1
|
Mirtaleb MS, Khodabandeh Shahraky M, Deezagi A, Shafiee D. Investigation of the anti-aging effects of active components of Artemia franciscana loaded in hyalurosome. Sci Rep 2025; 15:1293. [PMID: 39779758 PMCID: PMC11711670 DOI: 10.1038/s41598-024-83731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
With the advancement of biotechnology in the marine industry, an increasing utilization of marine ingredients in skincare products has been observed in recent years. Encapsulating Artemia franciscana extract and its derivatives in a novel phospholipid vesicle called hyalurosome presents innovative strategies for drug delivery systems and anti-aging products. In this study, we developed nano hyalurosomes containing Artemia franciscana active components. Partially purification of proteins in the Artemia franciscana extract was performed using ion exchange chromatography, specifically targeting Hsp40 and Artemin. The physicochemical properties of the hyalurosomes were characterized, revealing nanoparticle sizes ranging from 100 to 130 nm, zeta potential between - 57 and - 41.2 mV. The biological compatibility of the fabricated hyalurosomes was tested in vitro on mice fibroblast cells. Results indicated that formulations containing hyalurosomes exhibited no cytotoxicity. In-vivo studies employing H&E and Mason's trichrome staining demonstrated an increase in the dermal layer of the skin on male mice and collagen production following treatment with different formulations containing hyalurosomes. Therefore, these formulations are considered promising candidates for anti-aging effects. Stability study at 4 °C for 60 days validated by FE-SEM imaging. In conclusion, hyalurosomes fabricated with Artemia franciscana extract and its diverse active molecules successfully achieved enhanced loading and penetration into the deeper layers of the skin, and it can be a suitable candidate for the treatment of skin aging and rejuvenation.
Collapse
Affiliation(s)
- Mona Sadat Mirtaleb
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahvash Khodabandeh Shahraky
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Abdolkhaleg Deezagi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Danial Shafiee
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
2
|
Hegde MM, Palkar P, Mutalik SP, Mutalik S, Goda JS, Rao BSS. Enhancing glioblastoma cytotoxicity through encapsulating O6-benzylguanine and temozolomide in PEGylated liposomal nanocarrier: an in vitro study. 3 Biotech 2024; 14:275. [PMID: 39450422 PMCID: PMC11499494 DOI: 10.1007/s13205-024-04123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Glioblastoma (GBM) (grade IV glioma) is the most fatal brain tumor, with a median survival of just 14 months despite current treatments. Temozolomide (TMZ), an alkylating agent used with radiation, faces challenges such as systemic toxicity, poor absorption, and drug resistance. To enhance TMZ effectiveness, we developed poly(ethylene glycol) (PEG) liposomes co-loaded with TMZ and O6-benzylguanine (O6-BG) for targeted glioma therapy. These liposomes, prepared using the thin-layer hydration method, had an average size of 146.33 ± 6.75 nm and a negative zeta potential (-49.6 ± 3.1 mV). Drug release was slower at physiological pH, with 66.84 ± 4.62% of TMZ and 69.70 ± 2.88% of O6-BG released, indicating stability at physiological conditions. The liposomes showed significantly higher cellular uptake (p < 0.05) than the free dye. The dual drug-loaded liposomes exhibited superior cytotoxicity against U87 glioma cells, with a lower IC50 value (3.99µg/mL) than the free drug combination, demonstrating enhanced anticancer efficacy. The liposome formulation induced higher apoptosis (19.42 ± 3.5%) by causing sub-G0/G1 cell cycle arrest. The novelty of our study lies in co-encapsulating TMZ and O6-BG within PEGylated liposomes, effectively overcoming drug resistance and improving targeted delivery for glioma treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04123-2.
Collapse
Affiliation(s)
- Manasa Manjunath Hegde
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pranoti Palkar
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre & Homi Bhaba National Institute, Navi Mumbai, India
| | - Sadhana P. Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Srinivas Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jayant Sastri Goda
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre & Homi Bhaba National Institute, Navi Mumbai, India
- Department of Radiation Oncology, Advanced Centre for Treatment Research Education in Cancer, Tata Memorial Centre & Homi Bhaba National Institute, Navi Mumbai, India
| | - B. S. Satish Rao
- Manipal School of Life Sciences & Director-Research, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Panda S, Rout L, Mohanty N, Satpathy A, Sankar Satapathy B, Rath S, Gopinath D. Exploring the photosensitizing potential of Nanoliposome Loaded Improved Toluidine Blue O (NLITBO) Against Streptococcus mutans: An in-vitro feasibility study. PLoS One 2024; 19:e0312521. [PMID: 39475963 PMCID: PMC11524459 DOI: 10.1371/journal.pone.0312521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Streptococcus mutans is a major contributor to dental caries due to its ability to produce acid and survive in biofilms. Microbial resistance towards common antimicrobial agents like chlorhexidine and triclosan has shifted the research towards antimicrobial Photodynamic therapy (PDT). In this context, Toluidine Blue O (TBO) is being explored for its photosensitizing properties against Streptococcus mutans. There is a huge variation in the effective concentration of TBO among the current studies owing to the differences in source of and delivery system TBO as well as the time, power and energy densities of light. OBJECTIVE The primary objectives of this study are to encapsulate improved Toluidine Blue O (ITBO) in nanoliposomes (NLITBO), characterize it, and evaluate its antibacterial photosensitizing potential against Streptococcus mutans suspensions in vitro. METHOD ITBO was synthesised as per Indian patent (number -543908). NLITBO was prepared using the thin-film hydration method. Dynamic light scattering experiment determined the vesicle size, polydispersity index (PDI), and zeta potential. Surface features were characterized by Scanning and Transmission Electron microscopy. ITBO release from NLITBO was assessed using the extrapolation method. The antibacterial activity of the NLITBO was determined by evaluating the zone of inhibition (ZOI) in the Streptococcus mutans culture and comparing with 2% chlorhexidine gluconate. The minimum inhibitory concentration (MIC) of NLITBO as a photosensitizer with red light (wavelength 650nm, power density 0.1 W/cm2, energy density 9-9.1 J/ cm2, 90seconds time) was evaluated against Streptococcus mutans cells by colorimetric method in 96 well plate. RESULTS Percentage drug loading, loading efficiency, yield percentage, vesicle size, PDI, Zeta potential of NLTBO was reported as 9.3±0.4%, 84.4±7.6%, 73.5%, 123.52 nm, 0.57, -39.54mV respectively. Clusters of uni-lamellar nanovesicles with smooth non-perforated surfaces were observed in SEM and TEM. The size of the vesicle was within 100 nm. At 24 hours, a cumulative 79.81% of ITBO was released from NLITBO. Mean ZOI and MIC of NLITBO (1 μg /ml) were found to be 0.7±0.2 mm, 0.6μg/ml respectively. CONCLUSION We have synthesized and encapsulated improved Toluidine Blue O (ITBO) in nanoliposomes (NLITBO) and thoroughly characterized the formulation. The antibacterial efficacy of NLITBO without light was demonstrated by ZOI which is similar to 2% chlorhexidine gluconate. MIC of NLITBO as a photosensitiser along with the optimal light parameter was also proposed in this study. These findings suggested that NLITBO could serve as an effective alternative to conventional antibacterial treatments in managing Streptococcus mutans rich biofilms. It can have potential pharmaceutical application in oral health care.
Collapse
Affiliation(s)
- Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Lipsa Rout
- Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University. Bhubaneswar, Odisha, India
| | - Neeta Mohanty
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Anurag Satpathy
- Department of Periodontics and Implantology, Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Shakti Rath
- Department of Microbiology & Research, Institute of Dental Sciences, Siksha’O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Divya Gopinath
- Basic Medical and Dental Sciences Dept, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
4
|
Amenta A, Comi S, Kravicz M, Sesana S, Antoniou A, Passarella D, Seneci P, Pellegrino S, Re F. A novel, glutathione-activated prodrug of pimasertib loaded in liposomes for targeted cancer therapy. RSC Med Chem 2024:d4md00517a. [PMID: 39430954 PMCID: PMC11485093 DOI: 10.1039/d4md00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Pimasertib, a potent antiproliferative drug, has been extensively studied for treating cancers characterized by dysregulation in the ERK/MAPK signaling pathway, such as melanoma. However, its therapeutic efficacy would greatly benefit from an increased selectivity for tumour cells and a longer half-life. Such improvements may be achieved by combining the rational design of a prodrug with its encapsulation in a potential nanodelivery system. For this reason, we synthesized a glutathione (GSH)-responsive putative prodrug of pimasertib (PROPIMA), which contains a redox-sensitive disulphide linker that can be processed by GSH to activate pimasertib. The synthesis of PROPIMA and its in vitro biological activity on a human melanoma cell line as a model are described. The results showed that PROPIMA, either free or embedded in liposomes, selectively inhibits cell proliferation and cell viability, reducing by about 5-fold the levels of pERK. Additionally, PROPIMA shows stronger inhibition of the cancer cell migration than the parent drug.
Collapse
Affiliation(s)
- Arianna Amenta
- Department of Chemistry, University of Milan Milan Italy
| | - Susanna Comi
- School of Medicine and Surgery, University of Milano-Bicocca Monza Italy
| | - Marcelo Kravicz
- School of Medicine and Surgery, University of Milano-Bicocca Monza Italy
| | - Silvia Sesana
- School of Medicine and Surgery, University of Milano-Bicocca Monza Italy
| | - Antonia Antoniou
- Department of Pharmaceutical Sciences, University of Milan Milan Italy
| | | | | | - Sara Pellegrino
- Department of Pharmaceutical Sciences, University of Milan Milan Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca Monza Italy
| |
Collapse
|
5
|
Lavanya M, Namasivayam SKR, John A. Developmental Formulation Principles of Food Preservatives by Nanoencapsulation-Fundamentals, Application, and Challenges. Appl Biochem Biotechnol 2024; 196:7503-7533. [PMID: 38713338 DOI: 10.1007/s12010-024-04943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
The role of food additives is to preserve food by extending shelf life and limiting harmful microorganism proliferation. They prevent spoilage by enhancing the taste and safety of food by utilizing beneficial microorganisms and their antimicrobial metabolites. Current advances in food preservation and processing utilize green technology principles for green preservative formulation, enhancing nutrition and supplying essential micronutrients safely, while also improving quality, packaging, and food safety. Encapsulation is gaining attention for its potential to protect delicate materials from oxidative degradation and extend their shelf life, thereby ensuring optimal nutrient uptake. Nanoencapsulation of bioactive compounds has significantly improved the food, pharmaceutical, agriculture, and nutraceutical industries by protecting antioxidants, vitamins, minerals, and essential fatty acids by controlling release and ensuring delivery to specific sites in the human body. This emerging area is crucial for future industrial production, improving the sensory properties of foods like color, taste, and texture. Research on encapsulated bioactive compounds like bacteriocins, LAB, natamycin, polylysine, and bacteriophage is crucial for their potential antioxidant and antimicrobial activities in food applications and the food industry. This paper reviews nanomaterials used as food antimicrobial carriers, including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers, to protect natural food antimicrobials from degradation and improve antimicrobial activity. This review discusses nanoencapsulation techniques for biopreservative agents like nisin, poly lysine, and natamycin, focusing on biologically-derived polymeric nanofibers, nanocarriers, nanoliposomes, and polymer-stabilized metallic nanoparticles. Nanomaterials, in general, improve the dispersibility, stability, and availability of bioactive substances, and this study discusses the controlled release of nanoencapsulated biopreservative agents.
Collapse
Affiliation(s)
- M Lavanya
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Applied Research (SIMATS), Chennai, Tamil Nadu, 602105, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Applied Research (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Arun John
- Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India
| |
Collapse
|
6
|
Rajendran AT, Vadakkepushpakath AN. Natural Food Components as Biocompatible Carriers: A Novel Approach to Glioblastoma Drug Delivery. Foods 2024; 13:2812. [PMID: 39272576 PMCID: PMC11394703 DOI: 10.3390/foods13172812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Efficient drug delivery methods are crucial in modern pharmacotherapy to enhance treatment efficacy, minimize adverse effects, and improve patient compliance. Particularly in the context of glioblastoma treatment, there has been a recent surge in interest in using natural dietary components as innovative carriers for drug delivery. These food-derived carriers, known for their safety, biocompatibility, and multifunctional properties, offer significant potential in overcoming the limitations of conventional drug delivery systems. This article thoroughly overviews numerous natural dietary components, such as polysaccharides, proteins, and lipids, used as drug carriers. Their mechanisms of action, applications in different drug delivery systems, and specific benefits in targeting glioblastoma are examined. Additionally, the safety, biocompatibility, and regulatory considerations of employing food components in drug formulations are discussed, highlighting their viability and future prospects in the pharmaceutical field.
Collapse
Affiliation(s)
- Arunraj Tharamelveliyil Rajendran
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Anoop Narayanan Vadakkepushpakath
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| |
Collapse
|
7
|
Ponphaiboon J, Limmatvapirat S, Limmatvapirat C. Development and Evaluation of a Dry Emulsion of Ostrich Oil as a Dietary Supplement. Foods 2024; 13:2570. [PMID: 39200497 PMCID: PMC11354083 DOI: 10.3390/foods13162570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
This study aimed to develop a high-quality dry emulsion incorporating omega-3, 6, and 9 fatty acid-rich ostrich oil for use as a dietary supplement. Extracted from abdominal adipose tissues using a low-temperature wet rendering method, the ostrich oil exhibited antioxidant properties, favorable physicochemical properties, microbial counts, heavy metal levels, and fatty acid compositions, positioning it as a suitable candidate for an oil-in-water emulsion and subsequent formulation as a dry emulsion. Lecithin was employed as the emulsifier due to its safety and health benefits. The resulting emulsion, comprising 10% w/w lecithin and 10% w/w ostrich oil, was stable, with a droplet size of 3.93 ± 0.11 μm. This liquid emulsion underwent transformation into a dry emulsion to preserve the physicochemical stability of ostrich oil, utilizing Avicel® PH-101 or Aerosil® 200 through a granulation process. Although Aerosil® 200 exhibited superior adsorption, Avicel® PH-101 granules surpassed it in releasing the ostrich oil emulsion. Consequently, Avicel® PH-101 was selected as the preferred adsorbent for formulating the ostrich oil dry emulsion. The dry emulsion, encapsulated with a disintegration time of 3.11 ± 0.14 min for ease of swallowing, maintained microbial loads and heavy metal contents within acceptable limits. Presented as granules containing butylated hydroxytoluene, the dry emulsion showcased robust temperature stability, suggesting the potential incorporation of animal fat into dry emulsions as a promising dietary supplement.
Collapse
Affiliation(s)
- Juthaporn Ponphaiboon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (J.P.); (S.L.)
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (J.P.); (S.L.)
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chutima Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (J.P.); (S.L.)
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
8
|
Lin L, Fang H, Li C, Dai J, Alharbi M, Cui H. Advancing gelatin/cinnamaldehyde O/W emulsions electrospinability: Role of soybean lecithin in core-shell nanofiber fabrication. Food Chem 2024; 449:139305. [PMID: 38615636 DOI: 10.1016/j.foodchem.2024.139305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
The main objective of this study is to investigate the impact and mechanism of soy lecithin incorporation into the gelatin-cinnamaldehyde emulsion, focusing on how it influences emulsion stability during the electrospinning process. In this work, a cinnamaldehyde/gelatin/soy lecithin (CGS) fiber membrane with excellent antibacterial properties was successfully created. The addition of soy lecithin improves the stability of the emulsion and improves the loading performance and fiber morphology of the CGS fiber membrane. Fourier Transform infrared spectroscopy (FTIR) and urea addition confirmed that soy lecithin may strengthen the interface structure of gelatin in the oil and water phases through hydrogen bonds, thus enhancing the stability of the emulsion in electrospinning. The application tests also revealed that the CGS fiber membrane effectively preserved the sensory quality of beef. This study indicates that the vector construction method can extend the utilization of cinnamaldehyde in food industry.
Collapse
Affiliation(s)
- Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| | - Houzhi Fang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Jinming Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Vidal C, Lopez-Polo J, Osorio FA. Physical Properties of Cellulose Derivative-Based Edible Films Elaborated with Liposomes Encapsulating Grape Seed Tannins. Antioxidants (Basel) 2024; 13:989. [PMID: 39199233 PMCID: PMC11351243 DOI: 10.3390/antiox13080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Combined use of edible films (EF) with nanoencapsulation systems could be an effective alternative for improving the films' physical properties and maintaining bioactive compounds' stability. This research work focuses on the combined use of EF of cellulose-derived biopolymers enriched with liposomes that encapsulate grape seed tannins and on the subsequent evaluation of the physical properties and wettability. Tannin-containing liposomal suspensions (TLS) showed 570.8 ± 6.0 nm particle size and 99% encapsulation efficiency. In vitro studies showed that the release of tannins from liposomes was slower than that of free tannins, reaching a maximum release of catechin of 0.13 ± 0.01%, epicatechin of 0.57 ± 0.01%, and gallic acid of 3.90 ± 0.001% over a 144 h period. Adding liposomes to biopolymer matrices resulted in significant decrease (p < 0.05) of density, surface tension, tensile strength, elongation percentage, and elastic modulus in comparison to the control, obtaining films with greater flexibility and lower breaking strength. Incorporating TLS into EF formulations resulted in partially wetting the hydrophobic surface, reducing adhesion and cohesion compared to EF without liposomes. Results indicate that the presence of liposomes improves films' physical and wettability properties, causing them to extend and not contract when applied to hydrophobic food surfaces.
Collapse
Affiliation(s)
- Constanza Vidal
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile—USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| | - Johana Lopez-Polo
- Laboratorio de Biotecnología de los Alimentos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Líbano 5524, Macul, Santiago 783090, Chile;
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile—USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| |
Collapse
|
10
|
Lokole PB, Byamungu GG, Mutwale PK, Ngombe NK, Mudogo CN, Krause RWM, Nkanga CI. Plant-based nanoparticles targeting malaria management. Front Pharmacol 2024; 15:1440116. [PMID: 39185312 PMCID: PMC11341498 DOI: 10.3389/fphar.2024.1440116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Malaria is one of the most devastating diseases across the globe, particularly in low-income countries in Sub-Saharan Africa. The increasing incidence of malaria morbidity is mainly due to the shortcomings of preventative measures such as the lack of vaccines and inappropriate control over the parasite vector. Additionally, high mortality rates arise from therapeutic failures due to poor patient adherence and drug resistance development. Although the causative pathogen (Plasmodium spp.) is an intracellular parasite, the recommended antimalarial drugs show large volumes of distribution and low-to no-specificity towards the host cell. This leads to severe side effects that hamper patient compliance and promote the emergence of drug-resistant strains. Recent research efforts are promising to enable the discovery of new antimalarial agents; however, the lack of efficient means to achieve targeted delivery remains a concern, given the risk of further resistance development. New strategies based on green nanotechnologies are a promising avenue for malaria management due to their potential to eliminate malaria vectors (Anopheles sp.) and to encapsulate existing and emerging antimalarial agents and deliver them to different target sites. In this review we summarized studies on the use of plant-derived nanoparticles as cost-effective preventative measures against malaria parasites, starting from the vector stage. We also reviewed plant-based nanoengineering strategies to target malaria parasites, and further discussed the site-specific delivery of natural products using ligand-decorated nanoparticles that act through receptors on the host cells or malaria parasites. The exploration of traditionally established plant medicines, surface-engineered nanoparticles and the molecular targets of parasite/host cells may provide valuable insights for future discovery of antimalarial drugs and open new avenues for advancing science toward the goal of malaria eradication.
Collapse
Affiliation(s)
- Pathy B. Lokole
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Galilée G. Byamungu
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
- Department of Chemistry, Faculty of Sciences and Technology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Paulin K. Mutwale
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Nadège K. Ngombe
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Celestin N. Mudogo
- Unit of Molecular Biology, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Rui W. M. Krause
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Christian I. Nkanga
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
11
|
Zhu Y, Chen M, Yang C, Lu G, Huang S, Chen M, Wang Y, Ban J. Revealing Changes in Celecoxib Nanostructured Lipid Carrier's Bioavailability Using Hyaluronic Acid as an Enhancer by HPLC-MS/MS. Drug Des Devel Ther 2024; 18:3315-3327. [PMID: 39100220 PMCID: PMC11296516 DOI: 10.2147/dddt.s461969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Oral drug administration is the most common and convenient route, offering good patient compliance but drug solubility limits oral applications. Celecoxib, an insoluble drug, requires continuous high-dose oral administration, which may increase cardiovascular risk. The nanostructured lipid carriers prepared from drugs and lipid excipients can effectively improve drug bioavailability, reduce drug dosage, and lower the risk of adverse reactions. Methods In this study, we prepared hyaluronic acid-modified celecoxib nanostructured lipid carriers (HA-NLCs) to improve the bioavailability of celecoxib and reduce or prevent adverse drug reactions. Meanwhile, we successfully constructed a set of FDA-compliant biological sample test methods to investigate the pharmacokinetics of HA-NLCs in rats. Results The pharmacokinetic analysis confirmed that HA-NLCs significantly enhanced drug absorption, resulting in an AUC0-t 1.54 times higher than the reference formulation (Celebrex®). Moreover, compared with unmodified nanostructured lipid carriers (CXB-NLCs), HA-NLCs enhance the retention time and improve the drug's half-life in vivo. Conclusion HA-NLCs significantly increased the bioavailability of celecoxib. The addition of hyaluronic acid prolonged the drug's in vivo duration of action and reduced the risk of cardiovascular adverse effects associated with the frequent administration of oral celecoxib.
Collapse
Affiliation(s)
- Yi Zhu
- Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Meiling Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, People’s Republic of China
| | - Chuangzan Yang
- Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Geng Lu
- Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Sa Huang
- Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Meili Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, People’s Republic of China
| | - Yufei Wang
- Analytical and Testing Center of Guangzhou University, Guangzhou, People’s Republic of China
| | - Junfeng Ban
- Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, People’s Republic of China
| |
Collapse
|
12
|
Kim SY, Park SY, Lee JH, Kim N, Oh HN, Yoo SY, Lee DS, Lee JC. Therapeutic Potential of Mangosteen Pericarp Extract-Loaded Liposomes against Superficial Skin Infection Caused by Staphylococcus pseudintermedius in a Murine Model. Antibiotics (Basel) 2024; 13:612. [PMID: 39061294 PMCID: PMC11274295 DOI: 10.3390/antibiotics13070612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
α-mangostin (α-MG) demonstrates antibacterial activity against Staphylococcus species. Therefore, this study aimed to explore the antibacterial activity of α-MG-rich mangosteen pericarp extract (MPE)-loaded liposomes against Staphylococcus isolates from companion animal skin diseases in vitro and evaluated their therapeutic potential in a murine model of superficial skin infection caused by S. pseudintermedius. α-MG-rich extract was purified from mangosteen pericarp and then complexed with γ-cyclodextrin (γ-CD), forming the inclusion complexes. Nanoliposomes containing MPE and γ-CD complexes were prepared by adding lecithin and casein. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of MPE-loaded liposomes were determined using agar dilution and broth microdilution methods. The therapeutic potential of MPE-loaded liposomes was evaluated in vivo on tape-stripped skin lesions infected with S. pseudintermedius. Purified MPE and MPE-loaded liposomes contained 402.43 mg/g and 18.18 mg/g α-MG, respectively. MPE-loaded liposomes showed antibacterial activity against clinical Staphylococcus isolates in vitro but did not show antibacterial activity against Gram-negative bacterial isolates. MPE-loaded liposomes demonstrated consistent MICs and MBCs against Staphylococcus isolates. These liposomes significantly reduced bacterial numbers and lesional sizes in a superficial skin infection model. Moreover, they reconstructed the epidermal barrier in skin lesions. The therapeutic concentrations of MPE-loaded liposomes did not induce cytotoxicity in canine progenitor epidermal keratinocyte cells. In conclusion, MPE-loaded liposomes hold promise for the development of a prospective topical formulation to treat superficial pyoderma in companion animals.
Collapse
Affiliation(s)
- Seong-Yeop Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Seong-Yong Park
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Jung-Hwa Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Ha-Na Oh
- Medi Bio Lab Co., Ltd., Seoul 08389, Republic of Korea; (H.-N.O.); (S.-Y.Y.); (D.-S.L.)
| | - So-Young Yoo
- Medi Bio Lab Co., Ltd., Seoul 08389, Republic of Korea; (H.-N.O.); (S.-Y.Y.); (D.-S.L.)
| | - Dae-Sung Lee
- Medi Bio Lab Co., Ltd., Seoul 08389, Republic of Korea; (H.-N.O.); (S.-Y.Y.); (D.-S.L.)
| | - Je-Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
13
|
Shaw I, Boafo GF, Ali YS, Liu Y, Mlambo R, Tan S, Chen C. Advancements and prospects of lipid-based nanoparticles: dual frontiers in cancer treatment and vaccine development. J Microencapsul 2024; 41:226-254. [PMID: 38560994 DOI: 10.1080/02652048.2024.2326091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Cancer is a complex heterogeneous disease that poses a significant public health challenge. In recent years, lipid-based nanoparticles (LBNPs) have expanded drug delivery and vaccine development options owing to their adaptable, non-toxic, tuneable physicochemical properties, versatile surface functionalisation, and biocompatibility. LBNPs are tiny artificial structures composed of lipid-like materials that can be engineered to encapsulate and deliver therapeutic agents with pinpoint accuracy. They have been widely explored in oncology; however, our understanding of their pharmacological mechanisms, effects of their composition, charge, and size on cellular uptake, tumour penetration, and how they can be utilised to develop cancer vaccines is still limited. Hence, we reviewed LBNPs' unique characteristics, biochemical features, and tumour-targeting mechanisms. Furthermore, we examined their ability to enhance cancer therapies and their potential contribution in developing anticancer vaccines. We critically analysed their advantages and challenges impeding swift advancements in oncology and highlighted promising avenues for future research.
Collapse
Affiliation(s)
- Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Yimer Seid Ali
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Department of Pharmacy, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Yang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Ronald Mlambo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
14
|
Soomherun N, Kreua-Ongarjnukool N, Niyomthai ST, Chumnanvej S. Lipid-Polymer Hybrid Nanoparticles Synthesized via Lipid-Based Surface Engineering for a robust drug delivery platform. Colloids Surf B Biointerfaces 2024; 237:113858. [PMID: 38547797 DOI: 10.1016/j.colsurfb.2024.113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
Herein, lipid-polymer core-shell hybrid nanoparticles composed of poly(D,L-lactic-co-glycolic acid) (PLGA)/lecithin (PLNs) were synthesized through lipid-based surface engineering. Lipids were absorbed onto the surface of the PLGA core to enhance the advantages of polymeric nanoparticles and liposomes. The amounts of lipids and encapsulation of the drug nicardipine hydrochloride (NCH) in the PLNs were studied. NCH-loaded PLNs (NCH-PLNs) were produced in high yield (66%) with a high encapsulation efficiency (92%) and a size of 176 nm. The mass of phosphorus (P) on the NCH-PLN surface was qualitatively and quantitatively investigated using X-ray fluorescence spectroscopy, and lecithin addition increased the P mass percentage due to the phosphate group (PO43-) in its structure. These data confirmed the lipid-based surface engineering of NCH-PLNs. The zeta potential of NCH-PLN exceeded -30 mV, ensuring colloidal stability, and preventing precipitation through electrostatic stabilization. In vitro, NCH was continuously and slowly released from NCH-PLNs over 16 days. Furthermore, PSVK1 cells exhibited high viability after treatment with NCH-PLNs, indicating favorable cytocompatibility. After comparing various mathematical equations of drug release kinetics, the data best fit the Korsmeyer-Peppas model with R2 values of 0.989, 0.990, and 0.982 for 1.0, 3.0, and 5.0 mg/mL lecithin, respectively. The release exponents obtained ranged from 0.480 to 0.505, suggesting anomalous transport release. Thus, NCH-PLNs have potential as a robust drug delivery platform for the controlled administration of NCH, particularly for vasodilation during neurosurgery.
Collapse
Affiliation(s)
- Nopparuj Soomherun
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narumol Kreua-Ongarjnukool
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.
| | - Saowapa Thumsing Niyomthai
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Sorayouth Chumnanvej
- Surgery Department, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
15
|
Wu X, Cheng D, Lu Y, Rong R, Kong Y, Wang X, Niu B. A liquid crystal in situ gel based on rotigotine for the treatment of Parkinson's disease. Drug Deliv Transl Res 2024; 14:1048-1062. [PMID: 37875660 DOI: 10.1007/s13346-023-01449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
One of the most common neurodegenerative illnesses is Parkinson's disease (PD). Rotigotine (RTG) is a dopamine agonist that exerts anti-Parkinsonian effects through dopamine receptor agonism to improve motor symptoms and overall performance in PD patients. In this study, an in situ liquid crystal gel called rotigotine-gel (RTG-gel) was developed using soya phosphatidyl choline (SPC) and glycerol dioleate (GDO) to provide long-acting slow-release benefits of rotigotine while minimizing side effects. This study prepared the RTG-gel precursor solution using SPC, GDO, and ethanol (in the ratio of 54:36:10, w/w/w). The internal structures of the gel were confirmed by crossed-polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). The rheological properties of the RTG-gel precursor solution indicate a favorable combination of low viscosity and excellent flowability. The gel that produced during water absorption was also highly viscous and structurally stable, which helped to maintain the drug delayed release at the injection site. In vitro release assays showed that the in vitro release of RTG-gel followed Ritger-Peppas. The RTG-gel precursor solution was administered by subcutaneous injection, and the results of in vivo pharmacokinetic tests in SD rats showed that the plasma elimination half-life (t1/2) was 59.28 ± 16.08 h; the time to peak blood concentration (Tmax) was 12.00 ± 10.32 h, and the peak concentration (Cmax) was 29.9 ± 10.10 ng/mL. The blood concentration remained above 0.1 ng/mL for 20 days after administration and was still detectable after 31 days of administration, and the bioavailability of RTG can reach 72.59%. The results of in vitro solvent exchange tests showed that the RTG-gel precursor solution undergoes rapid exchange upon contact with PBS, and the diffusion of ethanol can reach 48.1% within 60 min and 80% within 8 h. The results of cytotoxicity test showed 89.27 ± 4.32% cell survival after administration of the drug using RTG-gel. The results of tissue extraction at the administration site showed that healing of the injection site without redness and hemorrhage could be observed after 14 days of injection. The results of tissue section of the administered site showed that the inflammatory cells decreased and granulation tissue appeared after 14 days of administration, and there was basically no inflammatory cell infiltration after 35 days of administration, and the inflammatory reaction was basically eliminated. It shows that RTG-gel has some irritation to the injection site, but it can be recovered by itself in the later stage, and it has good biocompatibility. In summary, RTG-gel might be a potential RTG extended-release formulation for treating PD.
Collapse
Affiliation(s)
- Xiaxia Wu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, Shandong, China
- School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China
| | - Dongfang Cheng
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, Shandong, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China.
| | - Yue Lu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, Shandong, China
- School of Pharmacy, Yantai University, Yantai, 264005, People's Republic of China
| | - Rong Rong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, Shandong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China
| | - Ying Kong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, Shandong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China
| | - Xiuzhi Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China
| | - Baohua Niu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, Shandong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China
| |
Collapse
|
16
|
Izumi K, Ji J, Koiwai K, Kawano R. Long-Term Stable Liposome Modified by PEG-Lipid in Natural Seawater. ACS OMEGA 2024; 9:10958-10966. [PMID: 38463291 PMCID: PMC10918668 DOI: 10.1021/acsomega.3c10346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024]
Abstract
This paper describes the stabilization of liposomes using a PEGylated lipid, N-(methylpolyoxyethylene oxycarbonyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt (DSPE-PEGs), and the evaluation of the survival rate in natural seawater for future environmental applications. Liposomes in natural seawater were first monitored by confocal microscopy, and the stability was compared among different lengths and the introduction ratio of DSPE-PEGs. The survival rate increased with an increase in the PEG ratio. In addition, the survival rate in different cationic solutions (Na+, K+, Mg2+, and Ca2+ solutions) was studied to estimate the effects of the DSPE-PEG introduction. We propose that these variations in liposome stability are due to the cations, specifically the interaction between the poly(ethylene glycol) (PEG) chains and divalent ions, which contribute to making it difficult for cations to access the lipid membrane. Our studies provide insights into the use of PEG lipids and may offer a promising approach to the fabrication of liposomal molecular robots using different natural environments.
Collapse
Affiliation(s)
- Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Jiajue Ji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
17
|
Xun Z, Li T, Xue X. The application strategy of liposomes in organ targeting therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1955. [PMID: 38613219 DOI: 10.1002/wnan.1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024]
Abstract
Liposomes-microscopic phospholipid bubbles with bilayered membrane structure-have been a focal point in drug delivery research for the past 30 years. Current liposomes possess a blend of biocompatibility, drug loading efficiency, prolonged circulation and targeted delivery. Tailored liposomes, varying in size, charge, lipid composition, and ratio, have been developed to address diseases in specific organs, thereby enhancing drug circulation, accumulation at lesion sites, intracellular delivery, and treatment efficacy for various organ-specific diseases. For further successful development of this field, this review summarized liposomal strategies for targeting different organs in series of major human diseases, including widely studied cardiovascular diseases, liver and spleen immune diseases, chronic or acute kidney injury, neurodegenerative diseases, and organ-specific tumors. It highlights recent advances of liposome-mediated therapeutic agent delivery for disease intervention and organ rehabilitation, offering practical guidelines for designing organ-targeted liposomes. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Zengyu Xun
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, People's Republic of China
| | - Tianqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
18
|
Jaromin A, Zarnowski R, Markowski A, Zagórska A, Johnson CJ, Etezadi H, Kihara S, Mota-Santiago P, Nett JE, Boyd BJ, Andes DR. Liposomal formulation of a new antifungal hybrid compound provides protection against Candida auris in the ex vivo skin colonization model. Antimicrob Agents Chemother 2024; 68:e0095523. [PMID: 38092678 PMCID: PMC10777852 DOI: 10.1128/aac.00955-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/28/2023] [Indexed: 01/11/2024] Open
Abstract
The newly emerged pathogen, Candida auris, presents a serious threat to public health worldwide. This multidrug-resistant yeast often colonizes and persists on the skin of patients, can easily spread from person to person, and can cause life-threatening systemic infections. New antifungal therapies are therefore urgently needed to limit and control both superficial and systemic C. auris infections. In this study, we designed a novel antifungal agent, PQA-Az-13, that contains a combination of indazole, pyrrolidine, and arylpiperazine scaffolds substituted with a trifluoromethyl moiety. PQA-Az-13 demonstrated antifungal activity against biofilms of a set of 10 different C. auris clinical isolates, representing all four geographical clades distinguished within this species. This compound showed strong activity, with MIC values between 0.67 and 1.25 µg/mL. Cellular proteomics indicated that PQA-Az-13 partially or completely inhibited numerous enzymatic proteins in C. auris biofilms, particularly those involved in both amino acid biosynthesis and metabolism processes, as well as in general energy-producing processes. Due to its hydrophobic nature and limited aqueous solubility, PQA-Az-13 was encapsulated in cationic liposomes composed of soybean phosphatidylcholine (SPC), 1,2-dioleoyloxy-3-trimethylammonium-propane chloride (DOTAP), and N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (DSPE-PEG 2000), and characterized by biophysical and spectral techniques. These PQA-Az-13-loaded liposomes displayed a mean size of 76.4 nm, a positive charge of +45.0 mV, a high encapsulation efficiency of 97.2%, excellent stability, and no toxicity to normal human dermal fibroblasts. PQA-Az-13 liposomes demonstrated enhanced antifungal activity levels against both C. auris in in vitro biofilms and ex vivo skin colonization models. These initial results suggest that molecules like PQA-Az-13 warrant further study and development.
Collapse
Affiliation(s)
- Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Robert Zarnowski
- Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam Markowski
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Chad J. Johnson
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Haniyeh Etezadi
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Shinji Kihara
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Victoria, Australia
| | - David R. Andes
- Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Luna MA, Girardi VR, Sánchez-Cerviño MC, Rivero G, Falcone RD, Moyano F, Correa NM. PRODAN Photophysics as a Tool to Determine the Bilayer Properties of Different Unilamellar Vesicles Composed of Phospholipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:657-667. [PMID: 38100549 DOI: 10.1021/acs.langmuir.3c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Vesicles formed by phospholipids are promising candidates for drug delivery. It is known that the lipid composition affects properties such as the rigidity-fluidity of the membrane and that it influences the bilayer permeability, but sometimes sophisticated techniques are selected to monitor them. In this work, we study the bilayer of different unilamellar vesicles composed of different lipids (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC, and lecithin) and diverse techniques such as extruder and electrospun templates and using 6-propionyl-2-(N,N-dimethyl) aminonaphthalene (PRODAN) and its photophysics. Moreover, we were able to monitor the influence of cholesterol on the bilayers. We demonstrate that the bilayer properties can be evaluated using the emission feature of the molecular probe PRODAN. This fluorescent probe gives relevant information on the polarity and fluidity of the microenvironment for unilamellar vesicles formed by two different methods. The PRODAN emission at 434 nm suggests that the bilayer properties significantly change if DOPC or lecithin is used in the vesicle preparation especially in their fluidity. Moreover, cholesterol induces alterations in the bilayer's structural and microenvironmental properties to a greater or lesser degree in both vesicles. Thus, we propose an easy and elegant way to evaluate physicochemical properties, which is fundamental for manufacturing vesicles as a drug delivery system, simply by monitoring the molecular probe emission band centered at 434 nm, which corresponds to the PRODAN species deep inside the bilayer.
Collapse
Affiliation(s)
- María A Luna
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET - UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3 C.P. X5804BYARío Cuarto, Argentina
| | - Valeria R Girardi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET - UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3 C.P. X5804BYARío Cuarto, Argentina
| | - María C Sánchez-Cerviño
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA-CONICET), Av. Colón 10850, B7606BWVMar del Plata, Argentina
| | - Guadalupe Rivero
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA-CONICET), Av. Colón 10850, B7606BWVMar del Plata, Argentina
| | - R Dario Falcone
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET - UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3 C.P. X5804BYARío Cuarto, Argentina
| | - Fernando Moyano
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET - UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3 C.P. X5804BYARío Cuarto, Argentina
| | - N Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS) (CONICET - UNRC), Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal #3 C.P. X5804BYARío Cuarto, Argentina
| |
Collapse
|
20
|
Schulze J, Schöne L, Ayoub AM, Librizzi D, Amin MU, Engelhardt K, Yousefi BH, Bender L, Schaefer J, Preis E, Schulz-Siegmund M, Wölk C, Bakowsky U. Modern Photodynamic Glioblastoma Therapy Using Curcumin- or Parietin-Loaded Lipid Nanoparticles in a CAM Model Study. ACS APPLIED BIO MATERIALS 2023; 6:5502-5514. [PMID: 38016693 PMCID: PMC10732153 DOI: 10.1021/acsabm.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Natural photosensitizers, such as curcumin or parietin, play a vital role in photodynamic therapy (PDT), causing a light-mediated reaction that kills cancer cells. PDT is a promising treatment option for glioblastoma, especially when combined with nanoscale drug delivery systems. The curcumin- or parietin-loaded lipid nanoparticles were prepared via dual asymmetric centrifugation and subsequently characterized through physicochemical analyses including dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The combination of PDT and lipid nanoparticles has been evaluated in vitro regarding uptake, safety, and efficacy. The extensive and well-vascularized chorioallantois membrane (CAM) of fertilized hen's eggs offers an optimal platform for three-dimensional cell culture, which has been used in this study to evaluate the photodynamic efficacy of lipid nanoparticles against glioblastoma cells. In contrast to other animal models, the CAM model lacks a mature immune system in an early stage, facilitating the growth of xenografts without rejection. Treatment of xenografted U87 glioblastoma cells on CAM was performed to assess the effects on tumor viability, growth, and angiogenesis. The xenografts and the surrounding blood vessels were targeted through topical application, and the effects of photodynamic therapy have been confirmed microscopically and via positron emission tomography and X-ray computed tomography. Finally, the excised xenografts embedded in the CAM were analyzed histologically by hematoxylin and eosin and KI67 staining.
Collapse
Affiliation(s)
- Jan Schulze
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Lisa Schöne
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Abdallah M. Ayoub
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Damiano Librizzi
- Center
for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging,
Department of Nuclear Medicine, University
of Marburg, Hans-Meerwein-Strasse 3, Marburg 35043, Germany
| | - Muhammad Umair Amin
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Konrad Engelhardt
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Behrooz H. Yousefi
- Center
for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging,
Department of Nuclear Medicine, University
of Marburg, Hans-Meerwein-Strasse 3, Marburg 35043, Germany
| | - Lena Bender
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Jens Schaefer
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Eduard Preis
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Michaela Schulz-Siegmund
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Christian Wölk
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Udo Bakowsky
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| |
Collapse
|
21
|
Truzzi E, Bertelli D, Bilia AR, Vanti G, Maretti E, Leo E. Combination of Nanodelivery Systems and Constituents Derived from Novel Foods: A Comprehensive Review. Pharmaceutics 2023; 15:2614. [PMID: 38004592 PMCID: PMC10674267 DOI: 10.3390/pharmaceutics15112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Novel Food is a new category of food, regulated by the European Union Directive No. 2015/2283. This latter norm defines a food as "Novel" if it was not used "for human consumption to a significant degree within the Union before the date of entry into force of that regulation, namely 15 May 1997". Recently, Novel Foods have received increased interest from researchers worldwide. In this sense, the key areas of interest are the discovery of new benefits for human health and the exploitation of these novel sources of materials in new fields of application. An emerging area in the pharmaceutical and medicinal fields is nanotechnology, which deals with the development of new delivery systems at a nanometric scale. In this context, this review aims to summarize the recent advances on the design and characterization of nanodelivery systems based on materials belonging to the Novel Food list, as well as on nanoceutical products formulated for delivering compounds derived from Novel Foods. Additionally, the safety hazard of using nanoparticles in food products, i.e., food supplements, has been discussed in view of the current European regulation, which considers nanomaterials as Novel Foods.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Anna Rita Bilia
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.R.B.); (G.V.)
| | - Giulia Vanti
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.R.B.); (G.V.)
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| |
Collapse
|
22
|
Yun JS, Hwangbo SA, Jeong YG. Preparation of Uniform Nano Liposomes Using Focused Ultrasonic Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2618. [PMID: 37836259 PMCID: PMC10574396 DOI: 10.3390/nano13192618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023]
Abstract
Liposomes are microspheres produced by placing phospholipids in aqueous solutions. Liposomes have the advantage of being able to encapsulate both hydrophilic and hydrophobic functional substances and are thus important mediators used in cosmetics and pharmaceuticals. It is important for liposomes to have small sizes, uniform particle size distribution, and long-term stability. Previously, liposomes have been prepared using a homo mixer, microfluidizer, and horn and bath types of sonicators. However, it is difficult to produce liposomes with small sizes and uniform particle size distribution using these methods. Therefore, we have developed a focused ultrasound method to produce nano-sized liposomes with better size control. In this study, the liposome solutions were prepared using the focused ultrasound method and conventional methods. The liposome solutions were characterized for their size distribution, stability, and morphology. Results showed that the liposome solution prepared using focused ultrasonic equipment had a uniform particle size distribution with an average size of 113.6 nm and a polydispersity index value of 0.124. Furthermore, the solution showed good stability in dynamic light scattering measurements for 4 d and Turbiscan measurements for 1 week.
Collapse
Affiliation(s)
- Ji-Soo Yun
- Nanosafety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea;
- Department of Applied Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seon-Ae Hwangbo
- Nanosafety Team, Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea;
| | - Young-Gyu Jeong
- Department of Applied Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
23
|
Carvalho T, Landim MG, Lima MLD, Bittar C, Faria BCDAO, Rahal P, de Lima MCF, Junior VFDV, Joanitti GA, Calmon MF. Synthesis of copaiba (Copaifera officinalis) oil nanoemulsion and the potential against Zika virus: An in vitro study. PLoS One 2023; 18:e0283817. [PMID: 37676868 PMCID: PMC10484457 DOI: 10.1371/journal.pone.0283817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/19/2023] [Indexed: 09/09/2023] Open
Abstract
Zika virus (ZIKV) has spread all over the world since its major outbreak in 2015. This infection has been recognized as a major global health issue due to the neurological complications related to ZIKV infection, such as Guillain-Barré Syndrome and Zika virus Congenital Syndrome. Currently, there are no vaccines or specific treatments for ZIKV infection, which makes the development of specific therapies for its treatment very important. Several studies have been developed to analyze the potential of compounds against ZIKV, with the aim of finding new promising treatments. Herein, we evaluate the ability of a copaiba (Copaifera officinalis) oil nanoemulsion (CNE) to inhibit ZIKV. First, the highest non-cytotoxic concentration of 180 μg/mL was chosen since this concentration maintains 80% cell viability up to 96h after treatment with CNE in VERO cells resulted from MTT assay. The intracellular uptake assay was performed, and confirmed the internalization of the nanoemulsion in cells at all times analyzed. VERO cells were infected with ZIKV and simultaneously treated with CNE and the nanoformulation without oil (ENE) at the highest non-toxic concentration. The results evaluated by plaque assay revealed a viral inhibition of 80% for CNE and 70% for ENE. A dose-dependence assay revealed that the CNE treatment demonstrated a dose-dependent response in the viral RNA levels, whereas all ENE tested concentrations exhibited a similar degree of reduction. Taken together, our results suggest CNE as a promising nano-sized platform to be further studied for antiviral treatments.
Collapse
Affiliation(s)
- Tamara Carvalho
- Department of Biology, São Paulo State University—UNESP, Rua Cristóvão Colombo, São José do Rio Preto, Brazil
| | - Marcela Guimarães Landim
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Campus Universitário – Centro Metropolitano, Ceilândia Sul, Brasília, Federal District, Brazil
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Maria Letícia Duarte Lima
- Department of Biology, São Paulo State University—UNESP, Rua Cristóvão Colombo, São José do Rio Preto, Brazil
| | - Cíntia Bittar
- Department of Biology, São Paulo State University—UNESP, Rua Cristóvão Colombo, São José do Rio Preto, Brazil
| | - Beatriz Carvalho de Araújo Oliveira Faria
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Campus Universitário – Centro Metropolitano, Ceilândia Sul, Brasília, Federal District, Brazil
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Paula Rahal
- Department of Biology, São Paulo State University—UNESP, Rua Cristóvão Colombo, São José do Rio Preto, Brazil
| | | | | | - Graziella Anselmo Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), University of Brasilia, Campus Universitário – Centro Metropolitano, Ceilândia Sul, Brasília, Federal District, Brazil
- Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Marilia Freitas Calmon
- Department of Biology, São Paulo State University—UNESP, Rua Cristóvão Colombo, São José do Rio Preto, Brazil
| |
Collapse
|
24
|
Su Y, Huang T, Sun H, Lin R, Zheng X, Bian Q, Zhang J, Chen S, Wu H, Xu D, Zhang T, Gao J. High Targeting Specificity toward Pulmonary Inflammation Using Mesenchymal Stem Cell-Hybrid Nanovehicle for an Efficient Inflammation Intervention. Adv Healthc Mater 2023; 12:e2300376. [PMID: 37161587 DOI: 10.1002/adhm.202300376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Pulmonary inflammation is one of the most reported tissue inflammations in clinic. Successful suppression of inflammation is vital to prevent further inevitably fatal lung degeneration. Glucocorticoid hormone, such as methylprednisolone (MP), is the most applied strategy to control the inflammatory progression yet faces the challenge of systemic side effects caused by the requirement of large-dosage and frequent administration. Highly efficient delivery of MP specifically targeted to inflammatory lung sites may overcome this challenge. Therefore, the present study develops an inflammation-targeted biomimetic nanovehicle, which hybridizes the cell membrane of mesenchymal stem cell with liposome, named as MSCsome. This hybrid nanovehicle shows the ability of high targeting specificity toward inflamed lung cells, due to both the good lung endothelium penetration and the high uptake by inflamed lung cells. Consequently, a single-dose administration of this MP-loaded hybrid nanovehicle achieves a prominent treatment of lipopolysaccharide-induced lung inflammation, and negligible treatment-induced side effects are observed. The present study provides a powerful inflammation-targeted nanovehicle using biomimetic strategy to solve the current challenges of targeted inflammation intervention.
Collapse
Affiliation(s)
- Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruyi Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xixi Zheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Qiong Bian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shihan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Honghui Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321002, China
| | - Donghang Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321002, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321002, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
25
|
Mathew L, Verma DK, Liang K, Duan M, Dadhich R, Kapoor S. Fusion Landscape of Mycobacterial Envelope-Derived Lipid Vesicles with Intact Bacteria Dictates High Intracellular Drug Retention. ACS APPLIED BIO MATERIALS 2023; 6:3066-3073. [PMID: 37493278 DOI: 10.1021/acsabm.3c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Membrane vesicles are critical regulators of pathogenic diseases. In tubercular infections, the use of mycobacteria derived vesicles as delivery vehicles to overcome drug resistance and complex treatment regimens has never been attempted. Here, we first address how these vesicles interact with their target cells, especially via membrane fusion. Membrane fusion between alike mycobacterial outer and inner membrane layer-derived lipid vesicles is shown to be driven by the structural, geometrical, and biophysical attributes of constituent lipids. The increased fusion of outer-membrane-derived vesicles with intact bacteria ensures enhanced intracellular drug levels and is presented as a "natural" antitubercular drug delivery vehicle.
Collapse
Affiliation(s)
- Lydia Mathew
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dheeraj Kumar Verma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kuan Liang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Mojie Duan
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
26
|
Suhandi C, Wilar G, Lesmana R, Zulhendri F, Suharyani I, Hasan N, Wathoni N. Propolis-Based Nanostructured Lipid Carriers for α-Mangostin Delivery: Formulation, Characterization, and In Vitro Antioxidant Activity Evaluation. Molecules 2023; 28:6057. [PMID: 37630309 PMCID: PMC10458397 DOI: 10.3390/molecules28166057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
α-Mangostin (a xanthone derivative found in the pericarp of Garcinia mangostana L.) and propolis extract (which is rich in flavonoids and phenols) are known for their antioxidant properties, making them potential supplements for the treatment of oxidative stress-related conditions. However, these two potential substances have the same primary drawback, which is low solubility in water. The low water solubility of α-mangostin and propolis can be overcome by utilizing nanotechnology approaches. In this study, a propolis-based nanostructured lipid carrier (NLC) system was formulated to enhance the delivery of α-mangostin. The aim of this study was to characterize the formulation and investigate its influence on the antioxidant activity of α-mangostin. The results showed that both unloaded propolis-based NLC (NLC-P) and α-mangostin-loaded propolis-based NLC (NLC-P-α-M) had nanoscale particle sizes (72.7 ± 1.082 nm and 80.3 ± 1.015 nm, respectively), neutral surface zeta potential (ranging between +10 mV and -10 mV), and good particle size distribution (indicated by a polydispersity index of <0.3). The NLC-P-α-M exhibited good entrapment efficiency of 87.972 ± 0.246%. Dissolution testing indicated a ~13-fold increase in the solubility of α-mangostin compared to α-mangostin powder alone. The incorporation into the propolis-based NLC system correlated well with the enhanced antioxidant activity of α-mangostin (p < 0.01) compared to NLC-P and α-mangostin alone. Therefore, the modification of the delivery system by incorporating α-mangostin into the propolis-based NLC overcomes the physicochemical challenges of α-mangostin while enhancing its antioxidant effectiveness.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (C.S.); (I.S.)
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Ine Suharyani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (C.S.); (I.S.)
- Department of Pharmacy, Sekolah Tinggi Farmasi Muhammadiyah Cirebon, Cirebon 45153, Indonesia
| | - Nurhasni Hasan
- Department of Pharmacy Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (C.S.); (I.S.)
| |
Collapse
|
27
|
Lv JM, Ismail BB, Ye XQ, Zhang XY, Gu Y, Chen JC. Ultrasonic-assisted nanoencapsulation of kiwi leaves proanthocyanidins in liposome delivery system for enhanced biostability and bioavailability. Food Chem 2023; 416:135794. [PMID: 36878119 DOI: 10.1016/j.foodchem.2023.135794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
The poor biostability and bioavailability of proanthocyanidins limit their application. In this study, it was hypothesized that encapsulation in lecithin-based nanoliposomes using ultrasonic technology improves the above properties. Based on preliminary experiments, the effects of lecithin mass ratio (1-9%, wt.), pH (3.2-6.8), ultrasonic power (0-540 W), and time (0-10 min) on biostability and bioavailability of purified kiwi leaves proanthocyanidins (PKLPs) were determined. Nanoliposomes prepared optimally with lecithin (5%, wt.), pH = 3.2, ultrasonic power (270 W), and time (5 min) demonstrated a significantly (p < 0.05) improved physicochemical stability, homogeneity, and high encapsulation efficiency (73.84%) relative to control. The PKLPs bioaccessibility during in vitro digestion increased by 2.28-3.07-fold, with a remarkable sustained release and delivery to the small intestine. Similar results were obtained by in vivo analyses, showing over 200% increase in PKLPs bioaccessibility compared to the control. Thus, PKLPs-loaded nanoliposomes are promising candidates for foods and supplements for novel applications.
Collapse
Affiliation(s)
- Ji-Min Lv
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Department of Food Science & Technology, Faculty of Agriculture, Bayero University, Kano, PMB 3011, Kano, Nigeria.
| | - Xing-Qian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xia-Yan Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Ye Gu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jian-Chu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
Elmaidomy AH, Mohamad SA, Abdelnaser M, Yahia R, Mokhtar FA, Alsenani F, Badr MY, Almaghrabi SY, Altemani FH, Alzubaidi MA, Saber EA, Elrehany MA, Abdelmohsen UR, Sayed AM. Vitis vinifera leaf extract liposomal Carbopol gel preparation's potential wound healing and antibacterial benefits: in vivo, phytochemical, and computational investigation. Food Funct 2023; 14:7156-7175. [PMID: 37462414 DOI: 10.1039/d2fo03212k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vitis vinifera Egyptian edible leaf extract loaded on a soybean lecithin, cholesterol, and Carbopol gel preparation (VVL-liposomal gel) was prepared to maximize the in vivo wound healing and anti-MRSA activities for the crude extract, using an excision wound model and focusing on TLR-2, MCP-1, CXCL-1, CXCL-2, IL-6 and IL-1β, and MRSA (wound infection model, and peritonitis infection model). VVL-liposomal gel was stable with significant drug entrapment efficiency reaching 88% ± 3, zeta potential value ranging from -50 to -63, and a size range of 50-200 μm nm in diameter. The in vivo evaluation proved the ability of VVL-liposomal gel to gradually release the drugs in a sustained manner with greater complete wound healing effect and tissue repair after 7 days of administration, with a significant decrease in bacterial count compared with the crude extract. Phytochemical investigation of the crude extract of the leaves yielded fourteen compounds: two new stilbenes (1, 2), along with twelve known ones (3-14). Furthermore, a computational study was conducted to identify the genes and possible pathways responsible for the anti-MRSA activity of the isolated compounds, and inverse docking was used to identify the most likely molecular targets that could mediate the extract's antibacterial activity. Gyr-B was discovered to be the best target for compounds 1 and 2. Hence, VVL-liposomal gel can be used as a novel anti-dermatophytic agent with potent wound healing and anti-MRSA capacity, paving the way for future clinical research.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Mahmoud Abdelnaser
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Universities Zone, New Minya City 61111, Egypt
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Moutaz Y Badr
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Safa Y Almaghrabi
- Department of Physiology, Faculty of Medicine, King Abduaziz University, Jeddah 22252, Saudi Arabia.
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mubarak A Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minya 61519, Egypt
- Delegated to Deraya University, Universities Zone, New Minya 61111, Egypt
| | - Mahmoud A Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minya 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minya 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt.
| |
Collapse
|
29
|
Castangia I, Fulgheri F, Leyva-Jimenez FJ, Alañón ME, Cádiz-Gurrea MDLL, Marongiu F, Meloni MC, Aroffu M, Perra M, Allaw M, Abi Rached R, Oliver-Simancas R, Escribano Ferrer E, Asunis F, Manca ML, Manconi M. From Grape By-Products to Enriched Yogurt Containing Pomace Extract Loaded in Nanotechnological Nutriosomes Tailored for Promoting Gastro-Intestinal Wellness. Antioxidants (Basel) 2023; 12:1285. [PMID: 37372015 DOI: 10.3390/antiox12061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Grape pomace is the main by-product generated during the winemaking process; since it is still rich in bioactive molecules, especially phenolic compounds with high antioxidant power, its transformation in beneficial and health-promoting foods is an innovative challenge to extend the grape life cycle. Hence, in this work, the phytochemicals still contained in the grape pomace were recovered by an enhanced ultrasound assisted extraction. The extract was incorporated in liposomes prepared with soy lecithin and in nutriosomes obtained combining soy lecithin and Nutriose FM06®, which were further enriched with gelatin (gelatin-liposomes and gelatin-nutriosomes) to increase the samples' stability in modulated pH values, as they were designed for yogurt fortification. The vesicles were sized ~100 nm, homogeneously dispersed (polydispersity index < 0.2) and maintained their characteristics when dispersed in fluids at different pH values (6.75, 1.20 and 7.00), simulating salivary, gastric and intestinal environments. The extract loaded vesicles were biocompatible and effectively protected Caco-2 cells against oxidative stress caused by hydrogen peroxide, to a better extent than the free extract in dispersion. The structural integrity of gelatin-nutriosomes, after dilution with milk whey was confirmed, and the addition of vesicles to the yogurt did not modify its appearance. The results pointed out the promising suitability of vesicles loading the phytocomplex obtained from the grape by-product to enrich the yogurt, offering a new and easy strategy for healthy and nutritional food development.
Collapse
Affiliation(s)
- Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Federica Fulgheri
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Francisco Javier Leyva-Jimenez
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - Maria Elena Alañón
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | | | - Francesca Marongiu
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Maria Cristina Meloni
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Matteo Aroffu
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Matteo Perra
- Biomedical and Tissue Engineering Laboratory, Fundación de Investigación Hospital General Universitario, 46022 Valencia, Spain
| | - Mohamad Allaw
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Rita Abi Rached
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Rodrigo Oliver-Simancas
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - Elvira Escribano Ferrer
- Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, 08028 Barcelona, Spain
| | - Fabiano Asunis
- Department of Civil, Environmental Engineering and Architecture (DICAAR), University of Cagliari, Piazza D'Armi 1, 09123 Cagliari, Italy
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| |
Collapse
|
30
|
Amalia E, Sopyan I, Putriana NA, Sriwidodo S. Preparation and molecular interaction of organic solvent-free piperine pro-liposome from soy lecithin. Heliyon 2023; 9:e16674. [PMID: 37274654 PMCID: PMC10238931 DOI: 10.1016/j.heliyon.2023.e16674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
Pro-liposome is a type of drug delivery system (DDS) with numerous advantages as a stable material with various applicability for several pharmaceutical dosage forms, to effectively deliver the material to reach its target in the human body. Nevertheless, it is mostly designed by employing an organic solvent hence giving rise to safety issues. We have developed a method for the preparation of organic solvent-free liposomes composed of soy lecithin and cholesterol by highlighting the importance of temperature during the initial mixing process, a self-hydration of a thin layer spread film, and a spray-drying technique with a suitable excipient as the carrier. The method was successfully applied to prepare a stable pro-liposome containing 0.17% (w/w) of piperine with an encapsulation efficiency of 95.58 ± 2.91%. Moreover, the study revealed that a piperine molecule forms hydrophobic interaction with six of the adjacent phospholipids in the liposome structure, this information can be useful for researchers designing similar studies. In conclusion, organic solvent-free pro-liposome can be an alternative method in the development of DDS, and several factors could be continuously improved to fulfill the intended pro-liposome characteristic.
Collapse
|
31
|
Caritá AC, Resende de Azevedo J, Chevalier Y, Arquier D, Vinícius Buri M, Riske KA, Ricci Leonardi Ideas G, Bolzinger MA. ELASTIC CATIONIC LIPOSOMES FOR VITAMIN C DELIVERY: DEVELOPMENT, CHARACTERIZATION AND SKIN ABSORPTION STUDY. Int J Pharm 2023; 638:122897. [PMID: 37003313 DOI: 10.1016/j.ijpharm.2023.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023]
Abstract
The influence of hydrophilic surfactants acting on the membrane elasticity of liposomes on the skin absorption of vitamin C is investigated. The purpose of encapsulation inside cationic liposomes is to improve the skin delivery of vitamin C. The properties of elastic liposomes (ELs) are compared to that of conventional liposomes (CLs). ELs are formed by the addition of the "edge activator" Polysorbate 80 to the CLs composed of soybean lecithin, cationic lipid DOTAP (1,2-dioleoyl-3-trimethylammoniopropane chloride), and cholesterol. The liposomes are characterized by dynamic light scattering and electron microscopy. No toxicity is detected in human keratinocyte cells. Evidences of Polysorbate 80 incorporation into liposome bilayers and of the higher flexibility of ELs are given by isothermal titration calorimetry and pore edge tension measurements in giant unilamellar vesicles. The presence of a positive charge in the liposomal membrane increases the encapsulation efficacy by approximately 30% for both CLs and ELs. Skin absorption of vitamin C from CLs, ELs and a control aqueous solution measured in Franz cells shows a high delivery of vitamin C into each skin layer and the acceptor fluid from both liposome types. These results suggest that another mechanism drives skin diffusion, involving interactions between cationic lipids and vitamin C depending on the skin pH.
Collapse
|
32
|
Panosyan WS, Panosyan DE, Koster J, Panosyan EH. Anti-GD2 immunoliposomes loaded with oxamate for neuroblastoma. Pediatr Res 2023:10.1038/s41390-023-02479-4. [PMID: 36788290 DOI: 10.1038/s41390-023-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Oncometabolism can be targeted for the development of less myelotoxic oncotherapeutics. Lactate dehydrogenase A (LDHA) is central to the Warburg effect, a potential oncometabolic shift in neuroblastoma (NBL). Advanced surgical, cytotoxic and cell-differentiating therapies improved survival of children with NBL. Anti-GD2 monoclonal antibodies (mAb) effectively targeting NBL are also incorporated into complex therapies. However, poor clinical outcomes of high-risk NBL require improvements. Here, we verified the pre-reported prognostic value of LDHA expression in NBL using the R2 onco-genomics platform. Kaplan-Meier curves re-demonstrated that higher tumor LDHA expression correlates with worse survival. Multivariate statistics confirmed LDHA is independent from age, stage, and MYCN amplification. In conclusion, a molecular construct is proposed with anti-GD2 mAbs utilized for the targeted delivery of liposomes containing an LDHA inhibitor, Oxamate. Development and preclinical testing of this immunoliposome may validate targeted inhibition of the Warburg effect for NBL. IMPACT: Development of therapeutics against oncometabolism. Targeted specified drug-delivery with mAb. Sparing normal tissues from profound LDHA inhibition. Immunoliposome loaded with an anti-metabolite. If preclinically successful, has translational potential.
Collapse
Affiliation(s)
| | - Daniel E Panosyan
- University of California Los Angeles, College of Letters and Science, Los Angeles, CA, USA
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Eduard H Panosyan
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA. .,The Lundquist Institute, Torrance, CA, USA.
| |
Collapse
|
33
|
Donovan J, Deng Z, Bian F, Shukla S, Gomez-Arroyo J, Shi D, Kalinichenko VV, Kalin TV. Improving anti-tumor efficacy of low-dose Vincristine in rhabdomyosarcoma via the combination therapy with FOXM1 inhibitor RCM1. Front Oncol 2023; 13:1112859. [PMID: 36816948 PMCID: PMC9933126 DOI: 10.3389/fonc.2023.1112859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly metastatic soft-tissue sarcoma that often develops resistance to current therapies, including vincristine. Since the existing treatments have not significantly improved survival, there is a critical need for new therapeutic approaches for RMS patients. FOXM1, a known oncogene, is highly expressed in RMS, and is associated with the worst prognosis in RMS patients. In the present study, we found that the combination treatment with specific FOXM1 inhibitor RCM1 and low doses of vincristine is more effective in increasing apoptosis and decreasing RMS cell proliferation in vitro compared to single drugs alone. Since RCM1 is highly hydrophobic, we developed innovative nanoparticle delivery system containing poly-beta-amino-esters and folic acid (NPFA), which efficiently delivers RCM1 to mouse RMS tumors in vivo. The combination of low doses of vincristine together with intravenous administration of NPFA nanoparticles containing RCM1 effectively reduced RMS tumor volumes, increased tumor cell death and decreased tumor cell proliferation in RMS tumors compared to RCM1 or vincristine alone. The combination therapy was non-toxic as demonstrated by liver metabolic panels using peripheral blood serum. Using RNA-seq of dissected RMS tumors, we identified Chac1 as a uniquely downregulated gene after the combination treatment. Knockdown of Chac1 in RMS cells in vitro recapitulated the effects of the combination therapy. Altogether, combination treatment with low doses of vincristine and nanoparticle delivery of FOXM1 inhibitor RCM1 in a pre-clinical model of RMS has superior anti-tumor effects and decreases CHAC1 while reducing vincristine toxicity.
Collapse
Affiliation(s)
- Johnny Donovan
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Zicheng Deng
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States,Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Fenghua Bian
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Samriddhi Shukla
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jose Gomez-Arroyo
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Division of Pulmonary and Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States
| | - Vladimir V. Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tanya V. Kalin
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,*Correspondence: Tanya V. Kalin,
| |
Collapse
|
34
|
Zhao F, Li R, Liu Y, Chen H. Perspectives on lecithin from egg yolk: Extraction, physicochemical properties, modification, and applications. Front Nutr 2023; 9:1082671. [PMID: 36687715 PMCID: PMC9853391 DOI: 10.3389/fnut.2022.1082671] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Egg yolk lecithin has physiological activities as an antioxidant, antibacterial, anti-inflammatory, and neurologic, cardiovascular, and cerebrovascular protectant. There are several methods for extracting egg yolk lecithin, including solvent extraction and supercritical extraction. However, changes in extraction methods and functional activity of egg yolk lecithin are a matter of debate. In this review we summarized the molecular structure, extraction method, and functional activity of egg yolk lecithin to provide a good reference for the development of egg yolk lecithin products in the future.
Collapse
Affiliation(s)
- Feng Zhao
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, Jilin, China
| | - Rongji Li
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, Jilin, China
| | - Yun Liu
- College of Life Sciences, Beijing University of Chemical Technology, Beijing, China
| | - Haiyan Chen
- College of Food Science and Engineering, Changchun Sci-Tech University, Changchun, Jilin, China,College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Haiyan Chen ✉
| |
Collapse
|
35
|
Quach H, Le TV, Nguyen TT, Nguyen P, Nguyen CK, Dang LH. Nano-Lipids Based on Ginger Oil and Lecithin as a Potential Drug Delivery System. Pharmaceutics 2022; 14:pharmaceutics14081654. [PMID: 36015280 PMCID: PMC9412309 DOI: 10.3390/pharmaceutics14081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid nanoparticles based on lecithin are an interesting part of drug delivery systems. However, the stability of lecithin nano-lipids is problematic due to the degradation of lecithin, causing a decrease in pH. In this study, the modification of the conventional nano-lipid-based soybean lecithin was demonstrated. Ginger-oil-derived Zingiber officinale was used along with lecithin, cholesterol and span 80 to fabricate nano-lipids (GL nano-lipids) using a thin-film method. TEM and a confocal microscope were used to elucidate GL nano-lipids’ liposome-like morphology. The average size of the resultant nano-lipid was 249.1 nm with monodistribution (PDI = 0.021). The ζ potential of GL nano-lipids was negative, similarly to as-prepared nano-lipid-based lecithin. GL nano-lipid were highly stable over 60 days of storage at room temperature in terms of size and ζ potential. A shift in pH value from alkaline to acid was detected in lecithin nano-lipids, while with the incorporation of ginger oil, the pH value of nano-lipid dispersion was around 7.0. Furthermore, due to the richness of shogaol-6 and other active compounds in ginger oil, the GL nano-lipid was endowed with intrinsic antibacterial activity. In addition, the sulforhodamine B (SRB) assay and live/dead imaging revealed the excellent biocompatibility of GL nano-lipids. Notably, GL nano-lipids were capable of carrying hydrophobic compounds such as curcumin and performed a pH-dependent release profile. A subsequent characterization showed their suitable potential for drug delivery systems.
Collapse
Affiliation(s)
- Hung Quach
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Tuong-Vi Le
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Thanh-Thuy Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Phuong Nguyen
- Faculty of Chemical Technology, HCMC University of Food Industry, Ho Chi Minh City 700000, Vietnam
- Correspondence: (P.N.); (C.K.N.); (L.H.D.)
| | - Cuu Khoa Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Correspondence: (P.N.); (C.K.N.); (L.H.D.)
| | - Le Hang Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Correspondence: (P.N.); (C.K.N.); (L.H.D.)
| |
Collapse
|
36
|
Formulation and therapeutic efficacy of PEG-liposomes of sorafenib for the production of NL-PEG-SOR FUM and NL-PEG-SOR TOS. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Pham DT, Tran TQ, Van Chinh L, Nguyen LP, An TNT, Anh NHT, Nguyen DT. Anti-tumor effect of liposomes containing extracted Murrayafoline A against liver cancer cells in 2D and 3D cultured models. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Murrayafoline A (MuA) is a natural compound with diverse biological activities, including cytotoxicity against cancer cells, but suffers from poor water solubility and low specificity. In order to improve the potential of MuA as a candidate for cancer treatment, MuA-loaded liposomes were prepared with the liposomal membrane consisting of dioleoylphosphatidylcholine and cholesterol. Dynamic light scattering measurements showed that the MuA-loaded liposomes had a z-average particle size of 104.3 ± 6.4 nm (mean ± SD; n = 3) and a polydispersity index of 0.15 ± 0.02 (mean ± SD; n = 3). The encapsulation efficiency was 55.3 ± 2.3% (mean ± SD; n = 3). The in vitro cytotoxicity of encapsulated MuA was attenuated at IC50 = 21.97 µg/mL compared to 6.24 µg/mL for free MuA, against HepG2. In contrast, MuA-loaded liposomes were significantly more effective at inhibiting cell growth in HepG2 cancer spheroids, which indicated that they were able to reach the interior layers of the microtumor. Taken together, these results showed that the encapsulation of MuA in liposomes is a good research direction to improve this natural compound’s potential as a candidate for cancer treatment.
Collapse
Affiliation(s)
- Dan The Pham
- University of Science and Technology, Department of Life Sciences Hanoi (USTH) , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
| | - Toan Quoc Tran
- Institute of Natural Products Chemistry , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
- Graduate University of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
| | - Luu Van Chinh
- Institute of Natural Products Chemistry , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
| | - Linh Phuong Nguyen
- Hanoi Medical University , 1 Ton That Tung St., Dong Da Dist. , Hanoi , Vietnam
| | - Ton Nu Thuy An
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| | - Nguyen Huu Thuan Anh
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| | - Duong Thanh Nguyen
- Graduate University of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi , Vietnam
| |
Collapse
|
38
|
Mehanna MM, Abla KK, Domiati S, Elmaradny H. Superiority of Microemulsion-based Hydrogel for Non-Steroidal Anti-Inflammatory Drug Transdermal Delivery: A Comparative Safety and Anti-nociceptive Efficacy Study. Int J Pharm 2022; 622:121830. [PMID: 35589005 DOI: 10.1016/j.ijpharm.2022.121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent the foundation of pain management caused by inflammatory disorders. Nevertheless, their oral administration induces several side effects exemplified by gastric ulceration, thus, delivering NSAIDs via the skin has become an attractive alternative. Herein, microemulsion-based hydrogel (MBH), proliposomal, and cubosomal gels were fabricated, loaded with diclofenac, and physicochemically characterized. The sizes, charges, surface morphologies, and the state of diclofenac within the reconstituted gels were also addressed. The release pattern and ex-vivo permeation studies using Franz cells were performed via the rat abdominal skin. The formulations were assessed in-vivo on mice skin for their irritation effect and their anti-nociceptive efficacy through the tail-flick test. Biosafety study of the optimal gel was also pointed out. The gels and their dispersion forms displayed accepted physicochemical properties. Diclofenac released in a prolonged manner from the prepared gels. MBH revealed a significantly higher skin permeation and the foremost results regarding in-vivo assessment where no skin irritation or altered histopathological features were observed. MBH further induced a significant anti-nociceptive effect during the tail-flick test with a lower tendency to evoke systemic toxicity. Therefore, limonene-containing microemulsion hydrogel is a promising lipid-based vehicle to treat pain with superior safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Kawthar K Abla
- Pharmaceutical Technology Department, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Souraya Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Hoda Elmaradny
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Jebastin K, Narayanasamy D. Rationale utilization of phospholipid excipients: a distinctive tool for progressing state of the art in research of emerging drug carriers. J Liposome Res 2022; 33:1-33. [PMID: 35543241 DOI: 10.1080/08982104.2022.2069809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phospholipids have a high degree of biocompatibility and are deemed ideal pharmaceutical excipients in the development of lipid-based drug delivery systems, because of their unique features (permeation, solubility enhancer, emulsion stabilizer, micelle forming agent, and the key excipients in solid dispersions) they can be used in a variety of pharmaceutical drug delivery systems, such as liposomes, phytosomes, solid lipid nanoparticles, etc. The primary usage of phospholipids in a colloidal pharmaceutical formulation is to enhance the drug's bioavailability with low aqueous solubility [i.e. Biopharmaceutical Classification System (BCS) Class II drugs], Membrane penetration (i.e. BCS Class III drugs), drug uptake and release enhancement or modification, protection of sensitive active pharmaceutical ingredients (APIs) from gastrointestinal degradation, a decrease of gastrointestinal adverse effects, and even masking of the bitter taste of orally delivered drugs are other uses. Phospholipid-based colloidal drug products can be tailored to address a wide variety of product requirements, including administration methods, cost, product stability, toxicity, and efficacy. Such formulations that are also a cost-effective method for developing medications for topical, oral, pulmonary, or parenteral administration. The originality of this review work is that we comprehensively evaluated the unique properties and special aspects of phospholipids and summarized how the individual phospholipids can be utilized in various types of lipid-based drug delivery systems, as well as listing newly marketed lipid-based products, patents, and continuing clinical trials of phospholipid-based therapeutic products. This review would be helpful for researchers responsible for formulation development and research into novel colloidal phospholipid-based drug delivery systems.
Collapse
Affiliation(s)
- Koilpillai Jebastin
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
40
|
Development of Stable Nano-Sized Transfersomes as a Rectal Colloid for Enhanced Delivery of Cannabidiol. Pharmaceutics 2022; 14:pharmaceutics14040703. [PMID: 35456536 PMCID: PMC9032849 DOI: 10.3390/pharmaceutics14040703] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/15/2023] Open
Abstract
Current cannabidiol (CBD) formulations are challenged with unpredictable release and absorption. Rational design of a rectal colloid delivery system can provide a practical alternative. In this study the inherent physiochemical properties of transferosomes were harnessed for the development of a nano-sized transfersomes to yield more stable release, absorption, and bioavailability of CBD as a rectal colloid. Transfersomes composed of soya lecithin, cholesterol, and polysorbate 80 were synthesized via thin film evaporation and characterized for size, entrapment efficiency (%), morphology, CBD release, ex vivo permeation, and physicochemical stability. The optimized formulation for rectal delivery entrapped up to 80.0 ± 0.077% of CBD with a hydrodynamic particle size of 130 nm, a PDI value of 0.285, and zeta potential of −15.97 mV. The morphological investigation via SEM and TEM revealed that the transfersomes were spherical and unilamellar vesicles coinciding with the enhanced ex vivo permeation across the excised rat colorectal membrane. Furthermore, transfersomes improved the stability of the encapsulated CBD for up to 6 months at room temperature and showed significant promise that the transfersomes promoted rectal tissue permeation with superior stability and afforded tunable release kinetics of CBD as a botanical therapeutic with inherent poor bioavailability.
Collapse
|
41
|
Wang X, Wang F, Li S, Yin G, Pu X. Preparation and in vitro evaluation of thermosensitive liposomes targeting for ovarian cancer. Curr Drug Deliv 2022; 19:940-948. [PMID: 35319368 DOI: 10.2174/1567201819666220321110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/09/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Liposomes have been widely used in drug delivery systems because the encapsulation of liposomes changes the biological distribution profile and improves the therapeutic indices of various drugs. Thermosensitive liposomes have been proven to be a precise and effective method for cancer therapy in many preclinical studies. However, the lack of specific targeting ability to cancer cells limited their application in safe and efficient chemotherapy. MATERIALS AND METHODS In the present study, an ovarian targeting ligand namely WSGFPGVWGASVK (WSG) screened by phage display in vivo was grafted on the thermosensitive phospholipids to prepare the liposomes targeting ovarian cancer cells. WSG was first grafted onto the hydrophilic terminal of DSPE-PEG2000 molecules, and then the WSG modified thermosensitive liposomes (WSG-Lipo) were prepared by thin-film hydration method. Doxorubicin hydrochloride (DOX) was used as a model drug to investigate the drug release behavior of liposomes at different temperatures. The specificity of liposomes to SKOV-3 cells was studied by cell uptake in vitro. RESULTS The WSG-Lipo-DOX could release more DOX at 42°C than at 37°C, showing stronger specificity to SKOV-3 cells and thus selectively inhibiting SKOV-3 cells activity in vitro. CONCLUSION The active targeting liposome showed potential in improving the specificity of thermosensitive liposomes and would be applied in the chemotherapy combined with a thermotherapy.
Collapse
Affiliation(s)
- Xingming Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Fang Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Sixie Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
42
|
Jara-Quijada E, Pérez-Won M, Tabilo-Munizaga G, González-Cavieres L, Lemus-Mondaca R. An Overview Focusing on Food Liposomes and Their Stability to Electric Fields. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
43
|
Milan A, Mioc A, Prodea A, Mioc M, Buzatu R, Ghiulai R, Racoviceanu R, Caruntu F, Şoica C. The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges. Int J Mol Sci 2022; 23:1140. [PMID: 35163063 PMCID: PMC8835305 DOI: 10.3390/ijms23031140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The last decade has witnessed a sustained increase in the research development of modern-day chemo-therapeutics, especially for those used for high mortality rate pathologies. However, the therapeutic landscape is continuously changing as a result of the currently existing toxic side effects induced by a substantial range of drug classes. One growing research direction driven to mitigate such inconveniences has converged towards the study of natural molecules for their promising therapeutic potential. Triterpenes are one such class of compounds, intensively investigated for their therapeutic versatility. Although the pharmacological effects reported for several representatives of this class has come as a well-deserved encouragement, the pharmacokinetic profile of these molecules has turned out to be an unwelcomed disappointment. Nevertheless, the light at the end of the tunnel arrived with the development of nanotechnology, more specifically, the use of liposomes as drug delivery systems. Liposomes are easily synthesizable phospholipid-based vesicles, with highly tunable surfaces, that have the ability to transport both hydrophilic and lipophilic structures ensuring superior drug bioavailability at the action site as well as an increased selectivity. This study aims to report the results related to the development of different types of liposomes, used as targeted vectors for the delivery of various triterpenes of high pharmacological interest.
Collapse
Affiliation(s)
- Andreea Milan
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Alexandra Prodea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Roxana Buzatu
- Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Street, 300041 Timişoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Florina Caruntu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Street, 300041 Timişoara, Romania;
| | - Codruţa Şoica
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| |
Collapse
|
44
|
Kim TG, Lee Y, Kim MS, Lim J. A novel dermal delivery system using natural spicules for cosmetics and therapeutics. J Cosmet Dermatol 2022; 21:4754-4764. [PMID: 35034416 DOI: 10.1111/jocd.14771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dermal delivery is versatile in therapeutics as well as cosmetics in pursuit of enhancing safety/efficacy and alleviating pain/fear to alternate oral/injective administrations. Natural siliceous spicules offer a potential approach via simple topical medications to circumvent poor penetrations through the skin barrier by loading, carrying and releasing the active ingredients in a highly efficient and controlled manner. AIMS The delivery of ingredients loaded on spicules is assessed to improve the dermal efficacy compared to simple topical treatments. METHODS First, needle-like spicules were isolated from natural freshwater sponges. Then, the active ingredient was loaded via liposome formations. Finally, the dermal efficiency was evaluated. RESULTS Natural siliceous spicules were purified, sorted, and fully characterized to appear 250 μm of length and 12 μm of diameter on average. A model ingredient, pectolinarin, was efficiently loaded onto the internal space of spicules via lecithin-based liposome formations. The penetration was visualized using a porcine skin sample with a fluorescent dye and assessed quantitatively by a Franz diffusion cell system. Dermal absorption rate was measured 73.4%, while the percutaneous penetration rate was 2.2%. The release pattern turned out a simple diffusion analyzed by Fick's law and Higuchi model. The liposomes loaded onto spicules were further stabilized by a hydrophobic capsulation, which may benefit the overall efficacy of the ingredient. CONCLUSION A novel dermal delivery system is beneficial to improve the topical efficacy of biologically active ingredients. The outcomes shed a light upon developing skin-protective/improving cosmetics and therapeutics with enhanced performance.
Collapse
|
45
|
Agrawal A, Bhattacharya S. Cutting-edge Nanotechnological Approaches for Lung Cancer Therapy. Curr Drug Res Rev 2022; 14:171-187. [PMID: 35440332 DOI: 10.2174/2589977514666220418085658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Lung cancer is the second leading cancer with a high rate of mortality. It can be treated using different intervention techniques such as chemotherapy, radiation therapy, surgical removal, and photodynamic therapy. All of these interventions lack specificity, implying that it harms the normal cells adjacent to the infected ones. Nanotechnology provides a promising solution that increases the bioavailability of anticancer drugs at the tumor site with reduced toxicity and improved therapeutic efficacy. Nanotechnology also improves the way lung cancer is diagnosed and treated. Various nanocarriers like liposomes, polymeric nanoparticles, magnetic nanoparticles, and different theranostic approaches are already approved for medical use, while various are under clinical and preclinical stages. This review article covers the details about lung cancer, types of overexpressed receptors, and cutting-edge nanocarriers used for treating lung cancer at its specific target.
Collapse
Affiliation(s)
- Amaiyya Agrawal
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur 425405, Maharashtra, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur 425405, Maharashtra, India
| |
Collapse
|
46
|
Fobian SF, Cheng Z, ten Hagen TLM. Smart Lipid-Based Nanosystems for Therapeutic Immune Induction against Cancers: Perspectives and Outlooks. Pharmaceutics 2021; 14:26. [PMID: 35056922 PMCID: PMC8779430 DOI: 10.3390/pharmaceutics14010026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy, a promising and widely applied mode of oncotherapy, makes use of immune stimulants and modulators to overcome the immune dysregulation present in cancer, and leverage the host's immune capacity to eliminate tumors. Although some success has been seen in this field, toxicity and weak immune induction remain challenges. Liposomal nanosystems, previously used as targeting agents, are increasingly functioning as immunotherapeutic vehicles, with potential for delivery of contents, immune induction, and synergistic drug packaging. These systems are tailorable, multifunctional, and smart. Liposomes may deliver various immune reagents including cytokines, specific T-cell receptors, antibody fragments, and immune checkpoint inhibitors, and also present a promising platform upon which personalized medicine approaches can be built, especially with preclinical and clinical potentials of liposomes often being frustrated by inter- and intrapatient variation. In this review, we show the potential of liposomes in cancer immunotherapy, as well as the methods for synthesis and in vivo progression thereof. Both preclinical and clinical studies are included to comprehensively illuminate prospects and challenges for future research and application.
Collapse
Affiliation(s)
| | | | - Timo L. M. ten Hagen
- Laboratory Experimental Oncology (LEO), Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (S.-F.F.); (Z.C.)
| |
Collapse
|
47
|
Lelis CA, de Carvalho APA, Conte Junior CA. A Systematic Review on Nanoencapsulation Natural Antimicrobials in Foods: In Vitro versus In Situ Evaluation, Mechanisms of Action and Implications on Physical-Chemical Quality. Int J Mol Sci 2021; 22:12055. [PMID: 34769485 PMCID: PMC8584738 DOI: 10.3390/ijms222112055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Natural antimicrobials (NA) have stood out in the last decade due to the growing demand for reducing chemical preservatives in food. Once solubility, stability, and changes in sensory attributes could limit their applications in foods, several studies were published suggesting micro-/nanoencapsulation to overcome such challenges. Thus, for our systematic review the Science Direct, Web of Science, Scopus, and Pub Med databases were chosen to recover papers published from 2010 to 2020. After reviewing all titles/abstracts and keywords for the full-text papers, key data were extracted and synthesized. The systematic review proposed to compare the antimicrobial efficacy between nanoencapsulated NA (nNA) and its free form in vitro and in situ studies, since although in vitro studies are often used in studies, they present characteristics and properties that are different from those found in foods; providing a comprehensive understanding of primary mechanisms of action of the nNA in foods; and analyzing the effects on quality parameters of foods. Essential oils and nanoemulsions (10.9-100 nm) have received significant attention and showed higher antimicrobial efficacy without sensory impairments compared to free NA. Regarding nNA mechanisms: (i) nanoencapsulation provides a slow-prolonged release to promote antimicrobial action over time, and (ii) prevents interactions with food constituents that in turn impair antimicrobial action. Besides in vitro antifungal and antibacterial, nNA also demonstrated antioxidant activity-potential to shelf life extension in food. However, of the studies involving nanoencapsulated natural antimicrobials used in this review, little attention was placed on proximate composition, sensory, and rheological evaluation. We encourage further in situ studies once data differ from in vitro assay, suggesting food matrix greatly influences NA mechanisms.
Collapse
Affiliation(s)
- Carini Aparecida Lelis
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; (C.A.L.); (A.P.A.d.C.)
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Anna Paula Azevedo de Carvalho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; (C.A.L.); (A.P.A.d.C.)
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; (C.A.L.); (A.P.A.d.C.)
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
48
|
Silva MD, Paris JL, Gama FM, Silva BFB, Sillankorva S. Sustained Release of a Streptococcus pneumoniae Endolysin from Liposomes for Potential Otitis Media Treatment. ACS Infect Dis 2021; 7:2127-2137. [PMID: 34167300 DOI: 10.1021/acsinfecdis.1c00108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Local delivery of antimicrobials for otitis media treatment would maximize therapeutic efficacy while minimizing side effects. However, drug transport across the tympanic membrane in the absence of a delivery system is challenging. In this study, the MSlys endolysin was encapsulated in deformable liposomes for a targeted treatment of S. pneumoniae, one of the most important causative agents of otitis media. MSlys was successfully encapsulated in liposomes composed of l-alpha-lecithin and sodium cholate (5:1) or l-alpha-lecithin and PEG2000 PE (10:1), with encapsulation efficiencies of about 35%. The PEGylated and sodium cholate liposomes showed, respectively, mean hydrodynamic diameters of 85 and 115 nm and polydispersity indices of 0.32 and 0.42, both being stable after storage at 4 °C for at least one year. Both liposomal formulations showed a sustained release of MSlys over 7 days. Cytotoxicity studies against fibroblast and keratinocyte cell lines revealed the biocompatible nature of both MSlys and MSlys-loaded liposomes. Additionally, the encapsulated MSlys showed prompt antipneumococcal activity against planktonic and biofilm S. pneumoniae, thus holding great potential for transtympanic treatment against S. pneumoniae otitis media.
Collapse
Affiliation(s)
- Maria Daniela Silva
- CEB−Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- INL−International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Juan L. Paris
- INL−International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | | | - Bruno F. B. Silva
- INL−International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Sanna Sillankorva
- INL−International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
49
|
Gorshkova Y, Barbinta-Patrascu ME, Bokuchava G, Badea N, Ungureanu C, Lazea-Stoyanova A, Răileanu M, Bacalum M, Turchenko V, Zhigunov A, Juszyńska-Gałązka E. Biological Performances of Plasmonic Biohybrids Based on Phyto-Silver/Silver Chloride Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1811. [PMID: 34361197 PMCID: PMC8308221 DOI: 10.3390/nano11071811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022]
Abstract
Silver/silver chloride nanoparticles (Ag/AgClNPs), with a mean size of 48.2 ± 9.5 nm and a zeta potential value of -31.1 ± 1.9 mV, obtained by the Green Chemistry approach from a mixture of nettle and grape extracts, were used as "building blocks" for the "green" development of plasmonic biohybrids containing biomimetic membranes and chitosan. The mechanism of biohybrid formation was elucidated by optical analyses (UV-vis absorption and emission fluorescence, FTIR, XRD, and SAXS) and microscopic techniques (AFM and SEM). The aforementioned novel materials showed a free radical scavenging capacity of 75% and excellent antimicrobial properties against Escherichia coli (IGZ = 45 mm) and Staphylococcus aureus (IGZ = 35 mm). The antiproliferative activity of biohybrids was highlighted by a therapeutic index value of 1.30 for HT-29 cancer cells and 1.77 for HepG2 cancer cells. At concentrations below 102.2 µM, these materials are not hemolytic, so they will not be harmful when found in the bloodstream. In conclusion, hybrid systems based on phyto-Ag/AgClNPs, artificial cell membranes, and chitosan can be considered potential adjuvants in liver and colorectal cancer treatment.
Collapse
Affiliation(s)
- Yulia Gorshkova
- Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Joliot-Curie, 6, 141980 Dubna, Russia; (Y.G.); (G.B.); (V.T.)
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya Street, 420008 Kazan, Russia
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Gizo Bokuchava
- Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Joliot-Curie, 6, 141980 Dubna, Russia; (Y.G.); (G.B.); (V.T.)
| | - Nicoleta Badea
- General Chemistry Department, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania; (N.B.); (C.U.)
| | - Camelia Ungureanu
- General Chemistry Department, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania; (N.B.); (C.U.)
| | - Andrada Lazea-Stoyanova
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Mina Răileanu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
- Department of Life and Environmental Physics, Institute for Physics and Nuclear Engineering, Horia Hulubei National, Reactorului, 30, 077125 Magurele, Romania;
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Institute for Physics and Nuclear Engineering, Horia Hulubei National, Reactorului, 30, 077125 Magurele, Romania;
| | - Vitaly Turchenko
- Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Joliot-Curie, 6, 141980 Dubna, Russia; (Y.G.); (G.B.); (V.T.)
- Department of Crystal Growth Laboratory, South Ural State University, 76, Lenin Aven., 454080 Chelyabinsk, Russia
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry AS CR, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic;
| | - Ewa Juszyńska-Gałązka
- Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow, Poland;
| |
Collapse
|
50
|
Ezekiel CI, Bapolisi AM, Walker RB, Krause RWM. Ultrasound-Triggered Release of 5-Fluorouracil from Soy Lecithin Echogenic Liposomes. Pharmaceutics 2021; 13:821. [PMID: 34205990 PMCID: PMC8229429 DOI: 10.3390/pharmaceutics13060821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer is the third most diagnosed cancer and the second leading cause of death. The use of 5-fluorouracil (5-FU) has been the major chemotherapeutic treatment for colorectal cancer patients. However, the efficacy of 5-FU is limited by drug resistance, and bone marrow toxicity through high-level expression of thymidylate synthase, justifying the need for improvement of the therapeutic index. In this study, the effects of ultrasound on echogenic 5-FU encapsulated crude soy liposomes were investigated for their potential to address these challenges. Liposomes were prepared by thin-film hydration using crude soy lecithin and cholesterol. Argon gas was entrapped in the liposomes for sonosensitivity (that is, responsiveness to ultrasound). The nanoparticles were characterized for particle size and morphology. The physicochemical properties were also evaluated using differential scanning calorimetry, Fourier transform infrared and X-ray diffraction. The release profile of 5-FU was assessed with and without 20 kHz low-frequency ultrasound waves at various amplitudes and exposure times. The result reveal that 5-FU-loaded liposomes were spherical with an encapsulation efficiency of approximately 60%. Approximately 65% of 5-FU was released at the highest amplitude and exposure time was investigated. The results are encouraging for the stimulated and controlled release of 5-FU for the management of colorectal cancer.
Collapse
Affiliation(s)
- Charles Izuchukwu Ezekiel
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (C.I.E.); (A.M.B.)
| | - Alain Murhimalika Bapolisi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (C.I.E.); (A.M.B.)
| | - Roderick Bryan Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, Eastern Cape, South Africa;
| | - Rui Werner Maçedo Krause
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (C.I.E.); (A.M.B.)
- Center for Chemico and Biomedicinal Research, Rhodes University, Makhanda 6140, Eastern Cape, South Africa
| |
Collapse
|