1
|
Chowdhury R, Bhuia S, Rakib AI, Al Hasan S, Shill MC, El-Nashar HAS, El-Shazly M, Islam MT. Gigantol, a promising natural drug for inflammation: a literature review and computational based study. Nat Prod Res 2025; 39:1241-1257. [PMID: 38623737 DOI: 10.1080/14786419.2024.2340042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Gigantol, a bibenzyl compound extracted from various medicinal plants, has shown a number of biological activities, making it an attractive candidate for potential medical applications. This systematic review aims to shed light on gigantol's promising role in inflammation treatment and its underlying mechanisms. Gigantol exhibits potential anti-inflammatory properties in pre-clinical pharmacological test systems. It effectively reduced the levels of pro-inflammatory markers and arachidonic acid metabolites through various pathways, such as NF-κB, AKT, PI3K, and JNK/cPLA2/12-LOX. The in-silico investigations demonstrated that the MMP-13 enzyme served as the most promising target for gigantol with highest binding affinity (docking score = -8.8 kcal/mol). Encouragingly, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of gigantol confirmed its compatibility with the necessary physiochemical, pharmacokinetic, and toxicity properties, bolstering its potential as a drug candidate. Gigantol, with its well-documented anti-inflammatory properties, could be a promising agent for treating inflammation in the near future.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioluster Research Center, Dhaka, Bangladesh
| | - Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioluster Research Center, Dhaka, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| |
Collapse
|
2
|
Munir R, Khan IU, Kamal Y, Asghar S, Irfan M, Alshammari A, Asif M, Albekairi NA, Shah PA, Khalid I, Munir MR, Khalid SH. Dexibuprofen loaded into nanoemulsion based gel for topical application - In vitro characterization and in vivo anti-inflammatory evaluation. Colloids Surf B Biointerfaces 2025; 247:114407. [PMID: 39616935 DOI: 10.1016/j.colsurfb.2024.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 01/30/2025]
Abstract
Arthritic disease is one of the most common diseases in adults and a leading cause of joint degeneration. Dexibuprofen (DEX) is routinely used for the treatment of rheumatoid arthritis, acute postoperative pain, primary dysmenorrheal, and in lower back pain. However, it is poorly water soluble with compromised bioavailability, and hence has limited therapeutic activity. In order to overcome these issues, we studied the formulation and characterization of nanoemulsion based system i.e nanoemulgel of DEX. This study aimed to prepare topical nanoemulgel containing 2 % DEX and solubility-enhanced DEX via ternary inclusion complexation (DEX-SE-T) and to compare it with commercially available 5 % Ibuprofen gel as there is no topical formulation of DEX is available in the market currently. A pseudoternary phase diagram was constructed using the spontaneous water titration method. Blank and drug-loaded nanoemulgel were prepared using a high-speed homogenization method. All the formulations were evaluated in terms of particle size, pH, conductivity, viscosity, zeta potential, and ex vivo drug permeation. DEX loaded nanoemulgel yield enhanced in vitro skin permeation than the commercially available 5 % ibuprofen gel. The optimized nanoemulgel formulation (DEX-SE-T) was tested in in vivo anti-inflammatory models including cotton pellets-induced abdominal granuloma (chronic inflammation) and carrageenan-induced paw edema (acute inflammation). DEX-SE-T loaded nanoemulgel has improved in vivo anti-inflammatory activity as compared to ibuprofen gel. DEX-SE-T could be a promising option for effective topical treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Rabia Munir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Yousaf Kamal
- Hamdard Institute of Pharmaceutical Sciences Hamdard University Karachi, Islamabad Campus, 45550, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; College of Pharmacy, Freie Universitaet Berlin, Germany.
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Pakistan
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Pervaiz Akhtar Shah
- Department of Pharmaceutics, College of Pharmacy, Punjab University, Lahore 54590, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | | | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Teknologi Mara (UiTM), Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia.
| |
Collapse
|
3
|
Bhuia MS, Chowdhury R, Hasan R, Hasan MSA, Ansari SA, Ansari IA, Mubarak MS, Coutinho HDM, Domiciano CB, Islam MT. trans-Ferulic Acid Antagonizes the Anti-Inflammatory Activity of Etoricoxib: Possible Interaction of COX-1 and NOS. Biotechnol Appl Biochem 2025. [PMID: 39985155 DOI: 10.1002/bab.2739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025]
Abstract
This study emphasizes to investigate the modulatory activity of trans-ferulic acid (TFA) on anti-inflammatory activity of etoricoxib (ETO) and underlying mechanisms via formalin-induced licking and paw edema model and in silico study. Inflammation was induced by injecting formalin (50 µL) into the right hind paw of mice. The animals were treated with different doses of TFA (25, 50, and 75 mg/kg, p.o.). The vehicle and ETO (35 mg/kg, p.o.) were provided as positive and negative control, respectively. ETO also served combined with TFA to evaluate the modulatory activity. The licking behavior was counted for the early and late phases, whereas the paw edema diameter was measured by using a slide caliper. All treatment was continued for 7 days until the edema was totally minimized to determine the inflammation's recovery capability for a specific group. Different computed and web tools were used to estimate molecular binding affinity, binding interactions, and pharmacokinetics. The findings demonstrated that TFA significantly (p < 0.05) enhanced the onset of licking and reduced the number of licks compared to vehicle group. TFA also showed a significant (p < 0.05) diminished in paw edema and complete recovered of the edema after 5 days of treatment indicating the anti-inflammatory effects. However, TFA with ETO notably diminished the anti-inflammatory effects of ETO by enhancing paw edema diameter and licking number. TFA also expressed elevated binding affinity of -7.5 and -6.5 kcal/mol toward nitric oxide (NO) synthase and COX-1, respectively. In conclusion, TFA exerted anti-inflammatory effects and reduces anti-inflammatory capability of ETO.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center Ltd., Gopalganj, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Mohammad S Mubarak
- Department of Chemistry, The University of Jordan, Amman, Jordan
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | | | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center Ltd., Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
4
|
Zeng Q, Xiao W, Zhang H, Liu W, Wang X, Li Z, Han Y, Wang Z, Li S, Yang J, Ouyang W. α-spinasterol isolated from Achyranthes aspera L. ameliorates inflammation via NF-κB and Nrf2/HO-1 pathways. Sci Rep 2025; 15:5723. [PMID: 39962315 PMCID: PMC11833118 DOI: 10.1038/s41598-025-90022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
On the basis of previous studies, the low-polar part of Achyranthes aspera L. (A. aspera) had strong anti-inflammatory activity. Three compounds were isolated from the low polarity fraction of A. aspera, and their structures were identified as α-spinasterol (1), 7,8-dihydrospinasterol (2), 22,23-dihydrospinasterol (3). Among them, the content of α-spinasterol (1) in A. aspera was higher in the spring and winter seasons through HPLC methods, ranging from 0.0085 to 0.0157%. Futhermore, in the LPS-induced RAW264.7 cells inflammation model, α-spinasterol significantly reduced the levels of cytokines such as IL-6, PGE2 and TNF-α, inhibited the expression of COX-2, 5-LOX, p-IKKβ, p-NFκB and p-IkBα proteins, and promoted the expression of Nrf2, HO-1 and NQO1 proteins. Therefore, this study showed that α-spinasterol can inhibit LPS-induced RAW264.7 cells inflammation, and its mechanism may be related to the inhibition of NF-κB pathway, activation of Nrf2 pathway, and reduction of excessive release of inflammatory factors.
Collapse
Affiliation(s)
- Qiongli Zeng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Weiting Xiao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Heng Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Wei Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Xionglong Wang
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou, 410116, China
| | - Zhen Li
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou, 410116, China
| | - Yue Han
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Zhi Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shunxiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jinwei Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
- The Second Hospital of Integrated Chinese and Western Medicine Affiliated to Hunan University of Chinese Medicine, Liuyang, 410300, China.
| | - Wen Ouyang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China.
- The Second Hospital of Integrated Chinese and Western Medicine Affiliated to Hunan University of Chinese Medicine, Liuyang, 410300, China.
| |
Collapse
|
5
|
Abdel Bar FM, Alonazi R, Elekhnawy E, Samra RM, Alqarni MH, Badreldin H, Magdy G. HPLC-PDA and in vivo anti-inflammatory potential of isorhamnetin-3-O-β-D-glucoside from Zygophyllum simplex L. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119089. [PMID: 39528120 DOI: 10.1016/j.jep.2024.119089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation is a biological process in response to injury, resulting in altered blood flow, increased vascular permeability, tissue destruction, and the production of reactive oxygen species (ROS) and inflammatory mediators. Zygophyllum simplex L., a medicinal plant traditionally used in the Arabian Peninsula for inflammatory disorders, has demonstrated promising in vitro anti-inflammatory activity due to its phenolic content. Additionally, the ethyl acetate fraction has exhibited notable in vivo anti-inflammatory effects. STUDY OBJECTIVE This research aimed to evaluate the in vivo anti-inflammatory effects of a Z. simplex plant extract and its principal ethyl acetate isolate, isorhamnetin-3-O-β-D-glucoside (Isor-3-Glu). The study seeks to develop a straightforward and robust HPLC method for quantifying Isor-3-Glu within the total methanolic extract of Z. simplex. MATERIALS AND METHODS The total methanol extract of Z. simplex was successively partitioned with a variety of organic solvents and the ethyl acetate fraction was used to isolate Isor-3-Glu on a Sephadex LH-20 column. The in vivo anti-inflammatory activity was investigated using carrageenan-triggered inflammation in rats. Histological features and immunohistochemical expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor-alpha (TNF-α) were analyzed, and the levels of interleukins (IL-1β and IL-6) as well as prostaglandin E2 (PGE2) of the paw tissues were examined by qRT-PCR and ELISA, respectively. Quantification of Isor-3-Glu was achieved using an HPLC-PDA method. RESULTS Isor-3-Glu considerably (p < 0.05) lowered the weight of the paw edema. The histological abnormalities were improved, and the percentage of the COX-2 and TNF-α immunoreactive cells substantially decreased in the Isor-3-Glu-treated group in comparison with the positive control and Z. simplex extract group. Isor-3-Glu significantly ameliorated PGE2, IL-1β, and IL-6 levels. A straightforward and dependable HPLC technique was established for quantifying Isor-3-Glu in the total extract. The proposed methodology effectively determined Isor-3-Glu in less than 5 min. The calibration curve exhibited a linear relationship over the concentration range of 1.0-40.0 μg/mL, with a correlation coefficient (r) ≥ 0.9995. The developed method demonstrated a high level of sensitivity, with a detection limit as low as 0.139 μg/mL. The concentration of Isor-3-Glu in the total extract of Z. simplex was determined to be 0.05% w/w of dry extract. CONCLUSION Isor-3-Glu could be considered a promising anti-inflammatory compound that necessitates future clinical research. Isor-3-Glu was accurately quantified using a meticulously developed and optimized HPLC-PDA technique.
Collapse
Affiliation(s)
- Fatma M Abdel Bar
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Rana Alonazi
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Reham M Samra
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Hussein Badreldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt.
| |
Collapse
|
6
|
Gao Q, Li Y, Zhong Y, Zhang SX, Yu CY, Chen G. Chemical profiling and anti-inflammatory effect of phenolic extract of Gentiana rigescens Franch. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119115. [PMID: 39551278 DOI: 10.1016/j.jep.2024.119115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gentiana rigescens Franch. (G. rigescens), known as "Dian Long Dan" in Southern Yunnan Herbal, has a long history in traditional Chinese medicine for treating hepatitis, allergies, postherpetic neuralgia, cholecystitis and rheumatism. AIM OF THE STUDY This study aims to comprehensively analyze the phenolic composition of G. rigescens, evaluate its potential anti-inflammatory effects, elucidate underlying mechanisms, and identify its in vivo bioactive phenolic constituents. MATERIALS AND METHODS The extraction of G. rigescens phenolic compounds (GRP) was optimized using the Box-Behnken response surface method, with four phenolic compounds (mangiferin, esculetin, ferulic acid and kaempferol) used as quality index markers. GRP's phytochemical composition was subsequently profiled via UPLC-Q-TOF-MS/MS analysis. Anti-inflammatory activity and mechanisms were assessed in LPS-stimulated RAW264.7 cells and murine models, utilizing NO production assays, ELISA, qRT-PCR, Western blotting and histopathological analysis. Bioactive phenolic compounds in blood were identified post-oral administration for in vivo activity prediction. RESULTS The optimal extraction conditions for GRP were determined as follows: Soxhlet extraction using acetone with hydrochloric acid 0.06 mol/L, at a liquid-to-solid ratio of 132: l. for 6.6 h. Seventy-one of phenolic compounds were identified in GRP using UPLC-Q-TOF-MS/MS. GRP significantly inhibited LPS-induced NO production in RAW 264.7 macrophages and reduced pro-inflammatory cytokines IL-6, IL-1β, and TNF-α while increasing anti-inflammatory IL-10. In the carrageenan-induced inflammatory model, GRP exhibited a 69.81% inhibition rate of toe swelling at high doses (1 g/kg), along with protective effects against joint injury, as observed in histological assessments. Mechanistically, GRP downregulated mRNA levels of inflammatory cytokines and reduced the expression of inflammatory proteins iNOS, COX-2, p65, p-p65 and P-IκB as shown by Western blotting. Twenty-five of phenolic compounds, including mangiferin, swertianolin, acacetin, umbelliferone and caffeic acid, were identified in vivo in the blood, indicating potential bioactive roles. CONCLUSIONS This study provides the first comprehensive profile of the phenolic composition of G. rigescen, alongside a detailed investigation of its anti-inflammatory activity, mechanisms, and in vivo bioactive components. These findings highlight the therapeutic potential of Dian Long Dan's phenolic constituents and support further research on G. rigescens.
Collapse
Affiliation(s)
- Qiao Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yi Li
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yao Zhong
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shu-Xian Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Chang-Yuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Guang Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
7
|
Anitha KN, Darshan MC, Dhadde SB. Trace Element Chromium-D-Phenylalanine Complex: Anti-Inflammatory and Antioxidant Insights from In Vivo and In Silico Studies. Biol Trace Elem Res 2025:10.1007/s12011-025-04537-w. [PMID: 39900855 DOI: 10.1007/s12011-025-04537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
The biological significance of trace elements such as chromium extends beyond basic cellular functions, influencing key processes like inflammation and oxidative stress. In this study, we explore the anti-inflammatory and antioxidant potential of a trace element complex, Chromium-D-phenylalanine (Cr(D-Phe)₃), through in vivo and in silico approaches. Anti-inflammatory activity was assessed using a carrageenan-induced paw oedema model in rats, coupled with histopathological and biochemical analyses. The antioxidant effects of Cr(D-Phe)₃ were evaluated by measuring reduced glutathione (GSH), lipid peroxidation (LPO), and tumour necrosis factor-alpha (TNF-α) as a marker of inflammation. Furthermore, molecular docking and dynamics simulations were conducted to elucidate the compound's binding affinity and stability with cyclooxygenase enzymes. Cr(D-Phe)₃ exhibited significant anti-inflammatory activity, with the 40 μg/kg dose achieving 34.40% (p < 0.001) oedema inhibition, comparable to diclofenac sodium (42.40%). Treatment with Cr(D-Phe)₃ restored GSH levels (+ 62.10%, p < 0.001), reduced LPO (24.72%, p < 0.001), and lowered TNF-α (31.73%, p < 0.001) in carrageenan injected rats, demonstrating potent antioxidant and anti-inflammatory effects. Molecular docking revealed strong binding affinities between Cr(D-Phe)₃ and COX enzymes, suggesting its potential mechanism of action in modulating inflammatory pathways. This study highlights the potential of Cr(D-Phe)₃ as a chromium-based trace element complex with anti-inflammatory and antioxidant properties. These findings warrant further preclinical investigations to elucidate its full pharmacological potential and applications in managing inflammatory conditions.
Collapse
Affiliation(s)
- K N Anitha
- Government College of Pharmacy, Bangalore, 560027, Karnataka, India.
| | - M C Darshan
- Government College of Pharmacy, Bangalore, 560027, Karnataka, India
| | - Shivsharan B Dhadde
- Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, 415539, Maharashtra, India.
| |
Collapse
|
8
|
Bhattacharya B, Bhattacharya S, Khatun S, Bhaktham NA, Maneesha M, Subathra Devi C. Wasp Venom: Future Breakthrough in Production of Antimicrobial Peptides. Protein J 2025; 44:35-47. [PMID: 39633224 DOI: 10.1007/s10930-024-10242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 12/07/2024]
Abstract
The emergence of multi-drug-resistant pathogens and the decrease in the discovery of newer antibiotics have led to a quest for novel alternatives. Recently, wasp venom has spiked interest due to the presence of various active compounds, showcasing a diverse range of therapeutic effects. Wasps are creatures of the Hymenoptera order, and their venom chemically comprises antimicrobial peptides such as Anoplin, Mastoparan, Polybia-CP, Polydim-I, and Polybia MP1 that play a significant role in the biological effects of the venom. AMPs belong to the family of cationic peptides with α-helical structure, which exhibits a diversity of structural motifs and are crucial for innate immunity and defence in these creatures. These peptides demonstrate not only antimicrobial properties but also a wide range of other biological activities like anti-biofilm and anti-inflammatory, linked to their varying capacity to interact with biological membranes. Although wasp venom has the potential to be a cutting-edge natural source for the creation of new drugs, its usage is still restricted due to its availability and the lack of sophisticated methods for synthesizing its therapeutic components. Therefore, this review article provides insights about the therapeutic use of the wasp venom peptides against the antimicrobial-resistant pathogens, as well as its constraints and opportunities for future pharmacological development.
Collapse
Affiliation(s)
- Bikramjit Bhattacharya
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Shreshtha Bhattacharya
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Srinjana Khatun
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Namitha A Bhaktham
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - M Maneesha
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C Subathra Devi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
9
|
Aziz MA, Salem IM, Al-Awadh MA, Alharbi AS, Elsayed Abouzed DE, Allam RM, Ahmed OAA, Ibrahim TS, Abuo-Rahma GEDA, Mohamed MFA. Exploration of anti-inflammatory activity of pyrazolo[3,4-d]pyrimidine/1,2,4-oxadiazole hybrids as COX-2, 5-LOX and NO release inhibitors: Design, synthesis, in silico and in vivo studies. Bioorg Chem 2025; 156:108181. [PMID: 39889555 DOI: 10.1016/j.bioorg.2025.108181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
New pyrazolo[3,4-d]pyrimidine derivatives 7a-h and 8a-h were synthesized and evaluated for their in vitro inhibitory potential against COX-1, COX-2, 5-LOX along with the NO release inhibitory activity to assess their anti-inflammatory potential. Most compounds confered inhibitory activity at a micromolar level and exhibited prominent selectivity towards COX-2 especially in the 8a-h series. The most useful compound 8e as a COX-2/5-LOX dual inhibitor, exhibited IC50 results of; 1.837 µM for COX-2, 2.662 µM for 5-LOX with an acceptable NO release inhibition rate of 66.02 %. Compounds 7e, 7f, 8e and 8f proved their efficiency as 5-LOX/NO release dual inhibitors; with IC50 values of 2.833, 1.952, 2.662 and 1.573 µM, respectively for 5-LOX biotarget, and with superior NO inhibitory ratio of 73.85, 65.57, 66.02 and 72.28 %, respectively. The in vivo anti-inflammatory assay explored that 7e is the most effective with minimal gastric ulceration prevalence. Molecular docking in the active site of both COX-2 and 5-LOX showed that, the most active 8e and 7e are correctly oriented inside the COX-2 binding pocket with unique binding mode independently on the reference celecoxib. Also, they demonstrated superior binding affinities to the 5-LOX enzyme over both the Zileuton as a reference drug and the normal ligand 30Z. The stability of the complex formed between the most promising candidates 7e or 8e with the COX-2 and 5-LOX active sites, was considered using a typical atomistic 100 ns dynamic simulation study. Investigation of the SAR revealed the importance of both the sulfonamide group in the 8a-h series and the substituents of the 3-phenyl ring tethered on the 1,2,4-oxadiazole core.
Collapse
Affiliation(s)
- Marwa A Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519 Egypt
| | - Ibrahim M Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut 71515, Egypt
| | - Mohammed A Al-Awadh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman S Alharbi
- Department of Chemistry, College of Science and Humanities-Dawadmi, Shaqra University, Saudi Arabia
| | - Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Rasha M Allam
- Pharmacology Department, Medical Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519 Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Egypt.
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt.
| |
Collapse
|
10
|
Bodnár K, Papp B, Sinka D, Fehér P, Ujhelyi Z, Lekli I, Kajtár R, Nacsa F, Bácskay I, Józsa L. Development of Salvia officinalis-Based Self-Emulsifying Systems for Dermal Application: Antioxidant, Anti-Inflammatory, and Skin Penetration Enhancement. Pharmaceutics 2025; 17:140. [PMID: 40006508 PMCID: PMC11858885 DOI: 10.3390/pharmaceutics17020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The present study focused on the formulation and evaluation of novel topical systems containing Salvia officinalis (sage), emphasizing their antioxidant and anti-inflammatory properties. Sage, rich in carnosol, offers considerable therapeutic potential, yet its low water solubility limits its effectiveness in traditional formulations. The aim of our experimental work was to improve the solubility and thus bioavailability of the active ingredient by developing self-nano/microemulsifying drug delivery systems (SN/MEDDSs) with the help of Labrasol and Labrafil M as the nonionic surfactants, Transcutol HP as the co-surfactant, and isopropyl myristate as the oily phase. METHODS The formulations were characterized for droplet size, zeta potential, polydispersity index (PDI), encapsulation efficacy, and stability. The composition exhibiting the most favorable characteristics, with particle sizes falling within the nanoscale range, was incorporated into a cream and a gel, which were compared for their textural properties, carnosol penetration, biocompatibility and efficacy. RESULTS Release studies conducted using Franz diffusion cells demonstrated that the SNEDDS-based cream achieved up to 80% carnosol release, outperforming gels. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) test and enzyme-linked immunosorbent assays (ELISA) showed strong efficacy, with an in vivo carrageenan-induced rat paw edema model revealing that the SNEDDS-based cream significantly reduced inflammation. CONCLUSIONS These findings highlight the potential of SNEDDS-enhanced topical formulations in improving therapeutic outcomes. Further research is warranted to confirm their long-term safety and efficacy.
Collapse
Affiliation(s)
- Krisztina Bodnár
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Boglárka Papp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Dávid Sinka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - István Lekli
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Richárd Kajtár
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Fruzsina Nacsa
- MEDITOP Pharmaceutical Ltd., Pilisborosjeno Ady Endre Street 1, 2097 Pilisborosjeno, Hungary;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| |
Collapse
|
11
|
Waliaveettil FA, Jose J, Anila EI. PEGylated Platinum Nanoparticles: A Comprehensive Study of Their Analgesic and Anti-Inflammatory Effects. ACS APPLIED BIO MATERIALS 2025; 8:628-641. [PMID: 39746938 DOI: 10.1021/acsabm.4c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Pain and inflammation are common symptoms of a majority of the diseases. Chronic pain and inflammation, as well as related dreadful disorders, remain difficult to control due to a lack of safe and effective medications. In this work, biocompatible platinum nanoparticles with significant analgesic and anti-inflammatory action were synthesized through a wet chemical method using polyethylene glycol-400 as a capping agent and sodium borohydride as a reducing agent. The average particle size of these Pt nanospheres was determined to be 3.26 nm using TEM analysis, and X-ray diffraction confirmed their face-centered cubic crystalline structure. Fourier transform infrared and UV-visible spectroscopy confirm that Pt-NPs are coated with the PEG-400 molecule. The significantly negative zeta potential value (-26.8 mV) indicates the stability of the produced nanoparticles. In vitro cytotoxicity studies on normal cell lines show nontoxic behavior with over 96% cell viability at 100 μg/mL of the test sample. In vitro assays of inhibition of protein denaturation and DPPH free radical scavenging elucidated the anti-inflammatory and antioxidant properties of PEGylated Pt NPs with promising EC50 values 57.99 and 9.324 μg/mL, respectively. In vivo animal trials confirmed that PEG-capped Pt-NPs are more effective than conventional medicines. The in vivo hot plate assay for the analgesic study shows a maximum response time of 14.5 ± 1.22 s (92.54% analgesia) at a dosage of 50 mg/kg and 13.8 ± 0.71 s (86.05% analgesia) at a dosage of 25 mg/kg after 180 and 240 min of administration, respectively. In the rat paw edema model for anti-inflammatory activity, the PEG-capped Pt NPs exhibit significant inhibitory action, with the maximum percentage of edema inhibition at a dosage of 50 mg/kg identical to that of the aspirin-based standard medication administered at a higher dosage of 100 mg/kg, resulting in 42% inhibition, suggesting a versatile solution for inflammation and persistent pain.
Collapse
Affiliation(s)
| | - Jiya Jose
- Division of Microbiology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Cochin, Kerala 683104, India
| | - E I Anila
- Department of Physics and Electronics, Christ University, Bengaluru, Karnataka, India 560029
| |
Collapse
|
12
|
Anjali, Kamboj P, Amir M. Synthetic Methods of Quinoxaline Derivatives and their Potential Anti-inflammatory Properties. Mini Rev Med Chem 2025; 25:138-162. [PMID: 38910487 DOI: 10.2174/0113895575307480240610055622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024]
Abstract
Quinoxaline molecule has gathered great attention in medicinal chemistry due to its vide spectrum of biological activities and has emerged as a versatile pharmacophore in drug discovery and development. Its structure comprises a bicyclic ring of benzopyrazine and displays a range of pharmacological properties, including antibacterial, antifungal, antiviral, anticancer, and antiinflammatory. This study aims to summarize the different strategies for the synthesis of quinoxalines and their anti-inflammatory properties acting through different mechanisms. Structure-activity relationships have also been discussed in order to determine the effect of structural modifications on anti-inflammatory potential. These analyses illuminate critical structural features required for optimal activity, driving the design and synthesis of new quinoxaline analogues with better antiinflammatory activities. The anti-inflammatory properties of quinoxalines are attributed to their inhibitory action on the expression of several inflammatory modulators such as cyclooxygenase, cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and p38α Mitogen Activated Protein Kinase (p38α MAPK). Activators of nuclear factor erythroid 2-related factor 2 (NRF2) and agonistic effect on opioid receptors have also been discussed. Hence, this study may provide a future template for the design and development of novel quinoxaline derivatives acting through different molecular targets as potential anti-inflammatory agents with better efficacy and safety profiles.
Collapse
Affiliation(s)
- Anjali
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Payal Kamboj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Amir
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
13
|
Naeini F, Tanha FD, Ansar H, Hosseinzadeh-Attar MJ. Effects of anti-inflammatory dietary supplements on pelvic pain in females with endometriosis: A GRADE-assessed systematic review and meta-analysis of RCTs. Int J Gynaecol Obstet 2024. [PMID: 39692186 DOI: 10.1002/ijgo.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Endometriosis, the most perplexing gynecologic condition, impairs the quality of life because it is usually accompanied by persistent severe acyclic pelvic pain and infertility as its two main symptoms. The majority economic burden of endometriosis is due to infertility and pelvic pain. Therefore, alleviating pelvic pain in patients with endometriosis is a necessity. OBJECTIVES The present systematic review and meta-analysis aimed to summarize evidence about the effects of anti-inflammatory dietary supplements on pelvic pain in females with endometriosis. SEARCH STRATEGY PubMed, Scopus, and Web of Science as online databases were systematically searched by relevant keywords up to December 2023. SELECTION CRITERIA Randomized controlled clinical trials (RCTs) with either a parallel or crossover design conducted in adults with endometriosis were selected. DATA COLLECTION AND ANALYSIS Random effect analysis was used to run meta-analysis. Subgroup analyses were run to detect heterogeneity sources. Quality assessment was done by revised Cochrane Collaboration tool II. The certainty of evidence was evaluated by the GRADE tool. MAIN RESULTS A significant decrease in pelvic pain following supplementation with anti-inflammatory dietary supplements was detected. Also, anti-inflammatory dietary supplements could significantly decline pelvic pain in patients with endometriosis when the age of the participants was ≥32 years, the duration of supplementation was >8 weeks, the type of intervention was anti-inflammatory vitamins, the stage of endometriosis of study participants was > II, and baseline body mass index (BMI) of the participants was >23 kg/m2. CONCLUSIONS Use of anti-inflammatory dietary supplements in females with endometriosis results in a remarkable decrease in pelvic pain.
Collapse
Affiliation(s)
- Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Davari Tanha
- Department of Obstetrics and Gynecology, Yas Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Hastimansooreh Ansar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
14
|
Kedir G, Ayele AG, Shibeshi W. In-vivo evaluation of analgesic and anti-inflammatory activities of the 80% methanol extract of Acacia seyal stem bark in rodent models. J Pharm Health Care Sci 2024; 10:75. [PMID: 39558415 PMCID: PMC11575448 DOI: 10.1186/s40780-024-00387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Pain and inflammation are the major medical condition commonly addressed with traditional remedies. Acacia seyal is a traditional herb widely used in Ethiopian folk medicine for pain management. However, its effectiveness has yet to be validated through scientific or experimental research. Therefore, the current study aims at evaluating the in vivo analgesic and anti-inflammatory effects of 80% methanolic stem bark extract of Acacia seyal in rodent models. METHODS After successful extractions of the stem barks of Acacia seyal with 80% methanol, the pain relieving effects of 100, 200 and 400 mg/kg extract were evaluated using acetic acid-induced writhing test and hot plate method whereas the anti-inflammatory profile was determined by carrageenan induced paw-edema model and cotton pellet induced granuloma technique. RESULTS The 80% methanol Acacia seyal stem bark extract exhibited substantial (p < 0.001) analgesic effect in acetic acid induced writing test (p < 0.001). The plant extract also witnessed significant central analgesic effect in hot plate method beginning at 30 min with maximum % elongation time occurred at 120 min. Furthermore, the acacia stem bark extract produced anti-inflammatory effect against carrageenan induced paw-edema model. In cotton pellet induced granuloma model, the 200 and 400 mg/kg doses of the current plant material appeared to inhibit granuloma mass formation and exudate reduction significantly (p < 0.001). CONCLUSION The collective findings of the current study revealed that 80% methanol extracts of Acacia seyal exhibited considerable analgesic and anti-inflammatory activities, supporting the plant's traditional use for management of pain and inflammatory disorders.
Collapse
Affiliation(s)
- Gena Kedir
- Department of Pharmacy, College of Health Sciences, Mettu University, Mettu, Ethiopia
| | - Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University Addis Ababa, PO. Box: 1176, Emial, Ethiopia.
| | - Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University Addis Ababa, PO. Box: 1176, Emial, Ethiopia.
| |
Collapse
|
15
|
Nayak D, Shetty MM, Halagali P, Rathnanand M, Gopinathan A, John J, Krishna Tippavajhala V. Formulation, optimization and evaluation of ibuprofen loaded menthosomes for transdermal delivery. Int J Pharm 2024; 665:124671. [PMID: 39245088 DOI: 10.1016/j.ijpharm.2024.124671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The study aimed to improve the transdermal permeation of IBU utilizing menthosomes as a vesicular carrier. IBU-loaded menthosomes were formulated by thin film hydration & optimized using 23 factorial designs (Design Expert® version 13 software). In vitro & ex vivo skin permeation analysis of IBU-encapsulated menthosomes was studied across the rat skin sample. In vivo pharmacodynamic activity was studied in an arthritis rat model. The optimized IBU-loaded menthosomes exhibited an optimum vesicle size of 214.2 ± 2.96 nm, Zeta potential of -21.1 ± 2.72 mV, (PDI) Polydispersity Index of 0.267 ± 0.018 with Entrapment efficiency (EE%) of 78.7 ± 2.73 %. The in vitro & ex vivo skin penetration study displayed enhanced release of drug of 77.02 ± 1.0 % and 40.91 ± 0.81 % respectively, compared to conventional liposomes. In vivo pharmacodynamic study on carrageenan-induced paw edema in Wistar albino rats demonstrated superior anti-inflammatory activity of the optimized IBU-encapsulated menthosomes (**p < 0.01) and effective inhibition of paw edema (34.04 ± 0.155 %). The formalin test indicated a significant analgesic effect of optimized formulation during the chronic phase of analgesia (*p < 0.05) compared to the control group. Thus, the developed and optimized drug-loaded menthosomes could serve as a suitable vesicular delivery carrier in enhancing the transdermal delivery of other NSAID drugs.
Collapse
Affiliation(s)
- Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manisha M Shetty
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Praveen Halagali
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Adarsh Gopinathan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
16
|
Dehghan M, Naeimi Bafghi N, Alnaiem M, Sadeghiyan R, Barkhordar S, Samareh Fekri A, Kamalati A. The Effects of Lavender and Rosemary Extracts on Sore Throat and Hoarseness After Endotracheal Intubation in Patients Undergoing Percutaneous Nephrolithotomy: A Randomized Clinical Trial. J Perianesth Nurs 2024:S1089-9472(24)00392-7. [PMID: 39503638 DOI: 10.1016/j.jopan.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE This study aimed to compare the effects of lavender and rosemary extracts on sore throat and hoarseness after endotracheal intubation in patients undergoing percutaneous nephrolithotomy. DESIGN Randomized clinical trial. METHODS This study was conducted on 90 patients undergoing percutaneous nephrolithotomy at Bahonar Hospital in Kerman in 2021. The patients were selected by convenience sampling method and randomly assigned to three groups: lavender, rosemary, and control. After general anesthesia with endotracheal intubation, an anesthesiologist put sterile gauzes impregnated with 3 cc of rosemary and lavender extracts into patients' throats in the intervention groups, while the control group received 3 cc of distilled water. After the surgery, the gauzes and tracheal tubes were removed and the patients were transferred to the postanesthesia care unit (PACU), their sore throat and hoarseness were measured and recorded during and 2 to 6 to 24 hours after recovery. A significance level of < .05 was considered. FINDINGS The study results showed a significant difference in the severity of sore throat between the 3 groups 2, 6, and 24 hours after surgery; sore throat in the rosemary group and then in the lavender group was lower than that in the control group (P < .05). The results also indicated a significant difference in hoarseness intensity between the three groups 2 and 6 hours after surgery; hoarseness intensity in the rosemary and lavender groups was lower than that in the control group, but it was not different between 3 groups 24 hours after surgery (P < .05). CONCLUSIONS Rosemary and lavender extracts had a positive effect on sore throat and hoarseness. As these herbs cause no complications in patients and are available and inexpensive, further studies are necessary to confirm the use of these herbs during intubation.
Collapse
Affiliation(s)
- Mahlagha Dehghan
- Nursing Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Naeimeh Naeimi Bafghi
- Clinical Research Center, Shahid Bahonar Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohamed Alnaiem
- Mental Health Services, Hamad Medical Corporation, Doha, Qatar
| | - Reyhaneh Sadeghiyan
- Department of Nursing and Midwifery, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Shahrzad Barkhordar
- Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Atena Samareh Fekri
- Department of Anesthesiology, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Kamalati
- Department of Urology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
17
|
Wang T, Liao X, Zhao X, Chen K, Chen Y, Wen H, Yin D, Wang Y, Lin B, Zhang S, Cui H. Rational design of 2-benzylsulfinyl-benzoxazoles as potent and selective indoleamine 2,3-dioxygenase 1 inhibitors to combat inflammation. Bioorg Chem 2024; 152:107740. [PMID: 39217780 DOI: 10.1016/j.bioorg.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Mimicking the transition state of tryptophan (Trp) and O2 in the enzymatic reaction is an effective approach to design indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. In this study, we firstly assembled a small library of 2-substituted benzo-fused five membered heterocycles and found 2-sulfinyl-benzoxazoles with interesting IDO1 inhibitory activities. Next the inhibitory activity toward IDO1 was gradually improved. Several benzoxazoles showed potent IDO1 inhibitory activity with IC50 of 82-91 nM, and exhibited selectivity between IDO1 and tryptophan 2,3-dioxygenase (TDO2). Enzyme binding studies showed that benzoxazoles are reversible type II IDO1 inhibitors, and modeling studies suggested that the oxygen atom of the sulfoxide in benzoxazoles interacts with the iron atom of the heme group, which mimics the transition state of Fe-O-O-Trp complex. Especially, 10b can effectively inhibit the NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and it also shows good anti-inflammation effect on mice acute inflammation model of croton oil induced ear edema.
Collapse
Affiliation(s)
- Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Kai Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Dali Yin
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yuchen Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
18
|
Elgohary MK, Abo-Ashour MF, Abd El Hadi SR, El Hassab MA, Abo-El Fetoh ME, Afify H, Abdel-Aziz HA, Abou-Seri SM. Novel anti-inflammatory agents featuring phenoxy acetic acid moiety as a pharmacophore for selective COX-2 inhibitors: Synthesis, biological evaluation, histopathological examination and molecular modeling investigation. Bioorg Chem 2024; 152:107727. [PMID: 39167872 DOI: 10.1016/j.bioorg.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Inflammation management presents a critical challenge in modern medicine, with nonsteroidal anti-inflammatory drugs (NSAIDs) being a widely used therapeutic option. However, their efficacy is often accompanied by significant gastrointestinal adverse effects, necessitating the exploration of safer alternatives, particularly through the investigation of cyclooxygenase-2 (COX-2) inhibitors. This study endeavors to address this imperative through the synthesis and evaluation of pyrazoline-phenoxyacetic acid derivatives. Among the synthesized compounds, 6a and 6c emerged as promising candidates, demonstrating potent COX-2 inhibition with IC50 values of 0.03 µM for both and selectivity index = 365.4 and 196.9, respectively. Furthermore, these compounds exhibited efficacy in mitigating formalin-induced edema in male Wistar rats, accompanied by favorable safety profiles upon histological examination of vital organs. Comprehensive safety assessments, including evaluation of creatinine, AST, and ALT enzymatic as well as troponin T and creatine kinase-MB levels, further reinforce the promising attributes of the synthetic candidates. Molecular docking studies endorsed by molecular dynamic simulations corroborate the biological findings, elucidating significant protein-ligand interactions at COX-2 active sites indicative of therapeutic potential.
Collapse
Affiliation(s)
- Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Mahmoud F Abo-Ashour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, El Saleheya El Gadida University, Egypt
| | - Soha R Abd El Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt.
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Mohammed E Abo-El Fetoh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hassan Afify
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Sahar M Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| |
Collapse
|
19
|
de Oliveira Marinho A, Alves da Costa J, Silva Dos Santos AN, Cavalcanti de Barros M, Pimentel CDN, Arnaldo da Silva A, Guedes Paiva PM, Napoleão TH, Leite de Siqueira Patriota L. Assessment of acute toxicity, genotoxicity, and anti-inflammatory activity of SteLL, a lectin from Schinus terebinthifolia Raddi. Leaves, in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118496. [PMID: 38936643 DOI: 10.1016/j.jep.2024.118496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Schinus terebinthifolia Raddi (Anacardiaceae), known as Brazilian pepper tree, stands out as a medicinal plant widely used in traditional medicine. The leaves are popularly used as anti-inflammatory agent and to relieve inflammatory conditions such as bronchitis, ulcers, and wounds, for example. AIM OF THE STUDY The present study evaluated the acute toxicity, genotoxicity, and anti-inflammatory activity of S. terebinthifolia leaf lectin (SteLL) in mice (Mus musculus). MATERIALS AND METHODS In the acute toxicity assay, the animals were treated intraperitoneally (i.p.) or orally (per os) with a single dose of 100 mg/kg. Genotoxicity was assessed by the comet and micronucleus assays. Carrageenan-induced peritonitis and paw edema models were used to evaluate the anti-inflammatory effects of SteLL (1, 5 and 10 mg/kg, i.p.). RESULTS No animal died and no signs of intoxication or histopathological damage were observed in the acute toxicity assay. Genotoxic effect was not detected. In peritonitis assay, SteLL reduced in 56-69% leukocyte migration to the peritoneal cavity; neutrophil count decreased by 25-32%, while mononuclear cell count increased by 67-74%. SteLL promoted a notable reduction of paw edema after 4 h (61.1-63.4%). Morphometric analysis showed that SteLL also decreased the thickness of epidermal edema (30.2-40.7%). Furthermore, SteLL decreased MPO activity, plasma leakage, NO release, and modulated cytokines in both peritoneal fluid and paw homogenate. CONCLUSION SteLL did not induce acute toxicity or genotoxicity in mice and stands out as a promising candidate in the development of new phytopharmaceuticals with anti-inflammatory action.
Collapse
Affiliation(s)
- Amanda de Oliveira Marinho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Jainaldo Alves da Costa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | | - Matheus Cavalcanti de Barros
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | | - Anderson Arnaldo da Silva
- Departamento de Anatomia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | |
Collapse
|
20
|
Dai F, Zhang X, Ma G, Li W. ACOD1 mediates Staphylococcus aureus-induced inflammatory response via the TLR4/NF-κB signaling pathway. Int Immunopharmacol 2024; 140:112924. [PMID: 39133958 DOI: 10.1016/j.intimp.2024.112924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
Staphylococcus aureus (SA) is a common Gram-positive bacterium that activates inflammatory cells, expressing various cytokines and inducing an inflammatory response. Recent research revealed aconitate decarboxylase 1 (ACOD1) as a regulator of the immune response through various metabolic pathways, playing a dual role in the inflammatory response. However, the mechanism by which ACOD1 participates in the regulation of SA-induced inflammatory responses in macrophages remains unknown. Therefore, this study aims to investigate the function and underlying regulatory mechanisms of ACOD1 in SA-induced inflammatory response. This study reveals that SA induced a macrophage inflammatory response and upregulated ACOD1 expression. ACOD1 knockdown significantly inhibited SA-induced macrophage inflammatory response, attenuated SA-induced nuclear envelope wrinkling, and plasma membrane rupture, and suppressed the TLR4/NF-κB signaling pathway. Furthermore, ACOD1 knockdown reduced the inflammatory response and alleviated lung tissue injury and cellular damage, leading to decreased bacterial loads in the lungs of SA-infected mice. Collectively, these findings demonstrate that SA induces an inflammatory response in macrophages and increases ACOD1 expression. ACOD1 enhances SA-induced inflammatory responses via the TLR4/NF-κB signaling pathway. Our findings highlight the significant role of ACOD1 in mediating the inflammatory response in SA-infected macrophages and elucidate its molecular mechanism in regulating the SA-induced inflammatory response.
Collapse
Affiliation(s)
- Fan Dai
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xuyang Zhang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guilan Ma
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Wu Li
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
21
|
Rodríguez-Castillo AJ, González-Chávez SA, Portillo-Pantoja I, Cruz-Hermosillo E, Pacheco-Tena C, Chávez-Flores D, Delgado-Gardea MCE, Infante-Ramírez R, Ordaz-Ortiz JJ, Sánchez-Ramírez B. Aqueous Extracts of Rhus trilobata Inhibit the Lipopolysaccharide-Induced Inflammatory Response In Vitro and In Vivo. PLANTS (BASEL, SWITZERLAND) 2024; 13:2840. [PMID: 39458787 PMCID: PMC11514583 DOI: 10.3390/plants13202840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Chronic noncommunicable diseases (NCDs) are responsible for approximately 74% of deaths globally. Medicinal plants have traditionally been used to treat NCDs, including diabetes, cancer, and rheumatic diseases, and are a source of anti-inflammatory compounds. This study aimed to evaluate the anti-inflammatory effects of Rhus trilobata (Rt) extracts and fractions in lipopolysaccharide (LPS)-induced inflammation models in vitro and in vivo. The aqueous extract (RtAE) and five fractions (F2 to F6) were obtained via C18 solid-phase separation and tested in murine LPS-induced J774.1 macrophages. Key inflammatory markers, such as IL-1β, IL-6, TNF-α, and COX-2 gene expression were measured using RT-qPCR, and PGE2 production was assessed via HPLC-DAD. The in vivo effects were tested in an LPS-induced paw edema model in Wistar rats. Results showed that RtAE at 15 μg/mL significantly decreased IL-1β and IL-6 gene expression in vitro. Fraction F6 further reduced IL-1β, TNF-α, and IL-6 gene expression, COX-2 expression, and PGE2 production. In vivo, F6 significantly reduced LPS-induced paw edema, inflammatory infiltration, and IL-1β and COX-2 protein expression. Chemical characterization of F6 by UPLC/MS-QTOF revealed at least eight compounds with anti-inflammatory activity. These findings support the anti-inflammatory potential of RtAE and F6, reinforcing the medicinal use of Rt.
Collapse
Affiliation(s)
- Alejandra Jazmín Rodríguez-Castillo
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (S.A.G.-C.); (C.P.-T.)
| | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (S.A.G.-C.); (C.P.-T.)
| | - Ismael Portillo-Pantoja
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - Eunice Cruz-Hermosillo
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (S.A.G.-C.); (C.P.-T.)
| | - David Chávez-Flores
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - Ma. Carmen E. Delgado-Gardea
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - Rocío Infante-Ramírez
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - José Juan Ordaz-Ortiz
- Laboratorio de Metabolómica y Espectrometría de Masas, Unidad de Genómica Avanzada, CINVESTAV-IPN, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico;
| | - Blanca Sánchez-Ramírez
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| |
Collapse
|
22
|
Rodrigues F, Reis M, Ferreira L, Grosso C, Ferraz R, Vieira M, Vasconcelos V, Martins R. The Neuroprotective Role of Cyanobacteria with Focus on the Anti-Inflammatory and Antioxidant Potential: Current Status and Perspectives. Molecules 2024; 29:4799. [PMID: 39459167 PMCID: PMC11510616 DOI: 10.3390/molecules29204799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Neurodegenerative diseases are linked to the process of neurodegeneration. This can be caused by several mechanisms, including inflammation and accumulation of reactive oxygen species. Despite their high incidence, there is still no effective treatment or cure for these diseases. Cyanobacteria have been seen as a possible source for new compounds with anti-inflammatory and antioxidant potential, such as polysaccharides (sacran), phycobiliproteins (phycocyanin) and lipopeptides (honaucins and malyngamides), which can be interesting to combat neurodegeneration. As a promising case of success, Arthrospira (formerly Spirulina) has revealed a high potential for preventing neurodegeneration. Additionally, advantageous culture conditions and sustainable production of cyanobacteria, which are allied to the development of genetic, metabolic, and biochemical engineering, are promising. The aim of this review is to compile and highlight research on the anti-inflammatory and antioxidant potential of cyanobacteria with focus on the application as neuroprotective agents. Also, a major goal is to address essential features that brand cyanobacteria as an ecoefficient and economically viable option, linking health to sustainability.
Collapse
Affiliation(s)
- Flávia Rodrigues
- School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (F.R.); (R.F.); (M.V.)
| | - Mariana Reis
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
| | - Leonor Ferreira
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Clara Grosso
- LAQV/REQUIMTE, School of Engineering, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| | - Ricardo Ferraz
- School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (F.R.); (R.F.); (M.V.)
- Center for Translational Health and Medical Biotechnology Research (TBIO/Health Research Network (RISE-Health), E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Mónica Vieira
- School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (F.R.); (R.F.); (M.V.)
- Center for Translational Health and Medical Biotechnology Research (TBIO/Health Research Network (RISE-Health), E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Rosário Martins
- School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (F.R.); (R.F.); (M.V.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
| |
Collapse
|
23
|
Jafal NM, Stoleru S, Zugravu A, Orban C, Popescu M, Marin RC, Fulga IG. The Analgesic Effect of Morphine on Peripheral Opioid Receptors: An Experimental Research. J Crit Care Med (Targu Mures) 2024; 10:337-344. [PMID: 39829726 PMCID: PMC11740696 DOI: 10.2478/jccm-2024-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/28/2024] [Indexed: 01/22/2025] Open
Abstract
Opioids represent one of the key pillars in postoperative pain management, but their use has been associated with a variety of serious side effects. Thus, it is crucial to investigate the timing and course of opioid administration in order to ensure a best efficacy to side-effect profile. The aim of our article was to investigate the analgesic effects of locally administered morphine sulfate (intraplantar) in a carrageenan-induced inflammation model in rats. After carrageenan administration, the rats were divided into 10 equal groups and were injected with either morphine 5 mg/kg or 0.9% saline solution at different time intervals, depending on the assigned group. The analgesic effect was assessed through thermal stimulation. Our results showed that paw withdrawal time was significantly higher in rats treated with morphine compared to those in the control group 9.18 ± 3.38 compared to 5.14 ± 2.21 seconds, p=0.012). However, differences were more pronounced at certain time intervals post-carrageenan administration (at 180 minutes compared to 360 minutes, p=0.003 and at 180 minutes compare to 1440 minutes p<0.001), indicating that efficacy varies depending on the timing of treatment. In conclusion, our findings support the hypothesis that locally administered morphine may alleviate pain under inflammatory conditions and underscores the importance of considering treatment timing when evaluating the analgesic effect.
Collapse
Affiliation(s)
| | - Smaranda Stoleru
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Aurelian Zugravu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Carmen Orban
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Popescu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Ion-Gigel Fulga
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
24
|
Khan IU, Jamil Y, Shams F, Farsi S, Humayun M, Hussain A, Ahmad A, Iqbal A, Alrefaei AF, Ali S. Unlocking the in vitro and in vivo antioxidant and anti-inflammatory activities of polysaccharide fractions from Lepidium sativum seed-coat mucilage. Heliyon 2024; 10:e36797. [PMID: 39319123 PMCID: PMC11419874 DOI: 10.1016/j.heliyon.2024.e36797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammation coupled with oxidative stress contribute to the pathogenicity of various clinical disorders. Oxidative stress arises from an imbalance between production of reactive oxygen species (ROS) and antioxidant defense system, leading to cellular damages. The study investigated the antioxidant and anti-inflammatory effects of polysaccharides isolated from Lepidium sativum seed-coat mucilage. The water-soluble polysaccharides were extracted from mucilage and fractionated using gel permeation chromatography. The radical scavenging potential of various fractions was determined using DPPH, H2O2, and lipid peroxidation assays. The most effective EC50 was recorded for F53 (57.41 ± 1.34 μg/mL), followed by F20 (69.19 ± 0.61 μg/mL) and F52 (75.06 ± 0.45 μg/mL). In vitro anti-inflammatory effect was determined through human membrane stabilization assay while the in vivo effect was evaluated using a carrageenan-induced paw edema in mouse model where F53 demonstrated significant (P = 0.05) anti-inflammatory potential (92.60 % compared to diclofenac sodium 91.46 %). GC-MS analysis revealed the presence of galacturonic acid and glucuronic acid as main acidic monosaccharides along with varying quantities of rhamnose, arabinose, and maltose as prominent neutral monosaccharides. The study concludes that cress seed mucilage contains potent antioxidant and anti-inflammatory polysaccharides. Further studies on the mode of action of these polysaccharides could provide deeper insights into their potential use as antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yusra Jamil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fareeha Shams
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Salman Farsi
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Humayun
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan Khyber Pakhtunkhwa, Pakistan
| | | | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| |
Collapse
|
25
|
Liu H, Zhang L, Yu J, Shao S. Advances in the application and mechanism of bioactive peptides in the treatment of inflammation. Front Immunol 2024; 15:1413179. [PMID: 39247182 PMCID: PMC11377253 DOI: 10.3389/fimmu.2024.1413179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammation is a normal immune response in organisms, but it often triggers chronic diseases such as colitis and arthritis. Currently, the most widely used anti-inflammatory drugs are non-steroidal anti-inflammatory drugs, albeit they are accompanied by various adverse effects such as hypertension and renal dysfunction. Bioactive peptides (BAPs) provide therapeutic benefits for inflammation and mitigate side effects. Herein, this review focuses on the therapeutic effects of various BAPs on inflammation in different body parts. Emphasis is placed on the immunomodulatory mechanisms of BAPs in treating inflammation, such as regulating the release of inflammatory mediators, modulating MAPK and NF-κB signaling pathways, and reducing oxidative stress reactions for immunomodulation. This review aims to provide a reference for the function, application, and anti-inflammation mechanisms of BAPs.
Collapse
Affiliation(s)
- Haiyang Liu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
| | - Lulu Zhang
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
| | - Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Shengwen Shao
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| |
Collapse
|
26
|
Muller Guzzo EF, Rosa G, Lourenço de Lima AMD, Padilha R, Coitinho A. Piroxicam reduced the intensity of epileptic seizures in a kindling seizure model. Neurol Res 2024; 46:717-726. [PMID: 38679045 DOI: 10.1080/01616412.2024.2345032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
Introduction: The close relationship between inflammatory processes and epileptic seizures is already known, although the exact pathophysiological mechanism is unclear. In this study, the anticonvulsant capacity of piroxicam, an anti-inflammatory drug, was evaluated. A rat pentylenetetrazole kindling model was used.Methods: Male Wistar rats, 8-9 weeks old, received piroxicam (0.15 and 0.30 mg/kg), diazepam (2 mg/kg) or saline for 14 days, and PTZ, on alternate days. Intraperitoneal was chosen as the route of administration. The intensity of epileptic seizures was assessed using a modified Racine scale. The open field test and object recognition analysis were performed at the beginning of the study to ensure the safety of the drugs used. At the end of the protocol, the animals were euthanized to measure the levels of inflammatory (TNF-a and IL-6) and anti-inflammatory (IL-10) cytokines in the cortex, hippocampus, and serum.Results:There were no changes in the open field test and object recognition analysis. Piroxicam was found to decrease Racine scale scores at both concentrations. The reported values for IL-6 levels remained steady in all structures, whereas the TNF-alpha level in the cortex was higher in animals treated with piroxicam than in the saline and diazepam subjects. Finally, animals treated with the anti-inflammatory drug presented reduced IL-10 levels in the cortex and hippocampus.onclusions: Using inflammation as a guiding principle, the anticonvulsant effect of PIRO could be associated with the hippocampal circuits, since this structure showed no increase in inflammatory cytokines.
Collapse
Affiliation(s)
| | - Gabriel Rosa
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rafael Padilha
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Coitinho
- Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
27
|
Galván-Colorado C, Chamorro-Cevallos GA, Chanona-Pérez JJ, Zepeda-Vallejo LG, Arredondo-Tamayo B, González-Ussery SA, Gallegos-Cerda SD, García-Rodríguez RV. Phycobiliprotein from Arthrospira maxima: Conversion to nanoparticles by high-energy ball milling, structural characterization, and evaluation of their anti-inflammatory effect. Int J Biol Macromol 2024; 275:133679. [PMID: 38971282 DOI: 10.1016/j.ijbiomac.2024.133679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Arthrospira maxima is a source of phycobiliproteins with different nutraceutical properties, e.g. antioxidant and anti-inflammatory activities. The current study was aimed at the elaboration, characterization, and evaluation of the anti-inflammatory effect of the phycobiliprotein nanoparticles extracted from Arthrospira maxima. Previously freeze-dried phycobiliproteins were milled by high-energy ball milling until reaching a nanometric size (optimal time: 4 h). Microscopy techniques were used for the characterization of the size and morphology of phycobiliproteins nanoparticles. Additionally, a spectroscopic study evidenced that nanosized reduction induced an increase in the chemical functional groups associated with its anti-inflammatory activity that was tested in a murine model, showing an immediate inflammatory effect. The novelty and importance of this contribution was to demonstrate that high energy ball milling is an emerging and green technology that can produce phycobiliprotein nanoparticles on a large-scale, without the use of organic solvents, to test their nutraceutical properties in a biological model by intragastric administration.
Collapse
Affiliation(s)
- C Galván-Colorado
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico; Laboratorio de Micro y Nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - G A Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - J J Chanona-Pérez
- Laboratorio de Micro y Nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico.
| | - L G Zepeda-Vallejo
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - B Arredondo-Tamayo
- Laboratorio de Micro y Nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - S A González-Ussery
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - S D Gallegos-Cerda
- Laboratorio de Micro y Nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - R V García-Rodríguez
- Laboratorio de Farmacología y Quimiometría, Instituto de Química Aplicada, Universidad Veracruzana, Luis Castelazo Ayala S/N Col. Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, Mexico
| |
Collapse
|
28
|
Guo SE, Meng YB, Zhang ZM, Zhang YL, Yao QS, Qin X. Visual analysis of abdominal aortitis treatment using the CiteSpace bibliometric method. World J Clin Cases 2024; 12:4717-4725. [PMID: 39070850 PMCID: PMC11235489 DOI: 10.12998/wjcc.v12.i21.4717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Abdominal aortitis can induce aneurysms, and tumor rupture can lead to organ ischemia or even sudden death. At present, there is a lack of extensive understanding and identification of key problems in the treatment of abdominal aortitis, which needs to be further analyzed using bibliometric analysis. AIM To discuss the research hotspot and development trend of abdominal aortitis treatment. METHODS We searched the English literature (published from January 1, 2000 to March 12, 2024) on the treatment of abdominal aortitis in the Web of Science database. Then, we identified and screened duplicate literature using CiteSpace 6.1R2 software. We conducted an analysis of the number of papers, a co-occurrence analysis of the authors and institutions, and co-occurrence and cluster analyses of the keywords. Then, we drew the author, institution, and keywords of the studies into graphs for visualization. Finally, we expounded on the author, institutional network interactions, and hot keywords of the studies on the treatment of abdominal aortitis. RESULTS We included 210 English literature articles involving 190 authors; the author cooperation team was mainly represented by Caradu Caroline, Berard Xavier, Lu Guanyi, Harada Kenichi, and Sharma Ashish K. In the keyword analysis, high-frequency keywords include abdominal aortic aneurysm (38), abdominal aorta (24), Takayasu arteritis (22), etc. The three most central keywords were disease (0.69), classification (0.68), and abdominal aortic aneurysm (0.55). The first nine clusters of keywords are case report, abdominal aortic aneurysm, Takayasu arteritis, dyspnea hematuria, aortic elastic, IgG4-related disease, report, mid aortic dysplastic syndrome, and statin. In the keyword emergent analysis, 14 emergent words were obtained. Among them, seven keywords with strong abruptness were Takayasu arteritis, abdominal aortic aneurysm, disease, retroperitoneal fibrosis, expression, management, and large vessel vasculitis. In the past 3 years, the incidences of abdominal aortic aneurysm (intensity: 4.62) and inflammation (intensity: 1.99) were higher. CONCLUSION The number of published papers is on the increase, but the cooperation among authors is scattered. The research focus is mainly on the pathogenesis and treatment of abdominal aortitis-related diseases.
Collapse
Affiliation(s)
- Si-En Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Yuan-Biao Meng
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Zan-Man Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Yu-Lan Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Qi-Sen Yao
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Xiao Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
29
|
Reda R, Khalil AA, Elhady M, Tayel SI, Ramadan EA. Anti-parasitic activity of garlic (Allium sativum) and onion (Allium cepa) extracts against Dactylogyrus spp. (Monogenean) in Nile tilapia (Oreochromis niloticus): Hematology, immune response, histopathological investigation, and inflammatory cytokine genes of gills. BMC Vet Res 2024; 20:334. [PMID: 39061083 PMCID: PMC11282636 DOI: 10.1186/s12917-024-04187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Gills monogenean infestation causes significant mortalities in cultured fishes as a result of respiratory manifestation. Medicinal plants are currently being heavily emphasized in aquaculture due to their great nutritional, therapeutic, antimicrobial activities, and financial value. METHODS The current study is designed to assess the effect of garlic (Allium sativum) and onion (Allium cepa) extracts as a water treatment on the hematological profile, innate immunity, and immune cytokines expression besides histopathological features of gills of Nile tilapia (Oreochromis niloticus L.) infected with gills monogenetic trematodes (Dactylogyrus sp.). Firstly, the 96-hour lethal concentration 50 (96 h-LC50) of garlic extract (GE) and onion extract (OE) were estimated to be 0.4 g/ L and 3.54 g/ L for GE and OE, respectively. Moreover, the in-vitro anti-parasitic potential for (GE) was found between 0.02 and 0.18 mg/mL and 0.4 to 1.8 mg/mL for OE. For the therapeutic trial, fish (n = 120; body weight: 40-60 g) were randomly distributed into four groups in triplicates (30 fish/group, 10 fish/replicate) for 3 days. Group1 (G1) was not infected or treated and served as control. G2 was infected with Dactylogyrus spp. and not exposed to any treatment. G3, G4 were infected with Dactylogyrus sp. and treated with 1/10 and 1/5 of 96 h LC50 of OE, respectively. G5, G6 were infected with Dactylogyrus sp. and treated with 1/10 and 1/5 of 96 h LC50 of GE, respectively. RESULTS No apparent signs or behaviors were noted in the control group. Dactylogyrus spp. infected group suffered from clinical signs as Pale color and damaged tissue. Dactylogyrus spp. infection induced lowering of the hematological (HB, MCH, MCHC and WBCs), and immunological variables (lysozyme, nitric oxide, serum Anti- protease activities, and complement 3). the expression of cytokine genes IL-ß and TNF-α were modulated and improved by treatment with A. sativum and A. cepa extracts. The obtained histopathological alterations of the gills of fish infected with (Dactylogyrus spp.) were hyperplasia leading to fusion of the gill filament, lifting of epithelial tissue, aneurism and edema. The results indecated that G4 and G5 is more regenarated epithelium in compare with the control group. CONCLUSION A. sativum and A. cepa extracts enhance the blood profile and nonspecific immune parameters, and down-regulated the expression level of (IL-1β and TNF-α).
Collapse
Affiliation(s)
- Rasha Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Alshimaa A Khalil
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed Elhady
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Safaa I Tayel
- National Institute of Oceanography and Fisheries (NIOF), Al Qanater Al Khairia, 13723, Egypt
| | - Enas A Ramadan
- National Institute of Oceanography and Fisheries (NIOF), Al Qanater Al Khairia, 13723, Egypt
| |
Collapse
|
30
|
Nery-Flores SD, Castro-López CM, Martínez-Hernández L, García-Chávez CV, Palomo-Ligas L, Ascacio-Valdés JA, Flores-Gallegos AC, Campos-Múzquiz LG, Rodríguez-Herrera R. Grape Pomace Polyphenols Reduce Acute Inflammatory Response Induced by Carrageenan in a Murine Model. Chem Biodivers 2024; 21:e202302065. [PMID: 38768437 DOI: 10.1002/cbdv.202302065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Grape pomace (GP), a by-product of wine production, contains bioactive polyphenols with potential health benefits. This study investigates the anti-inflammatory properties of a polyphenolic fraction derived from GP, obtained by ultrasound-microwave hybrid extraction and purified using ion-exchange chromatography. In the inflammation model, mice were divided into six groups: intact, carrageenan, indomethacin, and three GP polyphenols treatment groups. Paw edema was induced by subplantar injection of carrageenan, and the GP polyphenols were administered intraperitoneally at doses of 10, 20, and 40 mg/kg. The anti-inflammatory effect was evaluated by measuring paw volume, and expression of inflammatory markers: cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), and cytokines (IL-1β and IL-6), along with lipid peroxidation levels. The GP polyphenols significantly reduced paw edema and expression levels of COX-2, MPO, and cytokines in a dose-dependent manner effect, with the highest dose showing the greatest reduction. Additionally, lipid peroxidation levels were also decreased by GP polyphenols treatment at doses of 10 and 20 mg/kg. These findings suggest that ultrasound-microwave extraction combined with amberlite purification proved to be effective in obtaining a polyphenolic-rich fraction from GP. Thus, GP polyphenols may serve as a natural anti-inflammatory and antioxidant agent for treating inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lissethe Palomo-Ligas
- School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Coahuila, 25280, México
| | | | | | | | - Raúl Rodríguez-Herrera
- School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Coahuila, 25280, México
| |
Collapse
|
31
|
Bernardette Martínez-Rizo A, Fosado-Rodríguez R, César Torres-Romero J, César Lara-Riegos J, Alberto Ramírez-Camacho M, Ly Arroyo Herrera A, Elizabeth Villa de la Torre F, Ceballos Góngora E, Ermilo Arana-Argáez V. Models in vivo and in vitro for the study of acute and chronic inflammatory activity: A comprehensive review. Int Immunopharmacol 2024; 135:112292. [PMID: 38788446 DOI: 10.1016/j.intimp.2024.112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Inflammatory conditions are among the principal causes of morbidity worldwide, and their treatment continues to be a challenge, given the restricted availability of effective and safe drugs. Thus, the identification of new compounds with biological activity that can be used for the treatment of inflammatory disorders is an essential field in medical and health research, in order to improve the health and quality of life of patients suffering from these diseases. Evaluation of the anti-inflammatory activity of drugs requires the implementation of models that accurately depict the biochemical and/or physiological responses that characterize human inflammation; for this reason, several in vitro and in vivo models have been developed, providing a platform for discovering novel or repurposed compounds. For this reason, in the present review we have selected twelve commonly used models for the evaluation of the anti-inflammatory effect, and extensively describes the difference between in vivo and in vitro models of inflammation, highlighting their advantages and limitations. On the other hand, the inflammatory mechanisms involved in them, the methods employed for their establishment, and the different parameters assessed to determine the anti-inflammatory activity of a given compound are extensively discussed. We expect to provide a comprehensive guide for the improved selection of a suitable model for the preclinical evaluation of plausible anti-inflammatory agents.
Collapse
Affiliation(s)
- Abril Bernardette Martínez-Rizo
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México; Laboratorio de Investigación Biomédica, Unidad Académica de Medicina, Universidad Autónoma de Nayarit, Nayarit, México
| | - Ricardo Fosado-Rodríguez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio César Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio César Lara-Riegos
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Mario Alberto Ramírez-Camacho
- Centro de Información de Medicamentos, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Ana Ly Arroyo Herrera
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | | - Emanuel Ceballos Góngora
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Víctor Ermilo Arana-Argáez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México.
| |
Collapse
|
32
|
Mehallah H, Djebli N, Ngoc Khanh P, Xuan Ha N, Thi Ha V, Thu Huong T, Dinh Tung D, Manh Cuong N. In silico and in vivo study of anti-inflammatory activity of Morinda longissima (Rubiaceae) extract and phytochemicals for treatment of inflammation-mediated diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118051. [PMID: 38493905 DOI: 10.1016/j.jep.2024.118051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally, the plant Morinda longissima Y.Z.Ruan (Rubiaceae) is used by ethnic people in Vietnam for the treatment of liver diseases and hepatitis. AIM OF THE STUDY The study was designed to assess the efficacy of the 95% ethanolic extract of Morinda longissima roots (MLE) in experimental immune inflammation. The phytochemical variation of root extract and the chemical structures of natural compounds were also investigated using HPLC-DAD-HR-MS analysis. MATERIALS AND METHODS Three different doses (100, 200, and 300 mg/kg b.w.) of MLE were chosen to determine anti-inflammatory activity. The mice were given orally extracts and monitored their behavior and mortality for 14 days to evaluate acute toxicity. The volume of the paw and the histopathological evaluation were carried out. The polyphenolic phytoconstituents of MLE extract were identified using LC/MS analysis. The anti-inflammatory efficacy in silico and molecular docking simulations of these natural products were evaluated based on their cyclooxygenase (COX)-1 and 2 inhibitory effects. RESULTS This investigation showed the 95% ethanolic extract of Morinda longissima roots was found non-toxic up to 2000 mg/kg dose level in an acute study, neither showed mortality nor treatment-related signs of toxicity in mice. Eight anthraquinones and anthraquinone glycosides of Morinda longissima roots were identified by HPLC-DAD-HR-MS analysis. In the in vivo experiments, MLE was found to possess powerful anti-inflammatory activities in comparison with diclofenac sodium. The highest anti-inflammatory activity of MLE in mice was observed at a dose of 300 mg/kg body weight. The in silico analysis showed that seven out the eight anthraquinones and anthraquinone glycosides possess a selectivity index RCOX-2/COX-1 lower than 1, indicating that these compounds are selective against the COX-2 enzyme in the following the order: rubiadin-3-methyl ether < morindone morindone-6-methyl ether < morindone-5-methyl ether < damnacanthol < rubiadin < damnacanthol-3-O-β-primeveroside. The natural compounds with the best selectivity against the COX-2 enzyme are quercetin (9), rubiadin-3-methyl ether (7), and morindone (4), with RCOX2/COX1 ratios of 0.02, 0.03, and 0.19, respectively. When combined with the COX-2 protein in the MD research, quercetin and rubiadin-3-methyl ether greatly stabilized the backbone proteins and ligands. CONCLUSION In conclusion, the anthraquinones and ethanolic extract of Morinda longissima roots may help fight COX-2 inflammation. To develop novel treatments for inflammatory disorders linked to this one, these chemicals should be investigated more in the future.
Collapse
Affiliation(s)
- Hafidha Mehallah
- Pharmacognosy & Api Phytotherapy Laboratory, Abdelhamid Ibn Badis University Mostaganem (27000), Algeria
| | - Noureddine Djebli
- Pharmacognosy & Api Phytotherapy Laboratory, Abdelhamid Ibn Badis University Mostaganem (27000), Algeria.
| | - Pham Ngoc Khanh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam; Graduated University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Nguyen Xuan Ha
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam; Graduated University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Vu Thi Ha
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Tran Thu Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Do Dinh Tung
- Saint Paul General Hospital, 12A Chu Van An Street, Ba Dinh District, Hanoi, Viet Nam
| | - Nguyen Manh Cuong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam; Graduated University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
33
|
Nieto Camacho A, Baca Ibarra II, Huerta-Reyes M. Antioxidant and Anti-Inflammatory Profiles of Two Mexican Heteropterys Species and Their Relevance for the Treatment of Mental Diseases: H. brachiata (L.) DC. and H. cotinifolia A. Juss. (Malpighiaceae). Molecules 2024; 29:3053. [PMID: 38999004 PMCID: PMC11243223 DOI: 10.3390/molecules29133053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Depression and anxiety are recognized as the most common mental diseases worldwide. New approaches have considered different therapeutic targets, such as oxidative stress and the inflammation process, due to their close association with the establishment and progression of mental diseases. In the present study, we evaluated the antioxidant and anti-inflammatory activities of the methanolic extracts of the plant species Heteropterys brachiata and Heteropterys cotinifolia and their main compounds, chlorogenic acid and rutin, as potential complementary therapeutic tools for the treatment of anxiety and depression, since the antidepressant and anxiolytic activities of these methanolic extracts have been shown previously. Additionally, we also evaluated their inhibitory activity on the enzyme acetylcholinesterase (AChE). Our results revealed that both species exhibited potent antioxidant activity (>90%) through the TBARS assay, while by means of the DPPH assay, only H. cotinifolia exerted potent antioxidant activity (>90%); additionally, low metal chelating activity (<40%) was detected for all samples tested in the ferrozine assay. The methanolic extracts of H. brachiata and H. cotinifolia exhibited significant anti-inflammatory activities in the TPA-induced ear edema, while only H. cotinifolia exerted significant anti-inflammatory activities in the MPO assay (>45%) and also exhibited a higher percentage of inhibition on AChE of even twice (>80%) as high as the control in concentrations of 100 and 1000 µg/mL. Thus, the potent antioxidant and inflammatory properties and the inhibition of AChE may be involved in the antidepressant activities of the species H. cotinifolia, which would be positioned as a candidate for study in drug development as an alternative in the treatment of depression.
Collapse
Affiliation(s)
- Antonio Nieto Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico;
| | - Itzel Isaura Baca Ibarra
- Bioterio, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Ciudad de México, Mexico;
| | - Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Ciudad de México, Mexico
| |
Collapse
|
34
|
Islam MT, Bappi MH, Bhuia MS, Ansari SA, Ansari IA, Shill MC, Albayouk T, Saleh N, El-Shazly M, El-Nashar HAS. Anti-inflammatory effects of thymol: an emphasis on the molecular interactions through in vivo approach and molecular dynamic simulations. Front Chem 2024; 12:1376783. [PMID: 38983677 PMCID: PMC11231963 DOI: 10.3389/fchem.2024.1376783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 07/11/2024] Open
Abstract
Thymol (THY), as the natural monoterpene phenol, acts against oxidative stress and inflammatory processes. This study aimed to evaluate the anti-inflammatory effects and possible molecular mechanisms of THY via formalin-induced mouse and egg albumin-induced chick models alongside molecular docking and molecular dynamic (MD) simulations. THY (7.5, 15, and 30 mg/kg) was investigated, compared to celecoxib and ketoprofen (42 mg/kg), as anti-inflammatory standards. THY dose-dependently and significantly (p < 0.05) decreased paw-licking and edema diameter parameters in formalin (phases I and II) and egg albumin-induced models. Moreover, THY (15 mg/kg) exerted better anti-inflammatory effects in combination with the standard drug ketoprofen than alone and with celecoxib. In silico studies demonstrated elevated binding affinities of THY with cyclooxygenase-2 (COX-2) than the COX-1 enzyme, and the ligand binds at a similar location where ketoprofen and celecoxib interact. The results of MD simulations confirmed the stability of the test ligand. THY exerted anti-inflammatory effects on Swiss mice and young chicks, possibly by interacting with COX-2. As a conclusion, THY might be a hopeful drug candidate for the management of inflammatory disorders.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Manik Chanda Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Tala Albayouk
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
35
|
Liu Q, Zhao Y, Dong S, Bai X, Chen B, Liu X, Shen J, Zhu D. Characteristics of Neutrophil Migration and Function in Acute Inflammation Induced by Zymosan and Carrageenan in the Mice Air Pouch Model. Inflammation 2024:10.1007/s10753-024-02064-9. [PMID: 38902540 DOI: 10.1007/s10753-024-02064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
Deciphering the complex and redundant process of acute inflammation remains challenging. The failure of numerous clinical trials assessing anti-inflammation agents which had promising preclinical effects inevitably questions the validity of current animal models of inflammation. This study aimed to better understand the process of immune inflammatory response and to select more suitable models to evaluate the effect of potential anti-inflammatory drugs. Zymosan and λ-carrageenan are the most used representatives of particulate and soluble irritants that trigger acute inflammation in the air pouch inflammation model. When zymosan was used, the number of exudate cells first increased at 4 h-8 h, followed by a drop at 12 h-24 h. While, the changes in number of leukocytes in peripheral blood and proportion of neutrophils in bone marrow have the opposite trend. Meanwhile, neutrophils released neutrophil extracellular traps (NETs) to clean zymosan particles. In contrast, the cell migration response to carrageenan increased during 4 h to 24 h, no obvious NETs were observed, and the number of leukocytes in peripheral blood increased and the proportion of neutrophils in bone marrow decreased slightly. This study indicated that although both zymosan and carrageenan are sterile irritants, the characteristics of the inflammatory response induced by each other were different. In the acute phase of inflammation, zymosan-stimulated neutrophils were mobilized, recruited, and engulfed, and then died by NETs. Carrageenan stimulated the production of cytokines/chemokines by neutrophils or macrophages, but did not lead to an obvious death by releasing NETs.
Collapse
Affiliation(s)
- Qi Liu
- School of Pharmacy, Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yubo Zhao
- School of Pharmacy, Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Shuai Dong
- School of Pharmacy, Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Xingyuan Bai
- School of Pharmacy, Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Bin Chen
- School of Pharmacy, Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Xijuan Liu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Core Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jing Shen
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Core Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dan Zhu
- School of Pharmacy, Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
36
|
Thapliyal S, Vishnoi R, Murti Y, Kumar R, Chavan N, Rawat P, Joshi G, Dwivedi AR, Goel KK. Exploring anticancer properties of the phytoconstituents and comparative analysis of their chemical space parameters with USFDA-approved synthetic anticancer agents. Chem Biol Drug Des 2024; 103:e14561. [PMID: 38862268 DOI: 10.1111/cbdd.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
The present review article thoroughly analyses natural products and their derived phytoconstituents as a rich source of plausible anticancer drugs. The study thoroughly explores the chemical components derived from various natural sources, thus emphasizing their unique structural characteristics and therapeutic potential as an anticancer agent. The review contains the critical chemical constituents' in-depth molecular mechanisms, their source's chemical structures and the categories. The review also comprises an exhaustive and comprehensive analysis of different chemical spacing parameters of the anticancer agents derived from natural products. It compares them with USFDA-approved synthetic anticancer drugs up to 2020, thus providing a meaningful understanding of the relationship between natural and synthetic compounds portraying the anticancer assets. The review also delves more deeply into the chemical analysis of the heterocyclic moieties from the natural product arena, illustrating the anticancer mechanisms. The present article is, therefore, expected to serve as a valuable resource for natural product and medicinal chemists, encouraging and promoting an integrated approach to exploit the potential of natural products in drug discovery development and translational research, which have a prerequisite of bench to bedside approach. The work could guide researchers toward innovative approaches for the ever-evolving field of anticancer drug discovery.
Collapse
Affiliation(s)
- Somesh Thapliyal
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, India
| | - Ritu Vishnoi
- Department of Botany, Hariom Saraswati PG College, Dhanauri, Haridwar, Uttarakhand, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Ghudda, Bathinda, India
| | - Nirja Chavan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Pramod Rawat
- Graphic Era (Deemed to be University) Clement Town Dehradun, Dehradun, India
- Graphic Era Hill University Clement Town Dehradun, Dehradun, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be) University, Hyderabad, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, Uttarakhand, India
| |
Collapse
|
37
|
Lefebvre È, Tawil N, Yahia L. Transdermal Delivery of Cannabidiol for the Management of Acute Inflammatory Pain: A Comprehensive Review of the Literature. Int J Mol Sci 2024; 25:5858. [PMID: 38892047 PMCID: PMC11172078 DOI: 10.3390/ijms25115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
The emerging field of nanotechnology has paved the way for revolutionary advancements in drug delivery systems, with nanosystems emerging as a promising avenue for enhancing the therapeutic potential and the stability of various bioactive compounds. Among these, cannabidiol (CBD), the non-psychotropic compound of the Cannabis sativa plant, has gained attention for its therapeutic properties. Consequently, researchers have devoted significant efforts to unlock the full potential of CBD's clinical benefits, where various nanosystems and excipients have emerged to overcome challenges associated with its bioavailability, stability, and controlled release for its transdermal application. Therefore, this comprehensive review aims to explain CBD's role in managing acute inflammatory pain and offers an overview of the state of the art of existing delivery systems and excipients for CBD. To summarize this review, a summary of the cannabinoids and therapeutical targets of CBD will be discussed, followed by its conventional modes of administration. The transdermal route of administration and the current topical and transdermal delivery systems will also be reviewed. This review will conclude with an overview of in vivo techniques that allow the evaluation of the anti-inflammatory and analgesic potentials of these systems.
Collapse
Affiliation(s)
- Ève Lefebvre
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada;
| | - Nancy Tawil
- Qeen BioTechnologies, Gatineau, QC J9J 3K3, Canada;
| | - L’Hocine Yahia
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada;
| |
Collapse
|
38
|
Viola H, Chen LH, Jo S, Washington K, Selva C, Li A, Feng D, Giacalone V, Stephenson ST, Cottrill K, Mohammed A, Williams E, Qu X, Lam W, Ng NL, Fitzpatrick A, Grunwell J, Tirouvanziam R, Takayama S. HIGH THROUGHPUT QUANTITATION OF HUMAN NEUTROPHIL RECRUITMENT AND FUNCTIONAL RESPONSES IN AN AIR-BLOOD BARRIER ARRAY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593624. [PMID: 38798413 PMCID: PMC11118313 DOI: 10.1101/2024.05.10.593624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress towards therapeutics. Namely, high throughput therapeutic screening systems typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well Leukocyte recruitment in an Air-Blood Barrier Array (L-ABBA-96) that enables in vivo -like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry. We modeled acute respiratory distress syndrome (ARDS) with neutrophil recruitment to 20 ng/mL epithelial-side interleukin 8 (IL-8) and found a dose dependent reduction in recruitment with physiologic doses of baricitinib, a JAK1/2 inhibitor recently FDA-approved for severe COVID-19 ARDS. Additionally, neutrophil recruitment to patient-derived cystic fibrosis sputum supernatant induced disease-mimetic recruitment and activation of healthy donor neutrophils and upregulated endothelial e-selectin. Compared to 24-well assays, the L-ABBA-96 reduces required patient sample volumes by 25 times per well and quadruples throughput per plate. Compared to microfluidic assays, the L-ABBA-96 recruits two orders of magnitude more neutrophils per well, enabling downstream flow cytometry and other standard biochemical assays. This novel pairing of high-throughput in vitro modeling of organ-level lung function with parallel high-throughput leukocyte phenotyping substantially advances opportunities for pathophysiological studies, personalized medicine, and drug testing applications.
Collapse
|
39
|
Eisen A, Pioro EP, Goutman SA, Kiernan MC. Nanoplastics and Neurodegeneration in ALS. Brain Sci 2024; 14:471. [PMID: 38790450 PMCID: PMC11119293 DOI: 10.3390/brainsci14050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Plastic production, which exceeds one million tons per year, is of global concern. The constituent low-density polymers enable spread over large distances and micro/nano particles (MNPLs) induce organ toxicity via digestion, inhalation, and skin contact. Particles have been documented in all human tissues including breast milk. MNPLs, especially weathered particles, can breach the blood-brain barrier, inducing neurotoxicity. This has been documented in non-human species, and in human-induced pluripotent stem cell lines. Within the brain, MNPLs initiate an inflammatory response with pro-inflammatory cytokine production, oxidative stress with generation of reactive oxygen species, and mitochondrial dysfunction. Glutamate and GABA neurotransmitter dysfunction also ensues with alteration of excitatory/inhibitory balance in favor of reduced inhibition and resultant neuro-excitation. Inflammation and cortical hyperexcitability are key abnormalities involved in the pathogenic cascade of amyotrophic lateral sclerosis (ALS) and are intricately related to the mislocalization and aggregation of TDP-43, a hallmark of ALS. Water and many foods contain MNPLs and in humans, ingestion is the main form of exposure. Digestion of plastics within the gut can alter their properties, rendering them more toxic, and they cause gut microbiome dysbiosis and a dysfunctional gut-brain axis. This is recognized as a trigger and/or aggravating factor for ALS. ALS is associated with a long (years or decades) preclinical period and neonates and infants are exposed to MNPLs through breast milk, milk substitutes, and toys. This endangers a time of intense neurogenesis and establishment of neuronal circuitry, setting the stage for development of neurodegeneration in later life. MNPL neurotoxicity should be considered as a yet unrecognized risk factor for ALS and related diseases.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Erik P. Pioro
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | | |
Collapse
|
40
|
Shen GD, Zhang YY, Yang NQ, Yang T, Wang T, Lu SC, Wang JY, Wang YS, Yang JH. N-alkylamides from Litsea cubeba (Lour.) Pers. with potential anti-inflammatory activity. Nat Prod Res 2024; 38:1727-1738. [PMID: 37328937 DOI: 10.1080/14786419.2023.2222216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Six amides, including a new N-alkylamide (1), four known N-alkylamides (2-5) and one nicotinamide (6) were isolated from Litsea cubeba (Lour.) Pers., which is a pioneer herb traditionally utilized in medicine. Their structures were elucidated on the basis of 1D and 2D NMR experiments and by comparison of their spectroscopic and physical data with the literature values. Cubebamide (1) is a new cinnamoyltyraminealkylamide and possessed obvious anti-inflammatory activity against NO production with IC50 values of 18.45 μM. Further in-depth pharmacophore-based virtual screening and molecular docking were carried out to reveal the binding mode of the active compound inside the 5-LOX enzyme. The results indicate that L. cubeba, and the isolated amides might be useful in the development of lead compounds for the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Guo-Dong Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Yin-Yan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Nian-Qi Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Tong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Ting Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Shi-Cheng Lu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Jin-Yun Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Yun-Song Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Jing-Hua Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| |
Collapse
|
41
|
Liñán-Atero R, Aghababaei F, García SR, Hasiri Z, Ziogkas D, Moreno A, Hadidi M. Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants (Basel) 2024; 13:488. [PMID: 38671935 PMCID: PMC11047511 DOI: 10.3390/antiox13040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Plants have proven to be important sources for discovering new compounds that are useful in the treatment of various diseases due to their phytoconstituents. Clove (Syzygium aromaticum L.), an aromatic plant widely cultivated around the world, has been traditionally used for food preservation and medicinal purposes. In particular, clove essential oil (CEO) has attracted attention for containing various bioactive compounds, such as phenolics (eugenol and eugenol acetate), terpenes (β-caryophyllene and α-humulene), and hydrocarbons. These constituents have found applications in cosmetics, food, and medicine industries due to their bioactivity. Pharmacologically, CEO has been tested against a variety of parasites and pathogenic microorganisms, demonstrating antibacterial and antifungal properties. Additionally, many studies have also demonstrated the analgesic, antioxidant, anticancer, antiseptic, and anti-inflammatory effects of this essential oil. However, CEO could degrade for different reasons, impacting its quality and bioactivity. To address this challenge, encapsulation is viewed as a promising strategy that could prolong the shelf life of CEO, improving its physicochemical stability and application in various areas. This review examines the phytochemical composition and biological activities of CEO and its constituents, as well as extraction methods to obtain it. Moreover, encapsulation strategies for CEO and numerous applications in different food fields are also highlighted.
Collapse
Affiliation(s)
- Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | | | - Samuel Rodríguez García
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran;
| | - Dimitrios Ziogkas
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
42
|
Zafar F, Shaheen G, Asif HM, Farhan M, Muteeb G, Aatif M. Onosma bracteatum Wall Aqueous-Ethanolic Extract Suppresses Complete Freund's Adjuvant-Induced Arthritis in Rats via Regulation of TNF-α, IL-6, and C-Reactive Protein. Molecules 2024; 29:1830. [PMID: 38675650 PMCID: PMC11052358 DOI: 10.3390/molecules29081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Onosma bracteatum Wall (O. bracteatum) has been used traditionally for the management of arthritis; however, its therapeutic potential warrants further investigation. This study aimed to evaluate the anti-arthritic effects of the aqueous-ethanolic extract of O. bracteatum leaves (AeOB) in a rat model of complete Freund's adjuvant (CFA)-induced arthritis. Rats were treated with AeOB (250, 500, and 750 mg/kg), indomethacin (10 mg/kg), or a vehicle control from days 8 to 28 post-CFA injection. Arthritic score, paw diameter, and body weight were monitored at regular intervals. X-ray radiographs and histopathological analysis were performed to assess arthritic severity. Inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP) were quantified by qPCR and icromatography. Phytochemical analysis of AeOB revealed alkaloids, flavonoids, phenols, tannins, Saponins, and glycosides. AeOB also exhibited antioxidant potential with an IC50 of 73.22 µg/mL in a DPPH assay. AeOB and diclofenac exhibited anti-inflammatory and anti-arthritic activities. Rats treated with AeOB at 750 mg/kg and indomethacin showed significantly reduced arthritic symptoms and joint inflammation versus the CFA control. The AeOB treatment downregulated TNF-α and IL-6 and decreased CRP levels compared with arthritic rats. Radiography and histopathology also showed improved prognosis. These findings demonstrate the anti-arthritic potential of AeOB leaves.
Collapse
Affiliation(s)
- Farah Zafar
- Department of Eastern Medicine, University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (G.S.); (H.M.A.)
| | - Ghazala Shaheen
- Department of Eastern Medicine, University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (G.S.); (H.M.A.)
| | - Hafiz Muhammad Asif
- Department of Eastern Medicine, University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (G.S.); (H.M.A.)
| | - Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa-31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
43
|
Fatima K, Asif M, Farooq U, Gilani SJ, Bin Jumah MN, Ahmed MM. Antioxidant and Anti-inflammatory Applications of Aerva persica Aqueous-Root Extract-Mediated Synthesis of ZnO Nanoparticles. ACS OMEGA 2024; 9:15882-15892. [PMID: 38617686 PMCID: PMC11007848 DOI: 10.1021/acsomega.3c08143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
In the present study, ZnO nanoparticles were synthesized by using aqueous extracts of Aerva persica roots. Characterization of as-prepared ZnO nanoparticles was carried out using different techniques, including powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and BET surface area analysis. Morphological analysis confirmed the small, aggregated flake-shaped morphology of as-synthesized ZnO nanostructures. The as-prepared ZnO nanoparticles were analyzed for their potential application as anti-inflammatory (using in vivo inhibition of carrageenan induced paw edema) and antioxidant (using in vitro radical scavenging activity) agents. The ZnO nanoparticles were found to have a potent antioxidant and anti-inflammatory activity comparable to that of standard ascorbic acid (antioxidant) and indomethacin (anti-inflammatory drug). Therefore, due to their ecofriendly synthesis, nontoxicity, and biocompatible nature, zinc oxide nanoparticles synthesized successfully from roots extract of the plant Aerva persica with potent efficiencies can be utilized for different biomedical applications.
Collapse
Affiliation(s)
- Kaneez Fatima
- Faculty
of Pharmacy, Maulana Azad University, Bujhawad, Teh: Luni, Jodhpur 342802, Rajasthan, India
- INTI
International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Mohammad Asif
- Faculty
of Pharmacy, Lachoo Memorial College of
Science and Technology, Shastri Nagar, Sector A, Jodhpur 342001, Rajasthan, India
| | - Umar Farooq
- Chemistry
Department, School of Basic Sciences, Galgotias
University, Greater
Noida 201309, India
| | - Sadaf Jamal Gilani
- Department
of Basic Health Sciences, Foundation Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin Jumah
- Biology Department,
College of Science, Princess Nourah bint
Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment
and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi
Society for Applied Science, Princess Nourah
bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
44
|
Johri N, Matreja PS, Agarwal S, Nagar P, Kumar D, Maurya A. Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions. J Cardiovasc Transl Res 2024; 17:345-355. [PMID: 37851312 DOI: 10.1007/s12265-023-10445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Ischemic heart disease, which results from plaque formation in the coronary arteries, hinders the flow of oxygenated blood to the heart, leading to ischemia. Reperfusion injury remains a significant challenge for researchers, and the mechanisms underlying myocardial ischemia-reperfusion injury (MIRI) are not entirely understood. The review directs future research into potential targets in clinical treatment based on our present understanding of the pathophysiological mechanisms of MIRI. The study provides insights into the mechanisms underlying MIRI and offers direction for future research in this area. The use of targeted therapies may hold promise in improving cardiac function in the elderly and minimizing the adverse effects of revascularization therapies. The purpose of this review is to analyze the role of activated protein C (APC) in the pathogenesis of ischemic heart disease, heart failure, and myocardial ischemia-reperfusion injury, and discuss the potential of APC-based therapeutics.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India.
- School of Health & Psychological Sciences, City, University of London, London, United Kingdom.
| | - Prithpal S Matreja
- Department of Pharmacology, Teerthanker Mahaveer Medical College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Shalabh Agarwal
- Department of Cardiology, Teerthanker Mahaveer Hospital & Research Centre, Moradabad, Uttar Pradesh, India
| | - Priya Nagar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Deepanshu Kumar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Aditya Maurya
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
45
|
Ahmed EA, Alzahrani AM, Abdelsalam SA, Ibrahim HIM. Flavipin from fungi as a potential inhibitor of rheumatoid arthritis signaling molecules. Inflammopharmacology 2024; 32:1171-1186. [PMID: 38349589 DOI: 10.1007/s10787-024-01429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/02/2024] [Indexed: 04/11/2024]
Abstract
Flavipin, a fungal lower molecular weight biomolecule (MW 196.16 g/mol), has not been yet extensively studied for beneficial preclinical and clinical applications. In recent years, various preclinical mouse models including adjuvant-induced arthritis (AIA) were employed to understand mechanisms associated with Rheumatoid arthritis (RA) and to develop new therapeutic drugs. In the current study, we studied the inhibitory effect of Flavipin on major signaling molecules involved in the inflammatory response during RA using both in-silico virtual interaction and in vivo mouse model of AIA. Our in-silico results clarified that Flavipin interacts with the tumor necrosis factor alpha (TNF-α) through conventional hydrogen binding (H-H) at one of TNF-α critical amino acids tyrosine residues, Tyr119, with binding energy (b.e.) -5.9. In addition, Flavipin binds to ATP-binging sites of the Jesus kinases, JAK1, JAK2 and JAK3, through H-H (b. e. between -5.8 and -6.1) and then it may inhibit JAKs, regulators of RA signaling molecules. Moreover, our molecular dynamics stimulation for the docked TNF-α/Flavipin complex confirmed the specificity and the stability of the interaction. In vitro, Flavipin is not toxic to normal cells at doses below 50 µM (its IC50 in normal fibroblast cell line was above 100 µM). However, in vivo, the arthritis score and hind paw oedema parameters were modulated in Flavipin treated mice. Consistent with the in-silico results the levels of the TNF-α, the nuclear transcription factor kappaB (NF-κB) and the signal transduction and activator of transcription (STAT3, downstream of JAKs) were modulated at joint tissues of the hind-paw of Flavipin/AIA treated mice. Our data suggest Flavipin as a potential therapeutic agent for arthritis can inhibit RA major signaling molecules.
Collapse
Affiliation(s)
- Emad A Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia.
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Asyut, 71516, Egypt.
| | - Abdulaah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia
| | - Salah A Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Asyut, 71516, Egypt
| | - Hairul-Islam M Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia
- Pondicherry Centre for Biological Science and Educational Trust, Kottakuppam, Pondicherry, 605104, India
| |
Collapse
|
46
|
Morais MG, Saldanha AA, Mendes IC, Rodrigues JPC, Azevedo LS, Ferreira LM, Amado PA, Zanuncio VSS, Farias KS, Silva DB, Pinto FCH, Soares AC, Lima LARS. Antinociceptive and anti-inflammatory potential, and chemical characterization of the dichloromethane fraction of Solanum lycocarpum (Solanaceae) ripe fruits by LC-DAD-MS. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117640. [PMID: 38135235 DOI: 10.1016/j.jep.2023.117640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum lycocarpum A. St. Hil. (Solanaceae) is a species from the Brazilian Cerrado, exhibiting several medicinal properties, being used by the population in the treatment of ulcers, bronchitis, asthma and hepatitis, which involve inflammatory processes. AIM OF THIS STUDY This study aimed to chemically characterize the dichloromethane fraction (DCM), as well as verify its antinociceptive, anti-inflammatory and antioxidant potential. MATERIALS AND METHODS The DCM fraction was obtained by partitioning the ethanol extract. The chemical constituents of the DCM fraction were characterized by LC-DAD-MS. The DPPH and FRAP assays were used to evaluate the antioxidant potential. The carrageenan-induced paw edema model was used to assess the anti-inflammatory effects, and the inflammatory infiltrate was evaluated by qualitative and quantitative histological analyses. The antinociceptive action of the DCM fraction was evaluated by acetic acid-induced abdominal writhing test, formalin-induced nociception and hot-plate test. RESULTS Steroidal alkaloids solasonine, solasodine and solamargine, as well as the alkaloid peiminine/imperialine and caffeoylquinic acids, were annotated in DCM fraction by LC-DAD-MS. The DCM fraction showed antioxidative action in the in vitro DPPH and FRAP tests, as well as an anti-inflammatory effect for the three evaluated doses of 30, 100 and 300 mg/kg in the fourth and sixth hours after the administration of carrageenan. The histological analyses evidenced considerably reduction in leukocyte migration and the number of polymorphonuclear leukocytes. The study also demonstrated antinociceptive activity for the DCM fraction, which reduced abdominal writhing at three concentrations evaluated, as well as a decrease in paw licking in the formalin-induced nociception test both in the neurogenic phase and the inflammatory phase, with greater effectiveness compared to the anti-inflammatory indomethacin. The DCM fraction also increased the latency time of the animals in the hot plate test 60 min after treatment, although it did not seem to involve the opioidergic system. CONCLUSION This work evidenced that the dichloromethane fraction of S. lycocarpum fruit possesses antinociceptive and anti-inflammatory potential, which supports its use in folk medicine for management inflammatory conditions.
Collapse
Affiliation(s)
- Melissa G Morais
- Laboratory of Pharmacology of Pain and Inflammation, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil; Laboratory of Phytochemistry, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Aline A Saldanha
- Laboratory of Pharmacology of Pain and Inflammation, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Iara C Mendes
- Laboratory of Phytochemistry, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - João Paulo C Rodrigues
- Laboratory of Pharmacology of Pain and Inflammation, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Lucas S Azevedo
- Laboratory of Phytochemistry, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Letícia M Ferreira
- Laboratory of Experimental Pathology, Federal University of São João Del-Rei, Campus Dom Bosco, São João del Rei, 36301-160, Minas Gerais, Brazil
| | - Paula A Amado
- Laboratory of Phytochemistry, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Vanessa S S Zanuncio
- Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, Mato Grosso do Sul, Brazil
| | - Katyuce S Farias
- Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, Mato Grosso do Sul, Brazil
| | - Denise B Silva
- Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, Mato Grosso do Sul, Brazil
| | - Flávia C H Pinto
- Laboratory of Experimental Pathology, Federal University of São João Del-Rei, Campus Dom Bosco, São João del Rei, 36301-160, Minas Gerais, Brazil
| | - Adriana C Soares
- Laboratory of Pharmacology of Pain and Inflammation, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Luciana A R S Lima
- Laboratory of Phytochemistry, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil.
| |
Collapse
|
47
|
Seymenska D, Teneva D, Nikolova I, Benbassat N, Denev P. In Vivo Anti-Inflammatory and Antinociceptive Activities of Black Elder ( Sambucus nigra L.) Fruit and Flower Extracts. Pharmaceuticals (Basel) 2024; 17:409. [PMID: 38675372 PMCID: PMC11054073 DOI: 10.3390/ph17040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Sambucus nigra L. (S. nigra, SN) or black elder is a traditional medicinal plant widely used worldwide for therapeutic and dietary purposes. The aim of the current study was to investigate the anti-inflammatory and antinociceptive activities of black elder fruit and flower extracts (SNFrE and SNFlE, respectively). The primary polyphenol constituents in the flower extract were flavonoids and phenolic acids, while anthocyanins were the main components in the fruit extract. SNFrE revealed pronounced and dose-dependent in vivo anti-inflammatory activity assessed by the cotton pellet-induced granuloma test. Doses of 10, 20, and 50 mg/kg BW of SNFrE reduced the weight of induced granuloma in rats by 20.3%, 20.5%, and 28.4%, respectively. At the highest dose (50 mg/kg BW), SNFrE had significant (p < 0.01) anti-inflammatory activity comparable to that of diclofenac, the reference compound used (10 mg/kg BW). In addition, the in vivo antinociceptive activity of the extracts in mice was estimated using the acetic-acid-induced writhing test. Both extracts at doses of 50 mg/kg BW inhibited the abdominal contractions induced by the acetic acid significantly comparing to the control group (p < 0.01). Our findings indicate that black elder extracts and particularly SNFrE possess anti-inflammatory and antinociceptive activities, providing experimental evidence for the use of S. nigra in traditional medicine.
Collapse
Affiliation(s)
- Daniela Seymenska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria or (D.S.); (N.B.)
| | - Desislava Teneva
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| | - Irina Nikolova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria;
| | - Niko Benbassat
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria or (D.S.); (N.B.)
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
48
|
Fabian MCP, Astorga RMN, Atis AAG, Pilapil LAE, Hernandez CC. Anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark through bioassay-guided fractionation and liquid chromatography-tandem mass spectrometry. Front Pharmacol 2024; 15:1349725. [PMID: 38523640 PMCID: PMC10957545 DOI: 10.3389/fphar.2024.1349725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Women have been found to be at a higher risk of morbidity and mortality from type 2 diabetes mellitus (T2DM) and asthma. α-Glucosidase inhibitors have been used to treat T2DM, and arachidonic acid 15-lipoxygenase (ALOX15) inhibitors have been suggested to be used as treatments for asthma and T2DM. Compounds that inhibit both enzymes may be studied as potential treatments for people with both T2DM and asthma. This study aimed to determine potential anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark. A bioassay-guided fractionation framework was used to generate bioactive fractions from C. intermedia stem and D. dao bark. Subsequently, dereplication through ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and database searching was performed to putatively identify the components of one bioactive fraction from each plant. Seven compounds were putatively identified from the C. intermedia stem active fraction, and six of these compounds were putatively identified from this plant for the first time. Nine compounds were putatively identified from the D. dao bark active fraction, and seven of these compounds were putatively identified from this plant for the first time. One putative compound from the C. intermedia stem active fraction (corilagin) has been previously reported to have inhibitory activity against both α-glucosidase and 15-lipoxygenase-1. It is suggested that further studies on the potential of corilagin as an anti-diabetic and anti-inflammatory treatment should be pursued based on its several beneficial pharmacological activities and its low reported toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Christine Chichioco Hernandez
- Bioorganic and Natural Products Laboratory, Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
49
|
Lessa TLADS, Correia TML, Santos TCD, da Silva RP, Silva BPD, Cavallini MCM, Rocha LS, Souza Peixoto A, Cugnasca BS, Cervi G, Correra TC, Gonçalves AC, Festuccia WTL, Cunha TM, Yatsuda R, de Magalhães ACM, Dos Santos AA, Meotti FC, Queiroz RF. A novel diselenide attenuates the carrageenan-induced inflammation by reducing neutrophil infiltration and the resulting tissue damage in mice. Free Radic Res 2024; 58:229-248. [PMID: 38588405 DOI: 10.1080/10715762.2024.2336566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/06/2024] [Indexed: 04/10/2024]
Abstract
Selenium-containing compounds have emerged as promising treatment for redox-based and inflammatory diseases. This study aimed to investigate the in vitro and in vivo anti-inflammatory activity of a novel diselenide named as dibenzyl[diselanediyIbis(propane-3-1diyl)] dicarbamate (DD). DD reacted with HOCl (k = 9.2 x 107 M-1s-1), like glutathione (k = 1.2 x 108 M-1s-1), yielding seleninic and selenonic acid derivatives, and it also decreased HOCl formation by activated human neutrophils (IC50=4.6 μM) and purified myeloperoxidase (MPO) (IC50=3.8 μM). However, tyrosine, MPO-I and MPO-II substrates, did not restore HOCl formation in presence of DD. DD inhibited the oxidative burst in dHL-60 cells with no toxicity up to 25 µM for 48h. Next, an intraperitoneal administration of 25, 50, and 75 mg/kg DD decreased total leukocyte, neutrophil chemotaxis, and inflammation markers (MPO activity, lipid peroxidation, albumin exudation, nitrite, TNF-α, IL-1β, CXCL1/KC, and CXCL2/MIP-2) on a murine model of carrageenan-induced peritonitis. Likewise, 50 mg/kg DD (i.p.) decreased carrageenan-induced paw edema over 5h. Histological and immunohistochemistry analyses of the paw tissue showed decreased neutrophil count, edema area, and MPO, carbonylated, and nitrated protein staining. Furthermore, DD treatment decreased the fMLP-induced chemotaxis of human neutrophils (IC50=3.7 μM) in vitro with no toxicity. Lastly, DD presented no toxicity in a single-dose model using mice (50 mg/kg, i.p.) over 15 days and in Artemia salina bioassay (50 to 2000 µM), corroborating findings from in silico toxicological study. Altogether, these results demonstrate that DD attenuates carrageenan-induced inflammation mainly by reducing neutrophil migration and the resulting damage from MPO-mediated oxidative burst.
Collapse
Affiliation(s)
- Tássia Liz Araújo Dos Santos Lessa
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
| | - Thiago Macêdo Lopes Correia
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Talita Costa Dos Santos
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | | - Maria Cláudia Magalhães Cavallini
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leonardo Silva Rocha
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
| | | | | | - Gustavo Cervi
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago C Correra
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Regiane Yatsuda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Amélia Cristina Mendes de Magalhães
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | | - Raphael Ferreira Queiroz
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
- Departamento de Ciências da Saúde, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
| |
Collapse
|
50
|
Weimer P, de Araújo Lock G, Amaral Antunes Nunes K, Rossi RC, Koester LS. Association effect of the phytocannabinoid beta-caryophyllene and indomethacin carried in topical nanoemulgels: an evaluation by in vivo anti-inflammatory model. Nat Prod Res 2024:1-7. [PMID: 38383999 DOI: 10.1080/14786419.2024.2317887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
The sesquiterpene β-caryophyllene, classified as a phytocannabinoid compound, has been widely studied owing to its multi-target action. In addition, this compound has demonstrated application as a skin permeation promoter. In this context, this study aimed to evaluate the feasibility of associating β-caryophyllene and indomethacin in the oily core of hydrogel thickened nanoemulsions, as well as, to evaluate the in vivo anti-inflammatory effect of this association by croton oil ear edoema induced model. After topical application, the nanoemulgels resulted in increased edoema mass when compared to the substances in their free form. Overall, the results differed from expected, and the data found may be owing to the specificities of the in vivo model applied, as well as the tested ratio between β-caryophyllene and indomethacin (200:1). New perspectives arise from the data found regarding the evaluation of the association of terpenic compounds with indomethacin in nanoemulsified systems.
Collapse
Affiliation(s)
- Patrícia Weimer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Graziela de Araújo Lock
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ketly Amaral Antunes Nunes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rochele Cassanta Rossi
- Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil
- Programa de Pós-Graduação em Nutrição e Alimentos da Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Rio Grande do Sul, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|