1
|
Moisă (Stoica) R, Rusu CM, Deftu AT, Bacalum M, Radu M, Radu BM. Are You a Friend or an Enemy? The Dual Action of Methylglyoxal on Brain Microvascular Endothelial Cells. Int J Mol Sci 2025; 26:5104. [PMID: 40507916 PMCID: PMC12154078 DOI: 10.3390/ijms26115104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025] Open
Abstract
Methylglyoxal is a reactive dicarbonyl intermediate in the advanced glycation end-product (AGE) pathway, and alterations in its levels have been detected in the plasma, cerebrospinal fluid, and brain parenchyma in various pathologies, particularly in diabetes. In this study, we investigate the effects of methylglyoxal (MGO) on murine brain microvascular endothelial cells at both physiological and pathological concentrations. We evaluate molecular parameters, including reactive oxygen species (ROS) production, cytosolic calcium signaling, and ATP synthesis, as well as cellular responses such as cytoskeletal remodeling, cell migration, adhesion, and permeability, across a concentration range of 0-1000 μM. At low concentrations (below ~250 μM), MGO does not induce oxidative stress; instead, it leads to an increase in cytosolic calcium levels and ATP production. At higher concentrations, however, MGO induces significant oxidative stress, which is accompanied by a marked decrease in cell viability, particularly at concentrations exceeding 500 μM. The modulation of key functional processes, including purinergic calcium signaling, actin filament synthesis, cell migration, and adhesion, reveals a threshold concentration beyond which cellular function is impaired due to oxidative stress. Below this threshold, the observed effects appear to be mediated primarily by non-oxidative mechanisms, likely involving protein glycation. In conclusion, our results suggest a dual action of methylglyoxal on brain endothelial cells, with distinct molecular mechanisms underlying its effects at physiological versus pathological concentrations.
Collapse
Affiliation(s)
- Roberta Moisă (Stoica)
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (R.M.); (C.M.R.); (A.T.D.); (B.M.R.)
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, 077125 Măgurele, Romania;
| | - Călin Mircea Rusu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (R.M.); (C.M.R.); (A.T.D.); (B.M.R.)
| | - Antonia Teona Deftu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (R.M.); (C.M.R.); (A.T.D.); (B.M.R.)
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, 077125 Măgurele, Romania;
| | - Mihai Radu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, 077125 Măgurele, Romania;
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (R.M.); (C.M.R.); (A.T.D.); (B.M.R.)
| |
Collapse
|
2
|
Wang M, Preckel B, Zuurbier CJ, Weber NC. Effects of SGLT2 inhibitors on ion channels in heart failure: focus on the endothelium. Basic Res Cardiol 2025:10.1007/s00395-025-01115-y. [PMID: 40366385 DOI: 10.1007/s00395-025-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Heart failure (HF) is a life-threatening cardiovascular disease associated with high mortality, diminished quality of life, and a significant economic burden on both patients and society. The pathogenesis of HF is closely related to the endothelium, where endothelial ion channels play an important role in regulating intracellular Ca2+ signals. These ion channels are essential to maintain vascular function, including endothelium-dependent vascular tone, inflammation response, and oxidative stress. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown promising cardiovascular benefits in HF patients, reducing mortality risk and hospitalization in several large clinical trials. Clinical and preclinical studies indicate that the cardioprotective effects of SGLT2i in HF are mediated by endothelial nitric oxide (NO) pathways, as well as by reducing inflammation and reactive oxygen species in cardiac endothelial cells. Additionally, SGLT2i may confer endothelial protection by lowering intracellular Ca2+ level through the inhibition of sodium-hydrogen exchanger 1 (NHE1) and sodium-calcium exchanger (NCX) in endothelial cells. In this review, we discuss present knowledge regarding the expression and role of Ca2+-related ion channels in endothelial cells in HF, focusing on the effects of SGLT2i on endothelial NHE1, NCX as well as on vascular tone.
Collapse
Affiliation(s)
- Mengnan Wang
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology - Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Dai J, Chen H, Fang J, Wu S, Jia Z. Vascular Remodeling: The Multicellular Mechanisms of Pulmonary Hypertension. Int J Mol Sci 2025; 26:4265. [PMID: 40362501 PMCID: PMC12072204 DOI: 10.3390/ijms26094265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Pulmonary hypertension (PH) is a serious cardiovascular disease caused by a variety of pathogenic factors, which is characterized by increased pulmonary vascular resistance (PVR) and progressive elevation of mean pulmonary artery pressure (mPAP). This disease can lead to right ventricular hypertrophy and, in severe cases, right heart failure and even death. Vascular remodeling-a pathological modification involving aberrant vasoconstriction, cell proliferation, apoptosis resistance, and inflammation in the pulmonary vascular system-is a significant pathological hallmark of PH and a critical process in its progression. Recent studies have found that vascular remodeling involves the participation of a diversity of cellular pathological alterations, such as the dysfunction of pulmonary artery endothelial cells (PAECs), the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), the phenotypic differentiation of pulmonary artery fibroblasts, the inflammatory response of immune cells, and pericyte proliferation. This review focuses on the mechanisms and the intercellular crosstalk of these cells in the PH process, emphasizing recent advances in knowledge regarding cellular signaling pathways, inflammatory responses, apoptosis, and proliferation. To develop better treatments, a list of possible therapeutic approaches meant to slow down certain biological functions is provided, with the aim of providing new insights into the treatment of PH by simplifying the intricacies of these complex connections. In this review, comprehensive academic databases such as PubMed, Embase, Web of Science, and Google Scholar were systematically searched to discuss studies relevant to human and animal PH, with a focus on vascular remodeling in PH.
Collapse
Affiliation(s)
- Jinjin Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Hongyang Chen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Jindong Fang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Shiguo Wu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Zhuangzhuang Jia
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| |
Collapse
|
4
|
Tullii G, Bellacanzone C, Comas Rojas H, Fumagalli F, Ronchi C, Villano A, Gobbo F, Bogar M, Sartori B, Sassi P, Zampini G, Quaglia G, Latterini L, Amenitsch H, Antognazza MR. Composite Thiophene-Based Nanoparticles: Revisiting the PEDOT:PSS/P3HT Interface for Living-Cell Optical Modulation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22434-22447. [PMID: 40183508 PMCID: PMC12012720 DOI: 10.1021/acsami.5c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Organic semiconducting nanoparticles (NPs) have been attracting increasing attention for their diverse applications in biotechnology, especially as photoactive materials for spatially controlled optical modulation of living-cell functions. Different approaches to optimize their efficacy and reliability have been recently attempted, including control of photophysical/-chemical properties, ad hoc tailoring of materials synthesis, and functionalization with biological moieties. Another promising strategy is offered by the realization of composite light-sensitive NPs, with a supramolecular architecture. This work reports on the fabrication and characterization of polymer NPs based on poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as prototypical examples of fully biocompatible, semiconducting and conducting materials, respectively. This peculiar NP architecture, with conducting islets distributed within the semiconducting phase, translates into optimization of charge dissociation and electron-transfer efficiency, as well as photocurrent generation increase by about an order of magnitude. As an example of relevant physiological interest, effective optical modulation of angiogenesis, driven by NPs, is demonstrated in primary human endothelial cells. The reported strategy is of general validity and broadens the tools available for spatiotemporally controlled, optical modulation of living-cell functions via engineering of the NP architecture and processes at the interface with living cells.
Collapse
Affiliation(s)
- Gabriele Tullii
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy
| | - Christian Bellacanzone
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy
| | - Hansel Comas Rojas
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy
| | | | - Carlotta Ronchi
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy
| | - Anthea Villano
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy
- Physics
Dept., Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milano, Italy
| | - Federico Gobbo
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy
| | - Marco Bogar
- Department
of Engineering and Architecture, University
of Trieste, Via Alfonso Valerio 6/1, 34127 Trieste, Italy
| | - Barbara Sartori
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9/4, A-8010 Graz, Austria
| | - Paola Sassi
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Giulia Zampini
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Giulia Quaglia
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Loredana Latterini
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9/4, A-8010 Graz, Austria
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy
| |
Collapse
|
5
|
Liang J, Zou Y, Ju H, Lv Y. Rapid angiogenic hydrogel nanofiber scaffold promotes random flap regeneration and modulates inflammation. Wound Repair Regen 2025; 33:e70028. [PMID: 40231635 DOI: 10.1111/wrr.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
Random skin flaps are commonly used to cover thick skin wounds. However, necrosis frequently occurs when the flap's aspect ratio exceeds 2:1. Promoting angiogenesis and regulating inflammation are essential for treating ischemia-reperfusion injury in random flaps. In this study, calcium-doped silica nanoparticles loaded with deferoxamine (CD) were created through physical adsorption by rapidly mixing biodegradable calcium-doped silica nanoparticles (CS) with deferoxamine (DFO). A gelatin methacryloyl (GM) hydrogel nanofiber scaffold containing 1% (w/v) CD (GM/CD-1) was subsequently produced using electrospinning technology. The GM/CD-1 scaffold showed excellent biocompatibility and significantly promoted flap regeneration in mice, achieving a 96.17 ± 3.17% flap survival rate at 14 days. Additionally, it effectively stimulated hair follicle growth and exhibited an inflammatory-modulating effect. These features suggest that the GM/CD-1 scaffold could be valuable for clinical applications in flap regeneration and other tissue engineering fields.
Collapse
Affiliation(s)
- Junyan Liang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Yang Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, China
| | - Haiyan Ju
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| |
Collapse
|
6
|
Alberts A, Bratu AG, Niculescu AG, Grumezescu AM. New Perspectives of Hydrogels in Chronic Wound Management. Molecules 2025; 30:686. [PMID: 39942790 PMCID: PMC11820815 DOI: 10.3390/molecules30030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Chronic wounds pose a substantial healthcare concern due to their prevalence and cost burden. This paper presents a detailed overview of chronic wounds and emphasizes the critical need for novel therapeutic solutions. The pathophysiology of wound healing is discussed, including the healing stages and the factors contributing to chronicity. The focus is on diverse types of chronic wounds, such as diabetic foot necrosis, pressure ulcers, and venous leg ulcers, highlighting their etiology, consequences, and the therapeutic issues they provide. Further, modern wound care solutions, particularly hydrogels, are highlighted for tackling the challenges of chronic wound management. Hydrogels are characterized as multipurpose materials that possess vital characteristics like the capacity to retain moisture, biocompatibility, and the incorporation of active drugs. Hydrogels' effectiveness in therapeutic applications is demonstrated by how they support healing, including preserving ideal moisture levels, promoting cellular migration, and possessing antibacterial properties. Thus, this paper presents hydrogel technology's latest developments, emphasizing drug-loaded and stimuli-responsive types and underscoring how these advanced formulations greatly improve therapy outcomes by enabling dynamic and focused reactions to the wound environment. Future directions for hydrogel research promote the development of customized hydrogel treatments and the incorporation of digital health tools to improve the treatment of chronic wounds.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Andreea Gabriela Bratu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
7
|
Dragoni S, Moccia F, Bootman MD. The Roles of Transient Receptor Potential (TRP) Channels Underlying Aberrant Calcium Signaling in Blood-Retinal Barrier Dysfunction. Cold Spring Harb Perspect Biol 2025; 17:a041763. [PMID: 39586624 PMCID: PMC11864113 DOI: 10.1101/cshperspect.a041763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The inner blood-retinal barrier (iBRB) protects the retinal vasculature from the peripheral circulation. Endothelial cells (ECs) are the core component of the iBRB; their close apposition and linkage via tight junctions limit the passage of fluids, proteins, and cells from the bloodstream to the parenchyma. Dysfunction of the iBRB is a hallmark of many retinal disorders. Vascular endothelial growth factor (VEGF) has been identified as the primary driver leading to a dysfunctional iBRB, thereby becoming the main target for therapy. However, a complete understanding of the molecular mechanisms underlying iBRB dysfunction is elusive and alternative therapeutic targets remain unexplored. Calcium (Ca2+) is a universal intracellular messenger whose homeostasis and dynamics are dysregulated in many pathological disorders. Among the extensive components of the cellular Ca2+-signaling toolkit, cation-selective transient receptor potential (TRP) channels are broadly involved in cell physiology and disease and, therefore, are widely studied as possible targets for therapy. Albeit that TRP channels have been discovered in the photoreceptors of Drosophila and have been studied in the neuroretina, their presence and function in the iBRB have only recently emerged. Within this article, we discuss the structure and functions of the iBRB with a particular focus on Ca2+ signaling in retinal ECs and highlight the potential of TRP channels as new targets for retinal diseases.
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Martin D Bootman
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
8
|
Negri S, Reyff Z, Troyano-Rodriguez E, Milan M, Ihuoma J, Tavakol S, Shi H, Patai R, Jiang R, Mohon J, Boma-Iyaye J, Ungvari Z, Csiszar A, Yabluchanskiy A, Moccia F, Tarantini S. Endothelial Colony-Forming Cells (ECFCs) in cerebrovascular aging: Focus on the pathogenesis of Vascular Cognitive Impairment and Dementia (VCID), and treatment prospects. Ageing Res Rev 2025; 104:102672. [PMID: 39884362 DOI: 10.1016/j.arr.2025.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Endothelial colony-forming cells (ECFCs), a unique endothelial progenitor subset, are essential for vascular integrity and repair, providing significant regenerative potential. Recent studies highlight their role in cerebrovascular aging, particularly in the pathogenesis of vascular cognitive impairment and dementia (VCID). Aging disrupts ECFC functionality through mechanisms such as oxidative stress, chronic inflammation, and cellular senescence, leading to compromised vascular repair and reduced neurovascular resilience. ECFCs influence key cerebrovascular processes, including neurovascular coupling (NVC), blood-brain barrier (BBB) integrity, and vascular regeneration, which are critical for cognitive health. Age-related decline in ECFC quantity and functionality contributes to vascular rarefaction, diminished cerebral blood flow (CBF), and BBB permeability-processes that collectively exacerbate cognitive decline. This review delves into the multifaceted role of ECFCs in cerebrovascular aging and underscores their potential as therapeutic targets in addressing age-related vascular dysfunctions, presenting new directions for mitigating the effects of aging on brain health.
Collapse
Affiliation(s)
- Sharon Negri
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zeke Reyff
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eva Troyano-Rodriguez
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Madison Milan
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer Ihuoma
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sherwin Tavakol
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Helen Shi
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Raymond Jiang
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Casady School, Oklahoma City, OK, USA
| | - Jonah Mohon
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma School of Science and Mathematics, OK, USA
| | - Jed Boma-Iyaye
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma School of Science and Mathematics, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral College, Health Sciences Program/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Francesco Moccia
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso 86100, Italy
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral College, Health Sciences Program/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
9
|
Yao Y, Shan T, Li X. HucMSCs can alleviate abnormal vasculogenesis induced by high glucose through the MAPK signaling pathway. iScience 2024; 27:111354. [PMID: 39640585 PMCID: PMC11618028 DOI: 10.1016/j.isci.2024.111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Vascular complications caused by diabetes mellitus contribute a major threat to increased disability and mortality of diabetic patients, which are characterized by damaged endothelial cells and angiogenesis. Human umbilical cord-derived mesenchymal stem cells (hucMSCs) have been demonstrated to alleviate endothelial cell damage and improve angiogenesis. However, these investigations overlooked the pivotal role of vasculogenesis. In this study, we utilized blood vessel organoids (BVOs) to investigate the impact of high glucose on vasculogenesis and subsequent angiogenesis. We found that BVOs in the vascular lineage induction stage were more sensitive to high glucose and more susceptible to affect endothelial cell differentiation and function. Moreover, hucMSCs can alleviate the high glucose-induced inhibition of endothelial cell differentiation and dysfunction through MAPK signaling pathway downregulation, with the MAPK activator dimethyl fumarate further illustrating the results. Thereby, we demonstrated that high glucose can lead to abnormal vasculogenesis and impact subsequent angiogenesis, and hucMSCs can alleviate this effect.
Collapse
Affiliation(s)
- Yang Yao
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266011, China
- Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Tiantian Shan
- Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoying Li
- Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
- Department of Emergency, Jinan Central Hospital, Jinan 250013, China
- Department of Emergency, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| |
Collapse
|
10
|
Boussios S, Sheriff M, Ovsepian SV. Molecular Biology of Cancer-Interplay of Malignant Cells with Emerging Therapies. Int J Mol Sci 2024; 25:13090. [PMID: 39684799 DOI: 10.3390/ijms252313090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer is currently one of the leading causes of death worldwide, and according to data from the World Health Organization reported in 2020, it ranks as the second leading cause of death globally, accounting for 10 million fatalities [...].
Collapse
Affiliation(s)
- Stergios Boussios
- Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, Canterbury CT1 1QU, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Gillingham ME4 4AG, UK
- Faculty of Medicine, Tbilisi State University, Tbilisi 0179, Georgia
| |
Collapse
|
11
|
Kouba S, Demaurex N. S-acylation of Ca 2+ transport proteins in cancer. Chronic Dis Transl Med 2024; 10:263-280. [PMID: 39429488 PMCID: PMC11483607 DOI: 10.1002/cdt3.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 10/22/2024] Open
Abstract
Alterations in cellular calcium (Ca2+) signals have been causally associated with the development and progression of human cancers. Cellular Ca2+ signals are generated by channels, pumps, and exchangers that move Ca2+ ions across membranes and are decoded by effector proteins in the cytosol or in organelles. S-acylation, the reversible addition of 16-carbon fatty acids to proteins, modulates the activity of Ca2+ transporters by altering their affinity for lipids, and enzymes mediating this reversible post-translational modification have also been linked to several types of cancers. Here, we compile studies reporting an association between Ca2+ transporters or S-acylation enzymes with specific cancers, as well as studies reporting or predicting the S-acylation of Ca2+ transporters. We then discuss the potential role of S-acylation in the oncogenic potential of a subset of Ca2+ transport proteins involved in cancer.
Collapse
Affiliation(s)
- Sana Kouba
- Department of Cell Physiology and MetabolismCentre Médical Universitaire, University of GenevaGenevaSwitzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and MetabolismCentre Médical Universitaire, University of GenevaGenevaSwitzerland
| |
Collapse
|
12
|
Ismail MT, Anggrahini DW, Haryana SM, Setianto BY. HUVECs-derived exosomes increase neovascularization and decrease limb necrosis in hindlimb ischemia. NARRA J 2024; 4:e1358. [PMID: 39816111 PMCID: PMC11731677 DOI: 10.52225/narra.v4i3.1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/20/2024] [Indexed: 01/18/2025]
Abstract
Chronic limb-threatening ischemia (CLTI) is the most severe manifestation of peripheral arterial disease (PAD) and imposes a significantly high burden due to its high risk of mortality and amputation. Revascularization is the first-line treatment for CLTI; however, the amputation rate remains high, and approximately one-third of patients are not eligible for this treatment. Therefore, there is an urgent need for more effective therapeutic strategies. The aim of this study was to investigate the effects and mechanisms of human umbilical vein endothelial cells (HUVECs)-derived exosomes on neovascularization and the degree of necrosis in a hindlimb ischemia model and to study the biological processes underlying their mechanisms. This is an in vivo experimental study with a post-test-only control group design. Forty BALB/c mice were randomized to receive injections of exosomes, conditioned media, and phosphate-buffered saline (PBS) one day after unilateral double ligation. A sham-operated group was also included as a control. Capillary density, arteriole lumen diameter, and histopathological necrosis were measured after seven days, while clinical necrosis was observed daily. MicroRNA profiling, in silico analysis, and transcriptomic analysis of vascular endothelial growth factor (VEGF) mRNA expression were performed to determine the possible biological processes. No amputation was found in the exosome group, as well as in the conditioned media and sham-operated groups, compared to three out of seven mice (43%) in the PBS group. The capillary density was higher in the exosome than in the PBS group (p = 0.026). The arteriole lumen diameter in the exosome group was larger than in the PBS (p = 0.033) and sham-operated (p = 0.034) groups. The scores of clinical necrosis and histopathological necrosis in the exosome group were lower than the PBS group (p = 0.005), while the histopathological necrosis scores were also lower but statistically insignificant. In silico analysis showed improvement in neovascularization and necrosis, possibly through energy regulation, PI3 K/AKT and TGF-β activation, the ubiquitin-proteasome system, and tyrosine kinases receptors. HUVEC exosomes were associated with lower VEGF mRNA expression, which may indicate a more effective compensatory mechanism under ischemic conditions. The exosome group had the lowest VEGF mRNA expression compared to other groups, although the difference was not statistically significant. This study highlights that HUVECs-derived exosomes improve neovascularization and decrease necrosis in a hindlimb ischemia mice model, potentially by modulating several possible mechanisms.
Collapse
Affiliation(s)
- Muhamad T. Ismail
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dyah W. Anggrahini
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia M. Haryana
- Department of Cell Histology and Biology Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Budi Y. Setianto
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
13
|
Wang Y, Chen Y, Zhou T, Li J, Zhang N, Liu N, Zhou P, Mao Y. A novel multifunctional nanocomposite hydrogel orchestrates the macrophage reprogramming-osteogenesis crosstalk to boost bone defect repair. J Nanobiotechnology 2024; 22:702. [PMID: 39533396 PMCID: PMC11558876 DOI: 10.1186/s12951-024-02996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Repairing bone defects is a complex cascade reaction process, as immune system regulation, vascular growth, and osteogenic differentiation are essential. Thus, developing a tissue-engineered biomaterial that caters to the complex healing process of bone regeneration remains a major clinical challenge. In the study, Ca2+-TA-rGO (CTAG)/GelMA hydrogels were synthesized by binding Ca2+ using metal chelation to graphene oxide (GO) nanosheets reduced by tannic acid (TA-rGO) and doping them into gelatin methacrylate (GelMA) hydrogels. TA and rGO exhibited biocompatibility and immunomodulatory properties in this composite, while Ca2+ promoted bone formation and angiogenesis. This novel nanocomposite hydrogel demonstrated good mechanical properties, degradability, and conductivity, and it could achieve slow Ca2+ release during bone regeneration. Both in vitro and in vivo experiments revealed that CTAG/GelMA hydrogel modulated macrophage reprogramming and induced a shift from macrophages to healing-promoting M2 macrophages during the inflammatory phase, promoted vascular neovascularization, and facilitated osteoblast differentiation during bone formation. Moreover, CTAG/GelMA hydrogel could downregulate the NF-κB signaling pathway, offering new insights into regulating macrophage reprogramming-osteogenic crosstalk. Conclusively, this novel multifunctional nanocomposite hydrogel provides a multistage treatment for bone and orchestrates macrophage reprogramming-osteogenic crosstalk to boost bone repair.
Collapse
Affiliation(s)
- Ying Wang
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Yedan Chen
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Tao Zhou
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
| | - Jingze Li
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China
| | - Na Zhang
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Na Liu
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China
| | - Pinghui Zhou
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, 233030, China.
| | - Yingji Mao
- Department of Orthopedics and Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China.
- School of Life Sciences, Bengbu Medical University, Bengbu, 233030, China.
- Anhui Nerve Regeneration Technology and Medical New Materials Engineering Research Center, Bengbu Medical University, Bengbu, 233030, China.
| |
Collapse
|
14
|
Yang X, Zheng H, Huang J, Liu Y, Li Y, Zhang B, Sun C, Li Y, Thiery JP, Wu S. Co-inhibition of PGF and VEGFA enhances the effectiveness of immunotherapy in bladder cancer. Int J Med Sci 2024; 21:2870-2882. [PMID: 39628692 PMCID: PMC11610333 DOI: 10.7150/ijms.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/09/2024] [Indexed: 12/06/2024] Open
Abstract
Background: Anti-angiogenic inhibitors and immune checkpoint blockade combination therapy offers a novel approach to circumvent the challenges associated with limited responsiveness to checkpoint inhibitors in bladder cancer. However, the effective strategies for inhibiting angiogenesis in bladder cancer need further elucidation. Objective: This work aims to identify key targets for the effective inhibition of angiogenesis in bladder cancer and to explore the potential benefits of combining anti-angiogenic therapies with immune checkpoint blockade strategies in the treatment of this disease. Methods: Cell-cell interaction analysis was performed using bladder cancer single-cell transcriptome datasets downloaded from the Gene Expression Omnibus (GEO) database to determine the regulatory network driving angiogenesis in bladder cancer. The bladder cancer cell line MBT2 was orthotopically transplanted into mice to investigate the impact of pro-angiogenic molecules on angiogenesis and tumor growth, and to evaluate the synergistic therapeutic potential of a combination therapy targeting angiogenesis and Programmed Cell Death Protein 1 (PD-1). Proliferation and tube formation assays with Human Umbilical Vein Endothelial Cells (HUVECs) were used to explore the regulatory functions of pro-angiogenic molecules in angiogenesis. Results: Placental growth factor (PGF) is a pro-angiogenic factor in bladder cancer, in addition to vascular endothelial growth factor A (VEGFA). Suppression of PGF reduced the tumor size and angiogenesis in bladder cancer. The expression level of vascular endothelial growth factor receptor 1 (VEGFR1) is higher than that of vascular endothelial growth factor receptor2 (VEGFR2) in the endothelial cells of bladder cancer. The pro-angiogenic activity of PGF is dependent on the expression level of VEGFR1 in endothelial cells. The combined inhibition of PGF and VEGFA exerts a synergistic effect on suppressing tumor growth and angiogenesis. The concurrent inhibition of PGF and VEGFA stands out as the only intervention capable of significantly enhancing the infiltration of CD8+ cytotoxic T cells within the bladder cancer microenvironment. In the bladder cancer mouse model, the introduction of an anti- programmed cell death protein 1 (PD-1) therapeutic regimen combined with the targeted inhibition of PGF and VEGFA, led to a significantly elevated survival rate compared to the outcome observed with anti-PD-1 monotherapy. Conclusion: PGF is a pro-angiogenic molecule in bladder cancer that requires significant expression levels of VEGFR1 in endothelial cells. Notably, the concurrent inhibition of PGF and VEGFA amplifies the therapeutic impact of anti-PD-1 treatment in bladder cancer. These findings provide further insights into the role of PGF in angiogenesis regulation and have conceptual implications for combining anti-angiogenic therapy with immune therapy in bladder cancer treatment.
Collapse
Affiliation(s)
- Xianzhi Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Haoxiang Zheng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Jianxu Huang
- Shantou University Medical College, Shantou University, Shantou, China
| | - Yujun Liu
- Medical School, Anhui University of Science and Technology, Huainan 232001, China
| | - Yingrui Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Bingwen Zhang
- Guangzhou Laboratory, Guangzhou International BioIsland, Guangzhou 510005, China
| | - Chu Sun
- Guangzhou Laboratory, Guangzhou International BioIsland, Guangzhou 510005, China
| | - Yuqing Li
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Jean Paul Thiery
- Guangzhou Laboratory, Guangzhou International BioIsland, Guangzhou 510005, China
- BioSyngen Pte Ltd, Taiseng Exchange, 5 Tai Seng Avenue, 536671, Singapore
| | - Song Wu
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| |
Collapse
|
15
|
Liu X, Zhou J, Chen M, Chen S, You J, Li Y, Lv H, Zhang Y, Zhou Y. 3D-printed biomimetic bone scaffold loaded with lyophilized concentrated growth factors promotes bone defect repair by regulation the VEGFR2/PI3K/AKT signaling pathway. Int J Biol Macromol 2024; 282:136938. [PMID: 39490882 DOI: 10.1016/j.ijbiomac.2024.136938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
This study investigates the effects of concentrated growth factors (CGF) and bone substitutes on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs), as well as the development of a novel 3D-printed biomimetic bone scaffold. Based on the structure of cancellous bone, 3D-printed bionic bone with sustainable release of growth factors and Ca2+ was prepared. Using BMSCs and EA.hy926 in co-culture with the bionic bone scaffold, experimental results demonstrate that this bionic structural design enhances cell proliferation and adhesion, and that the bionic bone possesses the ability to promote bone and vascular regeneration directly. Transcriptomics, western blot analysis, and flow cytometry are employed to investigate the effects of CGF and Ca2+ on the signaling pathways of BMSCs. The study reports that vascular endothelial growth factor (VEGF) released by CGF activated VEGFR2 on BMSCs, leading to Ca2+ influx and activation of the PI3K/AKT signaling pathway, thereby influencing osteogenesis. Animal experiments confirm the ability of the bionic bone to promote osteogenesis in vivo, and its unique degradation pattern accelerates the in vivo repair of bone defects. In conclusion, this study presents a novel biomimetic strategy and, for the first time, explores the potential mechanism by which VEGF and Ca2+ regulate BMSCs differentiation through the VEGFR2/PI3K/AKT signaling pathway. These insights offer a new perspective for the development of innovative bone substitute materials.
Collapse
Affiliation(s)
- Xiuyu Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jing Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Meiqing Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Siyu Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jiaqian You
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yangyang Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Huixin Lv
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China.
| |
Collapse
|
16
|
Peters K, Staehlke S, Rebl H, Jonitz-Heincke A, Hahn O. Impact of Metal Ions on Cellular Functions: A Focus on Mesenchymal Stem/Stromal Cell Differentiation. Int J Mol Sci 2024; 25:10127. [PMID: 39337612 PMCID: PMC11432215 DOI: 10.3390/ijms251810127] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Metals play a crucial role in the human body, especially as ions in metalloproteins. Essential metals, such as calcium, iron, and zinc are crucial for various physiological functions, but their interactions within biological networks are complex and not fully understood. Mesenchymal stem/stromal cells (MSCs) are essential for tissue regeneration due to their ability to differentiate into various cell types. This review article addresses the effects of physiological and unphysiological, but not directly toxic, metal ion concentrations, particularly concerning MSCs. Overloading or unbalancing of metal ion concentrations can significantly impair the function and differentiation capacity of MSCs. In addition, excessive or unbalanced metal ion concentrations can lead to oxidative stress, which can affect viability or inflammation. Data on the effects of metal ions on MSC differentiation are limited and often contradictory. Future research should, therefore, aim to clarify the mechanisms by which metal ions affect MSC differentiation, focusing on aspects such as metal ion interactions, ion concentrations, exposure duration, and other environmental conditions. Understanding these interactions could ultimately improve the design of biomaterials and implants to promote MSC-mediated tissue regeneration. It could also lead to the development of innovative therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Susanne Staehlke
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany;
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| |
Collapse
|
17
|
Leroux A, Roque M, Casas E, Leng J, Guibert C, L'Azou B, Oliveira H, Amédée J, Paiva Dos Santos B. The effect of CGRP and SP and the cell signaling dialogue between sensory neurons and endothelial cells. Biol Res 2024; 57:65. [PMID: 39261966 PMCID: PMC11389267 DOI: 10.1186/s40659-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Increasing evidences demonstrate the role of sensory innervation in bone metabolism, remodeling and repair, however neurovascular coupling in bone is rarely studied. Using microfluidic devices as an indirect co-culture model to mimic in vitro the physiological scenario of innervation, our group demonstrated that sensory neurons (SNs) were able to regulate the extracellular matrix remodeling by endothelial cells (ECs), in particular through sensory neuropeptides, i.e. calcitonin gene-related peptide (CGRP) and substance P (SP). Nonetheless, still little is known about the cell signaling pathways and mechanism of action in neurovascular coupling. Here, in order to characterize the communication between SNs and ECs at molecular level, we evaluated the effect of SNs and the neuropeptides CGRP and SP on ECs. We focused on different pathways known to play a role on endothelial functions: calcium signaling, p38 and Erk1/2; the control of signal propagation through Cx43; and endothelial functions through the production of nitric oxide (NO). The effect of SNs was evaluated on ECs Ca2+ influx, the expression of Cx43, endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production, p38, ERK1/2 as well as their phosphorylated forms. In addition, the role of CGRP and SP were either analyzed using respective antagonists in the co-culture model, or by adding directly on the ECs monocultures. We show that capsaicin-stimulated SNs induce increased Ca2+ influx in ECs. SNs stimulate the increase of NO production in ECs, probably involving a decrease in the inhibitory eNOS T495 phosphorylation site. The neuropeptide CGRP, produced by SNs, seems to be one of the mediators of this effect in ECs since NO production is decreased in the presence of CGRP antagonist in the co-culture of ECs and SNs, and increased when ECs are stimulated with synthetic CGRP. Taken together, our results suggest that SNs play an important role in the control of the endothelial cell functions through CGRP production and NO signaling pathway.
Collapse
Affiliation(s)
- Alice Leroux
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Micaela Roque
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Elina Casas
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Jacques Leng
- Univ. Bordeaux, CNRS, UMR 5258, Solvay, Pessac, LOF, F-33006, France
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Pessac, F-33604, France
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, F-33000, France
| | - Beatrice L'Azou
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Hugo Oliveira
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Joëlle Amédée
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France
| | - Bruno Paiva Dos Santos
- Univ. Bordeaux, INSERM, BIOTIS, Bordeaux, U1026, F-33000, France.
- Univ. Paris Cité, URP2496-BRIO Pathologies Imagerie et Biothérapies Orofaciales, Montrouge, F-92120, France.
| |
Collapse
|
18
|
Takahashi Y, Munemasa T, Nodai T, Mukaibo T, Kondo Y, Masaki C, Hosokawa R. Application of anti-vascular endothelial growth factor antibody restores the function of saliva secretion in a type 2 diabetes mouse model. J Oral Biosci 2024; 66:619-627. [PMID: 38944342 DOI: 10.1016/j.job.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVES Xerostomia, a common complication of type 2 diabetes, leads to an increased risk of caries, dysphagia, and dysgeusia. Although anti-vascular endothelial growth factor (VEGF) antibodies, such as ranibizumab (RBZ), have been used to treat diabetic retinopathy, their effects on the salivary glands are unknown. This study evaluated the effects of RBZ on salivary glands to reduce inflammation and restore salivary function in a mouse model of type 2 diabetes. METHODS Male KK-Ay mice with type 2 diabetes (10-12 weeks old) were used. The diabetes mellitus (DM) group received phosphate-buffered saline, while the DM + RBZ group received an intraperitoneal administration of RBZ (100 μg/kg) 24 h before the experiment. RESULTS Ex vivo perfusion experiments showed a substantial increase in salivary secretion from the submandibular gland (SMG) in the DM + RBZ group. In addition, the mRNA expression levels of TNF-α and IL-1β were considerably lower in this group. In contrast, those of aquaporin 5 were substantially higher in the DM + RBZ group, as revealed by quantitative reverse transcription PCR. Furthermore, the number of lymphocyte infiltration spots in the SMG was notably lower in the DM + RBZ group. Finally, intracellular Ca2+ signaling in acinar cells was considerably higher in the DM + RBZ group than that in the DM group. CONCLUSION Treating a type 2 diabetic mouse model with RBZ restored salivary secretion through its anti-inflammatory effects.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Takashi Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Tomotaka Nodai
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| |
Collapse
|
19
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
20
|
Gao X, Gao J, Sun Y, Zhao J, Geng L, Wang C, Qiao M, Wang J. The common pathogenesis of nodular goiter in both sexes: An exploration into gene expression and signaling pathways. Heliyon 2024; 10:e33411. [PMID: 39035545 PMCID: PMC11259846 DOI: 10.1016/j.heliyon.2024.e33411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
The past few years have witnessed an increasing incidence of nodular goiter (NG), with a well-documented higher prevalence in females than males. This gender disparity has led research to focus primarily on female subjects, potentially overlooking common pathogenic mechanisms in both sexes. In this study, we investigated the shared pathogenesis of NG in males and females. Utilizing a rat model and RNA sequencing, we identified differentially expressed genes associated with the disease. We further validated these findings in normal human thyroid cells and human papillary thyroid cancer cells. A randomized experiment was conducted with equal numbers of male and female rats divided into control and NG model groups. The NG model was established using propylthiouracil and various assessments such as thyroid ultrasonography, thyroid index, thyroid function, and thyroid histology were performed. Transcriptome analysis revealed numerous upregulated and downregulated genes in both male and female model groups. Key genes like KDR, FLT1, PDGFB, and CAV1, and pathways including PI3K-Akt, MAPK, Ras, fluid shear stress and atherosclerosis, calcium signaling, and Rap1 signaling pathways were linked with the disease. Western blot and immunofluorescence analysis confirmed these findings, which were further supported by cell-based experiments. In conclusion, our findings suggest that abnormal expression of specific genes and pathways leading to irregular cell growth, blood vessel formation, and inflammation may be common factors in the pathogenesis of NG in both males and females.
Collapse
Affiliation(s)
- Xiangju Gao
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jie Gao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ya Sun
- Institute of Traditional Chinese Medicine Innovation, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jing Zhao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Li Geng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Changlin Wang
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mingqi Qiao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jieqiong Wang
- Emotional Disease Syndrome Liver Storage Pharmacological Young Scientific Research Innovation Team in Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
21
|
Gad MS, Elsherbiny NM, El-Bassouny DR, Omar NM, Mahmoud SM, Al-Shabrawey M, Tawfik A. Exploring the role of Müller cells-derived exosomes in diabetic retinopathy. Microvasc Res 2024; 154:104695. [PMID: 38723843 PMCID: PMC11180575 DOI: 10.1016/j.mvr.2024.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 06/17/2024]
Abstract
Exosomes are nanosized vesicles that have been reported as cargo-delivering vehicles between cells. Müller cells play a crucial role in the pathogenesis of diabetic retinopathy (DR). Activated Müller cells in the diabetic retina mediate disruption of barrier integrity and neovascularization. Endothelial cells constitute the inner blood-retinal barrier (BRB). Herein, we aim to evaluate the effect of Müller cell-derived exosomes on endothelial cell viability and barrier function under normal and hyperglycemic conditions. Müller cell-derived exosomes were isolated and characterized using Western blotting, nanoparticle tracking, and electron microscopy. The uptake of Müller cells-derived exosomes by the human retinal endothelial cells (HRECs) was monitored by labeling exosomes with PKH67. Endothelial cell vitality after treatment by exosomes under normo- and hypoglycemic conditions was checked by MTT assay and Western blot for apoptotic proteins. The barrier function of HRECs was evaluated by analysis of ZO-1 and transcellular electrical resistance (TER) using ECIS. Additionally, intracellular Ca+2 in HRECs was assessed by spectrofluorimetry. Analysis of the isolated exosomes showed a non-significant change in the number of exosomes isolated from both normal and hyperglycemic condition media, however, the average size of exosomes isolated from the hyperglycemic group showed a significant rise when compared to that of the normoglycemic group. Müller cells derived exosomes from hyperglycemic condition media markedly reduced HRECs cell count, increased caspase-3 and Annexin V, decreased ZO-1 levels and TER, and increased intracellular Ca+ when compared to other groups. However, treatment of HRECs under hyperglycemia with normo-glycemic Müller cells-derived exosomes significantly decreased cell death, preserved cellular integrity and barrier function, and reduced intracellular Ca+2. Collectively, Müller cell-derived exosomes play a remarkable role in the pathological changes associated with hyperglycemia-induced inner barrier dysfunction in DR. Further in vivo research will help in understanding the role of exosomes as therapeutic targets and/or delivery systems for DR.
Collapse
Affiliation(s)
- Mohamed S Gad
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA; Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Royal Oak, MI 48309-4479, USA; Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Dalia R El-Bassouny
- Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Nesreen M Omar
- Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Safinaz M Mahmoud
- Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| | - Mohamed Al-Shabrawey
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA; Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Royal Oak, MI 48309-4479, USA.
| | - Amany Tawfik
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA; Eye Research Center (OUWB)/ERC, William Beaumont School of Medicine, Royal Oak, MI 48309-4479, USA.
| |
Collapse
|
22
|
Markowska A, de Mezer M, Kurzawa P, Bednarek W, Gryboś A, Krzyżaniak M, Markowska J, Gryboś M, Żurawski J. Analysis of Expression of the ANG1, CaSR and FAK Proteins in Uterine Fibroids. Int J Mol Sci 2024; 25:7164. [PMID: 39000274 PMCID: PMC11241732 DOI: 10.3390/ijms25137164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Understanding the molecular factors involved in the development of uterine myomas may result in the use of pharmacological drugs instead of aggressive surgical treatment. ANG1, CaSR, and FAK were examined in myoma and peripheral tissue samples taken from women after myoma surgery and in normal uterine muscle tissue samples taken from the control group. Tests were performed using tissue microarray immunohistochemistry. No statistically significant differences in ANG1 expression between the tissue of the myoma, the periphery, and the normal uterine muscle tissue of the control group were recorded. The CaSR value was reduced in the myoma and peripheral tissue and normal in the group of women without myomas. FAK expression was also lower in the myoma and periphery compared to the healthy uterine myometrium. Calcium supplementation could have an effect on stopping the growth of myomas.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Mateusz de Mezer
- Medical Biology, Department of Immunobiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Paweł Kurzawa
- Department of Clinical Pathology and Immunology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (P.K.); (M.K.)
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Wiesława Bednarek
- Department of Oncological Gynecology and Gynecology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Anna Gryboś
- Department of Gynecology and Obstetrics, Faculty of Health Sciences, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Monika Krzyżaniak
- Department of Clinical Pathology and Immunology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (P.K.); (M.K.)
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | | | - Marian Gryboś
- Institute of Health Sciences, University of Opole, 45-040 Opole, Poland;
| | - Jakub Żurawski
- Medical Biology, Department of Immunobiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| |
Collapse
|
23
|
Rofaani E, Mardani MW, Yutiana PN, Amanda O, Darmawan N. Differentiation of mesenchymal stem cells into vascular endothelial cells in 3D culture: a mini review. Mol Biol Rep 2024; 51:781. [PMID: 38913199 DOI: 10.1007/s11033-024-09743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Mesenchymal Stem Cells, mesodermal origin and multipotent stem cells, have ability to differentiate into vascular endothelial cells. The cells are squamous in morphology, inlining, and protecting blood vessel tissue, as well as maintaining homeostatic conditions. ECs are essential in vascularization and blood vessels formation. The differentiation process, generally carried out in 2D culture systems, were relied on growth factors induction. Therefore, an artificial extracellular matrix with relevant mechanical properties is essential to build 3D culture models. Various 3D fabrication techniques, such as hydrogel-based and fibrous scaffolds, scaffold-free, and co-culture to endothelial cells were reviewed and summarized to gain insights. The obtained MSCs-derived ECs are shown by the expression of endothelial gene markers and tubule-like structure. In order to mimicking relevant vascular tissue, 3D-bioprinting facilitates to form more complex microstructures. In addition, a microfluidic chip with adequate flow rate allows medium perfusion, providing mechanical cues like shear stress to the artificial vascular vessels.
Collapse
Affiliation(s)
- E Rofaani
- Group Research of Theranostics, Research Center for Vaccine and Drug, Research Organization of Health, National Research and Innovation Agency, LAPTIAB Building No 611 PUSPIPTEK or KST BJ Habibie, Tangerang Selatan, Banten, 15315, Indonesia.
| | - M W Mardani
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Ir. Sutami Street No. 36A, Jebres District, Surakarta, Central Java, 57126, Indonesia
| | - P N Yutiana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Ir. Sutami Street No. 36A, Jebres District, Surakarta, Central Java, 57126, Indonesia
| | - O Amanda
- Department of Technique of Biomedis, Faculty of Technique of Industry, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Huwi, Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - N Darmawan
- Laboratory of Inorganic Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Kampus IPB Dramaga, Bogor, West Java, 16880, Indonesia
| |
Collapse
|
24
|
Brunetti V, Berra-Romani R, Conca F, Soda T, Biella GR, Gerbino A, Moccia F, Scarpellino G. Lysosomal TRPML1 triggers global Ca 2+ signals and nitric oxide release in human cerebrovascular endothelial cells. Front Physiol 2024; 15:1426783. [PMID: 38974517 PMCID: PMC11224436 DOI: 10.3389/fphys.2024.1426783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Lysosomal Ca2+ signaling is emerging as a crucial regulator of endothelial Ca2+ dynamics. Ca2+ release from the acidic vesicles in response to extracellular stimulation is usually promoted via Two Pore Channels (TPCs) and is amplified by endoplasmic reticulum (ER)-embedded inositol-1,3,4-trisphosphate (InsP3) receptors and ryanodine receptors. Emerging evidence suggests that sub-cellular Ca2+ signals in vascular endothelial cells can also be generated by the Transient Receptor Potential Mucolipin 1 channel (TRPML1) channel, which controls vesicle trafficking, autophagy and gene expression. Herein, we adopted a multidisciplinary approach, including live cell imaging, pharmacological manipulation, and gene targeting, revealing that TRPML1 protein is expressed and triggers global Ca2+ signals in the human brain microvascular endothelial cell line, hCMEC/D3. The direct stimulation of TRPML1 with both the synthetic agonist, ML-SA1, and the endogenous ligand phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) induced a significant increase in [Ca2+]i, that was reduced by pharmacological blockade and genetic silencing of TRPML1. In addition, TRPML1-mediated lysosomal Ca2+ release was sustained both by lysosomal Ca2+ release and ER Ca2+- release through inositol-1,4,5-trisphophate receptors and store-operated Ca2+ entry. Notably, interfering with TRPML1-mediated lysosomal Ca2+ mobilization led to a decrease in the free ER Ca2+ concentration. Imaging of DAF-FM fluorescence revealed that TRPML1 stimulation could also induce a significant Ca2+-dependent increase in nitric oxide concentration. Finally, the pharmacological and genetic blockade of TRPML1 impaired ATP-induced intracellular Ca2+ release and NO production. These findings, therefore, shed novel light on the mechanisms whereby the lysosomal Ca2+ store can shape endothelial Ca2+ signaling and Ca2+-dependent functions in vascular endothelial cells.
Collapse
Affiliation(s)
- Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Filippo Conca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, Padova, Italy
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Gerardo Rosario Biella
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Li X, Lei ZC, Lo CY, Jan TY, Lau CW, Yao XQ. Endothelial cell Orai1 is essential for endothelium-dependent contraction of mouse carotid arteries in normotensive and hypertensive mice. Acta Pharmacol Sin 2024; 45:975-987. [PMID: 38279042 PMCID: PMC11053128 DOI: 10.1038/s41401-024-01227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Endothelium-dependent contraction (EDC) exists in blood vessels of normotensive animals, but is exaggerated in hypertension. An early signal in EDC is cytosolic Ca2+ rise in endothelial cells. In this study we investigated the functional role of Orai1, a major endothelial cell Ca2+ entry channel, in EDC. Hypertension model was established in WT mice by intake of L-NNA in the drinking water (0.5 g/L) for 4 weeks or osmotic pump delivery of Ang II (1.5 mg·kg-1·d-1) for 2 weeks. In TRPC5 KO mice, the concentration of L-NNA and Ang II were increased to 1 g/L or 2 mg·kg-1·d-1, respectively. Arterial segments were prepared from carotid arteries and aortas, and EDC was elicited by acetylcholine in the presence of Nω-nitro-L-arginine methyl ester. We showed that low concentration of acetylcholine (3-30 nM) initiated relaxation in phenylephrine-precontracted carotid arteries of both normotensive and hypertensive mice, while high concentration of acetylcholine (0.1-2 μM) induced contraction. Application of selective Orai1 inhibitors AnCoA4 (100 μM) or YM58483 (400 nM) had no effect on ACh-induced relaxation but markedly reduced acetylcholine-induced EDC. We found that EDC was increased in hypertensive mice compared with that of normotensive mice, which was associated with increased Orai1 expression in endothelial cells of hypertensive mice. Compared to TRPC5 and TRPV4, which were also involved in EDC, endothelial cell Orai1 had relatively greater contribution to EDC than either TRPC5 or TRPV4 alone. We identified COX-2, followed by PGF2α, PGD2 and PGE2 as the downstream signals of Orai1/TRPC5/TRPV4. In conclusion, Orai1 coordinates together with TRPC5 and TRPV4 in endothelial cells to regulate EDC responses. This study demonstrates a novel function of Orai1 in EDC in both normotensive and hypertensive mice, thus providing a general scheme about the control of EDC by Ca2+-permeable channels.
Collapse
Affiliation(s)
- Xiao Li
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen-Chuan Lei
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Yin Lo
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Yau Jan
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Qiang Yao
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Dingenen E, Segers D, De Maeseneer H, Van Gysel D. Sturge-Weber syndrome: an update for the pediatrician. World J Pediatr 2024; 20:435-443. [PMID: 38658498 DOI: 10.1007/s12519-024-00809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Sturge-Weber syndrome (SWS) is a rare congenital neurocutaneous disorder characterized by the simultaneous presence of both cutaneous and extracutaneous capillary malformations. SWS usually presents as a facial port-wine birthmark, with a varying presence of leptomeningeal capillary malformations and ocular vascular abnormalities. The latter may lead to significant neurological and ocular morbidity such as epilepsy and glaucoma. SWS is most often caused by a somatic mutation involving the G protein subunit alpha Q or G protein subunit alpha 11 gene causing various alterations in downstream signaling pathways. We specifically conducted a comprehensive review focusing on the current knowledge of clinical practices, the latest pathophysiological insights, and the potential novel therapeutic avenues they provide. DATA SOURCES A narrative, non-systematic review of the literature was conducted, combining expert opinion with a balanced review of the available literature. A search of PubMed, Google Scholar and Embase was conducted, using keywords "Sturge-Weber Syndrome" OR "SWS", "Capillary malformations", "G protein subunit alpha 11" OR "G protein subunit alpha Q". RESULTS One of the hallmark features of SWS is the presence of a port-wine birthmark at birth, and forehead involvement is most indicative for SWS. The most common ocular manifestations of SWS are glaucoma and choroidal hemangioma. Glaucoma presents in either in infancy (0-3 years of age) or later in life. Neurological complications are common in SWS, occurring in about 70%-80% of patients, with seizures being the most common one. SWS significantly impacts the quality of life for patients and their families, and requires a multidisciplinary approach for diagnosis and treatment. Currently, no disease-modifying therapies exist, and treatment is mostly focused on symptoms or complications as they arise. CONCLUSIONS: SWS remains a complex and heterogeneous disorder. Further research is needed to optimize diagnostic and therapeutic strategies, and to translate insights from molecular pathogenesis to clinical practice.
Collapse
Affiliation(s)
- Emilie Dingenen
- Ghent University Faculty of Medicine and Health Sciences, Ghent, Belgium
| | - Damien Segers
- Ghent University Faculty of Medicine and Health Sciences, Ghent, Belgium
| | - Hannelore De Maeseneer
- Department of Pediatrics, O.L.Vrouw Hospital Aalst, Moorselbaan 164, 9300, Aalst, Belgium
| | - Dirk Van Gysel
- Department of Pediatrics, O.L.Vrouw Hospital Aalst, Moorselbaan 164, 9300, Aalst, Belgium.
- Interdisciplinary Unit of Pediatric Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
| |
Collapse
|
27
|
Hou YJ, Yang XX, He L, Meng HX. Pathological mechanisms of cold and mechanical stress in modulating cancer progression. Hum Cell 2024; 37:593-606. [PMID: 38538930 DOI: 10.1007/s13577-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 04/15/2024]
Abstract
Environmental temperature and cellular mechanical force are the inherent factors that participate in various biological processes and regulate cancer progress, which have been hot topics worldwide. They occupy a dominant part in the cancer tissues through different approaches. However, extensive investigation regarding pathological mechanisms in the carcinogenic field. After research, we found cold stress via two means to manipulate tumors: neuroscience and mechanically sensitive ion channels (MICHs) such as TRP families to regulate the physiological and pathological activities. Excessive cold stimulation mediated neuroscience acting on every cancer stage through the hypothalamus-pituitary-adrenocorticoid (HPA) to reach the target organs. Comparatively speaking, mechanical force via Piezo of MICHs controls cancer development. The progression of cancer depends on the internal activation of proto-oncogenes and the external tumorigenic factors; the above two means eventually lead to genetic disorders at the molecular level. This review summarizes the interaction of bidirectional communication between them and the tumor. It covers the main processes from cytoplasm to nucleus related to metastasis cascade and tumor immune escape.
Collapse
Affiliation(s)
- Yun-Jing Hou
- Harbin Medical University, Harbin, China
- Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin-Xin Yang
- Harbin Medical University, Harbin, China
- Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin He
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin, China
| | - Hong-Xue Meng
- Harbin Medical University, Harbin, China.
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, China.
| |
Collapse
|
28
|
Wei X, Xu H, Zhou M, Zhou Q, Li M, Liu Y. Chemically modified microRNA delivery via DNA tetrahedral frameworks for dental pulp regeneration. J Nanobiotechnology 2024; 22:150. [PMID: 38575923 PMCID: PMC11318316 DOI: 10.1186/s12951-024-02393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024] Open
Abstract
Dental pulp regeneration is a promising strategy for addressing tooth disorders. Incorporating this strategy involves the fundamental challenge of establishing functional vascular networks using dental pulp stem cells (DPSCs) to support tissue regeneration. Current therapeutic approaches lack efficient and stable methods for activating DPSCs. In the study, we used a chemically modified microRNA (miRNA)-loaded tetrahedral-framework nucleic acid nanostructure to promote DPSC-mediated angiogenesis and dental pulp regeneration. Incorporating chemically modified miR-126-3p into tetrahedral DNA nanostructures (miR@TDNs) represents a notable advancement in the stability and efficacy of miRNA delivery into DPSCs. These nanostructures enhanced DPSC proliferation, migration, and upregulated angiogenesis-related genes, enhancing their paracrine signaling effects on endothelial cells. This enhanced effect was substantiated by improvements in endothelial cell tube formation, migration, and gene expression. Moreover, in vivo investigations employing matrigel plug assays and ectopic dental pulp transplantation confirmed the potential of miR@TDNs in promoting angiogenesis and facilitating dental pulp regeneration. Our findings demonstrated the potential of chemically modified miRNA-loaded nucleic acid nanostructures in enhancing DPSC-mediated angiogenesis and supporting dental pulp regeneration. These results highlighted the promising role of chemically modified nucleic acid-based delivery systems as therapeutic agents in regenerative dentistry and tissue engineering.
Collapse
Affiliation(s)
- Xiaoling Wei
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Huaxing Xu
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Mengqi Zhou
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Qiangqiang Zhou
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuehua Liu
- Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China.
| |
Collapse
|
29
|
Gorobets O, Gorobets S, Polyakova T, Zablotskii V. Modulation of calcium signaling and metabolic pathways in endothelial cells with magnetic fields. NANOSCALE ADVANCES 2024; 6:1163-1182. [PMID: 38356636 PMCID: PMC10863714 DOI: 10.1039/d3na01065a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/21/2024] [Indexed: 02/16/2024]
Abstract
Calcium signaling plays a crucial role in various physiological processes, including muscle contraction, cell division, and neurotransmitter release. Dysregulation of calcium levels and signaling has been linked to a range of pathological conditions such as neurodegenerative disorders, cardiovascular disease, and cancer. Here, we propose a theoretical model that predicts the modulation of calcium ion channel activity and calcium signaling in the endothelium through the application of either a time-varying or static gradient magnetic field (MF). This modulation is achieved by exerting magnetic forces or torques on either biogenic or non-biogenic magnetic nanoparticles that are bound to endothelial cell membranes. Since calcium signaling in endothelial cells induces neuromodulation and influences blood flow control, treatment with a magnetic field shows promise for regulating neurovascular coupling and treating vascular dysfunctions associated with aging and neurodegenerative disorders. Furthermore, magnetic treatment can enable control over the decoding of Ca signals, ultimately impacting protein synthesis. The ability to modulate calcium wave frequencies using MFs and the MF-controlled decoding of Ca signaling present promising avenues for treating diseases characterized by calcium dysregulation.
Collapse
Affiliation(s)
- Oksana Gorobets
- National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute" Ukraine
| | - Svitlana Gorobets
- National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute" Ukraine
| | - Tatyana Polyakova
- Institute of Physics of the Czech Academy of Sciences Prague Czech Republic
| | - Vitalii Zablotskii
- Institute of Physics of the Czech Academy of Sciences Prague Czech Republic
- International Magnetobiology Frontier Research Center (iMFRC), Science Island Hefei China
| |
Collapse
|
30
|
Choi Y, Ando Y, Lee D, Kim NY, Lee OEM, Cho J, Seo I, Chong GO, Park NJY. Profiling of Lymphovascular Space Invasion in Cervical Cancer Revealed PI3K/Akt Signaling Pathway Overactivation and Heterogenic Tumor-Immune Microenvironments. Life (Basel) 2023; 13:2342. [PMID: 38137942 PMCID: PMC10744523 DOI: 10.3390/life13122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Lymphovascular space invasion (LVSI) is the presence of tumor emboli in the endothelial-lined space at the tumor body's invasive edge. LVSI is one of three Sedlis criteria components-a prognostic tool for early cervical cancer (CC)-essential for indicating poor prognosis, such as lymph node metastasis, distant metastasis, or shorter survival rate. Despite its clinical significance, an in-depth comprehension of the molecular mechanisms or immune dynamics underlying LVSI in CC remains elusive. Therefore, this study investigated tumor-immune microenvironment (TIME) dynamics of the LVSI-positive group in CC. RNA sequencing included formalin-fixed paraffin-embedded (FFPE) slides from 21 CC patients, and differentially expressed genes (DEGs) were analyzed. Functional analysis and immune deconvolution revealed aberrantly enriched PI3K/Akt pathway activation and a heterogenic immune composition with a low abundance of regulatory T cells (Treg) between LVSI-positive and LVSI-absent groups. These findings improve the comprehension of LSVI TIME and immune mechanisms, benefiting targeted LVSI therapy for CC.
Collapse
Affiliation(s)
- Yeseul Choi
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Yu Ando
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Donghyeon Lee
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Na Young Kim
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Olive E. M. Lee
- Graduate Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.C.); (Y.A.); (D.L.); (N.Y.K.); (O.E.M.L.)
| | - Junghwan Cho
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea; (J.C.); (I.S.)
| | - Incheol Seo
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea; (J.C.); (I.S.)
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Gun Oh Chong
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea; (J.C.); (I.S.)
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Nora Jee-Young Park
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea; (J.C.); (I.S.)
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| |
Collapse
|
31
|
Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the Endothelial Calcium (Ca 2+) Code: A Matter of Timing and Spacing. Int J Mol Sci 2023; 24:16765. [PMID: 38069089 PMCID: PMC10706333 DOI: 10.3390/ijms242316765] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integrate the information conveyed by local and circulating cues. Herein, we describe the dynamics and spatial distribution of endothelial Ca2+ signals to understand how an array of spatially restricted (at both the subcellular and cellular levels) Ca2+ signals is exploited by the vascular intima to fulfill this complex task. We then illustrate how local endothelial Ca2+ signals affect the most appropriate vascular function and are integrated to transmit this information to more distant sites to maintain cardiovascular homeostasis. Vasorelaxation and sprouting angiogenesis were selected as an example of functions that are finely tuned by the variable spatio-temporal profile endothelial Ca2+ signals. We further highlighted how distinct Ca2+ signatures regulate the different phases of vasculogenesis, i.e., proliferation and migration, in circulating endothelial precursors.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
32
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
33
|
Wang M, Feng J, Zhou D, Wang J. Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: a new predictive and therapeutic paradigm for sepsis. Eur J Med Res 2023; 28:339. [PMID: 37700349 PMCID: PMC10498524 DOI: 10.1186/s40001-023-01301-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Lipopolysaccharide, a highly potent endotoxin responsible for severe sepsis, is the major constituent of the outer membrane of gram-negative bacteria. Endothelial cells participate in both innate and adaptive immune responses as the first cell types to detect lipopolysaccharide or other foreign debris in the bloodstream. Endothelial cells are able to recognize the presence of LPS and recruit specific adaptor proteins to the membrane domains of TLR4, thereby initiating an intracellular signaling cascade. However, lipopolysaccharide binding to endothelial cells induces endothelial activation and even damage, manifested by the expression of proinflammatory cytokines and adhesion molecules that lead to sepsis. MAIN FINDINGS LPS is involved in both local and systemic inflammation, activating both innate and adaptive immunity. Translocation of lipopolysaccharide into the circulation causes endotoxemia. Endothelial dysfunction, including exaggerated inflammation, coagulopathy and vascular leakage, may play a central role in the dysregulated host response and pathogenesis of sepsis. By discussing the many strategies used to treat sepsis, this review attempts to provide an overview of how lipopolysaccharide induces the ever more complex syndrome of sepsis and the potential for the development of novel sepsis therapeutics. CONCLUSIONS To reduce patient morbidity and mortality, preservation of endothelial function would be central to the management of sepsis.
Collapse
Affiliation(s)
- Min Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| | - Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
34
|
Usseglio J, Dumur A, Pagès E, Renaudie É, Abélanet A, Brie J, Champion É, Magnaudeix A. Microporous Hydroxyapatite-Based Ceramics Alter the Physiology of Endothelial Cells through Physical and Chemical Cues. J Funct Biomater 2023; 14:460. [PMID: 37754874 PMCID: PMC10531673 DOI: 10.3390/jfb14090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Incorporation of silicate ions in calcium phosphate ceramics (CPC) and modification of their multiscale architecture are two strategies for improving the vascularization of scaffolds for bone regenerative medicine. The response of endothelial cells, actors for vascularization, to the chemical and physical cues of biomaterial surfaces is little documented, although essential. We aimed to characterize in vitro the response of an endothelial cell line, C166, cultivated on the surface CPCs varying either in terms of their chemistry (pure versus silicon-doped HA) or their microstructure (dense versus microporous). Adhesion, metabolic activity, and proliferation were significantly altered on microporous ceramics, but the secretion of the pro-angiogenic VEGF-A increased from 262 to 386 pg/mL on porous compared to dense silicon-doped HA ceramics after 168 h. A tubulogenesis assay was set up directly on the ceramics. Two configurations were designed for discriminating the influence of the chemistry from that of the surface physical properties. The formation of tubule-like structures was qualitatively more frequent on dense ceramics. Microporous ceramics induced calcium depletion in the culture medium (from 2 down to 0.5 mmol/L), which is deleterious for C166. Importantly, this effect might be associated with the in vitro static cell culture. No influence of silicon doping of HA on C166 behavior was detected.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amandine Magnaudeix
- Université de Limoges, CNRS, Institut de Recherche sur les Céramiques, UMR 7315, F-87000 Limoges, France; (J.U.); (A.D.); (E.P.); (É.R.); (A.A.); (J.B.); (É.C.)
| |
Collapse
|
35
|
Espinoza H, Figueroa XF. Opening of Cx43-formed hemichannels mediates the Ca 2+ signaling associated with endothelial cell migration. Biol Direct 2023; 18:52. [PMID: 37635249 PMCID: PMC10463847 DOI: 10.1186/s13062-023-00408-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
Endothelial cell migration is a key process in angiogenesis. Progress of endothelial cell migration is orchestrated by coordinated generation of Ca2+ signals through a mechanism organized in caveolar microdomains. Connexins (Cx) play a central role in coordination of endothelial cell function, directly by cell-to-cell communication via gap junction and, indirectly, by the release of autocrine/paracrine signals through Cx-formed hemichannels. However, Cx hemichannels are also permeable to Ca2+ and Cx43 can be associated with caveolin-1, a structural protein of caveolae. We proposed that endothelial cell migration relies on Cx43 hemichannel opening. Here we show a novel mechanism of Ca2+ signaling in endothelial cell migration. The Ca2+ signaling that mediates endothelial cell migration and the subsequent tubular structure formation depended on Cx43 hemichannel opening and is associated with the translocation of Cx43 with caveolae to the rear part of the cells. These findings indicate that Cx43 hemichannels play a central role in endothelial cell migration and provide new therapeutic targets for the control of deregulated angiogenesis in pathological conditions such as cancer.
Collapse
Affiliation(s)
- Hilda Espinoza
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8330025, Chile
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, 8370007, Chile
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8330025, Chile.
| |
Collapse
|
36
|
Nicosia A, Salamone M, Costa S, Ragusa MA, Ghersi G. Mimicking Molecular Pathways in the Design of Smart Hydrogels for the Design of Vascularized Engineered Tissues. Int J Mol Sci 2023; 24:12314. [PMID: 37569691 PMCID: PMC10418696 DOI: 10.3390/ijms241512314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Biomaterials are pivotal in supporting and guiding vascularization for therapeutic applications. To design effective, bioactive biomaterials, understanding the cellular and molecular processes involved in angiogenesis and vasculogenesis is crucial. Biomaterial platforms can replicate the interactions between cells, the ECM, and the signaling molecules that trigger blood vessel formation. Hydrogels, with their soft and hydrated properties resembling natural tissues, are widely utilized; particularly synthetic hydrogels, known for their bio-inertness and precise control over cell-material interactions, are utilized. Naturally derived and synthetic hydrogel bases are tailored with specific mechanical properties, controlled for biodegradation, and enhanced for cell adhesion, appropriate biochemical signaling, and architectural features that facilitate the assembly and tubulogenesis of vascular cells. This comprehensive review showcases the latest advancements in hydrogel materials and innovative design modifications aimed at effectively guiding and supporting vascularization processes. Furthermore, by leveraging this knowledge, researchers can advance biomaterial design, which will enable precise support and guidance of vascularization processes and ultimately enhance tissue functionality and therapeutic outcomes.
Collapse
Affiliation(s)
- Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy;
| | - Monica Salamone
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy;
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.G.)
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.G.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.G.)
| |
Collapse
|
37
|
Moccia F, Fiorio Pla A, Lim D, Lodola F, Gerbino A. Intracellular Ca 2+ signalling: unexpected new roles for the usual suspect. Front Physiol 2023; 14:1210085. [PMID: 37576340 PMCID: PMC10413985 DOI: 10.3389/fphys.2023.1210085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Cytosolic Ca2+ signals are organized in complex spatial and temporal patterns that underlie their unique ability to regulate multiple cellular functions. Changes in intracellular Ca2+ concentration ([Ca2+]i) are finely tuned by the concerted interaction of membrane receptors and ion channels that introduce Ca2+ into the cytosol, Ca2+-dependent sensors and effectors that translate the elevation in [Ca2+]i into a biological output, and Ca2+-clearing mechanisms that return the [Ca2+]i to pre-stimulation levels and prevent cytotoxic Ca2+ overload. The assortment of the Ca2+ handling machinery varies among different cell types to generate intracellular Ca2+ signals that are selectively tailored to subserve specific functions. The advent of novel high-speed, 2D and 3D time-lapse imaging techniques, single-wavelength and genetic Ca2+ indicators, as well as the development of novel genetic engineering tools to manipulate single cells and whole animals, has shed novel light on the regulation of cellular activity by the Ca2+ handling machinery. A symposium organized within the framework of the 72nd Annual Meeting of the Italian Society of Physiology, held in Bari on 14-16th September 2022, has recently addressed many of the unexpected mechanisms whereby intracellular Ca2+ signalling regulates cellular fate in healthy and disease states. Herein, we present a report of this symposium, in which the following emerging topics were discussed: 1) Regulation of water reabsorption in the kidney by lysosomal Ca2+ release through Transient Receptor Potential Mucolipin 1 (TRPML1); 2) Endoplasmic reticulum-to-mitochondria Ca2+ transfer in Alzheimer's disease-related astroglial dysfunction; 3) The non-canonical role of TRP Melastatin 8 (TRPM8) as a Rap1A inhibitor in the definition of some cancer hallmarks; and 4) Non-genetic optical stimulation of Ca2+ signals in the cardiovascular system.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Francesco Lodola
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
38
|
Kim S, Im G, Kim YH, Bhang SH. Fortifying angiogenic efficacy of conditioned media using phototoxic-free blue light for wound healing. Bioeng Transl Med 2023; 8:e10462. [PMID: 37206233 PMCID: PMC10189464 DOI: 10.1002/btm2.10462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/13/2022] [Accepted: 11/23/2022] [Indexed: 11/02/2023] Open
Abstract
We used a blue organic light-emitting diode (bOLED) to increase the paracrine factors secreted from human adipose-derived stem cells (hADSCs) for producing conditioned medium (CM). Our results showed that while the bOLED irradiation promotes a mild-dose reactive oxygen generation that enhances the angiogenic paracrine secretion of hADSCs, it does not induce phototoxicity. The bOLED enhances paracrine factors via a cell-signaling mechanism involving hypoxia-inducible factor 1 alpha. This study demonstrated that the CM resulting from bOLED treatment shows improved therapeutic effects on mouse wound-healing models. This method contributes to overcoming the barriers to stem-cell therapies, including the toxicity and low yields from other methods such as nanoparticles, synthetic polymers, and even cell-derived vesicles.
Collapse
Affiliation(s)
- Sung‐Won Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonSouth Korea
| | - Gwang‐Bum Im
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonSouth Korea
- Present address:
Department of Cardiac SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonSouth Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonSouth Korea
| |
Collapse
|
39
|
Nasehi R, Abdallah AT, Pantile M, Zanon C, Vogt M, Rütten S, Fischer H, Aveic S. 3D geometry orchestrates the transcriptional landscape of metastatic neuroblastoma cells in a multicellular in vitro bone model. Mater Today Bio 2023; 19:100596. [PMID: 36910273 PMCID: PMC9999213 DOI: 10.1016/j.mtbio.2023.100596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
A key challenge for the discovery of novel molecular targets and therapeutics against pediatric bone metastatic disease is the lack of bona fide in vitro cell models. Here, we show that a beta-tricalcium phosphate (β-TCP) multicellular 3D in vitro bone microtissue model reconstitutes key phenotypic and transcriptional patterns of native metastatic tumor cells while promoting their stemness and proinvasive features. Comparing planar with interconnected channeled scaffolds, we identified geometry as a dominant orchestrator of proangiogenic traits in neuroblastoma tumor cells. On the other hand, the β-TCP-determined gene signature was DNA replication related. Jointly, the geometry and chemical impact of β-TCP revealed a prometastatic landscape of the engineered tumor microenvironment. The proposed 3D multicellular in vitro model of pediatric bone metastatic disease may advance further analysis of the molecular, genetic and metabolic bases of the disease and allow more efficient preclinical target validations.
Collapse
Affiliation(s)
- Ramin Nasehi
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research, RWTH Aachen University Hospital, 52074, Aachen, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marcella Pantile
- Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica Fondazione Città Della Speranza, 35127, Padova, Italy
| | - Carlo Zanon
- Bioinformatics Core Facility, Istituto di Ricerca Pediatrica Fondazione Città Della Speranza, 35127, Padova, Italy
| | - Michael Vogt
- Interdisciplinary Center for Clinical Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074, Aachen, Germany.,Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica Fondazione Città Della Speranza, 35127, Padova, Italy
| |
Collapse
|
40
|
Li C, Zhang S, Yao Y, Wang Y, Xiao C, Yang B, Huang J, Li W, Ning C, Zhai J, Yu P, Wang Y. Piezoelectric Bioactive Glasses Composite Promotes Angiogenesis by the Synergistic Effect of Wireless Electrical Stimulation and Active Ions. Adv Healthc Mater 2023:e2300064. [PMID: 36854114 DOI: 10.1002/adhm.202300064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Insufficient angiogenesis frequently occurs after the implantation of orthopedic materials, which greatly increases the risk of bone defect reconstruction failure. Therefore, the development of bone implant with improved angiogenic properties is of great importance. Mimicking the extracellular matrix clues provides a more direct and effective strategy to modulate angiogenesis. Herein, inspired by the bioelectrical characteristics of the bone microenvironment, a piezoelectric bioactive glasses composite (P-KNN/BG) based on the incorporation of polarized potassium sodium niobate is constructed, which could effectively promote angiogenesis. It is found that P-KNN/BG has exceptional wireless electrical stimulation performance and sustained active ions release. In vitro cell experiments reveal that P-KNN/BG enhances endothelial cell adhesion, migration, and differentiation via activating the eNOS/NO signaling pathway, which might be contributed to cell membrane hyperpolarization induced by wireless electrical stimulation increase the influx of active ions into the cells. In vivo chick chorioallantoic membrane experiment demonstrates that P-KNN/BG shows excellent pro-angiogenic capacity and biocompatibility. This work broadens the current understanding of bioactive materials with bionic electrical properties, which brings new insights into the clinical treatment of bone defect repair.
Collapse
Affiliation(s)
- Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.,School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yichen Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yanlan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Cairong Xiao
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jingyan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Chengyun Ning
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Jinxia Zhai
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Peng Yu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| |
Collapse
|
41
|
METTL3 Promotes Endothelium-Mesenchymal Transition of Pulmonary Artery Endothelial Cells by Regulating TRPC6/Calcineurin/NFAT Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:8269356. [PMID: 36865750 PMCID: PMC9974285 DOI: 10.1155/2023/8269356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023]
Abstract
Background Endothelium-mesenchymal transition (EndMT) is a process of phenotypic and functional transition from activated endothelial cells to mesenchymal cells. Recently, EndMT has been proved to be one of the main pathological mechanisms of pulmonary artery hypertension (PAH). However, the molecular mechanism is not clear. Methods Primary rat pulmonary arterial endothelial cells (rPAECs) were isolated from Sprague-Dawley rats and verified by CD31 immunofluorescence staining. rPAECs were exposed to hypoxic conditions to induce EndMT. RNA and protein levels in cells were detected by RT-qPCR and Western blot. The migration ability was verified by the transwell assay. The RIP experiment was used to test the m6A modification of TRPC6 mRNA and the binding relationship between TRPC6 and METTL3. Calcineurin/NFAT signaling was measured by using commercial kits. Results METTL3 was found to be highly expressed by hypoxia treatment in a time-dependent manner. Knockdown of METTL3 significantly suppressed cell migration, downregulated the levels of interstitial cell-related markers like α-SMA and vimentin, and increased the levels of endothelial cell markers including CD31 and VE-cadherin. Mechanistically, METTL3 increased TRPC6 expression by enhancing the m6A modification of TRPC6 mRNA, thus activating calcineurin/NFAT signaling. Our experiments showed that METTL3 silencing mediated the inhibitory roles in the hypoxia-mediated EndMT process, which were significantly reversed by TRPC6/calcineurin/NFAT signaling activation. Conclusion Our results elucidated that METTL3 knockdown inhibited the hypoxia-mediated EndMT process by inactivating TRPC6/calcineurin/NFAT signaling.
Collapse
|
42
|
Abstract
Resistance arteries and arterioles evolved as specialized blood vessels serving two important functions: (a) regulating peripheral vascular resistance and blood pressure and (b) matching oxygen and nutrient delivery to metabolic demands of organs. These functions require control of vessel lumen cross-sectional area (vascular tone) via coordinated vascular cell responses governed by precise spatial-temporal communication between intracellular signaling pathways. Herein, we provide a contemporary overview of the significant roles that redox switches play in calcium signaling for orchestrated endothelial, smooth muscle, and red blood cell control of arterial vascular tone. Three interrelated themes are the focus: (a) smooth muscle to endothelial communication for vasoconstriction, (b) endothelial to smooth muscle cell cross talk for vasodilation, and (c) oxygen and red blood cell interregulation of vascular tone and blood flow. We intend for this thematic framework to highlight gaps in our current knowledge and potentially spark interest for cross-disciplinary studies moving forward.
Collapse
Affiliation(s)
- Máté Katona
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Current affiliation: University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adam C Straub
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Microvascular Research, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
The Molecular Heterogeneity of Store-Operated Ca 2+ Entry in Vascular Endothelial Cells: The Different roles of Orai1 and TRPC1/TRPC4 Channels in the Transition from Ca 2+-Selective to Non-Selective Cation Currents. Int J Mol Sci 2023; 24:ijms24043259. [PMID: 36834672 PMCID: PMC9967124 DOI: 10.3390/ijms24043259] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is activated in response to the inositol-1,4,5-trisphosphate (InsP3)-dependent depletion of the endoplasmic reticulum (ER) Ca2+ store and represents a ubiquitous mode of Ca2+ influx. In vascular endothelial cells, SOCE regulates a plethora of functions that maintain cardiovascular homeostasis, such as angiogenesis, vascular tone, vascular permeability, platelet aggregation, and monocyte adhesion. The molecular mechanisms responsible for SOCE activation in vascular endothelial cells have engendered a long-lasting controversy. Traditionally, it has been assumed that the endothelial SOCE is mediated by two distinct ion channel signalplexes, i.e., STIM1/Orai1 and STIM1/Transient Receptor Potential Canonical 1(TRPC1)/TRPC4. However, recent evidence has shown that Orai1 can assemble with TRPC1 and TRPC4 to form a non-selective cation channel with intermediate electrophysiological features. Herein, we aim at bringing order to the distinct mechanisms that mediate endothelial SOCE in the vascular tree from multiple species (e.g., human, mouse, rat, and bovine). We propose that three distinct currents can mediate SOCE in vascular endothelial cells: (1) the Ca2+-selective Ca2+-release activated Ca2+ current (ICRAC), which is mediated by STIM1 and Orai1; (2) the store-operated non-selective current (ISOC), which is mediated by STIM1, TRPC1, and TRPC4; and (3) the moderately Ca2+-selective, ICRAC-like current, which is mediated by STIM1, TRPC1, TRPC4, and Orai1.
Collapse
|
44
|
Zhu Y, Yang H, Han L, Mervin LH, Hosseini-Gerami L, Li P, Wright P, Trapotsi MA, Liu K, Fan TP, Bender A. In silico prediction and biological assessment of novel angiogenesis modulators from traditional Chinese medicine. Front Pharmacol 2023; 14:1116081. [PMID: 36817116 PMCID: PMC9937659 DOI: 10.3389/fphar.2023.1116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Uncontrolled angiogenesis is a common denominator underlying many deadly and debilitating diseases such as myocardial infarction, chronic wounds, cancer, and age-related macular degeneration. As the current range of FDA-approved angiogenesis-based medicines are far from meeting clinical demands, the vast reserve of natural products from traditional Chinese medicine (TCM) offers an alternative source for developing pro-angiogenic or anti-angiogenic modulators. Here, we investigated 100 traditional Chinese medicine-derived individual metabolites which had reported gene expression in MCF7 cell lines in the Gene Expression Omnibus (GSE85871). We extracted literature angiogenic activities for 51 individual metabolites, and subsequently analysed their predicted targets and differentially expressed genes to understand their mechanisms of action. The angiogenesis phenotype was used to generate decision trees for rationalising the poly-pharmacology of known angiogenesis modulators such as ferulic acid and curculigoside and validated by an in vitro endothelial tube formation assay and a zebrafish model of angiogenesis. Moreover, using an in silico model we prospectively examined the angiogenesis-modulating activities of the remaining 49 individual metabolites. In vitro, tetrahydropalmatine and 1 beta-hydroxyalantolactone stimulated, while cinobufotalin and isoalantolactone inhibited endothelial tube formation. In vivo, ginsenosides Rb3 and Rc, 1 beta-hydroxyalantolactone and surprisingly cinobufotalin, restored angiogenesis against PTK787-induced impairment in zebrafish. In the absence of PTK787, deoxycholic acid and ursodeoxycholic acid did not affect angiogenesis. Despite some limitations, these results suggest further refinements of in silico prediction combined with biological assessment will be a valuable platform for accelerating the research and development of natural products from traditional Chinese medicine and understanding their mechanisms of action, and also for other traditional medicines for the prevention and treatment of angiogenic diseases.
Collapse
Affiliation(s)
- Yingli Zhu
- Department of Clinical Chinese Pharmacy, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China,Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom,Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Hongbin Yang
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Liwen Han
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Pharmacy and Pharmaceutical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Lewis H. Mervin
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Layla Hosseini-Gerami
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Peter Wright
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Maria-Anna Trapotsi
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Tai-Ping Fan, ; Andreas Bender,
| | - Andreas Bender
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Tai-Ping Fan, ; Andreas Bender,
| |
Collapse
|
45
|
Role of Endothelial Progenitor Cells in Frailty. Int J Mol Sci 2023; 24:ijms24032139. [PMID: 36768461 PMCID: PMC9916666 DOI: 10.3390/ijms24032139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Frailty is a clinical condition closely related to aging which is characterized by a multidimensional decline in biological reserves, a failure of physiological mechanisms and vulnerability to minor stressors. Chronic inflammation, the impairment of endothelial function, age-related endocrine system modifications and immunosenescence are important mechanisms in the pathophysiology of frailty. Endothelial progenitor cells (EPCs) are considered important contributors of the endothelium homeostasis and turn-over. In the elderly, EPCs are impaired in terms of function, number and survival. In addition, the modification of EPCs' level and function has been widely demonstrated in atherosclerosis, hypertension and diabetes mellitus, which are the most common age-related diseases. The purpose of this review is to illustrate the role of EPCs in frailty. Initially, we describe the endothelial dysfunction in frailty, the response of EPCs to the endothelial dysfunction associated with frailty and, finally, interventions which may restore the EPCs expression and function in frail people.
Collapse
|
46
|
Reyes Gaido OE, Schole KL, Anderson ME, Luczak ED. Genome-wide CRISPR screen reveals genetic modifiers of Ca 2+ -mediated cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523980. [PMID: 36712017 PMCID: PMC9882248 DOI: 10.1101/2023.01.13.523980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ca 2+ is a fundamental determinant of survival in living cells. Excessive intracellular Ca 2+ causes cellular toxicity and death but the genetic pathways contributing to Ca 2+ induced cell death are incompletely understood. Here, we performed genome-wide CRISPR knock-out screening in human cells challenged with the Ca 2+ ionophore ionomycin and identified genes and pathways essential for cell death after Ca 2+ overload. We discovered 115 protective gene knockouts, 82 of which are non-essential genes and 21 of which belong to the druggable genome. Notably, members of store operated Ca 2+ entry (SOCE), very long-chain fatty acid synthesis, and SWItch/Sucrose Non-Fermentable (SWI/SNF) pathways provided marked protection against Ca 2+ toxicity. These results reveal pathways previously unknown to mediate Ca 2+ -induced cell death and provide a resource for the development of pharmacotherapies against the sequelae of Ca 2+ overload in disease.
Collapse
|
47
|
Malik S, Awan SJ, Farzand A, Ali Q. Inflammation reduction potential of nanostructured lipid carriers encapsulated with rat's bone marrow cells' lysate. BRAZ J BIOL 2023; 82:e269553. [PMID: 36629549 DOI: 10.1590/1519-6984.269553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) have been used for treating inflammatory disorders. Due to the large size of BMSCs compared to nanoparticles, BMSCs cannot be loaded into the nanoparticles. It is hypothesized that BMSCs lysate loading into the nanocarriers will effectively deliver cellular contents and regulatory elements of BMSCs at the injury site. This study aimed to investigate nanostructured lipid carriers (NLC) loading with BMSCs lysate through basic characterization and morphological analysis. Moreover, this study was mainly designed to investigate the role of NLC loaded BMSCs lysate in reducing inflammation via in-vitro and in-vivoassays. The in-vitro study involves cell viability assays, p53, annexin V and VEGF expression through ELISA and immunocytochemistry, real-time BAX, caspase-3, IL-6, IL-8, TOP2A, PCNA, and Ki-67 gene expression analysis. Additionally, to evaluate in-vivo anti-inflammatory activity, the carrageenan-induced rat paw oedema model was used. In-vitro results showed that NLC loaded BMSCs lysate increased cell viability, decreased apoptosis and pro-inflammatory genes expression and up-regulated angiogenesis and proliferation in H2O2 pre-stimulated cells. Findings of the in-vivo assay also indicated a reduction in rat's paw oedema volume in NLC-loaded BMSCs lysate, and downregulation of BAX, Caspase-3, IL-6, and IL-8 was observed. Enhanced expressions of TOP2A, PCNA, and Ki-67 were obtained. Concluding the results of this study, NLC-loaded BMSCs lysate could reduce inflammation and possibly regenerate damaged tissue mainly via increasing cell viability, angiogenesis and proliferation, and reducing apoptosis and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- S Malik
- The University of Lahore, Institute of Molecular Biology and Biotechnology - IMBB, Lahore, Pakistan
| | - S J Awan
- The University of Lahore, Institute of Molecular Biology and Biotechnology - IMBB, Lahore, Pakistan.,Kinnaird College For Women, Department of Zoology, Lahore, Pakistan
| | - A Farzand
- The University of Lahore, Institute of Molecular Biology and Biotechnology - IMBB, Lahore, Pakistan
| | - Q Ali
- University of the Punjab, Department of Plant Breeding and Genetics, Lahore, Pakistan
| |
Collapse
|
48
|
Zhang Z, Xie J, Xing J, Li C, Wong TM, Yu H, Li Y, Yang F, Tian Y, Zhang H, Li W, Ning C, Wang X, Yu P. Light-Programmable Nanocomposite Hydrogel for State-Switchable Wound Healing Promotion and Bacterial Infection Elimination. Adv Healthc Mater 2023; 12:e2201565. [PMID: 36208068 DOI: 10.1002/adhm.202201565] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/11/2022] [Indexed: 01/18/2023]
Abstract
Developing an ideal wound dressing that not only accelerates wound healing but also eliminates potential bacterial infections remains a difficult balancing act. This work reports the design of a light-programmable sodium alginate nanocomposite hydrogel loaded with BiOCl/polypyrrole (BOC/PPy) nanosheets for state-switchable wound healing promotion and bacterial infection elimination remotely. The nanocomposite hydrogel possesses programmable photoelectric or photothermal conversion due to the expanded light absorption range, optimized electron transmission interface, promoted photo-generated charge separation, and transfer of the BOC/PPy nanosheets. Under white light irradiation state, the nanocomposite hydrogel induces human umbilical vein endothelial cells migration and angiogenesis, and accelerates the healing efficiency of mouse skin in vivo. Under near-infrared light irradiation state, the nanocomposite hydrogel presents superior antibacterial capability in vitro, and reaches an antibacterial rate of 99.1% for Staphylococcus aureus infected skin wound in vivo. This light-programmable nanocomposite hydrogel provides an on-demand resolution of biological state-switching to balance wound healing and elimination of bacterial infection.
Collapse
Affiliation(s)
- Zhekun Zhang
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Juning Xie
- School of Medicine, South China University of Technology, Guangzhou, 510640, P. R. China.,Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Jun Xing
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Changhao Li
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Tak Man Wong
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, 999077, China
| | - Hui Yu
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Yuanxing Li
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fabang Yang
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yu Tian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huan Zhang
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wei Li
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chengyun Ning
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaolan Wang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Peng Yu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
49
|
Liang J, Min LQ, Zhu XY, Ma TT, Li Y, Zhang MQ, Zhao L. Fingolimod protects against neurovascular unit injury in a rat model of focal cerebral ischemia/reperfusion injury. Neural Regen Res 2023; 18:869-874. [DOI: 10.4103/1673-5374.353500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
50
|
A new hemostatic agent composed of Zn2+-enriched Ca2+ alginate activates vascular endothelial cells in vitro and promotes tissue repair in vivo. Bioact Mater 2022; 18:368-382. [PMID: 35415309 PMCID: PMC8965972 DOI: 10.1016/j.bioactmat.2022.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/28/2022] Open
Abstract
To control capillary bleeding, surgeons may use absorbable hemostatic agents, such as Surgicel® and TachoSil®. Due to their slow resorption, their persistence in situ can have a negative impact on tissue repair in the resected organ. To avoid complications and obtain a hemostatic agent that promotes tissue repair, a zinc-supplemented calcium alginate compress was developed: HEMO-IONIC®. This compress is non-absorbable and is therefore removed once hemostasis has been achieved. After demonstrating the hemostatic efficacy and stability of the blood clot obtained with HEMO-IONIC, the impact of Surgicel, TachoSil, and HEMO-IONIC on cell activation and tissue repair were compared (i) in vitro on endothelial cells, which are essential to tissue repair, and (ii) in vivo in a mouse skin excision model. In vitro, only HEMO-IONIC maintained the phenotypic and functional properties of endothelial cells and induced their migration. In comparison, Surgicel was found to be highly cytotoxic, and TachoSil inhibited endothelial cell migration. In vivo, only HEMO-IONIC increased angiogenesis, the recruitment of cells essential to tissue repair (macrophages, fibroblasts, and epithelial cells), and accelerated maturation of the extracellular matrix. These results demonstrate that a zinc-supplemented calcium alginate, HEMO-IONIC, applied for 10 min at the end of surgery and then removed has a long-term positive effect on all phases of tissue repair. A new Zn2+ enriched Ca2+ alginate hemostatic agent, HEMO-IONIC, has been developed. Non-absorbable, it achieves hemostasis with no foreign bodies left in the wound. HEMO-IONIC stimulates endothelial cell migration in vitro and angiogenesis in vivo. HEMO-IONIC, removed 10 min after application, promotes all stages of tissue repair.
Collapse
|