Bacq-Daian
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, F-91057, France
| | - Anne Boland-Auge
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, F-91057, France
| | - Violaine Latapie
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, F-94000, France.,Fondation FondaMental, Créteil, F-94000, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, F-91057, France
| | - Ravi Philip RajKumar
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - Deepak Gopal Shewade
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India.,Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, F-91000, France
| | - Frank Bélivier
- Fondation FondaMental, Créteil, F-94000, France.,Université de Paris, INSERM UMRS 1144, Optimisation Thérapeutique en Neuropsychopharmacologie (OTeN), Paris, F-75006, France.,Hôpitaux Lariboisière-Fernand Widal, GHU APHP Nord, Département de Psychiatrie et de Médecine Addicto-logique, Paris, F-75010, France
| | - Cynthia Marie-Claire
- Université de Paris, INSERM UMRS 1144, Optimisation Thérapeutique en Neuropsychopharmacologie (OTeN), Paris, F-75006, France
| | - Stéphane Jamain
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, F-94000, France.,Fondation FondaMental, Créteil, F-94000, France
| |
Collapse
|
32
|
Alzahrani A, Alshalan M, Alfurayh M, Bin Akrish A, Alsubeeh NA, Al Mutairi F. Case Report: Clinical delineation of CACNA1D mutation: New cases and literature review. Front Neurol 2023; 14:1131490. [PMID: 37122292 PMCID: PMC10140517 DOI: 10.3389/fneur.2023.1131490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Background Calcium ions are involved in several human cellular processes; nevertheless, the relationship between calcium channelopathies (CCs) and autism spectrum disorder (ASD) or intellectual disability (ID) has been previously investigated. We delineate the spectrum of clinical phenotypes and the symptoms associated with a syndrome caused by an inherited gain-of-function mutation in CACNA1D in a family with a history of neuropsychiatric disorders. We also review the clinical and molecular phenotype of previously reported variants of CACNA1D. Case presentation We report the case of a 9-year-old female patient, diagnosed with ASD, severe ID, hyperactivity, and aggressive impulsive behaviors. The father, who was a 65-year-old at the time of his death, had ID and developed major depressive disorder with catatonic features and nihilistic delusion, followed by rapidly progressive dementia. He died after experiencing prolonged seizures followed by post-cardiac arrest. The patient's sister was a 30-year-old woman, known to have a severe ID with aggressive behaviors and sleep disorders. The sister has been diagnosed with bipolar disorder and psychosis. Through whole exome sequencing, a heterozygous previously identified and functionally characterized missense likely pathogenic variant was identified in the CACNA1D gene NM_001128840.3: c.2015C > T (p.Ser672Leu). These findings are consistent with the genetic diagnosis of autosomal dominant primary aldosteronism, seizures, and neurological abnormalities. This variant was found in the heterozygous status in the patient, her father, and her affected sister. Conclusion This case report will help to determine the key clinical features of this syndrome, which exhibits variable clinical presentations.
Collapse
Affiliation(s)
- Alshaimaa Alzahrani
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Maha Alshalan
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Mohammed Alfurayh
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulaziz Bin Akrish
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Najlaa A. Alsubeeh
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- *Correspondence: Fuad Al Mutairi,
| |
Collapse
|
33
|
Grünblatt E, Homolak J, Babic Perhoc A, Davor V, Knezovic A, Osmanovic Barilar J, Riederer P, Walitza S, Tackenberg C, Salkovic-Petrisic M. From attention-deficit hyperactivity disorder to sporadic Alzheimer's disease-Wnt/mTOR pathways hypothesis. Front Neurosci 2023; 17:1104985. [PMID: 36875654 PMCID: PMC9978448 DOI: 10.3389/fnins.2023.1104985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with the majority of patients classified as sporadic AD (sAD), in which etiopathogenesis remains unresolved. Though sAD is argued to be a polygenic disorder, apolipoprotein E (APOE) ε4, was found three decades ago to pose the strongest genetic risk for sAD. Currently, the only clinically approved disease-modifying drugs for AD are aducanumab (Aduhelm) and lecanemab (Leqembi). All other AD treatment options are purely symptomatic with modest benefits. Similarly, attention-deficit hyperactivity disorder (ADHD), is one of the most common neurodevelopmental mental disorders in children and adolescents, acknowledged to persist in adulthood in over 60% of the patients. Moreover, for ADHD whose etiopathogenesis is not completely understood, a large proportion of patients respond well to treatment (first-line psychostimulants, e.g., methylphenidate/MPH), however, no disease-modifying therapy exists. Interestingly, cognitive impairments, executive, and memory deficits seem to be common in ADHD, but also in early stages of mild cognitive impairment (MCI), and dementia, including sAD. Therefore, one of many hypotheses is that ADHD and sAD might have similar origins or that they intercalate with one another, as shown recently that ADHD may be considered a risk factor for sAD. Intriguingly, several overlaps have been shown between the two disorders, e.g., inflammatory activation, oxidative stress, glucose and insulin pathways, wingless-INT/mammalian target of rapamycin (Wnt/mTOR) signaling, and altered lipid metabolism. Indeed, Wnt/mTOR activities were found to be modified by MPH in several ADHD studies. Wnt/mTOR was also found to play a role in sAD and in animal models of the disorder. Moreover, MPH treatment in the MCI phase was shown to be successful for apathy including some improvement in cognition, according to a recent meta-analysis. In several AD animal models, ADHD-like behavioral phenotypes have been observed indicating a possible interconnection between ADHD and AD. In this concept paper, we will discuss the various evidence in human and animal models supporting the hypothesis in which ADHD might increase the risk for sAD, with common involvement of the Wnt/mTOR-pathway leading to lifespan alteration at the neuronal levels.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jan Homolak
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Virag Davor
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Peter Riederer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department and Research Unit of Psychiatry, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Neuroscience Center Zurich, University of Zurich and the Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
| | - Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
34
|
Autism associated mutations in β 2 subunit of voltage-gated calcium channels constitutively activate gene expression. Cell Calcium 2022; 108:102672. [PMID: 36427431 DOI: 10.1016/j.ceca.2022.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Membrane depolarization triggers gene expression through voltage-gated calcium channels (VGCC) in a process called Excitation-transcription (ET) coupling. Mutations in the channel subunits α11.2, or β2d, are associated with neurodevelopmental disorders such as ASD. Here, we found that two mutations S143F and G113S within the rat Cavβ2a corresponding to autistic related mutations Cavβ2dS197F and Cavβ2dG167S in the human Cavβ2d, activate ET-coupling via the RAS/ERK/CREB pathway. Membrane depolarization of HEK293 cells co-expressing α11.2 and α2δ with Cavβ2aS143F or Cavβ2aG113S triggers constitutive transcriptional activation, which is correlated with facilitated channel activity. Similar to the Timothy-associated autistic mutation α11.2G406R, constitutive gene activation is attributed to a hyperpolarizing shift in the activation kinetics of Cav1.2. Pulldown of RasGRF2 and RhoGEF by wt and the Cavβ2a autistic mutants is consistent with Cavβ2/Ras activation in ET coupling and implicates Rho signaling as yet another molecular pathway activated by Cavα11.2/Cavβ2 . Facilitated spontaneous channel activity preceding enhanced gene activation via the Ras/ERK/CREB pathway, appears a general molecular mechanism for Ca2+ channel mediated ASD and other neurodevelopmental disorders.
Collapse
|
35
|
Saunders GRB, Wang X, Chen F, Jang SK, Liu M, Wang C, Gao S, Jiang Y, Khunsriraksakul C, Otto JM, Addison C, Akiyama M, Albert CM, Aliev F, Alonso A, Arnett DK, Ashley-Koch AE, Ashrani AA, Barnes KC, Barr RG, Bartz TM, Becker DM, Bielak LF, Benjamin EJ, Bis JC, Bjornsdottir G, Blangero J, Bleecker ER, Boardman JD, Boerwinkle E, Boomsma DI, Boorgula MP, Bowden DW, Brody JA, Cade BE, Chasman DI, Chavan S, Chen YDI, Chen Z, Cheng I, Cho MH, Choquet H, Cole JW, Cornelis MC, Cucca F, Curran JE, de Andrade M, Dick DM, Docherty AR, Duggirala R, Eaton CB, Ehringer MA, Esko T, Faul JD, Fernandes Silva L, Fiorillo E, Fornage M, Freedman BI, Gabrielsen ME, Garrett ME, Gharib SA, Gieger C, Gillespie N, Glahn DC, Gordon SD, Gu CC, Gu D, Gudbjartsson DF, Guo X, Haessler J, Hall ME, Haller T, Harris KM, He J, Herd P, Hewitt JK, Hickie I, Hidalgo B, Hokanson JE, Hopfer C, Hottenga J, Hou L, Huang H, Hung YJ, Hunter DJ, Hveem K, Hwang SJ, Hwu CM, Iacono W, Irvin MR, Jee YH, Johnson EO, Joo YY, Jorgenson E, Justice AE, Kamatani Y, Kaplan RC, Kaprio J, Kardia SLR, Keller MC, Kelly TN, Kooperberg C, Korhonen T, Kraft P, Krauter K, Kuusisto J, Laakso M, Lasky-Su J, Lee WJ, Lee JJ, Levy D, Li L, Li K, Li Y, Lin K, Lind PA, Liu C, Lloyd-Jones DM, Lutz SM, Ma J, Mägi R, Manichaikul A, Martin NG, Mathur R, Matoba N, McArdle PF, McGue M, McQueen MB, Medland SE, Metspalu A, Meyers DA, Millwood IY, Mitchell BD, Mohlke KL, Moll M, Montasser ME, Morrison AC, Mulas A, Nielsen JB, North KE, Oelsner EC, Okada Y, Orrù V, Palmer ND, Palviainen T, Pandit A, Park SL, Peters U, Peters A, Peyser PA, Polderman TJC, Rafaels N, Redline S, Reed RM, Reiner AP, Rice JP, Rich SS, Richmond NE, Roan C, Rotter JI, Rueschman MN, Runarsdottir V, Saccone NL, Schwartz DA, Shadyab AH, Shi J, Shringarpure SS, Sicinski K, Skogholt AH, Smith JA, Smith NL, Sotoodehnia N, Stallings MC, Stefansson H, Stefansson K, Stitzel JA, Sun X, Syed M, Tal-Singer R, Taylor AE, Taylor KD, Telen MJ, Thai KK, Tiwari H, Turman C, Tyrfingsson T, Wall TL, Walters RG, Weir DR, Weiss ST, White WB, Whitfield JB, Wiggins KL, Willemsen G, Willer CJ, Winsvold BS, Xu H, Yanek LR, Yin J, Young KL, Young KA, Yu B, Zhao W, Zhou W, Zöllner S, Zuccolo L, Batini C, Bergen AW, Bierut LJ, David SP, Gagliano Taliun SA, Hancock DB, Jiang B, Munafò MR, Thorgeirsson TE, Liu DJ, Vrieze S. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 2022; 612:720-724. [PMID: 36477530 PMCID: PMC9771818 DOI: 10.1038/s41586-022-05477-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022]
Abstract
Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.
Collapse
Affiliation(s)
| | - Xingyan Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Fang Chen
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Seon-Kyeong Jang
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Chen Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Shuang Gao
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Yu Jiang
- Department of Epidemiology & Population Health at Stanford University, Stanford, CA, USA
| | | | - Jacqueline M Otto
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Clifton Addison
- Jackson Heart Study (JHS) Graduate Training and Education Center (GTEC), Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS, USA
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ocular Pathology and Imaging Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Christine M Albert
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fazil Aliev
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donna K Arnett
- Dean's Office and Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Allison E Ashley-Koch
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Aneel A Ashrani
- Division of Hematology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kathleen C Barnes
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Tempus, Chicago, IL, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Diane M Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Emelia J Benjamin
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | | | - Jason D Boardman
- Institute of Behavioral Science, University of Colorado Boulder, Boulder, CO, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dorret I Boomsma
- Netherlands Twin Register, Dept Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Meher Preethi Boorgula
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sameer Chavan
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Cheng
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - John W Cole
- Department of Neurology, Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
- Division of Vascular Neurology, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Mariza de Andrade
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Danielle M Dick
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Anna R Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Virginia, USA
- Huntsman Mental Health Institute, Salt Lake City, UT, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Charles B Eaton
- Department of Family Medicine, Brown University, Providence, RI, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barry I Freedman
- Department of Internal Medicine-Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Melanie E Garrett
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nathan Gillespie
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Virginia, USA
| | - David C Glahn
- Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital & Harvard Medical School, Boston, MA, USA
| | - Scott D Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Charles C Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Dongfeng Gu
- Department of Epidemiology and Key Laboratory of Cardiovascular Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jeffrey Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael E Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Toomas Haller
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kathleen Mullan Harris
- Department of Sociology and the Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jiang He
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
- Translational Sciences Institute, Tulane University, New Orleans, LA, USA
| | - Pamela Herd
- McCourt School of Public Policy, Georgetown University, Washington, DC, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department Of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ian Hickie
- Youth Mental Health & Technology Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christian Hopfer
- Department of Psychiatry, University of Colorado Anschutz Medical Center, Denver, CO, USA
| | - JoukeJan Hottenga
- Netherlands Twin Register, Dept Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongyan Huang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Research, Innovation and Education, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - William Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yon Ho Jee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Yoonjung Y Joo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Institute of Data Science, Korea University, Seoul, South Korea
| | | | - Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robert C Kaplan
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department Of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
- Translational Sciences Institute, Tulane University, New Orleans, LA, USA
| | - Charles Kooperberg
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tellervo Korhonen
- Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kenneth Krauter
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Center for Medicine and Clinical Research, Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Jessica Lasky-Su
- Brigham and Women's Hospital, Department of Medicine, Channing Division of Network Medicine, Boston, MA, USA
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - James J Lee
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Kevin Li
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Yuqing Li
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Donald M Lloyd-Jones
- Departments of Preventive Medicine, Medicine, and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sharon M Lutz
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Department of Biostatics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiantao Ma
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Reedik Mägi
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ravi Mathur
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Nana Matoba
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Genetics, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick F McArdle
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew B McQueen
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - May E Montasser
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Jonas B Nielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yukinori Okada
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Anita Pandit
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - S Lani Park
- Population Sciences of the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig Maximilians University Munich, Munich, Germany
- German Centre for Cardiovascular Research, DZHK, Partner Site Munich, Munich, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Tinca J C Polderman
- Department of Clinical Developmental Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nicholas Rafaels
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert M Reed
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - John P Rice
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nicole E Richmond
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carol Roan
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michael N Rueschman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Nancy L Saccone
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - David A Schwartz
- Division of Pulmonary Sciences and Critical Care Medicine; Department of Medicine and Immunology, University of Colorado, Aurora, CO, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Kamil Sicinski
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department Of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Xiao Sun
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Moin Syed
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - Amy E Taylor
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- National Institute for Health Research Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
| | - Khanh K Thai
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - Hemant Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Tamara L Wall
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Scott T Weiss
- Brigham and Women's Hospital, Department of Medicine, Channing Division of Network Medicine, Boston, MA, USA
| | - Wendy B White
- Jackson Heart Study Undergraduate Training and Education Center, Tougaloo College, Tougaloo, MS, USA
| | - John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gonneke Willemsen
- Netherlands Twin Register, Dept Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Bendik S Winsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Yin
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastian Zöllner
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Luisa Zuccolo
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Health Data Science Centre, Fondazione Human Technopole, Milan, Italy
| | - Chiara Batini
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Andrew W Bergen
- Oregon Research Institute, Springfield, OR, USA
- BioRealm, LLC, Walnut, CA, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P David
- Outcomes Research Network & Department of Family Medicine, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Family Medicine, University of Chicago, Chicago, IL, USA
| | - Sarah A Gagliano Taliun
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- Research Centre, Montréal Heart Institute, Montréal, Québec, Canada
| | - Dana B Hancock
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Bibo Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- National Institute for Health Research Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | | | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
36
|
Yan ZY, Hu WQ, Zong QQ, Yu GH, Zhai CX, Wang LL, Wang YH, Zhang TY, Li Z, Teng Y, Cai J, Chen YF, Li M, Xu ZZ, Pan FM, Pan HF, Su H, Zou YF. Associations of RPEL1 and miR-1307 gene polymorphisms with disease susceptibility, glucocorticoid efficacy, anxiety, depression, and health-related quality of life in Chinese systemic lupus erythematosus patients. Lupus 2022; 31:1735-1743. [PMID: 36194484 DOI: 10.1177/09612033221131182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our present study intended to examine the associations of RPEL1 and miR-1307 gene polymorphisms (rs4917385 and rs7911488) with susceptibility, glucocorticoids (GCs) efficacy, anxiety, depression, and health-related quality of life (HRQoL) in Chinese systemic lupus erythematosus (SLE) patients. METHODS Initially, 1000 participants (500 SLE cases and 500 controls) were recruited for the case-control study. Then, 429 cases who received GCs were followed through 12 weeks to explore GCs efficacy, depression, anxiety, and HRQoL. We selected the iMLDR technique for genotyping: RPEL1: rs4917385 (G/T) and miR-1307: rs7911488 (A/G). RESULTS The minor G allele of rs7911488 reduced the risk of SLE (p = .024). Four haplotypes consisting of rs4917385 and rs7911488 were associated with SLE susceptibility (p < .025). Both rs4917385 and rs7911488 were associated with anxiety symptoms and physical function (PF) in SLE patients (p < .025). The rs4917385 was associated with depression and its improvement. No statistical significance was found between RPEL1 and miR-1307 gene polymorphisms with GCs efficacy. Meanwhile, additive interaction analysis showed a significant association between RPEL1 and miR-1307 gene polymorphisms with tea consumption in anxiety. CONCLUSION RPEL1 and miR-1307 gene polymorphisms (rs4917385 and rs7911488) might be related to SLE susceptibility in Chinese population. Additionally, the two polymorphisms were possibly associated with depression, anxiety, and HRQoL in Chinese SLE population.
Collapse
Affiliation(s)
- Zi-Ye Yan
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Wan-Qin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Qi-Qun Zong
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Guang-Hui Yu
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Chun-Xia Zhai
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Lin-Lin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Yu-Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Ting-Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Jing Cai
- Department of Rheumatology and Immunology, 36639The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang-Fan Chen
- Department of Rheumatology and Immunology, 36639The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mu Li
- Department of Rheumatology and Immunology, 36639The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhou-Zhou Xu
- Department of Rheumatology and Immunology, 533251The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fa-Ming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Yan-Feng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China.,Key Laboratory of Dermatology, (Anhui Medical University), Ministry of Education, Hefei, China
| |
Collapse
|
37
|
Arnsten AFT, Woo E, Yang S, Wang M, Datta D. Unusual Molecular Regulation of Dorsolateral Prefrontal Cortex Layer III Synapses Increases Vulnerability to Genetic and Environmental Insults in Schizophrenia. Biol Psychiatry 2022; 92:480-490. [PMID: 35305820 PMCID: PMC9372235 DOI: 10.1016/j.biopsych.2022.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
Schizophrenia is associated with reduced numbers of spines and dendrites from layer III of the dorsolateral prefrontal cortex (dlPFC), the layer that houses the recurrent excitatory microcircuits that subserve working memory and abstract thought. Why are these synapses so vulnerable, while synapses in deeper or more superficial layers are little affected? This review describes the special molecular properties that govern layer III neurotransmission and neuromodulation in the primate dlPFC and how they may render these circuits particularly vulnerable to genetic and environmental insults. These properties include a reliance on NMDA receptor rather than AMPA receptor neurotransmission; cAMP (cyclic adenosine monophosphate) magnification of calcium signaling near the glutamatergic synapse of dendritic spines; and potassium channels opened by cAMP/PKA (protein kinase A) signaling that dynamically alter network strength, with built-in mechanisms to take dlPFC "offline" during stress. A variety of genetic and/or environmental insults can lead to the same phenotype of weakened layer III connectivity, in which mechanisms that normally strengthen connectivity are impaired and those that normally weaken connectivity are intensified. Inflammatory mechanisms, such as increased kynurenic acid and glutamate carboxypeptidase II expression, are especially detrimental to layer III dlPFC neurotransmission and modulation, mimicking genetic insults. The combination of genetic and inflammatory insults may cross the threshold into pathology.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut.
| | - Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Shengtao Yang
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Min Wang
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| |
Collapse
|
38
|
Zeng S, Zhu R, Wang Y, Yang Y, Li N, Fu N, Sun M, Zhang J. Role of GABA A receptor depolarization-mediated VGCC activation in sevoflurane-induced cognitive impairment in neonatal mice. Front Cell Neurosci 2022; 16:964227. [PMID: 36176629 PMCID: PMC9514857 DOI: 10.3389/fncel.2022.964227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background In neonatal mice, anesthesia with sevoflurane depolarizes the GABA Type A receptor (GABAAR), which leads to cognitive impairment. Calcium accumulation in neurons can lead to neurotoxicity. Voltage-gated calcium channels (VGCCs) can increase intracellular calcium concentration under isoflurane and hypoxic conditions. The underlying mechanisms remain largely unknown. Methods Six-day-old mice were anesthetized with 3% sevoflurane for 2 h/day for 3 days. The Y-Maze, new object recognition (NOR) test, the Barnes maze test, immunoassay, immunoblotting, the TUNEL test, and Golgi-Cox staining were used to assess cognition, calcium concentration, inflammatory response, GABAAR activation, VGCC expression, apoptosis, and proliferation of hippocampal nerve cells in mice and HT22 cells. Results Compared with the control group, mice in the sevoflurane group had impaired cognitive function. In the sevoflurane group, the expression of Gabrb3 and Cav1.2 in the hippocampal neurons increased (p < 0.01), the concentration of calcium ions increased (p < 0.01), inflammatory reaction and apoptosis of neurons increased (p < 0.01), the proliferation of neurons in the DG area decreased (p < 0.01), and dendritic spine density decreased (p < 0.05). However, the inhibition of Gabrb3 and Cav1.2 alleviated cognitive impairment and reduced neurotoxicity. Conclusions Sevoflurane activates VGCCs by inducing GABAAR depolarization, resulting in cognitive impairment. Activated VGCCs cause an increase in intracellular calcium concentration and an inflammatory response, resulting in neurotoxicity and cognitive impairment.
Collapse
Affiliation(s)
- Shuang Zeng
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Ruilou Zhu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yitian Yang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ningning Li
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Ningning Fu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
39
|
Ablinger C, Eibl C, Geisler SM, Campiglio M, Stephens GJ, Missler M, Obermair GJ. α 2δ-4 and Cachd1 Proteins Are Regulators of Presynaptic Functions. Int J Mol Sci 2022; 23:9885. [PMID: 36077281 PMCID: PMC9456004 DOI: 10.3390/ijms23179885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The α2δ auxiliary subunits of voltage-gated calcium channels (VGCC) were traditionally regarded as modulators of biophysical channel properties. In recent years, channel-independent functions of these subunits, such as involvement in synapse formation, have been identified. In the central nervous system, α2δ isoforms 1, 2, and 3 are strongly expressed, regulating glutamatergic synapse formation by a presynaptic mechanism. Although the α2δ-4 isoform is predominantly found in the retina with very little expression in the brain, it was recently linked to brain functions. In contrast, Cachd1, a novel α2δ-like protein, shows strong expression in brain, but its function in neurons is not yet known. Therefore, we aimed to investigate the presynaptic functions of α2δ-4 and Cachd1 by expressing individual proteins in cultured hippocampal neurons. Both α2δ-4 and Cachd1 are expressed in the presynaptic membrane and could rescue a severe synaptic defect present in triple knockout/knockdown neurons that lacked the α2δ-1-3 isoforms (α2δ TKO/KD). This observation suggests that presynaptic localization and the regulation of synapse formation in glutamatergic neurons is a general feature of α2δ proteins. In contrast to this redundant presynaptic function, α2δ-4 and Cachd1 differentially regulate the abundance of presynaptic calcium channels and the amplitude of presynaptic calcium transients. These functional differences may be caused by subtle isoform-specific differences in α1-α2δ protein-protein interactions, as revealed by structural homology modelling. Taken together, our study identifies both α2δ-4 and Cachd1 as presynaptic regulators of synapse formation, differentiation, and calcium channel functions that can at least partially compensate for the loss of α2δ-1-3. Moreover, we show that regulating glutamatergic synapse formation and differentiation is a critical and surprisingly redundant function of α2δ and Cachd1.
Collapse
Affiliation(s)
- Cornelia Ablinger
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Clarissa Eibl
- Division Physiology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Stefanie M. Geisler
- Department Pharmacology and Toxicology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Gary J. Stephens
- Reading School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Gerald J. Obermair
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
- Division Physiology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| |
Collapse
|
40
|
Mohammad GS, Joca S, Starnawska A. The Cannabis-Induced Epigenetic Regulation of Genes Associated with Major Depressive Disorder. Genes (Basel) 2022; 13:1435. [PMID: 36011346 PMCID: PMC9407536 DOI: 10.3390/genes13081435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The prevalence of depression is increasing worldwide, as is the number of people suffering from treatment-resistant depression; these patients constitute 30% of those treated. Unfortunately, there have not been significant advances in the treatment of this disorder in the past few decades. Exposure to cannabis and cannabis-derived compounds impacts depression symptomatology in different ways, with evidence indicating that cannabidiol has antidepressant effects; there have been mixed results with medical cannabis. Even though the exact molecular mechanisms of the action underlying changes in depression symptomatology upon exposure to cannabis and cannabis-derived compounds are still unknown, there is strong evidence that these agents have a widespread impact on epigenetic regulation. We hypothesized that exposure to cannabis or cannabis-derived compounds changes the DNA methylation levels of genes associated with depression. To test this hypothesis, we first performed a literature search to identify genes that are differentially methylated upon exposure to cannabis and cannabis-derived compounds, as reported in methylome-wide association studies. We next checked whether genes residing in loci associated with depression, as identified in the largest currently available genome-wide association study of depression, were reported to be epigenetically regulated by cannabis or cannabis-related compounds. Multiple genes residing in loci associated with depression were found to be epigenetically regulated by exposure to cannabis or cannabis-derived compounds. This epigenomic regulation of depression-associated genes by cannabis or cannabis-derived compounds was reported across diverse organisms, tissues, and developmental stages and occurred in genes crucial for neuronal development, functioning, survival, and synapse functioning, as well as in genes previously implicated in other mental disorders.
Collapse
Affiliation(s)
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo (USP), Ribeirão Preto 14040-903, Brazil
| | - Anna Starnawska
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Center for Integrative Sequencing, iSEQ, 8000 Aarhus, Denmark
| |
Collapse
|
41
|
Carnovale C, Perrotta C, Baldelli S, Cattaneo D, Montrasio C, Barbieri SS, Pompilio G, Vantaggiato C, Clementi E, Pozzi M. Antihypertensive drugs and brain function: mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res 2022; 119:647-667. [PMID: 35895876 PMCID: PMC10153433 DOI: 10.1093/cvr/cvac110] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
A bidirectional relationship exists between hypertension and psychiatric disorders, including unipolar and bipolar depression, anxiety, post-traumatic stress disorder (PTSD), psychosis, schizophrenia, mania, and dementia/cognitive decline. Repurposing of antihypertensive drugs to treat mental disorders is thus being explored. A systematic knowledge of the mechanisms of action and clinical consequences of the use of antihypertensive agents on neuropsychiatric functions has not been achieved yet. In this article, we review the putative role of antihypertensive agents in psychiatric disorders, discuss the targets and mechanisms of action, and examine how and to what extent specific drug classes/molecules may trigger, worsen, or mitigate psychiatric symptoms. In addition, we review pharmacokinetics (brain penetration of drugs) and pharmacogenetics data that add important information to assess risks and benefits of antihypertensive drugs in neuropsychiatric settings. The scientific literature shows robust evidence of a positive effect of α1 blockers on PTSD symptoms, nightmares and sleep quality, α2 agonists on core symptoms, executive function and quality of life in Attention-Deficit/Hyperactivity Disorder, PTSD, Tourette's syndrome, and β blockers on anxiety, aggression, working memory, and social communication. Renin-angiotensin system modulators exert protective effects on cognition, depression, and anxiety, and the loop diuretic bumetanide reduced the core symptoms of autism in a subset of patients. There is no evidence of clear benefits of calcium channel blockers in mood disorders in the scientific literature. These findings are mainly from preclinical studies; clinical data are still insufficient or of anecdotal nature, and seldom systematic. The information herewith provided can support a better therapeutic approach to hypertension, tailored to patients with, or with high susceptibility to, psychiatric illness. It may prompt clinical studies exploring the potential benefit of antihypertensive drugs in selected patients with neuropsychiatric comorbidities that include outcomes of neuropsychiatric interest and specifically assess undesirable effects or interactions.
Collapse
Affiliation(s)
- Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart axis: cellular and molecular mechanisms - Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine - Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy.,Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
42
|
Wu HB, Xiao YG, Chen JS, Qiu ZK. The potential mechanism of Bupleurum against anxiety was predicted by network pharmacology study and molecular docking. Metab Brain Dis 2022; 37:1609-1639. [PMID: 35366129 DOI: 10.1007/s11011-022-00970-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/21/2022] [Indexed: 01/20/2023]
Abstract
Bupleurum chinense DC. (Chaihu) is a traditional Chinese medicine (TCM) used in the treatment of anxiety. But the anxiolytic mechanisms of bupleurum are still unclear. Therefore, this unknown is predicted by network pharmacology study with molecular docking in the present study. The components of bupleurum were obtained from the databases. Genes associated with components and disease were also provided by databases. Overlapping genes between components and disease were analyzed. The network of medicine-components-targets-disease was constructed, visualized, and analyzed. Protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG) and molecular docking were conducted to predict the potential mechanisms of bupleurum on anxiety. A total of 9 bioactive components derived from bupleurum with 80 target genes were involved in anxiety. Neurotransmitter receptor activity, G protein-coupled amine receptor activity, regulation of blood circulation, neuroactive ligand-receptor interaction, calcium signaling pathway and salivary secretion may play significant roles in the anxiolytic of bupleurum. Molecular docking implicated that ACHE and MAOA showed high affinity for stigmasterol. Based on network pharmacology study with molecular docking, multi-component-multi-target-multi-pathway action mode of bupleurum on anxiety was elaborated. Stigmasterol might be the core bioactive component, while ACHE and MAOA might be the core target genes in the pharmacological profile of bupleurum on anxiety.
Collapse
Affiliation(s)
- Han-Biao Wu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Gang Xiao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ji-Sheng Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-Kun Qiu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
43
|
Antidepressant-Like Effect of Traditional Medicinal Plant Carthamus Tinctorius in Mice Model through Neuro-Behavioral Tests and Transcriptomic Approach. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Major depression disorder (MDD) has become a common life-threatening disorder. Despite the number of studies and the introduced antidepressants, MDD remains a major global health issue. Carthamus tinctorius (safflower) is traditionally used for food and medical purposes. This study investigated the chemical profile and the antidepressant-like effect of the Carthamus tincto-rius hot water extract in male mice and its mechanism using a transcriptomic analysis. The antidepressant effect of hot water extract (50 mg/kg and 150 mg/kg) was investigated in mice versus the untreated group (saline) and positive control group (fluoxetine 10 mg/kg). Hippocampus transcriptome changes were investigated to understand the Carthamus tinctorius mechanism of action. The GC-MS analysis of Carthamus tinctorius showed that hot water extract yielded the highest amount of oleamide as the most active ingredient. Neuro-behavioral tests demonstrated that the safflower treatment significantly reduced immobility time in TST and FST and improved performance in the YMSAT compared to the control group. RNA-seq analysis revealed a significant differential gene expression pattern in several genes such as Ube2j2, Ncor1, Tuba1c, Grik1, Msmo1, and Casp9 related to MDD regulation in 50 mg/kg safflower treatment as compared to untreated and fluoxetine-treated groups. Our findings demonstrated the antidepressant-like effect of safflower hot water extract and its bioactive ingredient oleamide on mice, validated by a significantly shortened immobility time in TST and FST and an increase in the percentage of spontaneous alternation.
Collapse
|
44
|
Yang Y, Yu Z, Geng J, Liu M, Liu N, Li P, Hong W, Yue S, Jiang H, Ge H, Qian F, Xiong W, Wang P, Song S, Li X, Fan Y, Liu X. Cytosolic peptides encoding Ca V1 C-termini downregulate the calcium channel activity-neuritogenesis coupling. Commun Biol 2022; 5:484. [PMID: 35589958 PMCID: PMC9120191 DOI: 10.1038/s42003-022-03438-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 05/03/2022] [Indexed: 12/31/2022] Open
Abstract
L-type Ca2+ (CaV1) channels transduce channel activities into nuclear signals critical to neuritogenesis. Also, standalone peptides encoded by CaV1 DCT (distal carboxyl-terminus) act as nuclear transcription factors reportedly promoting neuritogenesis. Here, by focusing on exemplary CaV1.3 and cortical neurons under basal conditions, we discover that cytosolic DCT peptides downregulate neurite outgrowth by the interactions with CaV1's apo-calmodulin binding motif. Distinct from nuclear DCT, various cytosolic peptides exert a gradient of inhibitory effects on Ca2+ influx via CaV1 channels and neurite extension and arborization, and also the intermediate events including CREB activation and c-Fos expression. The inhibition efficacies of DCT are quantitatively correlated with its binding affinities. Meanwhile, cytosolic inhibition tends to facilitate neuritogenesis indirectly by favoring Ca2+-sensitive nuclear retention of DCT. In summary, DCT peptides as a class of CaV1 inhibitors specifically regulate the channel activity-neuritogenesis coupling in a variant-, affinity-, and localization-dependent manner.
Collapse
Affiliation(s)
- Yaxiong Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China
| | - Zhen Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China
| | - Jinli Geng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China
| | - Min Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Nan Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Weili Hong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Shuhua Yue
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - He Jiang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haiyan Ge
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Feng Qian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ping Wang
- Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
| | - Sen Song
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaomei Li
- School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Xiaodong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China. .,X-Laboratory for Ion-Channel Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
45
|
[Effects of CACNA1H gene knockout on autistic-like behaviors and the morphology of hippocampal neurons in mice]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54. [PMID: 35435181 PMCID: PMC9069025 DOI: 10.19723/j.issn.1671-167x.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the effects of CACNA1H gene knockout (KO) on autistic-like behaviors and the morphology of hippocampal neurons in mice. METHODS In the study, 25 CACNA1H KO mice of 3-4 weeks old and C57BL/6 background were recruited as the experimental group, and 26 wild type (WT) mice of the same age and background were recruited as the control group. Three-chamber test and open field test were used to observe the social interaction, anxiety, and repetitive behaviors in mice. After that, their brain weight and size were measured, and the number of hippocampal neurons were observed by Nissl staining. Furthermore, the CACNA1H heterozygote mice were interbred with Thy1-GFP-O mice to generate CACNA1H-/--Thy1+(KO-GFP) and CACNA1H+/+-Thy1+ (WT-GFP) mice. The density and maturity of dendritic spines of hippocampal neurons were observed. RESULTS In the sociability test session of the three-chamber test, the KO mice spent more time in the chamber of the stranger mice than in the object one (F1, 14=95.086, P < 0.05; Post-Hoc: P < 0.05), without any significant difference for the explored preference index between the two groups (t=1.044, P>0.05). However, in the social novelty recognition test session, no difference was observed between the time of the KO mice spend in the chamber of new stranger mice and the stranger one (F1, 14=18.062, P < 0.05; Post-Hoc: P>0.05), and the explored preference index of the KO mice was less than that of the control group (t=2.390, P < 0.05). In the open field test, the KO mice spent less time in the center of the open field apparatus than the control group (t=2.503, P < 0.05), but the self-grooming time was significantly increased compared with the control group (t=-2.299, P < 0.05). Morphological results showed that the brain weight/body weight ratio (t=0.356, P>0.05) and brain size (t=-0.660, P>0.05) of the KO mice were not significantly different from those of the control group, but the number of neurons were significantly reduced in hippocampal dentate gyrus compared with the control group (t=2.323, P < 0.05). Moreover, the density of dendritic spine of dentate gyrus neurons in the KO-GFP mice was significantly increased compared with the control group (t=-2.374, P < 0.05), without any significant difference in spine maturity (t=-1.935, P>0.05). CONCLUSION CACNA1H KO mice represent autistic-like behavior, which may be related to the decrease in the number of neurons and the increase in the density of dendritic spine in the dentate gyrus.
Collapse
|
46
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 08/26/2024] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
47
|
Cavezzi A, Menicagli R, Troiani E, Corrao S. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Res 2022; 11:102. [PMID: 35340277 PMCID: PMC8921693 DOI: 10.12688/f1000research.108667.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background: iron and calcium dysmetabolism, with hyperferritinemia, hypoferremia, hypocalcemia and anemia have been documented in the majority of COVID-19 patients at later/worse stages. Furthermore, complementary to ACE2, both sialic acid (SA) molecules and CD147 proved relevant host receptors for SARS-CoV-2 entry, which explains the viral attack to multiple types of cells, including erythrocytes, endothelium and neural tissue. Several authors advocated that cell ferroptosis may be the core and final cell degenerative mechanism. Methods: a literature research was performed in several scientific search engines, such as PubMed Central, Cochrane Library, Chemical Abstract Service. More than 500 articles were retrieved until mid-December 2021, to highlight the available evidence about the investigated issues. Results: based on COVID-19 literature data, we have highlighted a few pathophysiological mechanisms, associated with virus-based cation dysmetabolism, multi-organ attack, mitochondria degeneration and ferroptosis. Our suggested elucidated pathological sequence is: a) spike protein subunit S1 docking with sialylated membrane glycoproteins/receptors (ACE2, CD147), and S2 subunit fusion with the lipid layer; b) cell membrane morpho-functional changes due to the consequent electro-chemical variations and viroporin action, which induce an altered ion channel function and intracellular cation accumulation; c) additional intracellular iron concentration due to a deregulated hepcidin-ferroportin axis, with higher hepcidin levels. Viral invasion may also affect erythrocytes/erythroid precursors, endothelial cells and macrophages, through SA and CD147 receptors, with relative hemoglobin and iron/calcium dysmetabolism. AB0 blood group, hemochromatosis, or environmental elements may represent possible factors which affect individual susceptibility to COVID-19. Conclusions: our literature analysis confirms the combined role of SA molecules, ACE2, CD147, viroporins and hepcidin in determining the cation dysmetabolism and final ferroptosis in the cells infected by SARS-CoV-2. The altered ion channels and electrochemical gradients of the cell membrane have a pivotal role in the virus entry and cell dysmetabolism, with subsequent multi-organ immune-inflammatory degeneration and erythrocyte/hemoglobin alterations.
Collapse
Affiliation(s)
- Attilio Cavezzi
- Eurocenter Venalinfa, San Benedetto del Tronto, AP, 63074, Italy
| | | | - Emidio Troiani
- Cardiology Unit, Social Security Institute, State Hospital, Cailungo, 47893, San Marino
| | - Salvatore Corrao
- Department of Clinical Medicine, Internal Medicine Division,, ARNAS Civico Di Cristina Benfratelli Hospital Trust, Palermo, Italy
| |
Collapse
|
48
|
Viggiano M, D'Andrea T, Cameli C, Posar A, Visconti P, Scaduto MC, Colucci R, Rochat MJ, Ceroni F, Milazzo G, Fucile S, Maestrini E, Bacchelli E. Contribution of CACNA1H Variants in Autism Spectrum Disorder Susceptibility. Front Psychiatry 2022; 13:858238. [PMID: 35350424 PMCID: PMC8957782 DOI: 10.3389/fpsyt.2022.858238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 11/14/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a highly heterogeneous neuropsychiatric disorder with a strong genetic component. The genetic architecture is complex, consisting of a combination of common low-risk and more penetrant rare variants. Voltage-gated calcium channels (VGCCs or Cav) genes have been implicated as high-confidence susceptibility genes for ASD, in accordance with the relevant role of calcium signaling in neuronal function. In order to further investigate the involvement of VGCCs rare variants in ASD susceptibility, we performed whole genome sequencing analysis in a cohort of 105 families, composed of 124 ASD individuals, 210 parents and 58 unaffected siblings. We identified 53 rare inherited damaging variants in Cav genes, including genes coding for the principal subunit and genes coding for the auxiliary subunits, in 40 ASD families. Interestingly, biallelic rare damaging missense variants were detected in the CACNA1H gene, coding for the T-type Cav3.2 channel, in ASD probands from two different families. Thus, to clarify the role of these CACNA1H variants on calcium channel activity we performed electrophysiological analysis using whole-cell patch clamp technology. Three out of four tested variants were shown to mildly affect Cav3.2 channel current density and activation properties, possibly leading to a dysregulation of intracellular Ca2+ ions homeostasis, thus altering calcium-dependent neuronal processes and contributing to ASD etiology in these families. Our results provide further support for the role of CACNA1H in neurodevelopmental disorders and suggest that rare CACNA1H variants may be involved in ASD development, providing a high-risk genetic background.
Collapse
Affiliation(s)
- Marta Viggiano
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziano D'Andrea
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Annio Posar
- Unità Operativa Semplice d'Istituto (UOSI) Disturbi dello Spettro Autistico, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Visconti
- Unità Operativa Semplice d'Istituto (UOSI) Disturbi dello Spettro Autistico, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Maria Cristina Scaduto
- Unità Operativa Semplice d'Istituto (UOSI) Disturbi dello Spettro Autistico, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Roberta Colucci
- Unità Operativa Semplice d'Istituto (UOSI) Disturbi dello Spettro Autistico, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Magali J Rochat
- Functional and Molecular Neuroimaging Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabiola Ceroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sergio Fucile
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
49
|
Wang M, Sun Y, Li L, Wu P, Dkw O, Shi H. Calcium Channels: Noteworthy Regulators and Therapeutic Targets in Dermatological Diseases. Front Pharmacol 2021; 12:702264. [PMID: 34489697 PMCID: PMC8418299 DOI: 10.3389/fphar.2021.702264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
Dysfunctional skin barrier and impaired skin homeostasis may lead to or aggravate a series of dermatologic diseases. A large variety of biological events and bioactive molecules are involved in the process of skin wound healing and functional recovery. Calcium ions (Ca2+) released from intracellular stores as well as influx through plasma membrane are essential to skin function. Growing evidence suggests that calcium influx is mainly regulated by calcium-sensing receptors and channels, including voltage-gated, transient potential receptor, store-operated, and receptor-operated calcium channels, which not only maintain cellular Ca2+ homeostasis, but also participate in cell proliferation and skin cell homeostasis through Ca2+-sensitive proteins such as calmodulin (CaM). Furthermore, distinct types of Ca2+ channels not merely work separately, they may work concertedly to regulate cell function. In this review, we discussed different calcium-sensing receptors and channels, including voltage-gated, transient receptor potential, store-operated, and receptor-operated calcium channels, particularly focusing on their regulatory functions and inherent interactions as well as calcium channels-related reagents and drugs, which is expected to bridge basic research and clinical applications in dermatologic diseases.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Linli Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ocansey Dkw
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China.,Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
50
|
Ye H, Huang S, Song Y, Liu H, Zhao X, Zhao D, Mi F, Wang X, Zhang X, Du J, Zhu N, Zhang L, Zhao Y. Gene co-expression analysis identifies modules related to insufficient sleep in humans. Sleep Med 2021; 86:68-74. [PMID: 34464880 DOI: 10.1016/j.sleep.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insufficient sleep and circadian rhythm disruption may cause cancer, obesity, cardiovascular disease, and cognitive impairment. The underlying mechanisms need to be elucidated. METHOD Weighted gene co-expression network analysis (WGCNA) was used to identify co-expressed modules. Connectivity Map tool was used to identify candidate drugs based on top connected genes. R ptestg package was utilized to detected module rhythmicity alteration. A hypergeometric test was used to test the enrichment of insomnia SNP signals in modules. Google Scholar was used to validate the modules and hub genes by literature. RESULTS We identified a total of 45 co-expressed modules. These modules were stable and preserved. Eight modules were correlated with sleep restriction duration. Module rhythmicity was disrupted in sleep restriction subjects. Hub genes that involve in insufficient sleep also play important roles in sleep disorders. Insomnia GWAS signals were enriched in six modules. Finally, eight drugs associated with sleep disorders were identified. CONCLUSION Systems biology method was used to identify sleep-related modules, hub genes, and candidate drugs. Module rhythmicity was altered in sleep insufficient subjects. Thiamphenicol, lisuride, timolol, and piretanide are novel candidates for sleep disorders.
Collapse
Affiliation(s)
- Hua Ye
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Shiliang Huang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yufei Song
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Huiwei Liu
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xiaosu Zhao
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Dan Zhao
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Fangxia Mi
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xinxue Wang
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xuesong Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Jinman Du
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Na Zhu
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Liangshun Zhang
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yibin Zhao
- Department of Anus & Intestine Surgery, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China.
| |
Collapse
|