1
|
Li X, Li W, Xie X, Fang T, Yang J, Shen Y, Wang Y, Wang H, Tao L, Zhang H. ROS Regulate Rotenone-induced SH-SY5Y Dopamine Neuron Death Through Ferroptosis-mediated Autophagy and Apoptosis. Mol Neurobiol 2025:10.1007/s12035-025-04824-6. [PMID: 40097764 DOI: 10.1007/s12035-025-04824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Rotenone, a plant-derived natural insecticide, is widely used to induce Parkinson's disease (PD) models. However, the mechanisms of rotenone-induced cell death remain unclear. Here, we found that rotenone (0.01, 0.1, or 1 μmol/L) suppressed SH-SY5Y dopamine neuron viability and led to PD-like pathological changes, such as reduced tyrosine hydroxylase (TH) but increased α-synuclein. Rotenone increased the levels of intracellular reactive oxygen species (ROS) and mitochondrial ROS, as well as the levels of the antioxidants nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), ultimately resulting in oxidative stress. Moreover, rotenone significantly downregulated the expression of GPX4 and xCT but upregulated the expression of COX2 and NCOA4, which are markers of ferroptosis. Furthermore, rotenone decreased phosphorylated mTOR level but increased Beclin-1, ATG5, LC3 and p62 expression, suggesting that rotenone enhances autophagy and reduces autophagy flux. Additionally, rotenone reduced Bcl-2 levels and the mitochondrial membrane potential (MMP) while promoting BAX and Caspase-3 expression, thus initiating cell apoptosis. N-acetylcysteine (NAC), a ROS scavenger, and ferrostatin-1 (Fer-1) and deferoxamine (DFO), two ferroptosis inhibitors, significantly eliminated rotenone-induced autophagy and apoptosis. Moreover, ML385, a specific inhibitor of Nrf2, suppressed rotenone-induced ferroptosis. Our results demonstrated that ROS might mediate rotenone-induced PD-like pathological changes by regulating iron death, autophagy, and apoptosis. Inhibiting ferroptosis blocked the rotenone-induced increase in autophagy and apoptosis. Thus, the ability of ROS to regulate rotenone-induced death through autophagy and apoptosis is dependent on ferroptosis. The findings require validation in multiple neuronal cell lines and in vivo.
Collapse
Affiliation(s)
- Xinying Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Weiran Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Qinghai University, Xining, China
| | - Xinying Xie
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Ting Fang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jingwen Yang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yue Shen
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yicheng Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongyan Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Liqing Tao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
2
|
Zhang W, Wang R, Guo R, Yi Z, Wang Y, Wang H, Li Y, Li X, Song J. The multiple biological activities of hyperoside: from molecular mechanisms to therapeutic perspectives in neoplastic and non-neoplastic diseases. Front Pharmacol 2025; 16:1538601. [PMID: 40098612 PMCID: PMC11911483 DOI: 10.3389/fphar.2025.1538601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
In recent years, hyperoside (quercetin 3-O-β-D-galactopyranoside) has garnered significant attention due to its diverse biological effects, which include vasoprotective, antioxidant, anti-inflammatory, and anti-tumor properties. Notably, hyperoside has shown remarkable potential in cancer therapy by targeting multiple mechanisms; it induces apoptosis, inhibits proliferation, blocks angiogenesis, and reduces the metastatic potential of cancer cells. Furthermore, hyperoside enhances the sensitivity of cancer cells to chemotherapy by modulating key signaling pathways. Beyond neoplastic diseases, hyperoside also presents promising therapeutic applications in managing non-cancerous conditions such as diabetes, Alzheimer's disease, and pulmonary fibrosis. This review comprehensively examines the molecular mechanisms underlying hyperoside's anti-cancer effects and highlights its role in the treatment of cancers, including lung and colorectal cancers. Additionally, it explores the latest research on hyperoside's potential in addressing non-neoplastic conditions, such as pulmonary fibrosis, diabetes, and Parkinson's disease. By summarizing current findings, this review underscores the unique therapeutic value of hyperoside and its potential as a multifunctional treatment in both neoplastic and non-neoplastic contexts.
Collapse
Affiliation(s)
- Weisong Zhang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Rui Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Rongqi Guo
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Zhongquan Yi
- Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Yihao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Yangyang Li
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Jianxiang Song
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| |
Collapse
|
3
|
Wang Y, Liu Y, Zheng X. Hyperoside Alleviates Helicobacter pylori-Induced Gastric Epithelial Cell Injury by Regulating Nrf2/HO-1 Signaling. Pol J Microbiol 2025; 74:60-70. [PMID: 40146790 PMCID: PMC11949383 DOI: 10.33073/pjm-2025-005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025] Open
Abstract
Infection with Helicobacter pylori is the major causative factor of chronic gastritis, peptic ulcer, gastric cancer, and other diseases. Gastric mucosal epithelial injury characterized by abnormal apoptosis, oxidative stress, and inflammation is a crucial mechanism of H. pylori infection. Hyperoside (HYP) is a flavonol glycoside derived from many herbal plants, which exhibits potent anti-apoptotic, antioxidant, and anti-inflammatory properties. Our research explored whether it exerts protective effects on H. pylori-infected human gastric epithelial cells. GES-1 cells were first treated for 24 h with HYP (0, 10, 20, 40, 80, 100, or 120 μM) to determine the cytotoxicity of HYP. Subsequently, GES-1 cells were pre-treated for 4 h with HYP (80 μM), followed by exposure to H. pylori for 24 h. CCK-8 assay, flow cytometry assay, ELISA, RT-qPCR, DCFH-DA staining, the commercial assay kits, immunofluorescence staining, and western blotting were used to assess cell viability, cell apoptosis, pro-inflammatory cytokine levels, oxidative stress marker levels, and Nrf2/HO-1 signaling-related molecule levels. The Nrf2 inhibitor ML385 was employed to verify the beneficial role of Nrf2 activation in HYP-mediated GES-1 cell injury induced by H. pylori. The results showed that HYP pre-treatment reversed H. pylori-induced cell apoptosis, inflammation, and oxidative stress in GES-1 cells. Furthermore, HYP downregulated Nrf2, HO-1, and NQO1 protein levels in H. pylori-infected GES-1 cells. ML385 overturned the protective effects of HYP against H. pylori-induced GES-1 cell apoptosis, inflammation, and oxidative stress. In conclusion, HYP protects gastric epithelial cells against H. pylori-induced cell injury by activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yanfen Wang
- Department of Basic Medicine, Henan Vocational College of Nursing, Anyang, China
| | - Yuxue Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiuhua Zheng
- Department of Clinical Medicine, Henan Vocational College of Nursing, Anyang, China
| |
Collapse
|
4
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
5
|
Liu M, Liu S, Lin Z, Chen X, Jiao Q, Du X, Jiang H. Targeting the Interplay Between Autophagy and the Nrf2 Pathway in Parkinson's Disease with Potential Therapeutic Implications. Biomolecules 2025; 15:149. [PMID: 39858542 PMCID: PMC11764135 DOI: 10.3390/biom15010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder marked by the progressive degeneration of midbrain dopaminergic neurons and resultant locomotor dysfunction. Despite over two centuries of recognition as a chronic disease, the exact pathogenesis of PD remains elusive. The onset and progression of PD involve multiple complex pathological processes, with dysfunctional autophagy and elevated oxidative stress serving as critical contributors. Notably, emerging research has underscored the interplay between autophagy and oxidative stress in PD pathogenesis. Given the limited efficacy of therapies targeting either autophagy dysfunction or oxidative stress, it is crucial to elucidate the intricate mechanisms governing their interplay in PD to develop more effective therapeutics. This review overviews the role of autophagy and nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal transcriptional regulator orchestrating cellular defense mechanisms against oxidative stress, and the complex interplay between these processes. By elucidating the intricate interplay between these key pathological processes in PD, this review will deepen our comprehensive understanding of the multifaceted pathological processes underlying PD and may uncover potential strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Mengru Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Siqi Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Zihan Lin
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Hong Jiang
- Qingdao Key Laboratory of Neurorehabilitation, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| |
Collapse
|
6
|
Chen K, Lu S, Shi K, Ali MH, Liu J, Yin F, Yin W. Hyperoside attenuates sepsis-induced acute lung injury by Nrf2 activation and ferroptosis inhibition. Int Immunopharmacol 2025; 145:113734. [PMID: 39657533 DOI: 10.1016/j.intimp.2024.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening condition associated with high morbidity and mortality rates in intensive care units (ICUs). Emerging evidence from clinical studies suggests that compounds derived from traditional Chinese medicine (TCM) have shown promising therapeutic effects in treating sepsis-induced ALI. Hyperoside is a bioactive compound extracted from TCM. Prior studies reported that hyperoside exhibits potent anti-inflammatory, antioxidant, and organ-protective properties, however, the underlying mechanisms of its effects on ALI remain unclear. Hyperoside pretreatment significantly reduced inflammation, iron accumulation, and lipid peroxidation in the pulmonary tissues of ALI mice induced by CLP and in LPS-stimulated MLE-12 cells. In particular, hyperoside preferentially binds with Keap1 at Arg380 and Arg415, thereby inhibiting the ubiquitin-mediated degradation of nuclear Nrf2, promoting its translocation to the nucleus, and leading to upregulation of anti-ferroptosis gene expression. Moreover, the protective effects of hyperoside were significantly abrogated after Nrf2 expression was silenced or its activity was inhibited by chemical inhibitors, highlighting that Nrf2 is critically involved in the impact of hyperoside. This study confirms that hyperoside exhibits a therapeutically protective effect against sepsis-induced ALI by inhibiting ferroptosis through Nrf2-mediated signaling pathway. Hyperoside acts as an Nrf2 activator by preferentially binding to Arg380 and Arg415 of Keap1 and disrupting the Keap1/Nrf2 interaction.
Collapse
Affiliation(s)
- Kuida Chen
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shipeng Lu
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ke Shi
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China; Medical Research Center, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China
| | - Mustafa Hussein Ali
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Wu Yin
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Gu L, Wang C, Liu J, Zheng M, Tan Y, Du Q, Li Q, Yang W, Zhang X. Unlocking the neuroprotective potential of Ziziphora clinopodioides flavonoids in combating neurodegenerative diseases and other brain injuries. Biomed Pharmacother 2025; 182:117744. [PMID: 39674108 DOI: 10.1016/j.biopha.2024.117744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024] Open
Abstract
Ziziphora clinopodioides Lam. (Z. clinopodioides) is a traditional Chinese and ethnic medicine in Xinjiang, China with various therapeutic effects. It is primarily used for conditions such as heart disease, fever with chills, palpitations, and insomnia. Flavonoids are the main medicinal components of Z. clinopodioides, Interestingly, current research has increasingly focused on its neuroprotective effects. This study provides a comprehensive overview of the potential therapeutic applications of Z. clinopodioides and its constituents in central nervous system disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and cerebral ischemia-reperfusion injury. At present, about 25 flavonoids have been isolated and identified from various organs of Z. clinopodioides, including linarin, acacetin, hyperoside, quercetin, apigenin, luteolin, chrysin, kaempferol, baicalein, rutin and others. Modern pharmacological studies have revealed that Z. clinopodioides and its constituents exhibits neuroprotective effects in vitro and in vivo, and the mechanism of action is related to anti-apoptosis, anti-inflammatory, antioxidant, autophagy, endoplasmic reticulum stress and so on. Currently, there is limited research on the extracts of Z. clinopodioides and their potential mechanisms of action in these neurological disorders. It is also important to prioritize research on biosynthetic pathways and chemical modification approaches to fully explore and improve the neuroprotective potential of Z. clinopodioides and its flavonoids and establish a strong foundation for its clinical applications.
Collapse
Affiliation(s)
- Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Can Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Jiayi Liu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Yilian Tan
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Qibin Du
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China
| | - Weijun Yang
- Xinjiang Institute of Materia Medica, Urumqi, Xinjiang 830000, PR China.
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
8
|
Tu W, Xu F, Li J, Tian X, Cao L, Wang L, Qu Y. Studying targeted oxidation in diabetic cognitive dysfunction based on scientometrics analysis: research progress of natural product approaches. Front Endocrinol (Lausanne) 2024; 15:1445750. [PMID: 39758348 PMCID: PMC11695123 DOI: 10.3389/fendo.2024.1445750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose The aim is to provide new insights for researchers studying the pathogenesis of diabetic cognitive dysfunction and promoting the wider use of natural products in their treatment. Method First, the Web of Science Core Collection was selected as the data source for a computerized literature search on oxidative stress and diabetic cognitive dysfunction (DCD). Next, Biblimetrix and VOSviewer performed statistical analysis focusing on publication countries, institutions, authors, research hotspots, and emerging directions in the field. Then, through the analysis of keywords and key articles, the forefront of the field is identified. Finally, we discussed the pathogenesis of DCD, the influence of oxidative stress on DCD and the antioxidant effect of natural products on DCD. Result 293 valid papers were obtained. Bibliometrics showed that oxidative stress, diabetes, Alzheimer's disease (AD), cognitive decline, insulin resistance and quercetin were the key words of the symbiotic network. Conclusion The antioxidant effects of natural products in improving DCD have been extensively studied in preclinical studies, providing potential for their treatment in DCD, but their evaluation in clinical trials is currently uncommon.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University,
Hangzhou, China
| | - Yiqian Qu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University,
Hangzhou, China
| |
Collapse
|
9
|
Yuan J, Dong X, Zhou S, Nao J. Pharmacological activities and therapeutic potential of Hyperoside in the treatment of Alzheimer's and Parkinson's diseases: A systemic review. Neuroscience 2024; 563:136-147. [PMID: 39489478 DOI: 10.1016/j.neuroscience.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders that significantly impact well-being. Hyperoside (HYP), a flavonoid found in various plant species, particularly within the genus Hypericin, exhibits diverse pharmacological properties. However, the precise mechanisms underlying the anti-AD and anti-PD effects of HYP remain unclear. This systematic review consolidated existing preclinical research on HYP by conducting a comprehensive literature survey and analysis. The objective was to corroborate the therapeutic efficacy of HYP in AD and PD models and to synthesize its potential therapeutic mechanisms. Searches were conducted in the PubMed, CNKI, and Web of Science databases. Reliability assessment of the 17 included studies confirmed the credibility of the mechanisms of action of HYP against AD and PD. We systematically assessed the neuroprotective potential of HYP in in vivo and in vitro models of AD and PD. Our findings indicated that HYP can mitigate, intervene in, and treat AD and PD animal models and associated cells through various mechanisms, including anti-oxidative, anti-inflammatory, anti-apoptotic, anti-Aβ aggregation, and cholinesterase inhibitory activities. Therefore, HYP potentially exerts anti-AD and anti-PD effects through diverse mechanisms, making it a promising candidate for therapeutic intervention in both AD and PD.
Collapse
Affiliation(s)
- Jiayu Yuan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Siyu Zhou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
10
|
Pal C. Targeting mitochondria with small molecules: A promising strategy for combating Parkinson's disease. Mitochondrion 2024; 79:101971. [PMID: 39357561 DOI: 10.1016/j.mito.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is one of the most significant challenges confronting modern societies, affecting millions of patients globally each year. The pathophysiology of PD is significantly influenced by mitochondrial dysfunction, as evident by the contribution of altered mitochondrial dynamics, bioenergetics, and increased oxidative stress to neuronal death. This review examines the potential use of small molecules that target mitochondria as a therapeutic approach for treating PD. Progress in mitochondrial biology has revealed various mitochondrial targets that can be modulated to restore function and mitigate neurodegeneration. Small molecules that promote mitochondrial biogenesis, enhance mitochondrial dynamics, decrease oxidative stress, and prevent the opening of the mitochondrial permeability transition pore (mPTP) have shown promise in preclinical models. Additionally, targeting mitochondrial quality control mechanisms, such as mitophagy, provides another therapeutic approach. This review explores recent research on small molecules targeting mitochondria, examines their mechanisms of action, and assesses their potential efficacy and safety profiles. By highlighting the most promising candidates and addressing the challenges and future directions in this field, this review aims to offer a comprehensive overview of current and future prospects for mitochondrial-targeted therapies in PD. Ultimately, treating mitochondrial dysfunction holds significant promise for developing disease-modifying PD medications, giving patients hope for better outcomes and improved quality of life.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
11
|
Wu S, Rong C, Lin R, Ji K, Lin T, Chen W, Mao W, Xu Y. Chinese medicine PaBing-II protects human iPSC-derived dopaminergic neurons from oxidative stress. Front Immunol 2024; 15:1410784. [PMID: 39156892 PMCID: PMC11327085 DOI: 10.3389/fimmu.2024.1410784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Background PaBing-II Formula (PB-II) is a traditional Chinese medicine for treating Parkinson's disease (PD). However, owing to the complexity of PB-II and the difficulty in obtaining human dopaminergic neurons (DAn), the mechanism of action of PB-II in PD treatment remains unclear. The aim of this study was to investigate the mechanisms underlying the therapeutic benefits of PB-II in patients with PD. Methods hiPSCs derived DAn were treated with H2O2 to construct the DAn oxidative damage model. SwissTargetPrediction was employed to predict the potential targets of the main compounds in serum after PB-II treatment. Metascape was used to analyze the pathways. Sprague-Dawley rats were used to construct the 6-hydroxydopamine (6-OHDA)-induced PD model, and the duration of administration was four weeks. RNA sequencing was used for Transcriptome analysis to find the signal pathways related to neuronal damage. The associated inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). We identified PB-II as an Nrf2 activator using antioxidant-responsive element luciferase assay in MDA-MB-231 cells. Results In vitro experiments showed that the treatment of PB-II-treated serum increased the percentage of TH+ cells, decreased inflammation and the apoptosis, reduced cellular reactive oxygen species, and upregulated the expression of Nrf2 and its downstream genes. Pathway analysis of the RNA-seq data of samples before and after the treatment with PB-II-treated serum identified neuron-associated pathways. In vivo experiments demonstrated that PB-II treatment of PD rat model could activate the Nrf2 signaling pathway, protect the midbrain DAn, and improve the symptoms in PD rats. Conclusion PB-II significantly protects DAn from inflammation and oxidative stress via Nrf2 pathway activation. These findings elucidate the roles of PB-II in PD treatment and demonstrate the application of hiPSC-derived DAn in research of Chinese medicine.
Collapse
Affiliation(s)
- Shouhai Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Cuiping Rong
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
- Laboratory of Molecular Biology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, Nanning, China
| | - Ruishan Lin
- Experimental Teaching Center, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Kaiyuan Ji
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Tongxiang Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fujian, Fuzhou, China
| | - Weimin Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Xu
- Department of Cardiology, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
12
|
Calabrese V, Osakabe N, Siracusa R, Modafferi S, Di Paola R, Cuzzocrea S, Jacob UM, Fritsch T, Abdelhameed AS, Rashan L, Wenzel U, Franceschi C, Calabrese EJ. Transgenerational hormesis in healthy aging and antiaging medicine from bench to clinics: Role of food components. Mech Ageing Dev 2024; 220:111960. [PMID: 38971236 DOI: 10.1016/j.mad.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
13
|
Leow DMK, Cheah IKM, Chen L, Ng YK, Yeo CJJ, Halliwell B, Ong WY. Ergothioneine-Mediated Neuroprotection of Human iPSC-Derived Dopaminergic Neurons. Antioxidants (Basel) 2024; 13:693. [PMID: 38929132 PMCID: PMC11200999 DOI: 10.3390/antiox13060693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Cell death involving oxidative stress and mitochondrial dysfunction is a major cause of dopaminergic neuronal loss in the substantia nigra (SN) of Parkinson's disease patients. Ergothioneine (ET), a natural dietary compound, has been shown to have cytoprotective functions, but neuroprotective actions against PD have not been well established. 6-Hydroxydopamine (6-OHDA) is a widely used neurotoxin to simulate the degeneration of dopaminergic (DA) neurons in Parkinson's disease. In this study, we investigated the protective effect of ET on 6-OHDA treated iPSC-derived dopaminergic neurons (iDAs) and further confirmed the protective effects in 6-OHDA-treated human neuroblastoma SH-SY5Y cells. In 6-OHDA-treated cells, decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial reactive oxygen species (mROS), reduced cellular ATP levels, and increased total protein carbonylation levels were observed. 6-OHDA treatment also significantly decreased tyrosine hydroxylase levels. These effects were significantly decreased when ET was present. Verapamil hydrochloride (VHCL), a non-specific inhibitor of the ET transporter OCTN1 abrogated ET's cytoprotective effects, indicative of an intracellular action. These results suggest that ET could be a potential therapeutic for Parkinson's disease.
Collapse
Affiliation(s)
- Damien Meng-Kiat Leow
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Irwin Kee-Mun Cheah
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Lucrecia Chen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Yang-Kai Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Crystal Jing-Jing Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- National Neuroscience Institute (NNI), Singapore 308433, Singapore
- Institute of Education in Healthcare and Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen AB51 7HA, UK
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Barry Halliwell
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
14
|
Wang T, Hu L, Li R, Ren H, Li S, Sun Q, Ding X, Li Y, Wang C, Li L. Hyperoside inhibits EHV-8 infection via alleviating oxidative stress and IFN production through activating JNK/Keap1/Nrf2/HO-1 signaling pathways. J Virol 2024; 98:e0015924. [PMID: 38499512 PMCID: PMC11019850 DOI: 10.1128/jvi.00159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Equine herpesvirus type 8 (EHV-8) causes abortion and respiratory disease in horses and donkeys, leading to serious economic losses in the global equine industry. Currently, there is no effective vaccine or drug against EHV-8 infection, underscoring the need for a novel antiviral drug to prevent EHV-8-induced latent infection and decrease the pathogenicity of this virus. The present study demonstrated that hyperoside can exert antiviral effects against EHV-8 infection in RK-13 (rabbit kidney cells), MDBK (Madin-Darby bovine kidney), and NBL-6 cells (E. Derm cells). Mechanistic investigations revealed that hyperoside induces heme oxygenase-1 expression by activating the c-Jun N-terminal kinase/nuclear factor erythroid-2-related factor 2/Kelch-like ECH-associated protein 1 axis, alleviating oxidative stress and triggering a downstream antiviral interferon response. Accordingly, hyperoside inhibits EHV-8 infection. Meanwhile, hyperoside can also mitigate EHV-8-induced injury in the lungs of infected mice. These results indicate that hyperoside may serve as a novel antiviral agent against EHV-8 infection.IMPORTANCEHyperoside has been reported to suppress viral infections, including herpesvirus, hepatitis B virus, infectious bronchitis virus, and severe acute respiratory syndrome coronavirus 2 infection. However, its mechanism of action against equine herpesvirus type 8 (EHV-8) is currently unknown. Here, we demonstrated that hyperoside significantly inhibits EHV-8 adsorption and internalization in susceptible cells. This process induces HO-1 expression via c-Jun N-terminal kinase/nuclear factor erythroid-2-related factor 2/Kelch-like ECH-associated protein 1 axis activation, alleviating oxidative stress and triggering an antiviral interferon response. These findings indicate that hyperoside could be very effective as a drug against EHV-8.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Leyu Hu
- College of Agronomy, Liaocheng University, Liaocheng, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ruibo Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shuwen Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Qi Sun
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Xiangdan Ding
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
15
|
Zhang Y, Yu S, Guo X, Wang L, Yu L, Wang P. Therapeutic potential of salidroside in preserving rat cochlea organ of corti from gentamicin-induced injury through modulation of NRF2 signaling and GSK3β/NF-κB pathway. PLoS One 2024; 19:e0298529. [PMID: 38483863 PMCID: PMC10939193 DOI: 10.1371/journal.pone.0298529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024] Open
Abstract
Salidroside (SAL) is a phenol glycoside compound found in plants of the Rhodiola genus which has natural antioxidant and free radical scavenging properties. SAL are able to protect against manganese-induced ototoxicity. However, the molecular mechanism by which SAL reduces levels of reactive oxygen species (ROS) is unclear. Here, we established an in vitro gentamicin (GM) ototoxicity model to observe the protective effect of SAL on GM-induced hair cells (HC) damage. Cochlear explants of postnatal day 4 rats were obtained and randomly divided into six groups: two model groups (treatment with 0.2 mM or 0.4 mM GM for 24 h); two 400 μmol/L SAL-pretreated groups pretreatment with SAL for 3 h followed by GM treatment (0.2 mM or 0.4 mM) for 24 h; 400 μmol/L SAL group (treatment with SAL for 24 h); control group (normal cultured cochlear explants). The protective effects of SAL on GM-induced HC damage, and on mRNA and protein levels of antioxidant enzymes were observed. HC loss occurred after 24 h of GM treatment. Pretreatment with SAL significantly reduced GM-induced OHC loss. In cochlear tissues, mRNA and protein levels of NRF2 and HO-1 were enhanced in the GM alone group compared with the SAL pretreatment GM treatment group. SAL may protect against GM-induced ototoxicity by regulating the antioxidant defense system of cochlear tissues; SAL can activate NRF2/HO-1 signaling, inhibit NF-κB activation, activate AKT, and increase inhibitory phosphorylation of GSK3β to decrease GSK3 activity, all of which exert antioxidant effects.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shuyuan Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyi Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Luoying Wang
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Ling Yu
- Department of Pharmacy, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Xiang Y, Song X, Long D. Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases. Arch Toxicol 2024; 98:579-615. [PMID: 38265475 PMCID: PMC10861688 DOI: 10.1007/s00204-023-03660-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024]
Abstract
This article provides an overview of the background knowledge of ferroptosis in the nervous system, as well as the key role of nuclear factor E2-related factor 2 (Nrf2) in regulating ferroptosis. The article takes Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) as the starting point to explore the close association between Nrf2 and ferroptosis, which is of clear and significant importance for understanding the mechanism of neurodegenerative diseases (NDs) based on oxidative stress (OS). Accumulating evidence links ferroptosis to the pathogenesis of NDs. As the disease progresses, damage to the antioxidant system, excessive OS, and altered Nrf2 expression levels, especially the inhibition of ferroptosis by lipid peroxidation inhibitors and adaptive enhancement of Nrf2 signaling, demonstrate the potential clinical significance of Nrf2 in detecting and identifying ferroptosis, as well as targeted therapy for neuronal loss and mitochondrial dysfunction. These findings provide new insights and possibilities for the treatment and prevention of NDs.
Collapse
Affiliation(s)
- Yao Xiang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiaohua Song
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Dingxin Long
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
17
|
Jayanti S, Vitek L, Verde CD, Llido JP, Sukowati C, Tiribelli C, Gazzin S. Role of Natural Compounds Modulating Heme Catabolic Pathway in Gut, Liver, Cardiovascular, and Brain Diseases. Biomolecules 2024; 14:63. [PMID: 38254662 PMCID: PMC10813662 DOI: 10.3390/biom14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The crucial physiological process of heme breakdown yields biliverdin (BV) and bilirubin (BR) as byproducts. BV, BR, and the enzymes involved in their production (the "yellow players-YP") are increasingly documented as endogenous modulators of human health. Mildly elevated serum bilirubin concentration has been correlated with a reduced risk of multiple chronic pro-oxidant and pro-inflammatory diseases, especially in the elderly. BR and BV per se have been demonstrated to protect against neurodegenerative diseases, in which heme oxygenase (HMOX), the main enzyme in the production of pigments, is almost always altered. HMOX upregulation has been interpreted as a tentative defense against the ongoing pathologic mechanisms. With the demonstration that multiple cells possess YP, their propensity to be modulated, and their broad spectrum of activity on multiple signaling pathways, the YP have assumed the role of an adjustable system that can promote health in adults. Based on that, there is an ongoing effort to induce their activity as a therapeutic option, and natural compounds are an attractive alternative to the goal, possibly requiring only minimal changes in the life style. We review the most recent evidence of the potential of natural compounds in targeting the YP in the context of the most common pathologic condition of adult and elderly life.
Collapse
Affiliation(s)
- Sri Jayanti
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 12000 Prague, Czech Republic;
| | - Camilla Dalla Verde
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - John Paul Llido
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
| | - Caecilia Sukowati
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Claudio Tiribelli
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| | - Silvia Gazzin
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| |
Collapse
|
18
|
Chen J, Zhao Y, Wang X, Zang L, Yin D, Tan S. Hyperoside Inhibits RNF8-mediated Nuclear Translocation of β-catenin to Repress PD-L1 Expression and Prostate Cancer. Anticancer Agents Med Chem 2024; 24:464-476. [PMID: 38305391 DOI: 10.2174/0118715206289246240110044931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Hyperoside is a flavonol glycoside isolated from Hypericum perforatum L. that has inhibitory effects on cancer cells; however, its effects on prostate cancer (PCa) remain unclear. Therefore, we studied the anti-PCa effects of hyperoside and its underlying mechanisms in vitro and in vivo. AIM This study aimed to explore the mechanism of hyperoside in anti-PCa. METHODS 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT), transwell, and flow cytometry assays were used to detect PCa cell growth, invasion, and cell apoptosis. Immunoblot analysis, immunofluorescence, immunoprecipitation, and quantitative real-time PCR (qRT-PCR) were used to analyze the antitumor mechanism of hyperoside. RESULTS Hyperoside inhibited PCa cell growth, invasion, and cell cycle and induced cell apoptosis. Furthermore, RING finger protein 8 (RNF8), an E3 ligase that assembles K63 polyubiquitination chains, was predicted to be a direct target of hyperoside and was downregulated by hyperoside. Downregulation of RNF8 by hyperoside impeded the nuclear translocation of β-catenin and disrupted the Wnt/β-catenin pathway, which reduced the expression of the target genes c-myc, cyclin D1, and programmed death ligand 1 (PD-L1). Decreased PD-L1 levels contributed to induced immunity in Jurkat cells in vitro. Finally, in vivo studies demonstrated that hyperoside significantly reduced tumor size, inhibited PD-L1 and RNF8 expression, and induced apoptosis in tumor tissues of a subcutaneous mouse model. CONCLUSION Hyperoside exerts its anti-PCa effect by reducing RNF8 protein, inhibiting nuclear translocation of β-catenin, and disrupting the Wnt/β-catenin pathway, in turn reducing the expression of PD-L1 and improving Jurkat cell immunity.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yi Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Xiaoli Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Long Zang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Song Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| |
Collapse
|
19
|
Pradhan SH, Liu JY, Sayes CM. Evaluating Manganese, Zinc, and Copper Metal Toxicity on SH-SY5Y Cells in Establishing an Idiopathic Parkinson's Disease Model. Int J Mol Sci 2023; 24:16129. [PMID: 38003318 PMCID: PMC10671677 DOI: 10.3390/ijms242216129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition marked by loss of motor coordination and cognitive impairment. According to global estimates, the worldwide prevalence of PD will likely exceed 12 million cases by 2040. PD is primarily associated with genetic factors, while clinically, cases are attributed to idiopathic factors such as environmental or occupational exposure. The heavy metals linked to PD and other neurodegenerative disorders include copper, manganese, and zinc. Chronic exposure to metals induces elevated oxidative stress and disrupts homeostasis, resulting in neuronal death. These metals are suggested to induce idiopathic PD in the literature. This study measures the effects of lethal concentration at 10% cell death (LC10) and lethal concentration at 50% cell death (LC50) concentrations of copper, manganese, and zinc chlorides on SH-SY5Y cells via markers for dopamine, reactive oxygen species (ROS) generation, DNA damage, and mitochondrial dysfunction after a 24 h exposure. These measurements were compared to a known neurotoxin to induce PD, 100 µM 6-hydroxydopamine (6-ODHA). Between the three metal chlorides, zinc was statistically different in all parameters from all other treatments and induced significant dopaminergic loss, DNA damage, and mitochondrial dysfunction. The LC50 of manganese and copper had the most similar response to 6-ODHA in all parameters, while LC10 of manganese and copper responded most like untreated cells. This study suggests that these metal chlorides respond differently from 6-ODHA and each other, suggesting that idiopathic PD utilizes a different mechanism from the classic PD model.
Collapse
Affiliation(s)
| | | | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; (S.H.P.)
| |
Collapse
|
20
|
Wang K, Zhang H, Yuan L, Li X, Cai Y. Potential Implications of Hyperoside on Oxidative Stress-Induced Human Diseases: A Comprehensive Review. J Inflamm Res 2023; 16:4503-4526. [PMID: 37854313 PMCID: PMC10581022 DOI: 10.2147/jir.s418222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Hyperoside is a flavonol glycoside mainly found in plants of the genera Hypericum and Crataegus, and also detected in many plant species such as Abelmoschus manihot, Ribes nigrum, Rosa rugosa, Agrostis stolonifera, Apocynum venetum and Nelumbo nucifera. This compound exhibits a multitude of biological functions including anti-inflammatory, antidepressant, antioxidative, vascular protective effects and neuroprotective effects, etc. This review summarizes the quantification, original plant, chemical structure and property, structure-activity relationship, pharmacologic effect, pharmacokinetics, toxicity and clinical application of hyperoside, which will be significant for the exploitation for new drug and full utilization of this compound.
Collapse
Affiliation(s)
- Kaiyang Wang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
21
|
Pang QQ, Kim JH, Kim HY, Kim JH, Cho EJ. Protective Effects and Mechanisms of Pectolinarin against H 2O 2-Induced Oxidative Stress in SH-SY5Y Neuronal Cells. Molecules 2023; 28:5826. [PMID: 37570795 PMCID: PMC10420989 DOI: 10.3390/molecules28155826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
This study aims to investigate the protective effects and mechanisms of pectolinarin against oxidative stress-induced cell damage in SH-SY5Y cells. Neurodegenerative diseases-such as Alzheimer's disease-are potentially associated with oxidative stress, which causes excessive production of reactive oxygen species (ROS) that damage DNA and proteins in neuronal cells. The results of this study demonstrate that pectolinarin can scavenge hydroxyl and nitric oxide radicals in a concentration-dependent manner. Moreover, pectolinarin significantly increased cell viability while reducing ROS production and LDH release in the hydrogen peroxide (H2O2)-induced control group. Additionally, Pectolinarin recovered protein expression from H2O2-altered levels back to close-to-normal SH-SY5Y cell levels for components of the oxidative stress, inflammation, and apoptosis pathways-such as nuclear factor erythroid 2-related factor 2 (Nrf2), kelch-like ECH-associated protein (Keap1), anti-heme oxygenase 1 (HO-1), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), B-cell lympho-ma-2 (Bcl-2) protein, and Bcl-2-associated X protein (Bax). These findings suggest that pectolinarin has the potential to be used as a plant material for functional foods to be applied in the treatment of neurodegenerative diseases, such as Alzheimer's disease, by mitigating oxidative stress-induced damage to neuronal cells.
Collapse
Affiliation(s)
- Qi Qi Pang
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea;
| | - Ji Hyun Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.H.K.); (H.Y.K.)
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.H.K.); (H.Y.K.)
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
22
|
Akanchise T, Angelova A. Ginkgo Biloba and Long COVID: In Vivo and In Vitro Models for the Evaluation of Nanotherapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15051562. [PMID: 37242804 DOI: 10.3390/pharmaceutics15051562] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Coronavirus infections are neuroinvasive and can provoke injury to the central nervous system (CNS) and long-term illness consequences. They may be associated with inflammatory processes due to cellular oxidative stress and an imbalanced antioxidant system. The ability of phytochemicals with antioxidant and anti-inflammatory activities, such as Ginkgo biloba, to alleviate neurological complications and brain tissue damage has attracted strong ongoing interest in the neurotherapeutic management of long COVID. Ginkgo biloba leaf extract (EGb) contains several bioactive ingredients, e.g., bilobalide, quercetin, ginkgolides A-C, kaempferol, isorhamnetin, and luteolin. They have various pharmacological and medicinal effects, including memory and cognitive improvement. Ginkgo biloba, through its anti-apoptotic, antioxidant, and anti-inflammatory activities, impacts cognitive function and other illness conditions like those in long COVID. While preclinical research on the antioxidant therapies for neuroprotection has shown promising results, clinical translation remains slow due to several challenges (e.g., low drug bioavailability, limited half-life, instability, restricted delivery to target tissues, and poor antioxidant capacity). This review emphasizes the advantages of nanotherapies using nanoparticle drug delivery approaches to overcome these challenges. Various experimental techniques shed light on the molecular mechanisms underlying the oxidative stress response in the nervous system and help comprehend the pathophysiology of the neurological sequelae of SARS-CoV-2 infection. To develop novel therapeutic agents and drug delivery systems, several methods for mimicking oxidative stress conditions have been used (e.g., lipid peroxidation products, mitochondrial respiratory chain inhibitors, and models of ischemic brain damage). We hypothesize the beneficial effects of EGb in the neurotherapeutic management of long-term COVID-19 symptoms, evaluated using either in vitro cellular or in vivo animal models of oxidative stress.
Collapse
Affiliation(s)
- Thelma Akanchise
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
23
|
He T, Lin X, Su A, Zhang Y, Xing Z, Mi L, Wei T, Li Z, Wu W. Mitochondrial dysfunction-targeting therapeutics of natural products in Parkinson's disease. Front Pharmacol 2023; 14:1117337. [PMID: 37234707 PMCID: PMC10206024 DOI: 10.3389/fphar.2023.1117337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, often occurs in middle-aged and elderly individuals. The pathogenesis of PD is complex and includes mitochondrial dysfunction, and oxidative stress. Recently, natural products with multiple structures and their bioactive components have become one of the most important resources for small molecule PD drug research targeting mitochondrial dysfunction. Multiple lines of studies have proven that natural products display ameliorative benefits in PD treatment by regulating mitochondrial dysfunction. Therefore, a comprehensive search of recent published articles between 2012 and 2022 in PubMed, Web of Science, Elesvier, Wliey and Springer was carried out, focusing on original publications related to natural products against PD by restoring mitochondrial dysfunction. This paper presented the mechanisms of various kinds of natural products on PD-related mitochondrial dysfunction regulation and provided evidence that natural products are promising to be developed as drugs for PD therapeutics.
Collapse
|
24
|
Abrishamdar M, Jalali MS, Farbood Y. Targeting Mitochondria as a Therapeutic Approach for Parkinson's Disease. Cell Mol Neurobiol 2023; 43:1499-1518. [PMID: 35951210 PMCID: PMC11412433 DOI: 10.1007/s10571-022-01265-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Neurodegeneration is among the most critical challenges that involve modern societies and annually influences millions of patients worldwide. While the pathophysiology of Parkinson's disease (PD) is complicated, the role of mitochondrial is demonstrated. The in vitro and in vivo models and genome-wide association studies in human cases proved that specific genes, including PINK1, Parkin, DJ-1, SNCA, and LRRK2, linked mitochondrial dysfunction with PD. Also, mitochondrial DNA (mtDNA) plays an essential role in the pathophysiology of PD. Targeting mitochondria as a therapeutic approach to inhibit or slow down PD formation and progression seems to be an exciting issue. The current review summarized known mutations associated with both mitochondrial dysfunction and PD. The significance of mtDNA in Parkinson's disease pathogenesis and potential PD therapeutic approaches targeting mitochondrial dysfunction was then discussed.
Collapse
Affiliation(s)
- Maryam Abrishamdar
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Sadat Jalali
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Dai HY, Chang MX, Sun L. HOTAIRM1 knockdown reduces MPP +-induced oxidative stress injury of SH-SY5Y cells by activating the Nrf2/HO-1 pathway. Transl Neurosci 2023; 14:20220296. [PMID: 37529170 PMCID: PMC10388137 DOI: 10.1515/tnsci-2022-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023] Open
Abstract
Objective Parkinson's disease (PD) is the second most common neurodegenerative disease with complex pathogenesis. Although HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) is upregulated in PD, its exact role in HOTAIRM1 is seldom reported. The purpose of this study is to research the effect of HOTAIRM1 on 1-methyl-4-phenylpyridonium (MPP+)-induced cytotoxicity and oxidative stress in SH-SY5Y cells. Methods SH-SY5Y cells were treated with MPP+ at various concentrations or time points to induce SH-SY5Y cytotoxicity, so as to determine the optimal MPP+ concentration and time point. HOTAIRM1 expression upon MPP+ treatment was analyzed through qRT-PCR. Next, HOTAIRM1 was downregulated to observe the variance of SH-SY5Y cell viability, apoptosis, oxidative stress-related indexes, and protein levels of the Nrf2/HO-1 pathway. In addition, rescue experiments were carried out to assess the role of Nrf2 silencing in HOTAIRM1 knockdown on MPP+-induced oxidative stress in SH-SY5Y cells. Results MPP+ treatment-induced cytotoxicity and upregulated HOTAIRM1 expression in SH-SY5Y cells in a dose- and time-dependent manner. Mechanically, HOTAIRM1 knockdown enhanced cell viability, limited apoptosis, and oxidative stress, therefore protecting SH-SY5Y cells from MPP+-induced SH-SY5Y cytotoxicity. On the other hand, HOTAIRM1 knockdown activated the protein levels of Nrf2 and HO-1. Nrf2 silencing could counteract the neuroprotective effect of HOTAIRM1 knockdown on in vitro PD model. Conclusion Our data demonstrated that HOTAIRM1 knockdown could inhibit apoptosis and oxidative stress and activated the Nrf2/HO-1 pathway, therefore exerting neuroprotective effect on the PD cell model.
Collapse
Affiliation(s)
- Hui-Yu Dai
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ming-Xiu Chang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ling Sun
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
26
|
Xu XJ, Pan T, Fan HJ, Wang X, Yu JZ, Zhang HF, Xiao BG, Li ZY, Zhang B, Ma CG, Chai Z. Neuroprotective effect of hyperoside in MPP +/MPTP -induced dopaminergic neurodegeneration. Metab Brain Dis 2022; 38:1035-1050. [PMID: 36576692 DOI: 10.1007/s11011-022-01153-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the pathological loss of nigrostriatal dopaminergic neurons, which causes an insufficient release of dopamine (DA) and then induces motor and nonmotor symptoms. Hyperoside (HYP) is a lignan component with anti-inflammatory, antioxidant, and neuroprotective effects. In this study, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active neurotoxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) were used to induce dopaminergic neurodegeneration. The results showed that HYP (100 µg/mL) reduced MPTP-mediated cytotoxicity of SH-SY5Y cells in vitro, and HYP [25 mg/(kg d)] alleviated MPTP-induced motor symptoms in vivo. HYP treatment reduced the contents of nitric oxide (NO), H2O2, and malondialdehyde (MDA), as well as the mitochondrial damage of dopaminergic neurons, both in vitro and in vivo. Meanwhile, HYP treatment elevated the levels of neurotrophic factors such as glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and recombinant cerebral dopamine neurotrophic factor in vivo, but not in vitro. Finally, Akt signaling was activated after the administration of HYP in MPP+/MPTP-induced dopaminergic neurodegeneration. However, the blockage of the Akt pathway with Akt inhibitor did not abolish the neuroprotective effect of HYP on DA neurons. These results showed that HYP protected the dopaminergic neurons from the MPP+- and MPTP-induced injuries, which did not rely on the Akt pathway.
Collapse
Affiliation(s)
- Xing-Jie Xu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China
| | - Tao Pan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China
| | - Hui-Jie Fan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China
| | - Xu Wang
- Department of Traditional Chinese Medicine, Shanxi Pharmaceutical Vocational College, 030031, Taiyuan, China
| | - Jie-Zhong Yu
- Department of Neurology, the First Affiliated Hospital, Shanxi Datong University, 037048, Datong, China
| | - Hai-Fei Zhang
- Department of Neurology, the First Affiliated Hospital, Shanxi Datong University, 037048, Datong, China
| | - Bao-Guo Xiao
- Huashan Hospital, Fudan University, 200025, Shanghai, China
| | - Zhen-Yu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, 030006, Taiyuan, China
| | - Bo Zhang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China.
- Health Commission of Shanxi Province, 030001, Taiyuan, China.
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China.
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, 030619, Jinzhong, China.
| |
Collapse
|
27
|
Nguyen QN, Lee SR, Kim B, Hong JH, Jang YS, Lee DE, Pang C, Kang KS, Kim KH. Estrogenic Activity of 4-Hydroxy-Benzoic Acid from Acer tegmentosum via Estrogen Receptor α-Dependent Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2022; 11:3387. [PMID: 36501426 PMCID: PMC9740217 DOI: 10.3390/plants11233387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Acer tegmentosum, a deciduous tree belonging to Aceraceae, has been used in traditional oriental medicine for treating hepatic disorders, such as hepatitis, cirrhosis, and liver cancer. We evaluated the estrogen-like effects of A. tegmentosum using an estrogen receptor (ER)-positive breast cancer cell line, namely MCF-7, to identify potential phytoestrogens and found that an aqueous extract of A. tegmentosum promoted cell proliferation in MCF-7 cells. Five phenolic compounds (1-5) were separated and identified from the active fraction using bioassay-guided fractionation of crude A. tegmentosum extract and phytochemical analysis. The chemical structures of the compounds were characterized as vanillic acid (1), 4-hydroxy-benzoic acid (2), syringic acid (3), isoscopoletin (4), and (E)-ferulic acid (5) based on the analysis of their nuclear magnetic resonance spectra and liquid chromatography-mass spectrometry data. All five compounds were evaluated using an E-screen assay for their estrogen-like effects on MCF-7 cells. Among the tested compounds, only 4-hydroxy-benzoic acid (2) promoted the proliferation of MCF-7 cells, which was mitigated by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of 4-hydroxy-benzoic acid (2) was evaluated via western blotting analysis to determine the expression levels of extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K), serine/threonine kinase (AKT), and ERα. Our results demonstrated that 4-hydroxy-benzoic acid (2) induced the increase in the protein expression levels of p-ERK, p-AKT, p-PI3K, and p-Erα, concentration dependently. Collectively, these experimental results suggest that 4-hydroxy-benzoic acid (2) is responsible for the estrogen-like effects of A. tegmentosum and may potentially aid in the control of estrogenic effects during menopause.
Collapse
Affiliation(s)
- Quynh Nhu Nguyen
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Baolo Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoon Seo Jang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Da Eun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
28
|
Glycolysis: The Next Big Breakthrough in Parkinson's Disease. Neurotox Res 2022; 40:1707-1717. [PMID: 36152171 DOI: 10.1007/s12640-022-00579-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by the death of dopaminergic neurons. Its pathogenesis comprises defects in the physiological pathway of mitophagy and mutations in the genes involved in this process's regulatory mechanism. PD manifests itself with multiple motor and non-motor symptoms, and currently, there are multiple pharmacological treatments, and unconventional non-drug treatments available. The mainstay of Parkinson's disease treatment has centered around directly manipulating neural mechanisms to retain high dopamine levels, either by exogenous administration, increasing intrinsic production, or inhibiting the breakdown of dopamine. In this review, we highlight a new potential biochemical modality of treatment, treating PD through glycolysis. We highlight how terazosin (TZ), via PGK1, increases ATP levels and how enhanced glycolysis serves a neuroprotective role in PD, and compensates for damage caused by mitophagy. We also discuss the role of quercetin, a bioactive flavonoid, in preventing the development of PD, and reversing mitochondrial dysfunction but only so in diabetic patients. Thus, further research should be conducted on glycolysis as a protective target in PD that can serve to not just prevent, but also alleviate the non-dopaminergic signs and symptoms of PD.
Collapse
|
29
|
Xia J, Wan Y, Wu JJ, Yang Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: targeting underlying properties of diseases. Crit Rev Food Sci Nutr 2022; 64:1340-1370. [PMID: 36073729 DOI: 10.1080/10408398.2022.2115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-communicable diseases (NCDs) are a global epidemic with diverse pathogenesis. Among them, oxidative stress and inflammation are the most fundamental co-morbid features. Therefore, multi-targets and multi-pathways therapies with significant anti-oxidant and anti-inflammatory activities are potential effective measures for preventing and treating NCDs. The flavonol glycoside compound hyperoside (Hyp) is widely found in a variety of fruits, vegetables, beverages, and medicinal plants and has various health benefits, especially excellent anti-oxidant and anti-inflammatory properties targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. In this review, we summarize the pathogenesis associated with oxidative stress and inflammation in NCDs and the biological activity and therapeutic potential of Hyp. Our findings reveal that the anti-oxidant and anti-inflammatory activities regulated by Hyp are associated with numerous biological mechanisms, including positive regulation of mitochondrial function, apoptosis, autophagy, and higher-level biological damage activities. Hyp is thought to be beneficial against organ injuries, cancer, depression, diabetes, and osteoporosis, and is a potent anti-NCDs agent. Additionally, the sources, bioavailability, pharmacy, and safety of Hyp have been established, highlighting the potential to develop Hyp into dietary supplements and nutraceuticals.
Collapse
Affiliation(s)
- Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Comprehensive review of two groups of flavonoids in Carthamus tinctorius L. Biomed Pharmacother 2022; 153:113462. [DOI: 10.1016/j.biopha.2022.113462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
|
31
|
Prakash C, Tyagi J, Rabidas SS, Kumar V, Sharma D. Therapeutic Potential of Quercetin and its Derivatives in Epilepsy: Evidence from Preclinical Studies. Neuromolecular Med 2022:10.1007/s12017-022-08724-z. [PMID: 35951285 DOI: 10.1007/s12017-022-08724-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
Quercetin is a polyphenolic bioactive compound highly enriched in dietary fruits, vegetables, nuts, and berries. Quercetin and its derivatives like rutin and hyperoside are known for their beneficial effects in various neurological conditions including epilepsy. The clinical studies of quercetin and its derivatives in relation to epilepsy are limited. This review provides the evidence of most recent knowledge of anticonvulsant properties of quercetin and its derivatives on preclinical studies. Additionally, the studies demonstrating antiseizure potential of various plants extracts enriched with quercetin and its derivatives has been included in this review. Herein, we have also discussed neuroprotective effect of these bioactive compound and presented underlying mechanisms responsible for anticonvulsant properties in brief. Finally, limitations of quercetin and its derivatives as antiseizure compounds as well as possible strategies to enhance efficacy have also been discussed.
Collapse
Affiliation(s)
- Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyoti Tyagi
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shyam Sunder Rabidas
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
32
|
Hyperoside improves learning and memory deficits by amyloid β1-42 in mice through regulating synaptic calcium-permeable AMPA receptors. Eur J Pharmacol 2022; 931:175188. [DOI: 10.1016/j.ejphar.2022.175188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
|
33
|
Yang Y, Huang JJ, Zhu GS, Hu W. Hyperoside attenuates osteoarthritis progression by targeting PI3K/Akt/NF-κB signaling pathway: In vitro and in vivo studies. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
34
|
Evidence for Oxidative Pathways in the Pathogenesis of PD: Are Antioxidants Candidate Drugs to Ameliorate Disease Progression? Int J Mol Sci 2022; 23:ijms23136923. [PMID: 35805928 PMCID: PMC9266756 DOI: 10.3390/ijms23136923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that arises due to a complex and variable interplay between elements including age, genetic, and environmental risk factors that manifest as the loss of dopaminergic neurons. Contemporary treatments for PD do not prevent or reverse the extent of neurodegeneration that is characteristic of this disorder and accordingly, there is a strong need to develop new approaches which address the underlying disease process and provide benefit to patients with this debilitating disorder. Mitochondrial dysfunction, oxidative damage, and inflammation have been implicated as pathophysiological mechanisms underlying the selective loss of dopaminergic neurons seen in PD. However, results of studies aiming to inhibit these pathways have shown variable success, and outcomes from large-scale clinical trials are not available or report varying success for the interventions studied. Overall, the available data suggest that further development and testing of novel therapies are required to identify new potential therapies for combating PD. Herein, this review reports on the most recent development of antioxidant and anti-inflammatory approaches that have shown positive benefit in cell and animal models of disease with a focus on supplementation with natural product therapies and selected synthetic drugs.
Collapse
|
35
|
朱 妍, 王 桐, 戴 宁, 邓 梦, 刘 红, 童 小, 李 莉. [Hyperoside protects mouse spermatocytes GC-2 cells from oxidative damage by activating the Keap1/Nrf2/HO-1 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:673-680. [PMID: 35673910 PMCID: PMC9178631 DOI: 10.12122/j.issn.1673-4254.2022.05.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the protective effect of hyperoside (Hyp) against ydrogen peroxide (H2O2)- induced oxidative damage in mouse spermatocytes GC-2 cells and explore the role of the Keap1/Nrf2/HO-1 pathway in this protective mechanism. METHODS GC-2 cells were treated with 2.5 mmol/L azaacetylcysteine (NAC), 50, 100, and 200 μmol/L hyperoside, or the culture medium for 48 h before exposure to H2O2 (150 μmol/L) for 2 h. CCK-8 assay was used to detect the changes in cell viability, and cell apoptosis was analyzed using flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) activity and malondialdehyde (MDA) in the culture medium. Western blotting and RT-qPCR were used to detect the protein and mRNA expression levels of nuclear factor erythroid 2-related factor2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), and heme oxygenase-1 (HO-1); the nuclear translocation of Nrf2 was detected using immunofluorescence assay. RESULTS Exposure to H2O2 significantly lowered the proliferation rate, reduced the activities of SOD, GSH and CAT, and obviously increased MDA content, cell apoptosis rate, and the expressions of Keap1 and Nrf2 mRNA and Keap1 protein in GC-2 cells (P < 0.05 or 0.01). Treatment of the cells prior to H2O2 exposure with either NAC or 200 μmol/L hyperoside significantly increased the cell proliferation rate, enhanced the activities of SOD, GSH-PX and CAT, and lowered MDA content and cell apoptosis rate (P < 0.05). Treatment with 200 μmol/L hyperoside significantly decreased the mRNA and protein expressions of Keap1 and increased the expressions of HO-1 mRNA and the protein expressions of Nrf2 and HO-1 (P < 0.05 or 0.01). Hyperoside also caused obvious nuclear translocation of Nrf2 in the cells (P < 0.05). CONCLUSION Hyperoside protects GC-2 cells against H2O2- induced oxidative damage possibly by activation of the Keap1/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- 妍妍 朱
- 安徽中医药大学中西医结合学院药理学教研室,安徽 合肥 230012Department of Pharmacology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 桐生 王
- 安徽中医药大学中西医结合学院药理学教研室,安徽 合肥 230012Department of Pharmacology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
- 安徽中医药大学中药复方安徽省重点实验室,安徽 合肥 230012Anhui Provincial Key Laboratory of Traditional Chinese Medicine Compounds, Hefei 230012, China
| | - 宁 戴
- 安徽中医药大学第一附属医院男科,安徽 合肥 230601Department of Andrology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230601, China
| | - 梦云 邓
- 安徽中医药大学中西医结合学院药理学教研室,安徽 合肥 230012Department of Pharmacology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 红娟 刘
- 安徽中医药大学中西医结合学院药理学教研室,安徽 合肥 230012Department of Pharmacology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 小慧 童
- 安徽中医药大学中西医结合学院药理学教研室,安徽 合肥 230012Department of Pharmacology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 莉 李
- 安徽中医药大学中西医结合学院药理学教研室,安徽 合肥 230012Department of Pharmacology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
36
|
Wang Q, Wei HC, Zhou SJ, Li Y, Zheng TT, Zhou CZ, Wan XH. Hyperoside: A review on its sources, biological activities, and molecular mechanisms. Phytother Res 2022; 36:2779-2802. [PMID: 35561084 DOI: 10.1002/ptr.7478] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022]
Abstract
Hyperoside is a natural flavonol glycoside in various plants, such as Crataegus pinnatifida Bge, Forsythia suspensa, and Cuscuta chinensis Lam. Medical research has found that hyperoside possesses a broad spectrum of biological activities, including anticancer, anti-inflammatory, antibacterial, antiviral, antidepressant, and organ protective effects. These pharmacological properties lay the foundation for its use in treating multiple diseases, such as sepsis, arthritis, colitis, diabetic nephropathy, myocardial ischemia-reperfusion, pulmonary fibrosis, and cancers. Hyperoside is obtained from the plants and chemical synthesis. This study aims to provide a comprehensive overview of hyperoside on its sources and biological activities to provide insights into its therapeutic potential, and to provide a basis for high-quality studies to determine the clinical efficacy of this compound.
Collapse
Affiliation(s)
- Qi Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Hao-Cheng Wei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Sheng-Jun Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Ying Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Ting-Ting Zheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Chang-Zheng Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Xin-Huan Wan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| |
Collapse
|
37
|
Xu S, Chen S, Xia W, Sui H, Fu X. Hyperoside: A Review of Its Structure, Synthesis, Pharmacology, Pharmacokinetics and Toxicity. Molecules 2022; 27:molecules27093009. [PMID: 35566359 PMCID: PMC9101560 DOI: 10.3390/molecules27093009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Hyperoside is an active ingredient in plants, such as Hypericum monogynum in Hypericaceae, Crataegus pinnatifida in Rosaceae and Polygonum aviculare in Polygonaceae. Its pharmacologic effects include preventing cancer and protecting the brain, neurons, heart, kidneys, lung, blood vessels, bones, joints and liver, among others. Pharmacokinetic analysis of hyperoside has revealed that it mainly accumulates in the kidney. However, long-term application of high-dose hyperoside should be avoided in clinical practice because of its renal toxicity. This review summarises the structure, synthesis, pharmacology, pharmacokinetics and toxicity of hyperoside.
Collapse
Affiliation(s)
- Sijin Xu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Shuaipeng Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Wenxin Xia
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan 750004, China
- Correspondence: (H.S.); (X.F.)
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan 750004, China
- Correspondence: (H.S.); (X.F.)
| |
Collapse
|
38
|
Chen J, Xu J, Huang P, Luo Y, Shi Y, Ma P. The potential applications of traditional Chinese medicine in Parkinson's disease: A new opportunity. Biomed Pharmacother 2022; 149:112866. [PMID: 35367767 DOI: 10.1016/j.biopha.2022.112866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) presents a common challenge for people all over the world and has become a major research hotspot due to the large population affected by the illness and the difficulty of clinical treatment. The prevalence of PD is increasing every year, the pathogenesis is complex, and the current treatment is ineffective. Therefore, it has become imperative to find effective drugs for PD. With the advantages of low cost, high safety and high biological activity, Chinese medicine has great advantages in the prevention and treatment of PD. This review systematically summarizes the potential of Chinese medicine for the treatment of PD, showing that Chinese medicine can exert anti-PD effects through various pathways, such as anti-inflammatory and antioxidant pathways, reducing mitochondrial dysfunction, inhibiting endoplasmic reticulum stress and iron death, and regulating intestinal flora. These mainly involve HMGB1/TLR4, PI3K/Akt, NLRP3/ caspase-1/IL-1β, Nrf2/HO-1, SIRT1/Akt1, PINK1/parkin, Bcl-2/Bax, BDNF-TrkB and other signaling pathways. In sum, based on modern phytochemistry, pharmacology and genomic proteomics, Chinese medicine is likely to be a potential candidate for PD treatment, which requires more clinical trials to further elucidate its importance in the treatment of PD.
Collapse
Affiliation(s)
- Jiaxue Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingke Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yining Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanshu Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
39
|
Zhang X, Su J, Wang X, Wang X, Liu R, Fu X, Li Y, Xue J, Li X, Zhang R, Chu X. Preparation and Properties of Cyclodextrin Inclusion Complexes of Hyperoside. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092761. [PMID: 35566111 PMCID: PMC9100073 DOI: 10.3390/molecules27092761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
In order to improve the aqueous solubility and enhance the bioavailability of Hyperoside (Hyp), three inclusion complexes (ICs) of Hyp with 2-hydroxypropyl-β-cyclodextrin (2H-β-CD), β-cyclodextrin (β-CD), and methyl-β-cyclodextrin (M-β-CD) were prepared using the ultrasonic method. The characterization of the inclusion complexes (ICs) was achieved using Fourier-transform infrared spectroscopy (FTIR), scanning electronic microscopy (SEM), X-ray powder diffraction (XRPD), thin-layer chromatography (TLC), and 1H nuclear magnetic resonance (1H NMR). The effects of the ICs on the solubility and antioxidant activity of Hyp were investigated. A Job’s plot revealed that the Hyp formed ICs with three kinds of cyclodextrin (CD), all at a 1:1 stoichiometric ratio. The FTIR, SEM, XRPD, TLC, and 1H NMR results confirmed the formation of inclusion complexes. The water solubility of the IC of Hyp with 2-hydroxypropyl-β-cyclodextrin was enhanced 9-fold compared to the solubility of the original Hyp. The antioxidant activity tests showed that the inclusion complexes had higher antioxidant activities compared to free Hyp in vitro and the H2O2–RAW264.7 cell model. Therefore, encapsulation with CDs can not only improve Hyp’s water solubility but can also enhance its biological activity, which provides useful information for the potential application of complexation with Hyp in a clinical context.
Collapse
Affiliation(s)
| | - Jianqing Su
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| | | | | | | | | | | | | | | | | | - Xiuling Chu
- Correspondence: (J.S.); (X.C.); Tel.: +86-150-9503-9358 (J.S.); +86-150-2062-6235 (X.C.)
| |
Collapse
|
40
|
Chen S, Tang Y, Gao Y, Nie K, Wang H, Su H, Wang Z, Lu F, Huang W, Dong H. Antidepressant Potential of Quercetin and its Glycoside Derivatives: A Comprehensive Review and Update. Front Pharmacol 2022; 13:865376. [PMID: 35462940 PMCID: PMC9024056 DOI: 10.3389/fphar.2022.865376] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
Depression is a global health problem with growing prevalence rates and serious impacts on the daily life of patients. However, the side effects of currently used antidepressants greatly reduce the compliance of patients. Quercetin is a flavonol present in fruits, vegetables, and Traditional Chinese medicine (TCM) that has been proved to have various pharmacological effects such as anti-depressant, anti-cancer, antibacterial, antioxidant, anti-inflammatory, and neuroprotective. This review summarizes the evidence for the pharmacological application of quercetin to treat depression. We clarified the mechanisms of quercetin regulating the levels of neurotransmitters, promoting the regeneration of hippocampal neurons, improving hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and reducing inflammatory states and anti-oxidative stress. We also summarized the antidepressant effects of some quercetin glycoside derivatives to provide a reference for further research and clinical application.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Grade 2017 of Integrated Traditional Chinese and Western Clinical Medicine, Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Dong,
| |
Collapse
|
41
|
Al-Madhagy SA, Gad SS, Mostafa ES, Angeloni S, Saad MA, Sabry OM, Caprioli G, El-Hawary SS. A new arsenal of polyphenols to make Parkinson's disease extinct: HPLC-MS/MS profiling, very interesting MAO-B inhibitory activity and antioxidant activity of Otostegia fruticosa. Nat Prod Res 2022; 36:6075-6080. [PMID: 35192373 DOI: 10.1080/14786419.2022.2044811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fifteen compounds belong to phenolic acids, derivatives of phenolic acids, iridoids, xanthones and flavonoids were characterized in the methanolic extract of Otostegia fruticosa leaves using HPLC-MS/MS. Extract has been also investigated for its MAO-B inhibitory activity, antioxidant activity, total phenolic and total flavonoid content. The extract exhibited interesting MAO-B inhibitory activity (IC50; 2.24 ± 0.08) compared to the reference compound selegiline (0.55 ± 0.02 µg/mL). It also showed a potent antioxidant activity proven in both DPPH and ORAC assay methods. The extract showed an IC50 of 3.64 ± 1.22 µg/mL in the DPPH test which was significantly lower than that of the standard ascorbic acid which attained an IC50 of 18.3 ± 1.41 µg/mL. Moreover, in the oxygen radical absorbance capacity assay (ORAC) the extract showed a decline in the IC50 to 3.48 ± 1.16 µg/mL as compared to the standard Trolox which exhibited an IC50 of 27.0 ± 13.41.
Collapse
Affiliation(s)
- Somaia A Al-Madhagy
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Sana'a University, Sana'a, Yemen
| | - Sameh S Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Eman S Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Simone Angeloni
- School of Pharmacy, University of Camerino, Camerino, Italy.,RICH - Research and Innovation Coffee Hub, Belforte del Chienti, MC, Italy
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Omar M Sabry
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Seham S El-Hawary
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
42
|
Deng Y, Zhang X, Chen F, Huang J, Zhang D, Luo J. HO-1 mediated by PI3K/Akt/Nrf2 signaling pathway is involved in (-)-epigallocatechin-3-gallate-rescueing impaired cognitive function induced by chronic cerebral hypoperfusion in rat model. Exp Aging Res 2022; 48:428-443. [DOI: 10.1080/0361073x.2021.2011689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yu Deng
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Xiong Zhang
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Fei Chen
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Jie Huang
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Daijiang Zhang
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Jie Luo
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| |
Collapse
|
43
|
Karabelyov VR, Kondeva-Burdina MS, Vassilev NG, K-Yovkova E, Angelova VT. Neuroprotective evaluation of novel substituted 1,3,4-oxadiazole and aroylhydrazone derivatives. Bioorg Med Chem Lett 2021; 59:128516. [PMID: 34958890 DOI: 10.1016/j.bmcl.2021.128516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
The paper reports on the facile and convenient synthesis of a series of novel 2,5-substituted 1,3,4-oxadiazoles 3a-f and that of aroylhydrazone-based molecular hybrids 5a-g from readily available starting materials. The structure of the compounds was confirmed by IR, 1H-NMR, 13C-NMR and HRESI-MS spectral data. The toxicological potential of the compounds was evaluated by monitoring the synaptosomal viability and the levels of reduced glutathione in rat brain synaptosomes, isolated by Percoll gradient. The neuroprotective effects were assessed in vitro in a model of 6-hydroxydopamine-induced neurotoxicity. Administered alone, at a concentration of 40 µM, most of the 1,3,4-oxadiazole derivatives and all of the hydrazone derivatives exhibited weak statistically significant neurotoxic effects, compared to the control. Two of the compounds from the novel oxadiazoles 3a and 3d did not have any toxicity. In a model of 6-OHDA-induced oxidative stress, again 3a and 3d and all aroylhydrazone derivatives 5a-g revealed statistically significant neuroprotective effect by preserving the synaptosomal viability and the level of reduced glutathione, against the toxic agent. Some of the compounds may have neuroprotective effects due to possible stabilization of the synaptosomal membrane and/or because of the preserved reduced glutathione. Additionally, all the compounds display a good predicted ADME profile.
Collapse
Affiliation(s)
- Valentin R Karabelyov
- Laboratory "Drug metabolism and drug toxicity", Department "Pharmacology, Pharmacotherapy and Toxicology", Faculty of Pharmacy, Medical University-Sofia, Bulgaria; Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, Bulgaria
| | - Magdalena S Kondeva-Burdina
- Laboratory "Drug metabolism and drug toxicity", Department "Pharmacology, Pharmacotherapy and Toxicology", Faculty of Pharmacy, Medical University-Sofia, Bulgaria
| | - Nikolay G Vassilev
- Laboratory "Nuclear Magnetic Resonance", Institute of Organic Chemistry with Centre of Phytochemistry, BAS, Sofia, Bulgaria
| | - Elena K-Yovkova
- Faculty of Computer Systems and Technologies, Technical University of Sofia, Sofia, Bulgaria
| | - Violina T Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, Bulgaria.
| |
Collapse
|
44
|
Wang Y, Gao L, Chen J, Li Q, Huo L, Wang Y, Wang H, Du J. Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease. Front Pharmacol 2021; 12:757161. [PMID: 34887759 PMCID: PMC8650509 DOI: 10.3389/fphar.2021.757161] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Luyan Gao
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanchao Wang
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Hongquan Wang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichen Du
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
45
|
Fan H, Li Y, Sun M, Xiao W, Song L, Wang Q, Zhang B, Yu J, Jin X, Ma C, Chai Z. Hyperoside Reduces Rotenone-induced Neuronal Injury by Suppressing Autophagy. Neurochem Res 2021; 46:3149-3158. [PMID: 34415495 DOI: 10.1007/s11064-021-03404-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/07/2021] [Accepted: 07/17/2021] [Indexed: 01/03/2023]
Abstract
Hyperoside has a variety of pharmacological activities, including anti-liver injury, anti-depression, anti-inflammatory, and anti-cancer activities. However, the effect of hyperoside on Parkinson's disease (PD) is still unclear. Therefore, we tried to study the therapeutic effect and mechanism of hyperoside on PD in vivo and in vitro models. Rotenone was used to induce PD rat model and SH-SY5Y cell injury model, and hyperoside was used for intervention. Immunohistochemistry, animal behavior assays, TUNEL and Western blot were constructed to observe the protective effect and related mechanisms of hyperoside in vivo. Cell counting kit-8 (CCK-8), flow cytometry, Rh123 staining and Western blot were used for in vitro assays. Rapamycin (RAP) pretreatment was used in rescue experiments to verify the relationship between hyperoside and autophagy in rotenone-induced SH-SY5Y cells. Hyperoside promoted the number of tyrosine hydroxylase (TH)-positive cells, improved the behavioral defects of rats, and inhibited cell apoptosis in vivo. Different concentrations of hyperoside had no significant effect on SH-SY5Y cell viability, but dramatically reversed the rotenone-induced decrease in cell viability, increased apoptosis and loss of cell mitochondrial membrane potential in vitro. Additionally, hyperoside reversed the regulation of rotenone on the Beclin1, LC3II, Bax, cleaved caspase 3, Cyc and Bcl-2 expressions in rat SNpc tissues and SH-SY5Y cells, while promoted the regulation of rotenone on the P62 and α-synuclcin. Furthermore, RAP reversed the effect of hyperoside on rotenone-induced SH-SY5Y cells. Hyperoside may play a neuroprotective effect in rotenone-induced PD rat model and SH-SY5Y cell model by affecting autophagy.
Collapse
Affiliation(s)
- Huijie Fan
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Yanrong Li
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Mengying Sun
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Wushuai Xiao
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Lijuan Song
- Neurobiology Research Center, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Qing Wang
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China
| | - Bo Zhang
- Health Commission of Shanxi Province, Taiyuan, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Xiaoming Jin
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indiana University, Bloomington, USA
| | - Cungen Ma
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China.
| | - Zhi Chai
- College of Basic Medical, Neurobiology Research Center, Shanxi University of Chinese Medicine, Shanxi, No. 121 University Street, Higher Education Park, Jinzhong, 030619, China.
| |
Collapse
|
46
|
Guo Q, Wang B, Wang X, Smith WW, Zhu Y, Liu Z. Activation of Nrf2 in Astrocytes Suppressed PD-Like Phenotypes via Antioxidant and Autophagy Pathways in Rat and Drosophila Models. Cells 2021; 10:1850. [PMID: 34440619 PMCID: PMC8394528 DOI: 10.3390/cells10081850] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The oxidative-stress-induced impairment of autophagy plays a critical role in the pathogenesis of Parkinson's disease (PD). In this study, we investigated whether the alteration of Nrf2 in astrocytes protected against 6-OHDA (6-hydroxydopamine)- and rotenone-induced PD-like phenotypes, using 6-OHDA-induced rat PD and rotenone-induced Drosophila PD models. In the PD rat model, we found that Nrf2 expression was significantly higher in astrocytes than in neurons. CDDO-Me (CDDO methyl ester, an Nrf2 inducer) administration attenuated PD-like neurodegeneration mainly through Nrf2 activation in astrocytes by activating the antioxidant signaling pathway and enhancing autophagy in the substantia nigra and striatum. In the PD Drosophila model, the overexpression of Nrf2 in glial cells displayed more protective effects than such overexpression in neurons. Increased Nrf2 expression in glial cells significantly reduced oxidative stress and enhanced autophagy in the brain tissue. The administration of the Nrf2 inhibitor ML385 reduced the neuroprotective effect of Nrf2 through the inhibition of the antioxidant signaling pathway and autophagy pathway. The autophagy inhibitor 3-MA partially reduced the neuroprotective effect of Nrf2 through the inhibition of the autophagy pathway, but not the antioxidant signaling pathway. Moreover, Nrf2 knockdown caused neurodegeneration in flies. Treatment with CDDO-Me attenuated the Nrf2-knockdown-induced degeneration in the flies through the activation of the antioxidant signaling pathway and increased autophagy. An autophagy inducer, rapamycin, partially rescued the neurodegeneration in Nrf2-knockdown Drosophila by enhancing autophagy. Our results indicate that the activation of the Nrf2-linked signaling pathways in glial cells plays an important neuroprotective role in PD models. Our findings not only provide a novel insight into the mechanisms of Nrf2-antioxidant-autophagy signaling, but also provide potential targets for PD interventions.
Collapse
Affiliation(s)
- Qing Guo
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou 215123, China; (Q.G.); (B.W.); (X.W.)
| | - Bing Wang
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou 215123, China; (Q.G.); (B.W.); (X.W.)
| | - Xiaobo Wang
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou 215123, China; (Q.G.); (B.W.); (X.W.)
| | - Wanli W. Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Yi Zhu
- Department of Pharmacology, Medical School of Soochow University, Suzhou 215123, China
| | - Zhaohui Liu
- Department of Human Anatomy and Cytoneurobiology, Medical School of Soochow University, Suzhou 215123, China; (Q.G.); (B.W.); (X.W.)
| |
Collapse
|
47
|
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. BIOLOGY 2021; 10:586. [PMID: 34206761 PMCID: PMC8301140 DOI: 10.3390/biology10070586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Quercetin, a bioactive secondary metabolite, holds incredible importance in terms of bioactivities, which has been proved by in vivo and in vitro studies. The treatment of cardiovascular and neurological diseases by quercetin has been extensively investigated over the past decade. Quercetin is present naturally in appreciable amounts in fresh produce (fruits and vegetables). However, today, corresponding to the growing population and global demand for fresh fruits and vegetables, a paradigm shift and focus is laid towards exploring industrial food wastes and/or byproducts as a new resource to obtain bioactive compounds such as quercetin. Based on the available research reports over the last decade, quercetin has been suggested as a reliable therapeutic candidate for either treating or alleviating health issues, mainly those of cardiovascular and neurological diseases. In the present review, we have summarized some of the critical findings and hypotheses of quercetin from the available databases foreseeing its future use as a potential therapeutic agent to treat cardiovascular and neurological diseases. It is anticipated that this review will be a potential reference material for future research activities to be undertaken on quercetin obtained from fresh produce as well as their respective processing wastes/byproducts that rely on the circular concept.
Collapse
Affiliation(s)
- Irshad Ul Haq Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | | |
Collapse
|
48
|
Sarikurkcu C, Sarikurkcu RT, Tepe B. Campanula macrostachya: biological activity and identification of phenolics using a liquid chromatography electrospray ionization tandem mass spectrometry system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21812-21822. [PMID: 33411305 DOI: 10.1007/s11356-020-11695-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
It is known that some Campanula species are traditionally used because of their anti-allergic, spasmolytic, antiphlogistic, antioxidant, and antiviral properties. This study was designed to evaluate the phytochemical composition, antioxidant, α-amylase, and tyrosinase inhibitory activity of ethyl acetate, methanol, and water extracts of Campanula macrostachya Waldst. & Kit. ex Willd. Chemical compositions were analyzed by spectrophotometric and chromatographic methods. Antioxidant activities of the samples were tested by using five different test systems. Enzyme inhibitory activities of the extracts were also studied. As a result of the LC-ESI-MS/MS analyses, chlorogenic acid, hesperidin, and hyperoside were found to be the major compounds of the extracts, especially the MeOH extract (6559.59, 2499.22, and 2047.66 μg/g extract, respectively). Antioxidant activity tests have proven that MeOH extract showed higher activity than others (DPPH: 4.15 mg/mL, ABTS: 2.05 mg/mL, CUPRAC: 1.80 mg/mL, FRAP: 0.83 mg/mL, phosphomolybdenum: 1.69 mg/mL). Ferrous ion chelating activity of the water extract was 1.03 mg/mL. In α-amylase and tyrosinase inhibitory assays, EtOAc (IC50: 2.54 mg/mL) and MeOH (IC50: 1.51 mg/mL) extracts showed higher activity than the others did. In phosphomolybdenum, CUPRAC, FRAP, and tyrosinase inhibitory assays, the activity was strongly correlated with flavonoids, chlorogenic acid, hesperidin, and hyperoside. On the other hand, phenolic compounds have been found to contribute more to radical scavenging activity. Pearson correlation analysis showed that phenolics and flavonoids were not responsible for the α-amylase inhibitory activity of EtOAc extract.
Collapse
Affiliation(s)
- Cengiz Sarikurkcu
- Faculty of Pharmacy, Department of Analytical Chemistry, Afyonkarahisar Health Sciences University, 03100, Afyonkarahisar, Turkey.
| | - Rifat Tayyib Sarikurkcu
- Faculty of Arts and Sciences, Department of Physics, Middle East Technical University, 06800, Ankara, Turkey
| | - Bektas Tepe
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Kilis 7 Aralik University, 79000, Kilis, Turkey
| |
Collapse
|
49
|
Wang WW, Han R, He HJ, Li J, Chen SY, Gu Y, Xie C. Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinson's disease models. Aging (Albany NY) 2021; 13:11738-11751. [PMID: 33878030 PMCID: PMC8109056 DOI: 10.18632/aging.202868] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/14/2021] [Indexed: 12/12/2022]
Abstract
Mounting evidence suggests that mitochondrial dysfunction and impaired mitophagy lead to Parkinson’s disease (PD). Quercetin, one of the most abundant polyphenolic flavonoids, displays many health-promoting biological effects in many diseases. We explored the neuroprotective effect of quercetin in vivo in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD and in vitro in 6-OHDA-treated PC12 cells. In vitro, we found that quercetin (20 μM) treatment improved mitochondrial quality control, reduced oxidative stress, increased the levels of the mitophagy markers PINK1 and Parkin and decreased α-synuclein protein expression in 6-OHDA-treated PC12 cells. Moreover, our in vivo findings demonstrated that administration of quercetin also relieved 6-OHDA-induced progressive PD-like motor behaviors, mitigated neuronal death and reduced mitochondrial damage and α-synuclein accumulation in PD rats. Furthermore, the neuroprotective effect of quercetin was suppressed by knockdown of either Pink1 or Parkin.
Collapse
Affiliation(s)
- Wen-Wen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ruiyu Han
- NHC Key Laboratory of Family Planning and Healthy, Hebei Key Laboratory of Reproductive Medicine, Hebei Research Institute for Family Planning Science and Technology, Shijiazhuang 050071, Hebei, China
| | - Hai-Jun He
- The Center of Traditional Chinese Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jia Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Si-Yan Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yingying Gu
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chenglong Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
50
|
He S, Yin X, Wu F, Zeng S, Gao F, Xin M, Wang J, Chen J, Zhang L, Zhang J. Hyperoside protects cardiomyocytes against hypoxia‑induced injury via upregulation of microRNA‑138. Mol Med Rep 2021; 23:286. [PMID: 33649812 PMCID: PMC7905326 DOI: 10.3892/mmr.2021.11925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
Following hypoxia, cardiomyocytes are susceptible to damage, against which microRNA (miR)‑138 may act protectively. Hyperoside (Hyp) is a Chinese herbal medicine with multiple biological functions that serve an important role in cardiovascular disease. The aim of the present study was to investigate the role of Hyp in hypoxic cardiomyocytes and its effect on miR‑138. A hypoxia model was established in both H9C2 cells and C57BL/6 mice, which were stimulated by Hyp. The expression levels of miR‑138 were increased in the hypoxic myocardium in the presence of Hyp at concentrations of >50 µmol/l in vivo and >50 mg/kg in vitro. Using Cell Counting Kit‑8 and 5‑ethynyl‑2'‑deoxyuridine assays, it was observed that Hyp improved hypoxia‑induced impairment of cell proliferation. Cell apoptosis was evaluated by flow cytometry and a TUNEL assay. The number of apoptotic cells in the Hyp group was lower than that in the control group. As markers of myocardial injury, the levels of lactate dehydrogenase, creatine kinase‑myocardial band isoenzyme and malondialdehyde were decreased in the Hyp group compared with the control group, whereas the levels of superoxide dismutase were increased. A marked decrease in the levels of cleaved caspase‑3 and cleaved poly(ADP) ribose polymerase and a marked increase in expression levels of Bcl‑2 were observed in the presence of Hyp. However, miR‑138 inhibition by antagomir attenuated the protective effects of Hyp. Furthermore, Hyp treatment was associated with marked downregulation of mixed lineage kinase 3 and lipocalin‑2, but not pyruvate dehydrogenase kinase 1, in hypoxic H9C2 cells. These findings demonstrated that Hyp may be beneficial for myocardial cell survival and may alleviate hypoxic injury via upregulation of miR‑138, thereby representing a promising potential strategy for clinical cardioprotection.
Collapse
Affiliation(s)
- Siyi He
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoqiang Yin
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
- Department of Graduate Student, North Sichuan Medical College, Nanchong, Sichuan 637199, P.R. China
| | - Fan Wu
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Shaojie Zeng
- Medical Team, Unit 95437, People's Liberation Army, Nanchong, Sichuan 637100, P.R. China
| | - Feng Gao
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Mei Xin
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jian Wang
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jie Chen
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Le Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jinbao Zhang
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|