1
|
Nayak D, Shetty MM, Halagali P, Rathnanand M, Gopinathan A, John J, Krishna Tippavajhala V. Formulation, optimization and evaluation of ibuprofen loaded menthosomes for transdermal delivery. Int J Pharm 2024; 665:124671. [PMID: 39245088 DOI: 10.1016/j.ijpharm.2024.124671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The study aimed to improve the transdermal permeation of IBU utilizing menthosomes as a vesicular carrier. IBU-loaded menthosomes were formulated by thin film hydration & optimized using 23 factorial designs (Design Expert® version 13 software). In vitro & ex vivo skin permeation analysis of IBU-encapsulated menthosomes was studied across the rat skin sample. In vivo pharmacodynamic activity was studied in an arthritis rat model. The optimized IBU-loaded menthosomes exhibited an optimum vesicle size of 214.2 ± 2.96 nm, Zeta potential of -21.1 ± 2.72 mV, (PDI) Polydispersity Index of 0.267 ± 0.018 with Entrapment efficiency (EE%) of 78.7 ± 2.73 %. The in vitro & ex vivo skin penetration study displayed enhanced release of drug of 77.02 ± 1.0 % and 40.91 ± 0.81 % respectively, compared to conventional liposomes. In vivo pharmacodynamic study on carrageenan-induced paw edema in Wistar albino rats demonstrated superior anti-inflammatory activity of the optimized IBU-encapsulated menthosomes (**p < 0.01) and effective inhibition of paw edema (34.04 ± 0.155 %). The formalin test indicated a significant analgesic effect of optimized formulation during the chronic phase of analgesia (*p < 0.05) compared to the control group. Thus, the developed and optimized drug-loaded menthosomes could serve as a suitable vesicular delivery carrier in enhancing the transdermal delivery of other NSAID drugs.
Collapse
Affiliation(s)
- Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manisha M Shetty
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Praveen Halagali
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Adarsh Gopinathan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
2
|
Wang T, Liao X, Zhao X, Chen K, Chen Y, Wen H, Yin D, Wang Y, Lin B, Zhang S, Cui H. Rational design of 2-benzylsulfinyl-benzoxazoles as potent and selective indoleamine 2,3-dioxygenase 1 inhibitors to combat inflammation. Bioorg Chem 2024; 152:107740. [PMID: 39217780 DOI: 10.1016/j.bioorg.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Mimicking the transition state of tryptophan (Trp) and O2 in the enzymatic reaction is an effective approach to design indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. In this study, we firstly assembled a small library of 2-substituted benzo-fused five membered heterocycles and found 2-sulfinyl-benzoxazoles with interesting IDO1 inhibitory activities. Next the inhibitory activity toward IDO1 was gradually improved. Several benzoxazoles showed potent IDO1 inhibitory activity with IC50 of 82-91 nM, and exhibited selectivity between IDO1 and tryptophan 2,3-dioxygenase (TDO2). Enzyme binding studies showed that benzoxazoles are reversible type II IDO1 inhibitors, and modeling studies suggested that the oxygen atom of the sulfoxide in benzoxazoles interacts with the iron atom of the heme group, which mimics the transition state of Fe-O-O-Trp complex. Especially, 10b can effectively inhibit the NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and it also shows good anti-inflammation effect on mice acute inflammation model of croton oil induced ear edema.
Collapse
Affiliation(s)
- Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Kai Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Dali Yin
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yuchen Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
3
|
Elgohary MK, Abo-Ashour MF, Abd El Hadi SR, El Hassab MA, Abo-El Fetoh ME, Afify H, Abdel-Aziz HA, Abou-Seri SM. Novel anti-inflammatory agents featuring phenoxy acetic acid moiety as a pharmacophore for selective COX-2 inhibitors: Synthesis, biological evaluation, histopathological examination and molecular modeling investigation. Bioorg Chem 2024; 152:107727. [PMID: 39167872 DOI: 10.1016/j.bioorg.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Inflammation management presents a critical challenge in modern medicine, with nonsteroidal anti-inflammatory drugs (NSAIDs) being a widely used therapeutic option. However, their efficacy is often accompanied by significant gastrointestinal adverse effects, necessitating the exploration of safer alternatives, particularly through the investigation of cyclooxygenase-2 (COX-2) inhibitors. This study endeavors to address this imperative through the synthesis and evaluation of pyrazoline-phenoxyacetic acid derivatives. Among the synthesized compounds, 6a and 6c emerged as promising candidates, demonstrating potent COX-2 inhibition with IC50 values of 0.03 µM for both and selectivity index = 365.4 and 196.9, respectively. Furthermore, these compounds exhibited efficacy in mitigating formalin-induced edema in male Wistar rats, accompanied by favorable safety profiles upon histological examination of vital organs. Comprehensive safety assessments, including evaluation of creatinine, AST, and ALT enzymatic as well as troponin T and creatine kinase-MB levels, further reinforce the promising attributes of the synthetic candidates. Molecular docking studies endorsed by molecular dynamic simulations corroborate the biological findings, elucidating significant protein-ligand interactions at COX-2 active sites indicative of therapeutic potential.
Collapse
Affiliation(s)
- Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Mahmoud F Abo-Ashour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, El Saleheya El Gadida University, Egypt
| | - Soha R Abd El Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt.
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Mohammed E Abo-El Fetoh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hassan Afify
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Sahar M Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| |
Collapse
|
4
|
de Oliveira Marinho A, Alves da Costa J, Silva Dos Santos AN, Cavalcanti de Barros M, Pimentel CDN, Arnaldo da Silva A, Guedes Paiva PM, Napoleão TH, Leite de Siqueira Patriota L. Assessment of acute toxicity, genotoxicity, and anti-inflammatory activity of SteLL, a lectin from Schinus terebinthifolia Raddi. Leaves, in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118496. [PMID: 38936643 DOI: 10.1016/j.jep.2024.118496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Schinus terebinthifolia Raddi (Anacardiaceae), known as Brazilian pepper tree, stands out as a medicinal plant widely used in traditional medicine. The leaves are popularly used as anti-inflammatory agent and to relieve inflammatory conditions such as bronchitis, ulcers, and wounds, for example. AIM OF THE STUDY The present study evaluated the acute toxicity, genotoxicity, and anti-inflammatory activity of S. terebinthifolia leaf lectin (SteLL) in mice (Mus musculus). MATERIALS AND METHODS In the acute toxicity assay, the animals were treated intraperitoneally (i.p.) or orally (per os) with a single dose of 100 mg/kg. Genotoxicity was assessed by the comet and micronucleus assays. Carrageenan-induced peritonitis and paw edema models were used to evaluate the anti-inflammatory effects of SteLL (1, 5 and 10 mg/kg, i.p.). RESULTS No animal died and no signs of intoxication or histopathological damage were observed in the acute toxicity assay. Genotoxic effect was not detected. In peritonitis assay, SteLL reduced in 56-69% leukocyte migration to the peritoneal cavity; neutrophil count decreased by 25-32%, while mononuclear cell count increased by 67-74%. SteLL promoted a notable reduction of paw edema after 4 h (61.1-63.4%). Morphometric analysis showed that SteLL also decreased the thickness of epidermal edema (30.2-40.7%). Furthermore, SteLL decreased MPO activity, plasma leakage, NO release, and modulated cytokines in both peritoneal fluid and paw homogenate. CONCLUSION SteLL did not induce acute toxicity or genotoxicity in mice and stands out as a promising candidate in the development of new phytopharmaceuticals with anti-inflammatory action.
Collapse
Affiliation(s)
- Amanda de Oliveira Marinho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Jainaldo Alves da Costa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | | - Matheus Cavalcanti de Barros
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | | - Anderson Arnaldo da Silva
- Departamento de Anatomia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | |
Collapse
|
5
|
Dai F, Zhang X, Ma G, Li W. ACOD1 mediates Staphylococcus aureus-induced inflammatory response via the TLR4/NF-κB signaling pathway. Int Immunopharmacol 2024; 140:112924. [PMID: 39133958 DOI: 10.1016/j.intimp.2024.112924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
Staphylococcus aureus (SA) is a common Gram-positive bacterium that activates inflammatory cells, expressing various cytokines and inducing an inflammatory response. Recent research revealed aconitate decarboxylase 1 (ACOD1) as a regulator of the immune response through various metabolic pathways, playing a dual role in the inflammatory response. However, the mechanism by which ACOD1 participates in the regulation of SA-induced inflammatory responses in macrophages remains unknown. Therefore, this study aims to investigate the function and underlying regulatory mechanisms of ACOD1 in SA-induced inflammatory response. This study reveals that SA induced a macrophage inflammatory response and upregulated ACOD1 expression. ACOD1 knockdown significantly inhibited SA-induced macrophage inflammatory response, attenuated SA-induced nuclear envelope wrinkling, and plasma membrane rupture, and suppressed the TLR4/NF-κB signaling pathway. Furthermore, ACOD1 knockdown reduced the inflammatory response and alleviated lung tissue injury and cellular damage, leading to decreased bacterial loads in the lungs of SA-infected mice. Collectively, these findings demonstrate that SA induces an inflammatory response in macrophages and increases ACOD1 expression. ACOD1 enhances SA-induced inflammatory responses via the TLR4/NF-κB signaling pathway. Our findings highlight the significant role of ACOD1 in mediating the inflammatory response in SA-infected macrophages and elucidate its molecular mechanism in regulating the SA-induced inflammatory response.
Collapse
Affiliation(s)
- Fan Dai
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xuyang Zhang
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guilan Ma
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Wu Li
- School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
6
|
Rodríguez-Castillo AJ, González-Chávez SA, Portillo-Pantoja I, Cruz-Hermosillo E, Pacheco-Tena C, Chávez-Flores D, Delgado-Gardea MCE, Infante-Ramírez R, Ordaz-Ortiz JJ, Sánchez-Ramírez B. Aqueous Extracts of Rhus trilobata Inhibit the Lipopolysaccharide-Induced Inflammatory Response In Vitro and In Vivo. PLANTS (BASEL, SWITZERLAND) 2024; 13:2840. [PMID: 39458787 PMCID: PMC11514583 DOI: 10.3390/plants13202840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Chronic noncommunicable diseases (NCDs) are responsible for approximately 74% of deaths globally. Medicinal plants have traditionally been used to treat NCDs, including diabetes, cancer, and rheumatic diseases, and are a source of anti-inflammatory compounds. This study aimed to evaluate the anti-inflammatory effects of Rhus trilobata (Rt) extracts and fractions in lipopolysaccharide (LPS)-induced inflammation models in vitro and in vivo. The aqueous extract (RtAE) and five fractions (F2 to F6) were obtained via C18 solid-phase separation and tested in murine LPS-induced J774.1 macrophages. Key inflammatory markers, such as IL-1β, IL-6, TNF-α, and COX-2 gene expression were measured using RT-qPCR, and PGE2 production was assessed via HPLC-DAD. The in vivo effects were tested in an LPS-induced paw edema model in Wistar rats. Results showed that RtAE at 15 μg/mL significantly decreased IL-1β and IL-6 gene expression in vitro. Fraction F6 further reduced IL-1β, TNF-α, and IL-6 gene expression, COX-2 expression, and PGE2 production. In vivo, F6 significantly reduced LPS-induced paw edema, inflammatory infiltration, and IL-1β and COX-2 protein expression. Chemical characterization of F6 by UPLC/MS-QTOF revealed at least eight compounds with anti-inflammatory activity. These findings support the anti-inflammatory potential of RtAE and F6, reinforcing the medicinal use of Rt.
Collapse
Affiliation(s)
- Alejandra Jazmín Rodríguez-Castillo
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (S.A.G.-C.); (C.P.-T.)
| | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (S.A.G.-C.); (C.P.-T.)
| | - Ismael Portillo-Pantoja
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - Eunice Cruz-Hermosillo
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (S.A.G.-C.); (C.P.-T.)
| | - David Chávez-Flores
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - Ma. Carmen E. Delgado-Gardea
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - Rocío Infante-Ramírez
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| | - José Juan Ordaz-Ortiz
- Laboratorio de Metabolómica y Espectrometría de Masas, Unidad de Genómica Avanzada, CINVESTAV-IPN, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico;
| | - Blanca Sánchez-Ramírez
- Programa de Doctorado en Ciencias Químicas, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua 31125, Mexico; (A.J.R.-C.); (I.P.-P.); (E.C.-H.); (D.C.-F.); (M.C.E.D.-G.); (R.I.-R.)
| |
Collapse
|
7
|
Rodrigues F, Reis M, Ferreira L, Grosso C, Ferraz R, Vieira M, Vasconcelos V, Martins R. The Neuroprotective Role of Cyanobacteria with Focus on the Anti-Inflammatory and Antioxidant Potential: Current Status and Perspectives. Molecules 2024; 29:4799. [PMID: 39459167 PMCID: PMC11510616 DOI: 10.3390/molecules29204799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Neurodegenerative diseases are linked to the process of neurodegeneration. This can be caused by several mechanisms, including inflammation and accumulation of reactive oxygen species. Despite their high incidence, there is still no effective treatment or cure for these diseases. Cyanobacteria have been seen as a possible source for new compounds with anti-inflammatory and antioxidant potential, such as polysaccharides (sacran), phycobiliproteins (phycocyanin) and lipopeptides (honaucins and malyngamides), which can be interesting to combat neurodegeneration. As a promising case of success, Arthrospira (formerly Spirulina) has revealed a high potential for preventing neurodegeneration. Additionally, advantageous culture conditions and sustainable production of cyanobacteria, which are allied to the development of genetic, metabolic, and biochemical engineering, are promising. The aim of this review is to compile and highlight research on the anti-inflammatory and antioxidant potential of cyanobacteria with focus on the application as neuroprotective agents. Also, a major goal is to address essential features that brand cyanobacteria as an ecoefficient and economically viable option, linking health to sustainability.
Collapse
Affiliation(s)
- Flávia Rodrigues
- School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (F.R.); (R.F.); (M.V.)
| | - Mariana Reis
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
| | - Leonor Ferreira
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Clara Grosso
- LAQV/REQUIMTE, School of Engineering, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| | - Ricardo Ferraz
- School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (F.R.); (R.F.); (M.V.)
- Center for Translational Health and Medical Biotechnology Research (TBIO/Health Research Network (RISE-Health), E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Mónica Vieira
- School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (F.R.); (R.F.); (M.V.)
- Center for Translational Health and Medical Biotechnology Research (TBIO/Health Research Network (RISE-Health), E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Rosário Martins
- School of Health, Polytechnic Institute of Porto (E2S/P.PORTO), Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (F.R.); (R.F.); (M.V.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
| |
Collapse
|
8
|
Khan IU, Jamil Y, Shams F, Farsi S, Humayun M, Hussain A, Ahmad A, Iqbal A, Alrefaei AF, Ali S. Unlocking the in vitro and in vivo antioxidant and anti-inflammatory activities of polysaccharide fractions from Lepidium sativum seed-coat mucilage. Heliyon 2024; 10:e36797. [PMID: 39319123 PMCID: PMC11419874 DOI: 10.1016/j.heliyon.2024.e36797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammation coupled with oxidative stress contribute to the pathogenicity of various clinical disorders. Oxidative stress arises from an imbalance between production of reactive oxygen species (ROS) and antioxidant defense system, leading to cellular damages. The study investigated the antioxidant and anti-inflammatory effects of polysaccharides isolated from Lepidium sativum seed-coat mucilage. The water-soluble polysaccharides were extracted from mucilage and fractionated using gel permeation chromatography. The radical scavenging potential of various fractions was determined using DPPH, H2O2, and lipid peroxidation assays. The most effective EC50 was recorded for F53 (57.41 ± 1.34 μg/mL), followed by F20 (69.19 ± 0.61 μg/mL) and F52 (75.06 ± 0.45 μg/mL). In vitro anti-inflammatory effect was determined through human membrane stabilization assay while the in vivo effect was evaluated using a carrageenan-induced paw edema in mouse model where F53 demonstrated significant (P = 0.05) anti-inflammatory potential (92.60 % compared to diclofenac sodium 91.46 %). GC-MS analysis revealed the presence of galacturonic acid and glucuronic acid as main acidic monosaccharides along with varying quantities of rhamnose, arabinose, and maltose as prominent neutral monosaccharides. The study concludes that cress seed mucilage contains potent antioxidant and anti-inflammatory polysaccharides. Further studies on the mode of action of these polysaccharides could provide deeper insights into their potential use as antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yusra Jamil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fareeha Shams
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Salman Farsi
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Humayun
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan Khyber Pakhtunkhwa, Pakistan
| | | | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| |
Collapse
|
9
|
Liu H, Zhang L, Yu J, Shao S. Advances in the application and mechanism of bioactive peptides in the treatment of inflammation. Front Immunol 2024; 15:1413179. [PMID: 39247182 PMCID: PMC11377253 DOI: 10.3389/fimmu.2024.1413179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammation is a normal immune response in organisms, but it often triggers chronic diseases such as colitis and arthritis. Currently, the most widely used anti-inflammatory drugs are non-steroidal anti-inflammatory drugs, albeit they are accompanied by various adverse effects such as hypertension and renal dysfunction. Bioactive peptides (BAPs) provide therapeutic benefits for inflammation and mitigate side effects. Herein, this review focuses on the therapeutic effects of various BAPs on inflammation in different body parts. Emphasis is placed on the immunomodulatory mechanisms of BAPs in treating inflammation, such as regulating the release of inflammatory mediators, modulating MAPK and NF-κB signaling pathways, and reducing oxidative stress reactions for immunomodulation. This review aims to provide a reference for the function, application, and anti-inflammation mechanisms of BAPs.
Collapse
Affiliation(s)
- Haiyang Liu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
| | - Lulu Zhang
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
| | - Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Shengwen Shao
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| |
Collapse
|
10
|
Muller Guzzo EF, Rosa G, Lourenço de Lima AMD, Padilha R, Coitinho A. Piroxicam reduced the intensity of epileptic seizures in a kindling seizure model. Neurol Res 2024; 46:717-726. [PMID: 38679045 DOI: 10.1080/01616412.2024.2345032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
Introduction: The close relationship between inflammatory processes and epileptic seizures is already known, although the exact pathophysiological mechanism is unclear. In this study, the anticonvulsant capacity of piroxicam, an anti-inflammatory drug, was evaluated. A rat pentylenetetrazole kindling model was used.Methods: Male Wistar rats, 8-9 weeks old, received piroxicam (0.15 and 0.30 mg/kg), diazepam (2 mg/kg) or saline for 14 days, and PTZ, on alternate days. Intraperitoneal was chosen as the route of administration. The intensity of epileptic seizures was assessed using a modified Racine scale. The open field test and object recognition analysis were performed at the beginning of the study to ensure the safety of the drugs used. At the end of the protocol, the animals were euthanized to measure the levels of inflammatory (TNF-a and IL-6) and anti-inflammatory (IL-10) cytokines in the cortex, hippocampus, and serum.Results:There were no changes in the open field test and object recognition analysis. Piroxicam was found to decrease Racine scale scores at both concentrations. The reported values for IL-6 levels remained steady in all structures, whereas the TNF-alpha level in the cortex was higher in animals treated with piroxicam than in the saline and diazepam subjects. Finally, animals treated with the anti-inflammatory drug presented reduced IL-10 levels in the cortex and hippocampus.onclusions: Using inflammation as a guiding principle, the anticonvulsant effect of PIRO could be associated with the hippocampal circuits, since this structure showed no increase in inflammatory cytokines.
Collapse
Affiliation(s)
| | - Gabriel Rosa
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rafael Padilha
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Coitinho
- Microbiology, Immunology and Parasitology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
Galván-Colorado C, Chamorro-Cevallos GA, Chanona-Pérez JJ, Zepeda-Vallejo LG, Arredondo-Tamayo B, González-Ussery SA, Gallegos-Cerda SD, García-Rodríguez RV. Phycobiliprotein from Arthrospira maxima: Conversion to nanoparticles by high-energy ball milling, structural characterization, and evaluation of their anti-inflammatory effect. Int J Biol Macromol 2024; 275:133679. [PMID: 38971282 DOI: 10.1016/j.ijbiomac.2024.133679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Arthrospira maxima is a source of phycobiliproteins with different nutraceutical properties, e.g. antioxidant and anti-inflammatory activities. The current study was aimed at the elaboration, characterization, and evaluation of the anti-inflammatory effect of the phycobiliprotein nanoparticles extracted from Arthrospira maxima. Previously freeze-dried phycobiliproteins were milled by high-energy ball milling until reaching a nanometric size (optimal time: 4 h). Microscopy techniques were used for the characterization of the size and morphology of phycobiliproteins nanoparticles. Additionally, a spectroscopic study evidenced that nanosized reduction induced an increase in the chemical functional groups associated with its anti-inflammatory activity that was tested in a murine model, showing an immediate inflammatory effect. The novelty and importance of this contribution was to demonstrate that high energy ball milling is an emerging and green technology that can produce phycobiliprotein nanoparticles on a large-scale, without the use of organic solvents, to test their nutraceutical properties in a biological model by intragastric administration.
Collapse
Affiliation(s)
- C Galván-Colorado
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico; Laboratorio de Micro y Nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - G A Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - J J Chanona-Pérez
- Laboratorio de Micro y Nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico.
| | - L G Zepeda-Vallejo
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - B Arredondo-Tamayo
- Laboratorio de Micro y Nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - S A González-Ussery
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - S D Gallegos-Cerda
- Laboratorio de Micro y Nanobiotecnología, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, 07738 Mexico City, Mexico
| | - R V García-Rodríguez
- Laboratorio de Farmacología y Quimiometría, Instituto de Química Aplicada, Universidad Veracruzana, Luis Castelazo Ayala S/N Col. Industrial Ánimas, C.P. 91190, Xalapa-Enríquez, Veracruz, Mexico
| |
Collapse
|
12
|
Guo SE, Meng YB, Zhang ZM, Zhang YL, Yao QS, Qin X. Visual analysis of abdominal aortitis treatment using the CiteSpace bibliometric method. World J Clin Cases 2024; 12:4717-4725. [PMID: 39070850 PMCID: PMC11235489 DOI: 10.12998/wjcc.v12.i21.4717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Abdominal aortitis can induce aneurysms, and tumor rupture can lead to organ ischemia or even sudden death. At present, there is a lack of extensive understanding and identification of key problems in the treatment of abdominal aortitis, which needs to be further analyzed using bibliometric analysis. AIM To discuss the research hotspot and development trend of abdominal aortitis treatment. METHODS We searched the English literature (published from January 1, 2000 to March 12, 2024) on the treatment of abdominal aortitis in the Web of Science database. Then, we identified and screened duplicate literature using CiteSpace 6.1R2 software. We conducted an analysis of the number of papers, a co-occurrence analysis of the authors and institutions, and co-occurrence and cluster analyses of the keywords. Then, we drew the author, institution, and keywords of the studies into graphs for visualization. Finally, we expounded on the author, institutional network interactions, and hot keywords of the studies on the treatment of abdominal aortitis. RESULTS We included 210 English literature articles involving 190 authors; the author cooperation team was mainly represented by Caradu Caroline, Berard Xavier, Lu Guanyi, Harada Kenichi, and Sharma Ashish K. In the keyword analysis, high-frequency keywords include abdominal aortic aneurysm (38), abdominal aorta (24), Takayasu arteritis (22), etc. The three most central keywords were disease (0.69), classification (0.68), and abdominal aortic aneurysm (0.55). The first nine clusters of keywords are case report, abdominal aortic aneurysm, Takayasu arteritis, dyspnea hematuria, aortic elastic, IgG4-related disease, report, mid aortic dysplastic syndrome, and statin. In the keyword emergent analysis, 14 emergent words were obtained. Among them, seven keywords with strong abruptness were Takayasu arteritis, abdominal aortic aneurysm, disease, retroperitoneal fibrosis, expression, management, and large vessel vasculitis. In the past 3 years, the incidences of abdominal aortic aneurysm (intensity: 4.62) and inflammation (intensity: 1.99) were higher. CONCLUSION The number of published papers is on the increase, but the cooperation among authors is scattered. The research focus is mainly on the pathogenesis and treatment of abdominal aortitis-related diseases.
Collapse
Affiliation(s)
- Si-En Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Yuan-Biao Meng
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Zan-Man Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Yu-Lan Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Qi-Sen Yao
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Xiao Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
13
|
Reda R, Khalil AA, Elhady M, Tayel SI, Ramadan EA. Anti-parasitic activity of garlic (Allium sativum) and onion (Allium cepa) extracts against Dactylogyrus spp. (Monogenean) in Nile tilapia (Oreochromis niloticus): Hematology, immune response, histopathological investigation, and inflammatory cytokine genes of gills. BMC Vet Res 2024; 20:334. [PMID: 39061083 PMCID: PMC11282636 DOI: 10.1186/s12917-024-04187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Gills monogenean infestation causes significant mortalities in cultured fishes as a result of respiratory manifestation. Medicinal plants are currently being heavily emphasized in aquaculture due to their great nutritional, therapeutic, antimicrobial activities, and financial value. METHODS The current study is designed to assess the effect of garlic (Allium sativum) and onion (Allium cepa) extracts as a water treatment on the hematological profile, innate immunity, and immune cytokines expression besides histopathological features of gills of Nile tilapia (Oreochromis niloticus L.) infected with gills monogenetic trematodes (Dactylogyrus sp.). Firstly, the 96-hour lethal concentration 50 (96 h-LC50) of garlic extract (GE) and onion extract (OE) were estimated to be 0.4 g/ L and 3.54 g/ L for GE and OE, respectively. Moreover, the in-vitro anti-parasitic potential for (GE) was found between 0.02 and 0.18 mg/mL and 0.4 to 1.8 mg/mL for OE. For the therapeutic trial, fish (n = 120; body weight: 40-60 g) were randomly distributed into four groups in triplicates (30 fish/group, 10 fish/replicate) for 3 days. Group1 (G1) was not infected or treated and served as control. G2 was infected with Dactylogyrus spp. and not exposed to any treatment. G3, G4 were infected with Dactylogyrus sp. and treated with 1/10 and 1/5 of 96 h LC50 of OE, respectively. G5, G6 were infected with Dactylogyrus sp. and treated with 1/10 and 1/5 of 96 h LC50 of GE, respectively. RESULTS No apparent signs or behaviors were noted in the control group. Dactylogyrus spp. infected group suffered from clinical signs as Pale color and damaged tissue. Dactylogyrus spp. infection induced lowering of the hematological (HB, MCH, MCHC and WBCs), and immunological variables (lysozyme, nitric oxide, serum Anti- protease activities, and complement 3). the expression of cytokine genes IL-ß and TNF-α were modulated and improved by treatment with A. sativum and A. cepa extracts. The obtained histopathological alterations of the gills of fish infected with (Dactylogyrus spp.) were hyperplasia leading to fusion of the gill filament, lifting of epithelial tissue, aneurism and edema. The results indecated that G4 and G5 is more regenarated epithelium in compare with the control group. CONCLUSION A. sativum and A. cepa extracts enhance the blood profile and nonspecific immune parameters, and down-regulated the expression level of (IL-1β and TNF-α).
Collapse
Affiliation(s)
- Rasha Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Alshimaa A Khalil
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed Elhady
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Safaa I Tayel
- National Institute of Oceanography and Fisheries (NIOF), Al Qanater Al Khairia, 13723, Egypt
| | - Enas A Ramadan
- National Institute of Oceanography and Fisheries (NIOF), Al Qanater Al Khairia, 13723, Egypt
| |
Collapse
|
14
|
Nery-Flores SD, Castro-López CM, Martínez-Hernández L, García-Chávez CV, Palomo-Ligas L, Ascacio-Valdés JA, Flores-Gallegos AC, Campos-Múzquiz LG, Rodríguez-Herrera R. Grape Pomace Polyphenols Reduce Acute Inflammatory Response Induced by Carrageenan in a Murine Model. Chem Biodivers 2024; 21:e202302065. [PMID: 38768437 DOI: 10.1002/cbdv.202302065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Grape pomace (GP), a by-product of wine production, contains bioactive polyphenols with potential health benefits. This study investigates the anti-inflammatory properties of a polyphenolic fraction derived from GP, obtained by ultrasound-microwave hybrid extraction and purified using ion-exchange chromatography. In the inflammation model, mice were divided into six groups: intact, carrageenan, indomethacin, and three GP polyphenols treatment groups. Paw edema was induced by subplantar injection of carrageenan, and the GP polyphenols were administered intraperitoneally at doses of 10, 20, and 40 mg/kg. The anti-inflammatory effect was evaluated by measuring paw volume, and expression of inflammatory markers: cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), and cytokines (IL-1β and IL-6), along with lipid peroxidation levels. The GP polyphenols significantly reduced paw edema and expression levels of COX-2, MPO, and cytokines in a dose-dependent manner effect, with the highest dose showing the greatest reduction. Additionally, lipid peroxidation levels were also decreased by GP polyphenols treatment at doses of 10 and 20 mg/kg. These findings suggest that ultrasound-microwave extraction combined with amberlite purification proved to be effective in obtaining a polyphenolic-rich fraction from GP. Thus, GP polyphenols may serve as a natural anti-inflammatory and antioxidant agent for treating inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lissethe Palomo-Ligas
- School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Coahuila, 25280, México
| | | | | | | | - Raúl Rodríguez-Herrera
- School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Coahuila, 25280, México
| |
Collapse
|
15
|
Bernardette Martínez-Rizo A, Fosado-Rodríguez R, César Torres-Romero J, César Lara-Riegos J, Alberto Ramírez-Camacho M, Ly Arroyo Herrera A, Elizabeth Villa de la Torre F, Ceballos Góngora E, Ermilo Arana-Argáez V. Models in vivo and in vitro for the study of acute and chronic inflammatory activity: A comprehensive review. Int Immunopharmacol 2024; 135:112292. [PMID: 38788446 DOI: 10.1016/j.intimp.2024.112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Inflammatory conditions are among the principal causes of morbidity worldwide, and their treatment continues to be a challenge, given the restricted availability of effective and safe drugs. Thus, the identification of new compounds with biological activity that can be used for the treatment of inflammatory disorders is an essential field in medical and health research, in order to improve the health and quality of life of patients suffering from these diseases. Evaluation of the anti-inflammatory activity of drugs requires the implementation of models that accurately depict the biochemical and/or physiological responses that characterize human inflammation; for this reason, several in vitro and in vivo models have been developed, providing a platform for discovering novel or repurposed compounds. For this reason, in the present review we have selected twelve commonly used models for the evaluation of the anti-inflammatory effect, and extensively describes the difference between in vivo and in vitro models of inflammation, highlighting their advantages and limitations. On the other hand, the inflammatory mechanisms involved in them, the methods employed for their establishment, and the different parameters assessed to determine the anti-inflammatory activity of a given compound are extensively discussed. We expect to provide a comprehensive guide for the improved selection of a suitable model for the preclinical evaluation of plausible anti-inflammatory agents.
Collapse
Affiliation(s)
- Abril Bernardette Martínez-Rizo
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México; Laboratorio de Investigación Biomédica, Unidad Académica de Medicina, Universidad Autónoma de Nayarit, Nayarit, México
| | - Ricardo Fosado-Rodríguez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio César Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio César Lara-Riegos
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Mario Alberto Ramírez-Camacho
- Centro de Información de Medicamentos, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Ana Ly Arroyo Herrera
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | | - Emanuel Ceballos Góngora
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Víctor Ermilo Arana-Argáez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México.
| |
Collapse
|
16
|
Mehallah H, Djebli N, Ngoc Khanh P, Xuan Ha N, Thi Ha V, Thu Huong T, Dinh Tung D, Manh Cuong N. In silico and in vivo study of anti-inflammatory activity of Morinda longissima (Rubiaceae) extract and phytochemicals for treatment of inflammation-mediated diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118051. [PMID: 38493905 DOI: 10.1016/j.jep.2024.118051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally, the plant Morinda longissima Y.Z.Ruan (Rubiaceae) is used by ethnic people in Vietnam for the treatment of liver diseases and hepatitis. AIM OF THE STUDY The study was designed to assess the efficacy of the 95% ethanolic extract of Morinda longissima roots (MLE) in experimental immune inflammation. The phytochemical variation of root extract and the chemical structures of natural compounds were also investigated using HPLC-DAD-HR-MS analysis. MATERIALS AND METHODS Three different doses (100, 200, and 300 mg/kg b.w.) of MLE were chosen to determine anti-inflammatory activity. The mice were given orally extracts and monitored their behavior and mortality for 14 days to evaluate acute toxicity. The volume of the paw and the histopathological evaluation were carried out. The polyphenolic phytoconstituents of MLE extract were identified using LC/MS analysis. The anti-inflammatory efficacy in silico and molecular docking simulations of these natural products were evaluated based on their cyclooxygenase (COX)-1 and 2 inhibitory effects. RESULTS This investigation showed the 95% ethanolic extract of Morinda longissima roots was found non-toxic up to 2000 mg/kg dose level in an acute study, neither showed mortality nor treatment-related signs of toxicity in mice. Eight anthraquinones and anthraquinone glycosides of Morinda longissima roots were identified by HPLC-DAD-HR-MS analysis. In the in vivo experiments, MLE was found to possess powerful anti-inflammatory activities in comparison with diclofenac sodium. The highest anti-inflammatory activity of MLE in mice was observed at a dose of 300 mg/kg body weight. The in silico analysis showed that seven out the eight anthraquinones and anthraquinone glycosides possess a selectivity index RCOX-2/COX-1 lower than 1, indicating that these compounds are selective against the COX-2 enzyme in the following the order: rubiadin-3-methyl ether < morindone morindone-6-methyl ether < morindone-5-methyl ether < damnacanthol < rubiadin < damnacanthol-3-O-β-primeveroside. The natural compounds with the best selectivity against the COX-2 enzyme are quercetin (9), rubiadin-3-methyl ether (7), and morindone (4), with RCOX2/COX1 ratios of 0.02, 0.03, and 0.19, respectively. When combined with the COX-2 protein in the MD research, quercetin and rubiadin-3-methyl ether greatly stabilized the backbone proteins and ligands. CONCLUSION In conclusion, the anthraquinones and ethanolic extract of Morinda longissima roots may help fight COX-2 inflammation. To develop novel treatments for inflammatory disorders linked to this one, these chemicals should be investigated more in the future.
Collapse
Affiliation(s)
- Hafidha Mehallah
- Pharmacognosy & Api Phytotherapy Laboratory, Abdelhamid Ibn Badis University Mostaganem (27000), Algeria
| | - Noureddine Djebli
- Pharmacognosy & Api Phytotherapy Laboratory, Abdelhamid Ibn Badis University Mostaganem (27000), Algeria.
| | - Pham Ngoc Khanh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam; Graduated University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Nguyen Xuan Ha
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam; Graduated University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Vu Thi Ha
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Tran Thu Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Do Dinh Tung
- Saint Paul General Hospital, 12A Chu Van An Street, Ba Dinh District, Hanoi, Viet Nam
| | - Nguyen Manh Cuong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam; Graduated University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
17
|
Nieto Camacho A, Baca Ibarra II, Huerta-Reyes M. Antioxidant and Anti-Inflammatory Profiles of Two Mexican Heteropterys Species and Their Relevance for the Treatment of Mental Diseases: H. brachiata (L.) DC. and H. cotinifolia A. Juss. (Malpighiaceae). Molecules 2024; 29:3053. [PMID: 38999004 PMCID: PMC11243223 DOI: 10.3390/molecules29133053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Depression and anxiety are recognized as the most common mental diseases worldwide. New approaches have considered different therapeutic targets, such as oxidative stress and the inflammation process, due to their close association with the establishment and progression of mental diseases. In the present study, we evaluated the antioxidant and anti-inflammatory activities of the methanolic extracts of the plant species Heteropterys brachiata and Heteropterys cotinifolia and their main compounds, chlorogenic acid and rutin, as potential complementary therapeutic tools for the treatment of anxiety and depression, since the antidepressant and anxiolytic activities of these methanolic extracts have been shown previously. Additionally, we also evaluated their inhibitory activity on the enzyme acetylcholinesterase (AChE). Our results revealed that both species exhibited potent antioxidant activity (>90%) through the TBARS assay, while by means of the DPPH assay, only H. cotinifolia exerted potent antioxidant activity (>90%); additionally, low metal chelating activity (<40%) was detected for all samples tested in the ferrozine assay. The methanolic extracts of H. brachiata and H. cotinifolia exhibited significant anti-inflammatory activities in the TPA-induced ear edema, while only H. cotinifolia exerted significant anti-inflammatory activities in the MPO assay (>45%) and also exhibited a higher percentage of inhibition on AChE of even twice (>80%) as high as the control in concentrations of 100 and 1000 µg/mL. Thus, the potent antioxidant and inflammatory properties and the inhibition of AChE may be involved in the antidepressant activities of the species H. cotinifolia, which would be positioned as a candidate for study in drug development as an alternative in the treatment of depression.
Collapse
Affiliation(s)
- Antonio Nieto Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico;
| | - Itzel Isaura Baca Ibarra
- Bioterio, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Ciudad de México, Mexico;
| | - Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc 06720, Ciudad de México, Mexico
| |
Collapse
|
18
|
Islam MT, Bappi MH, Bhuia MS, Ansari SA, Ansari IA, Shill MC, Albayouk T, Saleh N, El-Shazly M, El-Nashar HAS. Anti-inflammatory effects of thymol: an emphasis on the molecular interactions through in vivo approach and molecular dynamic simulations. Front Chem 2024; 12:1376783. [PMID: 38983677 PMCID: PMC11231963 DOI: 10.3389/fchem.2024.1376783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 07/11/2024] Open
Abstract
Thymol (THY), as the natural monoterpene phenol, acts against oxidative stress and inflammatory processes. This study aimed to evaluate the anti-inflammatory effects and possible molecular mechanisms of THY via formalin-induced mouse and egg albumin-induced chick models alongside molecular docking and molecular dynamic (MD) simulations. THY (7.5, 15, and 30 mg/kg) was investigated, compared to celecoxib and ketoprofen (42 mg/kg), as anti-inflammatory standards. THY dose-dependently and significantly (p < 0.05) decreased paw-licking and edema diameter parameters in formalin (phases I and II) and egg albumin-induced models. Moreover, THY (15 mg/kg) exerted better anti-inflammatory effects in combination with the standard drug ketoprofen than alone and with celecoxib. In silico studies demonstrated elevated binding affinities of THY with cyclooxygenase-2 (COX-2) than the COX-1 enzyme, and the ligand binds at a similar location where ketoprofen and celecoxib interact. The results of MD simulations confirmed the stability of the test ligand. THY exerted anti-inflammatory effects on Swiss mice and young chicks, possibly by interacting with COX-2. As a conclusion, THY might be a hopeful drug candidate for the management of inflammatory disorders.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Manik Chanda Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Tala Albayouk
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Na'il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
19
|
Liu Q, Zhao Y, Dong S, Bai X, Chen B, Liu X, Shen J, Zhu D. Characteristics of Neutrophil Migration and Function in Acute Inflammation Induced by Zymosan and Carrageenan in the Mice Air Pouch Model. Inflammation 2024:10.1007/s10753-024-02064-9. [PMID: 38902540 DOI: 10.1007/s10753-024-02064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
Deciphering the complex and redundant process of acute inflammation remains challenging. The failure of numerous clinical trials assessing anti-inflammation agents which had promising preclinical effects inevitably questions the validity of current animal models of inflammation. This study aimed to better understand the process of immune inflammatory response and to select more suitable models to evaluate the effect of potential anti-inflammatory drugs. Zymosan and λ-carrageenan are the most used representatives of particulate and soluble irritants that trigger acute inflammation in the air pouch inflammation model. When zymosan was used, the number of exudate cells first increased at 4 h-8 h, followed by a drop at 12 h-24 h. While, the changes in number of leukocytes in peripheral blood and proportion of neutrophils in bone marrow have the opposite trend. Meanwhile, neutrophils released neutrophil extracellular traps (NETs) to clean zymosan particles. In contrast, the cell migration response to carrageenan increased during 4 h to 24 h, no obvious NETs were observed, and the number of leukocytes in peripheral blood increased and the proportion of neutrophils in bone marrow decreased slightly. This study indicated that although both zymosan and carrageenan are sterile irritants, the characteristics of the inflammatory response induced by each other were different. In the acute phase of inflammation, zymosan-stimulated neutrophils were mobilized, recruited, and engulfed, and then died by NETs. Carrageenan stimulated the production of cytokines/chemokines by neutrophils or macrophages, but did not lead to an obvious death by releasing NETs.
Collapse
Affiliation(s)
- Qi Liu
- School of Pharmacy, Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yubo Zhao
- School of Pharmacy, Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Shuai Dong
- School of Pharmacy, Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Xingyuan Bai
- School of Pharmacy, Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Bin Chen
- School of Pharmacy, Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China
| | - Xijuan Liu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Core Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jing Shen
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Core Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dan Zhu
- School of Pharmacy, Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
20
|
Thapliyal S, Vishnoi R, Murti Y, Kumar R, Chavan N, Rawat P, Joshi G, Dwivedi AR, Goel KK. Exploring anticancer properties of the phytoconstituents and comparative analysis of their chemical space parameters with USFDA-approved synthetic anticancer agents. Chem Biol Drug Des 2024; 103:e14561. [PMID: 38862268 DOI: 10.1111/cbdd.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
The present review article thoroughly analyses natural products and their derived phytoconstituents as a rich source of plausible anticancer drugs. The study thoroughly explores the chemical components derived from various natural sources, thus emphasizing their unique structural characteristics and therapeutic potential as an anticancer agent. The review contains the critical chemical constituents' in-depth molecular mechanisms, their source's chemical structures and the categories. The review also comprises an exhaustive and comprehensive analysis of different chemical spacing parameters of the anticancer agents derived from natural products. It compares them with USFDA-approved synthetic anticancer drugs up to 2020, thus providing a meaningful understanding of the relationship between natural and synthetic compounds portraying the anticancer assets. The review also delves more deeply into the chemical analysis of the heterocyclic moieties from the natural product arena, illustrating the anticancer mechanisms. The present article is, therefore, expected to serve as a valuable resource for natural product and medicinal chemists, encouraging and promoting an integrated approach to exploit the potential of natural products in drug discovery development and translational research, which have a prerequisite of bench to bedside approach. The work could guide researchers toward innovative approaches for the ever-evolving field of anticancer drug discovery.
Collapse
Affiliation(s)
- Somesh Thapliyal
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, India
| | - Ritu Vishnoi
- Department of Botany, Hariom Saraswati PG College, Dhanauri, Haridwar, Uttarakhand, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Ghudda, Bathinda, India
| | - Nirja Chavan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Pramod Rawat
- Graphic Era (Deemed to be University) Clement Town Dehradun, Dehradun, India
- Graphic Era Hill University Clement Town Dehradun, Dehradun, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be) University, Hyderabad, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, Uttarakhand, India
| |
Collapse
|
21
|
Lefebvre È, Tawil N, Yahia L. Transdermal Delivery of Cannabidiol for the Management of Acute Inflammatory Pain: A Comprehensive Review of the Literature. Int J Mol Sci 2024; 25:5858. [PMID: 38892047 PMCID: PMC11172078 DOI: 10.3390/ijms25115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
The emerging field of nanotechnology has paved the way for revolutionary advancements in drug delivery systems, with nanosystems emerging as a promising avenue for enhancing the therapeutic potential and the stability of various bioactive compounds. Among these, cannabidiol (CBD), the non-psychotropic compound of the Cannabis sativa plant, has gained attention for its therapeutic properties. Consequently, researchers have devoted significant efforts to unlock the full potential of CBD's clinical benefits, where various nanosystems and excipients have emerged to overcome challenges associated with its bioavailability, stability, and controlled release for its transdermal application. Therefore, this comprehensive review aims to explain CBD's role in managing acute inflammatory pain and offers an overview of the state of the art of existing delivery systems and excipients for CBD. To summarize this review, a summary of the cannabinoids and therapeutical targets of CBD will be discussed, followed by its conventional modes of administration. The transdermal route of administration and the current topical and transdermal delivery systems will also be reviewed. This review will conclude with an overview of in vivo techniques that allow the evaluation of the anti-inflammatory and analgesic potentials of these systems.
Collapse
Affiliation(s)
- Ève Lefebvre
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada;
| | - Nancy Tawil
- Qeen BioTechnologies, Gatineau, QC J9J 3K3, Canada;
| | - L’Hocine Yahia
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada;
| |
Collapse
|
22
|
Viola H, Chen LH, Jo S, Washington K, Selva C, Li A, Feng D, Giacalone V, Stephenson ST, Cottrill K, Mohammed A, Williams E, Qu X, Lam W, Ng NL, Fitzpatrick A, Grunwell J, Tirouvanziam R, Takayama S. HIGH THROUGHPUT QUANTITATION OF HUMAN NEUTROPHIL RECRUITMENT AND FUNCTIONAL RESPONSES IN AN AIR-BLOOD BARRIER ARRAY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593624. [PMID: 38798413 PMCID: PMC11118313 DOI: 10.1101/2024.05.10.593624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress towards therapeutics. Namely, high throughput therapeutic screening systems typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well Leukocyte recruitment in an Air-Blood Barrier Array (L-ABBA-96) that enables in vivo -like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry. We modeled acute respiratory distress syndrome (ARDS) with neutrophil recruitment to 20 ng/mL epithelial-side interleukin 8 (IL-8) and found a dose dependent reduction in recruitment with physiologic doses of baricitinib, a JAK1/2 inhibitor recently FDA-approved for severe COVID-19 ARDS. Additionally, neutrophil recruitment to patient-derived cystic fibrosis sputum supernatant induced disease-mimetic recruitment and activation of healthy donor neutrophils and upregulated endothelial e-selectin. Compared to 24-well assays, the L-ABBA-96 reduces required patient sample volumes by 25 times per well and quadruples throughput per plate. Compared to microfluidic assays, the L-ABBA-96 recruits two orders of magnitude more neutrophils per well, enabling downstream flow cytometry and other standard biochemical assays. This novel pairing of high-throughput in vitro modeling of organ-level lung function with parallel high-throughput leukocyte phenotyping substantially advances opportunities for pathophysiological studies, personalized medicine, and drug testing applications.
Collapse
|
23
|
Eisen A, Pioro EP, Goutman SA, Kiernan MC. Nanoplastics and Neurodegeneration in ALS. Brain Sci 2024; 14:471. [PMID: 38790450 PMCID: PMC11119293 DOI: 10.3390/brainsci14050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Plastic production, which exceeds one million tons per year, is of global concern. The constituent low-density polymers enable spread over large distances and micro/nano particles (MNPLs) induce organ toxicity via digestion, inhalation, and skin contact. Particles have been documented in all human tissues including breast milk. MNPLs, especially weathered particles, can breach the blood-brain barrier, inducing neurotoxicity. This has been documented in non-human species, and in human-induced pluripotent stem cell lines. Within the brain, MNPLs initiate an inflammatory response with pro-inflammatory cytokine production, oxidative stress with generation of reactive oxygen species, and mitochondrial dysfunction. Glutamate and GABA neurotransmitter dysfunction also ensues with alteration of excitatory/inhibitory balance in favor of reduced inhibition and resultant neuro-excitation. Inflammation and cortical hyperexcitability are key abnormalities involved in the pathogenic cascade of amyotrophic lateral sclerosis (ALS) and are intricately related to the mislocalization and aggregation of TDP-43, a hallmark of ALS. Water and many foods contain MNPLs and in humans, ingestion is the main form of exposure. Digestion of plastics within the gut can alter their properties, rendering them more toxic, and they cause gut microbiome dysbiosis and a dysfunctional gut-brain axis. This is recognized as a trigger and/or aggravating factor for ALS. ALS is associated with a long (years or decades) preclinical period and neonates and infants are exposed to MNPLs through breast milk, milk substitutes, and toys. This endangers a time of intense neurogenesis and establishment of neuronal circuitry, setting the stage for development of neurodegeneration in later life. MNPL neurotoxicity should be considered as a yet unrecognized risk factor for ALS and related diseases.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Erik P. Pioro
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | | |
Collapse
|
24
|
Shen GD, Zhang YY, Yang NQ, Yang T, Wang T, Lu SC, Wang JY, Wang YS, Yang JH. N-alkylamides from Litsea cubeba (Lour.) Pers. with potential anti-inflammatory activity. Nat Prod Res 2024; 38:1727-1738. [PMID: 37328937 DOI: 10.1080/14786419.2023.2222216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023]
Abstract
Six amides, including a new N-alkylamide (1), four known N-alkylamides (2-5) and one nicotinamide (6) were isolated from Litsea cubeba (Lour.) Pers., which is a pioneer herb traditionally utilized in medicine. Their structures were elucidated on the basis of 1D and 2D NMR experiments and by comparison of their spectroscopic and physical data with the literature values. Cubebamide (1) is a new cinnamoyltyraminealkylamide and possessed obvious anti-inflammatory activity against NO production with IC50 values of 18.45 μM. Further in-depth pharmacophore-based virtual screening and molecular docking were carried out to reveal the binding mode of the active compound inside the 5-LOX enzyme. The results indicate that L. cubeba, and the isolated amides might be useful in the development of lead compounds for the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Guo-Dong Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Yin-Yan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Nian-Qi Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Tong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Ting Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Shi-Cheng Lu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Jin-Yun Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Yun-Song Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| | - Jing-Hua Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, P.R. China
| |
Collapse
|
25
|
Liñán-Atero R, Aghababaei F, García SR, Hasiri Z, Ziogkas D, Moreno A, Hadidi M. Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants (Basel) 2024; 13:488. [PMID: 38671935 PMCID: PMC11047511 DOI: 10.3390/antiox13040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Plants have proven to be important sources for discovering new compounds that are useful in the treatment of various diseases due to their phytoconstituents. Clove (Syzygium aromaticum L.), an aromatic plant widely cultivated around the world, has been traditionally used for food preservation and medicinal purposes. In particular, clove essential oil (CEO) has attracted attention for containing various bioactive compounds, such as phenolics (eugenol and eugenol acetate), terpenes (β-caryophyllene and α-humulene), and hydrocarbons. These constituents have found applications in cosmetics, food, and medicine industries due to their bioactivity. Pharmacologically, CEO has been tested against a variety of parasites and pathogenic microorganisms, demonstrating antibacterial and antifungal properties. Additionally, many studies have also demonstrated the analgesic, antioxidant, anticancer, antiseptic, and anti-inflammatory effects of this essential oil. However, CEO could degrade for different reasons, impacting its quality and bioactivity. To address this challenge, encapsulation is viewed as a promising strategy that could prolong the shelf life of CEO, improving its physicochemical stability and application in various areas. This review examines the phytochemical composition and biological activities of CEO and its constituents, as well as extraction methods to obtain it. Moreover, encapsulation strategies for CEO and numerous applications in different food fields are also highlighted.
Collapse
Affiliation(s)
- Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | | | - Samuel Rodríguez García
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran;
| | - Dimitrios Ziogkas
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
26
|
Zafar F, Shaheen G, Asif HM, Farhan M, Muteeb G, Aatif M. Onosma bracteatum Wall Aqueous-Ethanolic Extract Suppresses Complete Freund's Adjuvant-Induced Arthritis in Rats via Regulation of TNF-α, IL-6, and C-Reactive Protein. Molecules 2024; 29:1830. [PMID: 38675650 PMCID: PMC11052358 DOI: 10.3390/molecules29081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Onosma bracteatum Wall (O. bracteatum) has been used traditionally for the management of arthritis; however, its therapeutic potential warrants further investigation. This study aimed to evaluate the anti-arthritic effects of the aqueous-ethanolic extract of O. bracteatum leaves (AeOB) in a rat model of complete Freund's adjuvant (CFA)-induced arthritis. Rats were treated with AeOB (250, 500, and 750 mg/kg), indomethacin (10 mg/kg), or a vehicle control from days 8 to 28 post-CFA injection. Arthritic score, paw diameter, and body weight were monitored at regular intervals. X-ray radiographs and histopathological analysis were performed to assess arthritic severity. Inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP) were quantified by qPCR and icromatography. Phytochemical analysis of AeOB revealed alkaloids, flavonoids, phenols, tannins, Saponins, and glycosides. AeOB also exhibited antioxidant potential with an IC50 of 73.22 µg/mL in a DPPH assay. AeOB and diclofenac exhibited anti-inflammatory and anti-arthritic activities. Rats treated with AeOB at 750 mg/kg and indomethacin showed significantly reduced arthritic symptoms and joint inflammation versus the CFA control. The AeOB treatment downregulated TNF-α and IL-6 and decreased CRP levels compared with arthritic rats. Radiography and histopathology also showed improved prognosis. These findings demonstrate the anti-arthritic potential of AeOB leaves.
Collapse
Affiliation(s)
- Farah Zafar
- Department of Eastern Medicine, University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (G.S.); (H.M.A.)
| | - Ghazala Shaheen
- Department of Eastern Medicine, University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (G.S.); (H.M.A.)
| | - Hafiz Muhammad Asif
- Department of Eastern Medicine, University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (G.S.); (H.M.A.)
| | - Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa-31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
27
|
Chowdhury R, Bhuia S, Rakib AI, Al Hasan S, Shill MC, El-Nashar HAS, El-Shazly M, Islam MT. Gigantol, a promising natural drug for inflammation: a literature review and computational based study. Nat Prod Res 2024:1-17. [PMID: 38623737 DOI: 10.1080/14786419.2024.2340042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Gigantol, a bibenzyl compound extracted from various medicinal plants, has shown a number of biological activities, making it an attractive candidate for potential medical applications. This systematic review aims to shed light on gigantol's promising role in inflammation treatment and its underlying mechanisms. Gigantol exhibits potential anti-inflammatory properties in pre-clinical pharmacological test systems. It effectively reduced the levels of pro-inflammatory markers and arachidonic acid metabolites through various pathways, such as NF-κB, AKT, PI3K, and JNK/cPLA2/12-LOX. The in-silico investigations demonstrated that the MMP-13 enzyme served as the most promising target for gigantol with highest binding affinity (docking score = -8.8 kcal/mol). Encouragingly, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of gigantol confirmed its compatibility with the necessary physiochemical, pharmacokinetic, and toxicity properties, bolstering its potential as a drug candidate. Gigantol, with its well-documented anti-inflammatory properties, could be a promising agent for treating inflammation in the near future.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioluster Research Center, Dhaka, Bangladesh
| | - Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioluster Research Center, Dhaka, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| |
Collapse
|
28
|
Fatima K, Asif M, Farooq U, Gilani SJ, Bin Jumah MN, Ahmed MM. Antioxidant and Anti-inflammatory Applications of Aerva persica Aqueous-Root Extract-Mediated Synthesis of ZnO Nanoparticles. ACS OMEGA 2024; 9:15882-15892. [PMID: 38617686 PMCID: PMC11007848 DOI: 10.1021/acsomega.3c08143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
In the present study, ZnO nanoparticles were synthesized by using aqueous extracts of Aerva persica roots. Characterization of as-prepared ZnO nanoparticles was carried out using different techniques, including powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and BET surface area analysis. Morphological analysis confirmed the small, aggregated flake-shaped morphology of as-synthesized ZnO nanostructures. The as-prepared ZnO nanoparticles were analyzed for their potential application as anti-inflammatory (using in vivo inhibition of carrageenan induced paw edema) and antioxidant (using in vitro radical scavenging activity) agents. The ZnO nanoparticles were found to have a potent antioxidant and anti-inflammatory activity comparable to that of standard ascorbic acid (antioxidant) and indomethacin (anti-inflammatory drug). Therefore, due to their ecofriendly synthesis, nontoxicity, and biocompatible nature, zinc oxide nanoparticles synthesized successfully from roots extract of the plant Aerva persica with potent efficiencies can be utilized for different biomedical applications.
Collapse
Affiliation(s)
- Kaneez Fatima
- Faculty
of Pharmacy, Maulana Azad University, Bujhawad, Teh: Luni, Jodhpur 342802, Rajasthan, India
- INTI
International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Mohammad Asif
- Faculty
of Pharmacy, Lachoo Memorial College of
Science and Technology, Shastri Nagar, Sector A, Jodhpur 342001, Rajasthan, India
| | - Umar Farooq
- Chemistry
Department, School of Basic Sciences, Galgotias
University, Greater
Noida 201309, India
| | - Sadaf Jamal Gilani
- Department
of Basic Health Sciences, Foundation Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin Jumah
- Biology Department,
College of Science, Princess Nourah bint
Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment
and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi
Society for Applied Science, Princess Nourah
bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
29
|
Johri N, Matreja PS, Agarwal S, Nagar P, Kumar D, Maurya A. Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions. J Cardiovasc Transl Res 2024; 17:345-355. [PMID: 37851312 DOI: 10.1007/s12265-023-10445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Ischemic heart disease, which results from plaque formation in the coronary arteries, hinders the flow of oxygenated blood to the heart, leading to ischemia. Reperfusion injury remains a significant challenge for researchers, and the mechanisms underlying myocardial ischemia-reperfusion injury (MIRI) are not entirely understood. The review directs future research into potential targets in clinical treatment based on our present understanding of the pathophysiological mechanisms of MIRI. The study provides insights into the mechanisms underlying MIRI and offers direction for future research in this area. The use of targeted therapies may hold promise in improving cardiac function in the elderly and minimizing the adverse effects of revascularization therapies. The purpose of this review is to analyze the role of activated protein C (APC) in the pathogenesis of ischemic heart disease, heart failure, and myocardial ischemia-reperfusion injury, and discuss the potential of APC-based therapeutics.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India.
- School of Health & Psychological Sciences, City, University of London, London, United Kingdom.
| | - Prithpal S Matreja
- Department of Pharmacology, Teerthanker Mahaveer Medical College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Shalabh Agarwal
- Department of Cardiology, Teerthanker Mahaveer Hospital & Research Centre, Moradabad, Uttar Pradesh, India
| | - Priya Nagar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Deepanshu Kumar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Aditya Maurya
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
30
|
Ahmed EA, Alzahrani AM, Abdelsalam SA, Ibrahim HIM. Flavipin from fungi as a potential inhibitor of rheumatoid arthritis signaling molecules. Inflammopharmacology 2024; 32:1171-1186. [PMID: 38349589 DOI: 10.1007/s10787-024-01429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/02/2024] [Indexed: 04/11/2024]
Abstract
Flavipin, a fungal lower molecular weight biomolecule (MW 196.16 g/mol), has not been yet extensively studied for beneficial preclinical and clinical applications. In recent years, various preclinical mouse models including adjuvant-induced arthritis (AIA) were employed to understand mechanisms associated with Rheumatoid arthritis (RA) and to develop new therapeutic drugs. In the current study, we studied the inhibitory effect of Flavipin on major signaling molecules involved in the inflammatory response during RA using both in-silico virtual interaction and in vivo mouse model of AIA. Our in-silico results clarified that Flavipin interacts with the tumor necrosis factor alpha (TNF-α) through conventional hydrogen binding (H-H) at one of TNF-α critical amino acids tyrosine residues, Tyr119, with binding energy (b.e.) -5.9. In addition, Flavipin binds to ATP-binging sites of the Jesus kinases, JAK1, JAK2 and JAK3, through H-H (b. e. between -5.8 and -6.1) and then it may inhibit JAKs, regulators of RA signaling molecules. Moreover, our molecular dynamics stimulation for the docked TNF-α/Flavipin complex confirmed the specificity and the stability of the interaction. In vitro, Flavipin is not toxic to normal cells at doses below 50 µM (its IC50 in normal fibroblast cell line was above 100 µM). However, in vivo, the arthritis score and hind paw oedema parameters were modulated in Flavipin treated mice. Consistent with the in-silico results the levels of the TNF-α, the nuclear transcription factor kappaB (NF-κB) and the signal transduction and activator of transcription (STAT3, downstream of JAKs) were modulated at joint tissues of the hind-paw of Flavipin/AIA treated mice. Our data suggest Flavipin as a potential therapeutic agent for arthritis can inhibit RA major signaling molecules.
Collapse
Affiliation(s)
- Emad A Ahmed
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia.
- Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Asyut, 71516, Egypt.
| | - Abdulaah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia
| | - Salah A Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Asyut, 71516, Egypt
| | - Hairul-Islam M Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofouf, Alhasa, Saudi Arabia
- Pondicherry Centre for Biological Science and Educational Trust, Kottakuppam, Pondicherry, 605104, India
| |
Collapse
|
31
|
Morais MG, Saldanha AA, Mendes IC, Rodrigues JPC, Azevedo LS, Ferreira LM, Amado PA, Zanuncio VSS, Farias KS, Silva DB, Pinto FCH, Soares AC, Lima LARS. Antinociceptive and anti-inflammatory potential, and chemical characterization of the dichloromethane fraction of Solanum lycocarpum (Solanaceae) ripe fruits by LC-DAD-MS. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117640. [PMID: 38135235 DOI: 10.1016/j.jep.2023.117640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum lycocarpum A. St. Hil. (Solanaceae) is a species from the Brazilian Cerrado, exhibiting several medicinal properties, being used by the population in the treatment of ulcers, bronchitis, asthma and hepatitis, which involve inflammatory processes. AIM OF THIS STUDY This study aimed to chemically characterize the dichloromethane fraction (DCM), as well as verify its antinociceptive, anti-inflammatory and antioxidant potential. MATERIALS AND METHODS The DCM fraction was obtained by partitioning the ethanol extract. The chemical constituents of the DCM fraction were characterized by LC-DAD-MS. The DPPH and FRAP assays were used to evaluate the antioxidant potential. The carrageenan-induced paw edema model was used to assess the anti-inflammatory effects, and the inflammatory infiltrate was evaluated by qualitative and quantitative histological analyses. The antinociceptive action of the DCM fraction was evaluated by acetic acid-induced abdominal writhing test, formalin-induced nociception and hot-plate test. RESULTS Steroidal alkaloids solasonine, solasodine and solamargine, as well as the alkaloid peiminine/imperialine and caffeoylquinic acids, were annotated in DCM fraction by LC-DAD-MS. The DCM fraction showed antioxidative action in the in vitro DPPH and FRAP tests, as well as an anti-inflammatory effect for the three evaluated doses of 30, 100 and 300 mg/kg in the fourth and sixth hours after the administration of carrageenan. The histological analyses evidenced considerably reduction in leukocyte migration and the number of polymorphonuclear leukocytes. The study also demonstrated antinociceptive activity for the DCM fraction, which reduced abdominal writhing at three concentrations evaluated, as well as a decrease in paw licking in the formalin-induced nociception test both in the neurogenic phase and the inflammatory phase, with greater effectiveness compared to the anti-inflammatory indomethacin. The DCM fraction also increased the latency time of the animals in the hot plate test 60 min after treatment, although it did not seem to involve the opioidergic system. CONCLUSION This work evidenced that the dichloromethane fraction of S. lycocarpum fruit possesses antinociceptive and anti-inflammatory potential, which supports its use in folk medicine for management inflammatory conditions.
Collapse
Affiliation(s)
- Melissa G Morais
- Laboratory of Pharmacology of Pain and Inflammation, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil; Laboratory of Phytochemistry, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Aline A Saldanha
- Laboratory of Pharmacology of Pain and Inflammation, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Iara C Mendes
- Laboratory of Phytochemistry, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - João Paulo C Rodrigues
- Laboratory of Pharmacology of Pain and Inflammation, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Lucas S Azevedo
- Laboratory of Phytochemistry, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Letícia M Ferreira
- Laboratory of Experimental Pathology, Federal University of São João Del-Rei, Campus Dom Bosco, São João del Rei, 36301-160, Minas Gerais, Brazil
| | - Paula A Amado
- Laboratory of Phytochemistry, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Vanessa S S Zanuncio
- Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, Mato Grosso do Sul, Brazil
| | - Katyuce S Farias
- Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, Mato Grosso do Sul, Brazil
| | - Denise B Silva
- Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Federal University of Mato Grosso do Sul, Campo Grande, 79070-900, Mato Grosso do Sul, Brazil
| | - Flávia C H Pinto
- Laboratory of Experimental Pathology, Federal University of São João Del-Rei, Campus Dom Bosco, São João del Rei, 36301-160, Minas Gerais, Brazil
| | - Adriana C Soares
- Laboratory of Pharmacology of Pain and Inflammation, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Luciana A R S Lima
- Laboratory of Phytochemistry, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, 35501-296, Minas Gerais, Brazil.
| |
Collapse
|
32
|
Seymenska D, Teneva D, Nikolova I, Benbassat N, Denev P. In Vivo Anti-Inflammatory and Antinociceptive Activities of Black Elder ( Sambucus nigra L.) Fruit and Flower Extracts. Pharmaceuticals (Basel) 2024; 17:409. [PMID: 38675372 PMCID: PMC11054073 DOI: 10.3390/ph17040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Sambucus nigra L. (S. nigra, SN) or black elder is a traditional medicinal plant widely used worldwide for therapeutic and dietary purposes. The aim of the current study was to investigate the anti-inflammatory and antinociceptive activities of black elder fruit and flower extracts (SNFrE and SNFlE, respectively). The primary polyphenol constituents in the flower extract were flavonoids and phenolic acids, while anthocyanins were the main components in the fruit extract. SNFrE revealed pronounced and dose-dependent in vivo anti-inflammatory activity assessed by the cotton pellet-induced granuloma test. Doses of 10, 20, and 50 mg/kg BW of SNFrE reduced the weight of induced granuloma in rats by 20.3%, 20.5%, and 28.4%, respectively. At the highest dose (50 mg/kg BW), SNFrE had significant (p < 0.01) anti-inflammatory activity comparable to that of diclofenac, the reference compound used (10 mg/kg BW). In addition, the in vivo antinociceptive activity of the extracts in mice was estimated using the acetic-acid-induced writhing test. Both extracts at doses of 50 mg/kg BW inhibited the abdominal contractions induced by the acetic acid significantly comparing to the control group (p < 0.01). Our findings indicate that black elder extracts and particularly SNFrE possess anti-inflammatory and antinociceptive activities, providing experimental evidence for the use of S. nigra in traditional medicine.
Collapse
Affiliation(s)
- Daniela Seymenska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria or (D.S.); (N.B.)
| | - Desislava Teneva
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| | - Irina Nikolova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria;
| | - Niko Benbassat
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria or (D.S.); (N.B.)
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
33
|
Fabian MCP, Astorga RMN, Atis AAG, Pilapil LAE, Hernandez CC. Anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark through bioassay-guided fractionation and liquid chromatography-tandem mass spectrometry. Front Pharmacol 2024; 15:1349725. [PMID: 38523640 PMCID: PMC10957545 DOI: 10.3389/fphar.2024.1349725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Women have been found to be at a higher risk of morbidity and mortality from type 2 diabetes mellitus (T2DM) and asthma. α-Glucosidase inhibitors have been used to treat T2DM, and arachidonic acid 15-lipoxygenase (ALOX15) inhibitors have been suggested to be used as treatments for asthma and T2DM. Compounds that inhibit both enzymes may be studied as potential treatments for people with both T2DM and asthma. This study aimed to determine potential anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark. A bioassay-guided fractionation framework was used to generate bioactive fractions from C. intermedia stem and D. dao bark. Subsequently, dereplication through ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and database searching was performed to putatively identify the components of one bioactive fraction from each plant. Seven compounds were putatively identified from the C. intermedia stem active fraction, and six of these compounds were putatively identified from this plant for the first time. Nine compounds were putatively identified from the D. dao bark active fraction, and seven of these compounds were putatively identified from this plant for the first time. One putative compound from the C. intermedia stem active fraction (corilagin) has been previously reported to have inhibitory activity against both α-glucosidase and 15-lipoxygenase-1. It is suggested that further studies on the potential of corilagin as an anti-diabetic and anti-inflammatory treatment should be pursued based on its several beneficial pharmacological activities and its low reported toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Christine Chichioco Hernandez
- Bioorganic and Natural Products Laboratory, Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
34
|
Lessa TLADS, Correia TML, Santos TCD, da Silva RP, Silva BPD, Cavallini MCM, Rocha LS, Souza Peixoto A, Cugnasca BS, Cervi G, Correra TC, Gonçalves AC, Festuccia WTL, Cunha TM, Yatsuda R, de Magalhães ACM, Dos Santos AA, Meotti FC, Queiroz RF. A novel diselenide attenuates the carrageenan-induced inflammation by reducing neutrophil infiltration and the resulting tissue damage in mice. Free Radic Res 2024; 58:229-248. [PMID: 38588405 DOI: 10.1080/10715762.2024.2336566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/06/2024] [Indexed: 04/10/2024]
Abstract
Selenium-containing compounds have emerged as promising treatment for redox-based and inflammatory diseases. This study aimed to investigate the in vitro and in vivo anti-inflammatory activity of a novel diselenide named as dibenzyl[diselanediyIbis(propane-3-1diyl)] dicarbamate (DD). DD reacted with HOCl (k = 9.2 x 107 M-1s-1), like glutathione (k = 1.2 x 108 M-1s-1), yielding seleninic and selenonic acid derivatives, and it also decreased HOCl formation by activated human neutrophils (IC50=4.6 μM) and purified myeloperoxidase (MPO) (IC50=3.8 μM). However, tyrosine, MPO-I and MPO-II substrates, did not restore HOCl formation in presence of DD. DD inhibited the oxidative burst in dHL-60 cells with no toxicity up to 25 µM for 48h. Next, an intraperitoneal administration of 25, 50, and 75 mg/kg DD decreased total leukocyte, neutrophil chemotaxis, and inflammation markers (MPO activity, lipid peroxidation, albumin exudation, nitrite, TNF-α, IL-1β, CXCL1/KC, and CXCL2/MIP-2) on a murine model of carrageenan-induced peritonitis. Likewise, 50 mg/kg DD (i.p.) decreased carrageenan-induced paw edema over 5h. Histological and immunohistochemistry analyses of the paw tissue showed decreased neutrophil count, edema area, and MPO, carbonylated, and nitrated protein staining. Furthermore, DD treatment decreased the fMLP-induced chemotaxis of human neutrophils (IC50=3.7 μM) in vitro with no toxicity. Lastly, DD presented no toxicity in a single-dose model using mice (50 mg/kg, i.p.) over 15 days and in Artemia salina bioassay (50 to 2000 µM), corroborating findings from in silico toxicological study. Altogether, these results demonstrate that DD attenuates carrageenan-induced inflammation mainly by reducing neutrophil migration and the resulting damage from MPO-mediated oxidative burst.
Collapse
Affiliation(s)
- Tássia Liz Araújo Dos Santos Lessa
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
| | - Thiago Macêdo Lopes Correia
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Talita Costa Dos Santos
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | | - Maria Cláudia Magalhães Cavallini
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Leonardo Silva Rocha
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
| | | | | | - Gustavo Cervi
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago C Correra
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Regiane Yatsuda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Amélia Cristina Mendes de Magalhães
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | | - Raphael Ferreira Queiroz
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
- Departamento de Ciências da Saúde, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil
| |
Collapse
|
35
|
Weimer P, de Araújo Lock G, Amaral Antunes Nunes K, Rossi RC, Koester LS. Association effect of the phytocannabinoid beta-caryophyllene and indomethacin carried in topical nanoemulgels: an evaluation by in vivo anti-inflammatory model. Nat Prod Res 2024:1-7. [PMID: 38383999 DOI: 10.1080/14786419.2024.2317887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
The sesquiterpene β-caryophyllene, classified as a phytocannabinoid compound, has been widely studied owing to its multi-target action. In addition, this compound has demonstrated application as a skin permeation promoter. In this context, this study aimed to evaluate the feasibility of associating β-caryophyllene and indomethacin in the oily core of hydrogel thickened nanoemulsions, as well as, to evaluate the in vivo anti-inflammatory effect of this association by croton oil ear edoema induced model. After topical application, the nanoemulgels resulted in increased edoema mass when compared to the substances in their free form. Overall, the results differed from expected, and the data found may be owing to the specificities of the in vivo model applied, as well as the tested ratio between β-caryophyllene and indomethacin (200:1). New perspectives arise from the data found regarding the evaluation of the association of terpenic compounds with indomethacin in nanoemulsified systems.
Collapse
Affiliation(s)
- Patrícia Weimer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Graziela de Araújo Lock
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ketly Amaral Antunes Nunes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rochele Cassanta Rossi
- Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil
- Programa de Pós-Graduação em Nutrição e Alimentos da Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Rio Grande do Sul, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
36
|
da Fonseca CAR, Prado VC, Paltian JJ, Kazmierczak JC, Schumacher RF, Sari MHM, Cordeiro LM, da Silva AF, Soares FAA, Oliboni RDS, Luchese C, Cruz L, Wilhelm EA. 4-(Phenylselanyl)-2H-chromen-2-one-Loaded Nanocapsule Suspension-A Promising Breakthrough in Pain Management: Comprehensive Molecular Docking, Formulation Design, and Toxicological and Pharmacological Assessments in Mice. Pharmaceutics 2024; 16:269. [PMID: 38399323 PMCID: PMC10892109 DOI: 10.3390/pharmaceutics16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Therapies for the treatment of pain and inflammation continue to pose a global challenge, emphasizing the significant impact of pain on patients' quality of life. Therefore, this study aimed to investigate the effects of 4-(Phenylselanyl)-2H-chromen-2-one (4-PSCO) on pain-associated proteins through computational molecular docking tests. A new pharmaceutical formulation based on polymeric nanocapsules was developed and characterized. The potential toxicity of 4-PSCO was assessed using Caenorhabditis elegans and Swiss mice, and its pharmacological actions through acute nociception and inflammation tests were also assessed. Our results demonstrated that 4-PSCO, in its free form, exhibited high affinity for the selected receptors, including p38 MAP kinase, peptidyl arginine deiminase type 4, phosphoinositide 3-kinase, Janus kinase 2, toll-like receptor 4, and nuclear factor-kappa β. Both free and nanoencapsulated 4-PSCO showed no toxicity in nematodes and mice. Parameters related to oxidative stress and plasma markers showed no significant change. Both treatments demonstrated antinociceptive and anti-edematogenic effects in the glutamate and hot plate tests. The nanoencapsulated form exhibited a more prolonged effect, reducing mechanical hypersensitivity in an inflammatory pain model. These findings underscore the promising potential of 4-PSCO as an alternative for the development of more effective and safer drugs for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Caren Aline Ramson da Fonseca
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Vinicius Costa Prado
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Jaini Janke Paltian
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Jean Carlo Kazmierczak
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | - Ricardo Frederico Schumacher
- Graduate Program in Chemistry, Chemistry Department, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (J.C.K.); (R.F.S.)
| | | | - Larissa Marafiga Cordeiro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Aline Franzen da Silva
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Felix Alexandre Antunes Soares
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil; (L.M.C.); (A.F.d.S.); (F.A.A.S.)
| | - Robson da Silva Oliboni
- Center for Chemical, Pharmaceutical, and Food Sciences, CCQFA, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil;
| | - Cristiane Luchese
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Santa Maria, Santa Maria CEP 97105-900, RS, Brazil;
| | - Ethel Antunes Wilhelm
- Graduate Program in Biochemistry and Bioprospecting, Biochemical Pharmacology Research Laboratory, Federal University of Pelotas, Pelotas CEP 96010-900, RS, Brazil; (C.A.R.d.F.); (J.J.P.); (C.L.)
| |
Collapse
|
37
|
Coavoy-Sanchez SA, da Costa Marques LA, Costa SKP, Muscara MN. Role of Gasotransmitters in Inflammatory Edema. Antioxid Redox Signal 2024; 40:272-291. [PMID: 36974358 DOI: 10.1089/ars.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Significance: Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are, to date, the identified members of the gasotransmitter family, which consists of gaseous signaling molecules that play central roles in the regulation of a wide variety of physiological and pathophysiological processes, including inflammatory edema. Recent Advances: Recent studies show the potential anti-inflammatory and antiedematogenic effects of NO-, CO-, and H2S-donors in vivo. In general, it has been observed that the therapeutical effects of NO-donors are more relevant when administered at low doses at the onset of the inflammatory process. Regarding CO-donors, their antiedematogenic effects are mainly associated with inhibition of proinflammatory mediators (such as inducible NO synthase [iNOS]-derived NO), and the observed protective effects of H2S-donors seem to be mediated by reducing some proinflammatory enzyme activities. Critical Issues: The most recent investigations focus on the interactions among the gasotransmitters under different pathophysiological conditions. However, the biochemical/pharmacological nature of these interactions is neither general nor fully understood, although specifically dependent on the site where the inflammatory edema occurs. Future Directions: Considering the nature of the involved mechanisms, a deeper knowledge of the interactions among the gasotransmitters is mandatory. In addition, the development of new pharmacological tools, either donors or synthesis inhibitors of the three gasotransmitters, will certainly aid the basic investigations and open new strategies for the therapeutic treatment of inflammatory edema. Antioxid. Redox Signal. 40, 272-291.
Collapse
Affiliation(s)
| | | | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
38
|
Encarnação S, Lima K, Malú Q, Caldeira GI, Duarte MP, Rocha J, Lima BS, Silva O. An Integrated Approach to the Anti-Inflammatory, Antioxidant, and Genotoxic Potential of Portuguese Traditional Preparations from the Bark of Anacardium occidentale L. PLANTS (BASEL, SWITZERLAND) 2024; 13:420. [PMID: 38337956 PMCID: PMC10857173 DOI: 10.3390/plants13030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Anacardium occidentale L. stem bark Traditional Herbal Preparations (AoBTHPs) are widely used in traditional medicine to treat inflammatory conditions, such as diabetes. The present study aims to evaluate the anti-inflammatory, antioxidant, and genotoxic potential of red and white Portuguese AoBTHPs. Using a carrageenan-induced rat paw edema model, a significant anti-edema effect was observed for all tested doses of white AoBTHP (40.2, 71.5, and 127.0 mg/kg) and the two highest doses of red AoB THP (71.5 and 127.0 mg/kg). The anti-edema effect of red AoBTHP's highest dose was much more effective than indomethacin 10 mg/kg, Trolox 30 mg/kg, and Tempol 30 mg/kg. In DPPH, FRAP, and TAC using the phosphomolybdenum method, both types of AoBTHPs showed similar antioxidant activity and no genotoxicity up to 5000 µg/plate in the Ames test. The LC-UV/DAD-ESI/MS fingerprint allowed the identification of gallic and protocatechuic acids as the two main marker compounds and the presence of catechin, epicatechin, epigallocatechin gallate, and ellagic acid in both AoBTHPs. The obtained results support the validation of red and white AoB and their THPs as anti-inflammatory agents and contribute to the possible development of promising new therapeutic options to treat inflammatory conditions.
Collapse
Affiliation(s)
- Sofia Encarnação
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Katelene Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Quintino Malú
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Gonçalo I. Caldeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Maria Paula Duarte
- MEtRICs/NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Almada, Portugal;
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Beatriz Silva Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.E.); (K.L.); (Q.M.); (G.I.C.); (J.R.); (B.S.L.)
| |
Collapse
|
39
|
Qian HQ, Wu DC, Li CY, Liu XR, Han XK, Peng Y, Zhang H, Zhao BY, Zhao Y. A systematic review of traditional uses, phytochemistry, pharmacology and toxicity of Epimedium koreanum Nakai. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116957. [PMID: 37544344 DOI: 10.1016/j.jep.2023.116957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/08/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium koreanum Nakai (E. koreanum), a member of the genus Epimedium in the family Berberidaceae, is a well-known and well-liked traditional herb used as a "kidney tonic". For thousands of years, it has been utilized for renal yang deficiency, impotence, spermatorrhea, impotence, weakness of tendons and bones, rheumatic paralysis and discomfort, numbness, and constriction. AIM OF THE STUDY The paper aims to comprehensively in-depth, and methodically review the most recent research on the traditional uses, phytochemistry, pharmacology, and toxicity of E. koreanum. MATERIALS AND METHODS Scientific databases including Web of Science, PubMed, Google Scholar, Elsevier, Springer, ScienceDirect, Baidu Scholar, and CNKI and medicine books in China were searched for relevant information on E. koreanum. RESULTS In traditional uses, E. koreanum is frequently used to treat various diseases like erectile dysfunction, infertility, rheumatoid arthritis, osteoporosis, asthma, kidney-yang deficiency syndrome, etc. To date, more than 379 compounds have been discovered from various parts of E. koreanum, including flavonoids, lignans, organic acids, terpenoids, hydrocarbons, dihydrophenanthrene derivatives, alkaloids, and others. Research has revealed that the compounds and crude extracts have a wide range of pharmacological effects on the reproductive, cardiovascular, and nervous systems, as well as anti-osteoporosis, anti-tumor, antioxidant, anti-inflammatory, immunomodulatory, hepatoprotective, and antiviral properties. Besides, the crude extracts show potential hepatotoxicity. CONCLUSION Based on recent domestic and international research investigations, E. koreanum contains a wealth of chemical components with pronounced pharmacological activities. Its traditional uses are numerous, and the majority of these traditional uses have been supported by contemporary pharmacological investigations. Crude extracts, on the other hand, can result in hepatotoxicity. Therefore, additional in vivo and in vitro experimental research on the pharmacology and toxicology of E. koreanum are required in the future to assess its safety and efficacy. This will give a firmer scientific foundation for its safe application and the development of new drugs in the future.
Collapse
Affiliation(s)
- Hui-Qin Qian
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Dou-Can Wu
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Chun-Yan Li
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Xin-Ran Liu
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Xin-Ke Han
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Yuan Peng
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Han Zhang
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Bing-Yan Zhao
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Yuan Zhao
- Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
40
|
Covert LT, Patel H, Osman A, Duncan L, Dvergsten J, Truskey GA. Effect of type I interferon on engineered pediatric skeletal muscle: a promising model for juvenile dermatomyositis. Rheumatology (Oxford) 2024; 63:209-217. [PMID: 37094222 PMCID: PMC10765138 DOI: 10.1093/rheumatology/kead186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
OBJECTIVE To investigate pathogenic mechanisms underlying JDM, we defined the effect of type I IFN, IFN-α and IFN-β, on pediatric skeletal muscle function and expression of myositis-related proteins using an in vitro engineered human skeletal muscle model (myobundle). METHODS Primary myoblasts were isolated from three healthy pediatric donors and used to create myobundles that mimic functioning skeletal muscle in structural architecture and physiologic function. Myobundles were exposed to 0, 5, 10 or 20 ng/ml IFN-α or IFN-β for 7 days and then functionally tested under electrical stimulation and analyzed immunohistochemically for structural and myositis-related proteins. Additionally, IFN-β-exposed myobundles were treated with Janus kinase inhibitors (JAKis) tofacitinib and baricitinib. These myobundles were also analyzed for contractile force and immunohistochemistry. RESULTS IFN-β, but not IFN-α, was associated with decreased contractile tetanus force and slowed twitch kinetics. These effects were reversed by tofacitinib and baricitinib. Type I IFN paradoxically reduced myobundle fatigue, which did not reverse after JAKi. Additionally, type I IFN correlated with MHC I upregulation, which normalized after JAKi treatment, but expression of myositis-specific autoantigens Mi-2, melanocyte differentiation-associated protein 5 and the endoplasmic reticulum stress marker GRP78 were variable and donor specific after type I IFN exposure. CONCLUSION IFN-α and IFN-β have distinct effects on pediatric skeletal muscle and these effects can partially be reversed by JAKi treatment. This is the first study illustrating effective use of a three-dimensional human skeletal muscle model to investigate JDM pathogenesis and test novel therapeutics.
Collapse
Affiliation(s)
- Lauren T Covert
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Hailee Patel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Alaa Osman
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lavonia Duncan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jeffrey Dvergsten
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
41
|
Peralta L, Vásquez A, Marroquín N, Guerra L, Cruz SM, Cáceres A. In silico Molecular Docking Analysis of Three Molecules Isolated from Litsea guatemalensis Mez on Anti-inflammatory Receptors. Comb Chem High Throughput Screen 2024; 27:562-572. [PMID: 37231759 DOI: 10.2174/1386207326666230525152928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The Litsea genus has four native species from Mesoamerica. Litsea guatemalensis Mez. is a native tree, traditionally used as a condiment and herbal medicine in the region. It has demonstrated antimicrobial, aromatic, anti-inflammatory and antioxidant activity. Bioactive fractionation attributed the anti-inflammatory and anti-hyperalgesic activities to pinocembrin, scopoletin, and 5,7,3´4´-tetrahydroxy-isoflavone. In silico analysis, these molecules were analyzed on receptors involved in the anti-inflammatory process to determine which pathways they interact. OBJECTIVE To analyze and evaluate 5,7,3',4'-tetrahydroxyisoflavone, pinocembrin, and scopoletin using the in silico analysis against selected receptors involved in the inflammatory pathway. METHODS Known receptors involved in the anti-inflammatory process found as protein-ligand complex in the Protein Data Bank (PDB) were used as references for each receptor and compared with the molecules of interest. The GOLD-ChemScore function, provided by the software, was used to rank the complexes and visually inspect the overlap between the reference ligand and the poses of the studied metabolites. RESULTS 53 proteins were evaluated, each one in five conformations minimized by molecular dynamics. The scores obtained for dihydroorotate dehydrogenase were greater than 80 for the three molecules of interest, scores for cyclooxygenase 1 and glucocorticoid receptor were greater than 50, and identified residues with interaction in binding sites overlap with the reference ligands in these receptors. CONCLUSION The three molecules involved in the anti-inflammatory process of L. guatemalensis show in silico high affinity to the enzyme dihydroorotate dehydrogenase, glucocorticoid receptors and cyclooxygenase-1.
Collapse
Affiliation(s)
- Lucrecia Peralta
- Facultad de Ciencias Químicas y Farmacia, University of San Carlos of Guatemala, Guatemala City, Guatemala
| | - Allan Vásquez
- Facultad de Ciencias Químicas y Farmacia, University of San Carlos of Guatemala, Guatemala City, Guatemala
| | - Nereida Marroquín
- Facultad de Ciencias Químicas y Farmacia, University of San Carlos of Guatemala, Guatemala City, Guatemala
| | - Lesbia Guerra
- Facultad de Ciencias Químicas y Farmacia, University of San Carlos of Guatemala, Guatemala City, Guatemala
| | - Sully M Cruz
- Facultad de Ciencias Químicas y Farmacia, University of San Carlos of Guatemala, Guatemala City, Guatemala
| | - Armando Cáceres
- Facultad de Ciencias Químicas y Farmacia, University of San Carlos of Guatemala, Guatemala City, Guatemala
| |
Collapse
|
42
|
Silva VRP, Pinheiro AC, Ombredane AS, Martins NO, Luz GVS, Carneiro MLB, Joanitti GA. Anti-Inflammatory Activity of Pequi Oil ( Caryocar brasiliense): A Systematic Review. Pharmaceuticals (Basel) 2023; 17:11. [PMID: 38275996 PMCID: PMC10821120 DOI: 10.3390/ph17010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 01/27/2024] Open
Abstract
Disorders in the inflammatory process underlie the pathogenesis of numerous diseases. The utilization of natural products as anti-inflammatory agents is a well-established approach in both traditional medicine and scientific research, with studies consistently demonstrating their efficacy in managing inflammatory conditions. Pequi oil, derived from Caryocar brasiliense, is a rich source of bioactive compounds including fatty acids and carotenoids, which exhibit immunomodulatory potential. This systematic review aims to comprehensively summarize the scientific evidence regarding the anti-inflammatory activity of pequi oil. Extensive literature searches were conducted across prominent databases (Scopus, BVS, CINAHL, Cochrane, LILACS, Embase, MEDLINE, ProQuest, PubMed, FSTA, ScienceDirect, and Web of Science). Studies evaluating the immunomodulatory activity of crude pequi oil using in vitro, in vivo models, or clinical trials were included. Out of the 438 articles identified, 10 met the stringent inclusion criteria. These studies collectively elucidate the potential of pequi oil to modulate gene expression, regulate circulating levels of pro- and anti-inflammatory mediators, and mitigate oxidative stress, immune cell migration, and cardinal signs of inflammation. Moreover, negligible to no toxicity of pequi oil was observed across the diverse evaluated models. Notably, variations in the chemical profile of the oil were noted, depending on the extraction methodology and geographical origin. This systematic review strongly supports the utility of pequi oil in controlling the inflammatory process. However, further comparative studies involving oils obtained via different methods and sourced from various regions are warranted to reinforce our understanding of its effectiveness and safety.
Collapse
Affiliation(s)
- Vitória R. P. Silva
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil; (V.R.P.S.); (A.C.P.); (A.S.O.); (N.O.M.); (M.L.B.C.)
- Post-Graduate Program in Pharmaceuticals Sciences, Faculty of Health Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil
| | - Andréia C. Pinheiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil; (V.R.P.S.); (A.C.P.); (A.S.O.); (N.O.M.); (M.L.B.C.)
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil
| | - Alicia S. Ombredane
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil; (V.R.P.S.); (A.C.P.); (A.S.O.); (N.O.M.); (M.L.B.C.)
| | - Natália Ornelas Martins
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil; (V.R.P.S.); (A.C.P.); (A.S.O.); (N.O.M.); (M.L.B.C.)
| | - Glécia V. S. Luz
- Health Technology Assessment Center-NATS/UnB, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil;
- Post-Graduation Program in Biomedical Engineering, Faculty of Gama, University of Brasilia, Brasilia 72444-240, DF, Brazil
| | - Marcella L. B. Carneiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil; (V.R.P.S.); (A.C.P.); (A.S.O.); (N.O.M.); (M.L.B.C.)
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil
- Post-Graduation Program in Biomedical Engineering, Faculty of Gama, University of Brasilia, Brasilia 72444-240, DF, Brazil
| | - Graziella A. Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil; (V.R.P.S.); (A.C.P.); (A.S.O.); (N.O.M.); (M.L.B.C.)
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
43
|
Tadege G, Sirak B, Abebe D, Nureye D. Antinociceptive and antiinflammatory activities of crude leave extract and solvent fractions of Commelina latifolia Hochst. ex C.B.Clarke (Commelinaceae) leaves in murine model. Front Pharmacol 2023; 14:1284087. [PMID: 38130405 PMCID: PMC10733449 DOI: 10.3389/fphar.2023.1284087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Ethnopharmacological relevance: In the past, Ethiopian traditional medicine employed the leaves of the native Commelina latifolia Hochst. ex C.B. Clarke plant to treat wounds, pain, and malaria. Aim of the study: The crude extract and solvent fractions of C. latifolia Hochst. ex C.B. Clarke leaves were examined in the present investigation to determine their ability to have an antiinflammatory effect and provide an antinociceptive effect in animal models. Materials and methods: The leaves of C. latifolia were extracted with 80% methanol, and the CL crude extract was further fractionated with chloroform, pure methanol, and distilled water. The carrageenan-induced paw edema model was used to test the extracts' ability to reduce inflammation. The hotplate model and the acetic acid-induced writhing test on rodents were used to test the extracts' potential antinociceptive effect to reduce pain. Results: Inflammation was decreased by 64.59% with CL crude extract (400 mg/kg); 56.34% (400 mg/kg) of methanol fraction, 64.59% of aqueous fraction (400 mg/kg), and 38.27% of chloroform fraction in the carrageenan-induced inflammatory model. All extracts demonstrated a considerable lengthening of the nociception reaction time in the hot plate test, with a maximum antinociceptive effect of 78.98% (crude extract) and 71.65% (solvent fractions). At a dosage of 400 mg/kg, the natural C. latifolia crude extract and aqueous fraction demonstrated considerable antinociceptive effects against acetylsalicylic acid (ASA) during the writhing test (48.83% and 45.37than%, respectively). The current findings support Ethiopia's traditional user's assertions that the herb can alleviate inflammation and pain.
Collapse
Affiliation(s)
- Getnet Tadege
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Marqos, Ethiopia
| | - Betelhem Sirak
- Department of Pharmacy, College of Medicine Health Sciences, Arbaminch University, Arba Minch, Ethiopia
| | - Dehnnet Abebe
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Marqos, Ethiopia
| | - Dejen Nureye
- School of Pharmacy, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia
- School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
44
|
He X, Sun Y, Lu X, Yang F, Li T, Deng C, Song J, Huang X. Assessment of the anti-inflammatory mechanism of quercetin 3,7-dirhamnoside using an integrated pharmacology strategy. Chem Biol Drug Des 2023; 102:1534-1552. [PMID: 37806949 DOI: 10.1111/cbdd.14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/22/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023]
Abstract
Pouzolzia zeylanica (L.) Benn. is a Chinese herbal medicine widely used for its anti-inflammatory and pus-removal properties. To explore its potential anti-inflammatory mechanism, quercetin 3,7-dirhamnoside (QDR), the main flavonoid component of P. zeylanica (L.) Benn., was extracted and purified. The potential anti-inflammatory targets of QDR were predicted using network analysis. These potential targets were verified using molecular docking, molecular dynamics simulations, and in vitro experiments. Consequently, 342 potential anti-inflammatory QDR targets were identified. By analyzing the intersection between the protein-protein interaction and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified several potential protein targets of QDR, including RAC-alpha serine/threonine-protein kinase (AKT1), Ras-related C3 botulinum toxin substrate 1 (RAC1), nitric oxide synthase 3 (NOS3), serine/threonine-protein kinase mTOR (mTOR), epidermal growth factor receptor (EGFR), growth factor receptor-bound protein 2 (GRB2), and endothelin-1 receptor (EDNRA). QDR has anti-inflammatory activity and regulates immune responses and apoptosis through chemokines, Phosphatidylinositol 3-kinase 3(PI3K)/AKT, cAMP, T-cell receptor, and Ras signaling pathways. Molecular docking analysis showed that QDR has good binding abilities with AKT1, mTOR, and NOS3. In addition, molecular dynamics simulations demonstrated that the protein-ligand complex systems formed between QDR and AKT1, mTOR, and NOS3 have high dynamic stability, and their protein-ligand complex systems possess strong binding ability. In RAW264.7 macrophages, QDR significantly inhibited lipopolysaccharides (LPS)-induced inducible nitric oxide synthase expression, nitric oxide (NO) release and the generation of proinflammatory cytokines IL-6, IL-1β, and TNF-α. QDR downregulated the expression of p-AKT1(Ser473)/AKT1 and p-mTOR (Ser2448)/mTOR, and upregulated the expression of NOS3, Rictor, and Raptor. This indicates that the anti-inflammatory mechanisms of QDR involve regulation of AKT1 and mTOR to prevent apoptosis and of NOS3 which leads to the release of endothelial NO. Thus, our study elucidated the potential anti-inflammatory mechanism of QDR, the main flavonoid found in P. zeylanica (L.) Benn.
Collapse
Affiliation(s)
- Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongzhi Sun
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomeng Lu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fan Yang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin'an Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
45
|
Rodríguez-Pólit C, Gonzalez-Pastor R, Heredia-Moya J, Carrera-Pacheco SE, Castillo-Solis F, Vallejo-Imbaquingo R, Barba-Ostria C, Guamán LP. Chemical Properties and Biological Activity of Bee Pollen. Molecules 2023; 28:7768. [PMID: 38067498 PMCID: PMC10708394 DOI: 10.3390/molecules28237768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Pollen, a remarkably versatile natural compound collected by bees for its abundant source of proteins and nutrients, represents a rich reservoir of diverse bioactive compounds with noteworthy chemical and therapeutic potential. Its extensive biological effects have been known and exploited since ancient times. Today, there is an increased interest in finding natural compounds against oxidative stress, a factor that contributes to various diseases. Recent research has unraveled a multitude of biological activities associated with bee pollen, ranging from antioxidant, anti-inflammatory, antimicrobial, and antifungal properties to potential antiviral and anticancer applications. Comprehending the extensive repertoire of biological properties across various pollen sources remains challenging. By investigating a spectrum of pollen types and their chemical composition, this review produces an updated analysis of the bioactive constituents and the therapeutic prospects they offer. This review emphasizes the necessity for further exploration and standardization of diverse pollen sources and bioactive compounds that could contribute to the development of innovative therapies.
Collapse
Affiliation(s)
- Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Quito 170403, Ecuador;
- Escuela de Salud Pública, Universidad San Francisco de Quito USFQ, Quito 170527, Ecuador
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| | - Fabián Castillo-Solis
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| | - Roberto Vallejo-Imbaquingo
- Departamento de Estudios Organizacionales y Desarrollo Humano DESODEH, Facultad de Ciencias Administrativas, Escuela Politécnica Nacional, Quito 170525, Ecuador;
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (R.G.-P.); (J.H.-M.); (S.E.C.-P.); (F.C.-S.)
| |
Collapse
|
46
|
Barrera-Vázquez OS, Montenegro-Herrera SA, Martínez-Enríquez ME, Escobar-Ramírez JL, Magos-Guerrero GA. Selection of Mexican Medicinal Plants by Identification of Potential Phytochemicals with Anti-Aging, Anti-Inflammatory, and Anti-Oxidant Properties through Network Analysis and Chemoinformatic Screening. Biomolecules 2023; 13:1673. [PMID: 38002355 PMCID: PMC10669844 DOI: 10.3390/biom13111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Many natural products have been acquired from plants for their helpful properties. Medicinal plants are used for treating a variety of pathologies or symptoms. The axes of many pathological processes are inflammation, oxidative stress, and senescence. This work is focused on identifying Mexican medicinal plants with potential anti-oxidant, anti-inflammatory, anti-aging, and anti-senescence effects through network analysis and chemoinformatic screening of their phytochemicals. We used computational methods to analyze drug-like phytochemicals in Mexican medicinal plants, multi-target compounds, and signaling pathways related to anti-oxidant, anti-inflammatory, anti-aging, and anti-senescence mechanisms. A total of 1373 phytochemicals are found in 1025 Mexican medicinal plants, and 148 compounds showed no harmful functionalities. These compounds displayed comparable structures with reference molecules. Based on their capacity to interact with pharmacological targets, three clusters of Mexican medicinal plants have been established. Curatella americana, Ximenia americana, Malvastrum coromandelianum, and Manilkara zapota all have anti-oxidant, anti-inflammatory, anti-aging, and anti-senescence effects. Plumeria rubra, Lonchocarpus yucatanensis, and Salvia polystachya contained phytochemicals with anti-oxidant, anti-inflammatory, anti-aging, and anti-senescence reported activity. Lonchocarpus guatemalensis, Vallesia glabra, Erythrina oaxacana, and Erythrina sousae have drug-like phytochemicals with potential anti-oxidant, anti-inflammatory, anti-aging, and anti-senescence effects. Between the drug-like phytochemicals, lonchocarpin, vallesine, and erysotrine exhibit potential anti-oxidant, anti-inflammatory, anti-aging, and anti-senescence effects. For the first time, we conducted an initial virtual screening of selected Mexican medicinal plants, which was subsequently confirmed in vivo, evaluating the anti-inflammatory activity of Lonchocarpus guatemalensis Benth in mice.
Collapse
Affiliation(s)
- Oscar Salvador Barrera-Vázquez
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (M.E.M.-E.); (J.L.E.-R.)
| | | | - María Elena Martínez-Enríquez
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (M.E.M.-E.); (J.L.E.-R.)
| | - Juan Luis Escobar-Ramírez
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (M.E.M.-E.); (J.L.E.-R.)
| | - Gil Alfonso Magos-Guerrero
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (M.E.M.-E.); (J.L.E.-R.)
| |
Collapse
|
47
|
Elgohary MK, Abd El Hadi SR, Abo-Ashour MF, Abo-El Fetoh ME, Afify H, Abdel-Aziz HA, Abou-Seri SM. Fragment merging approach for the design of thiazole/thiazolidine clubbed pyrazoline derivatives as anti-inflammatory agents: Synthesis, biopharmacological evaluation and molecular modeling studies. Bioorg Chem 2023; 139:106724. [PMID: 37451146 DOI: 10.1016/j.bioorg.2023.106724] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Fragment merging approach was applied for the design of thiazole/thiazolidinone clubbed pyrazoline derivatives 5a-e, 6a-c, 7 and 10a-d as dual COX-2 and 5-LOX inhibitors. Compounds 5a, 6a, and 6b were the most potent and COX-2 selective inhibitors (IC50= 0.03-0.06 μM, SI = 282.7-472.9) with high activity against 5-LOX (IC50 = 4.36-4.86 μM), while compounds 5b and 10a were active and selective 5-LOX inhibitors with IC50 = 2.43 and 1.58 μM, respectively. In vivo assay and histopathological examination for most active candidate 6a revealed significant decrease in inflammation with higher safety profile in comparison to standard drugs. Compound 6a exhibited the same orientation and binding interactions as the reference COX-2 and 5-LOX inhibitors (celecoxib and quercetin, respectively). Consequently, compound 6a has been identified as a potential lead for further optimization and the development of safe and effective anti-inflammatory drugs.
Collapse
Affiliation(s)
- Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Soha R Abd El Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt.
| | - Mahmoud F Abo-Ashour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, El Saleheya El Gadida University, Egypt
| | - Mohammed E Abo-El Fetoh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hassan Afify
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Sahar M Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| |
Collapse
|
48
|
Tan X, Xu Y, Zhou S, Pan M, Cao Y, Cai X, Zhao Q, Zhao K. Advances in the Study of Plant-Derived Vesicle-Like Nanoparticles in Inflammatory Diseases. J Inflamm Res 2023; 16:4363-4372. [PMID: 37795493 PMCID: PMC10547002 DOI: 10.2147/jir.s421124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
All humans are universally affected by inflammatory diseases, and there is an urgent need to identify new anti-inflammatory drugs with good therapeutic benefits and minimal side effects to the organism. Recently, it has been found that plant-derived vesicle-like nanoparticles (PDVLNs) have good biocompatibility, with their active ingredients exhibiting good therapeutic effects on inflammation. They can also be used as drug carriers for targeted delivery of anti-inflammatory drugs. Therefore, PDVLNs represent a popular research area for novel anti-inflammatory drugs. This paper details the origin, biological functions, isolation and purification, and identification of PDVLNs, as well as the therapeutic effects of their intrinsic bioactive components on inflammatory diseases. It also introduces their targets as drug carriers to facilitate the development and application of PDVLNs anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xuejun Tan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yukun Xu
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Sirui Zhou
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Mingyue Pan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yue Cao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiuping Cai
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Qing Zhao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Kewei Zhao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
49
|
Wang J, Zheng Q, Shi M, Wang H, Fan C, Wang G, Zhao Y, Si J. Isolation, Identification, Anti-Inflammatory, and In Silico Analysis of New Lignans from the Resin of Ferula sinkiangensis. Pharmaceuticals (Basel) 2023; 16:1351. [PMID: 37895822 PMCID: PMC10610263 DOI: 10.3390/ph16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Ferula sinkiangensis K. M. Shen (Apiaceae) is distributed in arid desert areas of Xinjiang, and its resin is a traditional Chinese medicine to treat gastrointestinal digestive diseases. To explore bioactive components from F. sinkiangensis, three new lignans and thirteen known components were isolated. The structural elucidation of the components was established utilizing spectroscopic analyses together with ECD calculations. Griess reaction results indicated new compounds 1 and 2 significantly decreased NO production in LPS-stimulated RAW 264.7 macrophages, and ELISA results indicated that they effectively attenuated LPS-induced inflammation by inhibiting TNF-α, IL-1β, and IL-6 expressions. The in silico approach confirmed that compound 1 docked into the receptors with strong binding energies of -5.84~-10.79 kcal/mol. In addition, compound 6 inhibited the proliferation of AGS gastric cancer cells with IC50 values of 15.2 μM by suppressing the cell migration and invasion. This study disclosed that F. sinkiangensis might be a promising potential resource for bioactive components.
Collapse
Affiliation(s)
- Junchi Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Qi Zheng
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Minghui Shi
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Huaxiang Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Congzhao Fan
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Guoping Wang
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Yaqin Zhao
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Jianyong Si
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| |
Collapse
|
50
|
Almurshedi AS, El-Masry TA, Selim H, El-Sheekh MM, Makhlof MEM, Aldosari BN, Alfagih IM, AlQuadeib BT, Almarshidy SS, El-Bouseary MM. New investigation of anti-inflammatory activity of Polycladia crinita and biosynthesized selenium nanoparticles: isolation and characterization. Microb Cell Fact 2023; 22:173. [PMID: 37670273 PMCID: PMC10478239 DOI: 10.1186/s12934-023-02168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Marine macroalgae have gained interest recently, mostly due to their bioactive components. Polycladia crinita is an example of marine macroalgae from the Phaeophyceae class, also known as brown algae. They are characterized by a variety of bioactive compounds with valuable medical applications. The prevalence of such naturally active marine resources has made macroalgae-mediated manufacturing of nanoparticles an appealing strategy. In the present study, we aimed to evaluate the antioxidant and anti-inflammatory features of an aqueous extract of Polycladia crinita and biosynthesized P. crinita selenium nanoparticles (PCSeNPs) via a carrageenan-induced rat paw edema model. The synthesized PCSeNPs were fully characterized by UV-visible spectroscopy, FTIR, XRD, and EDX analyses. RESULTS FTIR analysis of Polycladia crinita extract showed several sharp absorption peaks at 3435.2, 1423.5, and 876.4 cm-1 which represent O-H, C=O and C=C groups. Moreover, the most frequent functional groups identified in P. crinita aqueous extract that are responsible for producing SeNPs are the -NH2-, -C=O-, and -SH- groups. The EDX spectrum analysis revealed that the high percentages of Se and O, 1.09 ± 0.13 and 36.62 ± 0.60%, respectively, confirmed the formation of SeNPs. The percentages of inhibition of the edema in pretreated groups with doses of 25 and 50 mg/kg, i.p., of PCSeNPs were 62.78% and 77.24%, respectively. Furthermore, the pretreated groups with 25, 50 mg/kg of P. crinita extract displayed a substantial decrease in the MDA levels (P < 0.00, 26.9%, and 51.68% decrease, respectively), indicating potent antioxidant effect. Additionally, the pretreated groups with PCSeNPs significantly suppressed the MDA levels (P < 0.00, 54.77%, and 65.08% decreases, respectively). The results of immune-histochemical staining revealed moderate COX-2 and Il-1β expressions with scores 2 and 1 in rats pre-treated with 25 and 50 mg/kg of free extract, respectively. Additionally, the rats pre-treated with different doses of PCSeNPs demonstrated weak COX-2 and Il-1β expressions with score 1 (25 mg/kg) and negative expression with score 0 (50 mg/kg). Both antioxidant and anti-inflammatory effects were dose-dependent. CONCLUSIONS These distinguishing features imply that this unique alga is a promising anti-inflammatory agent. Further studies are required to investigate its main active ingredients and possible side effects.
Collapse
Affiliation(s)
- Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | | | - Mofida E M Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman M Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bushra T AlQuadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salma S Almarshidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Maisra M El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|