1
|
Wang Y, Cao Y, Qin G. Multifaceted roles of TCP transcription factors in fate determination. THE NEW PHYTOLOGIST 2025; 245:95-101. [PMID: 39434425 DOI: 10.1111/nph.20188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Fate determination is indispensable for the accurate shaping and specialization of plant organs, a process critical to the structural and functional diversity in plant kingdom. The TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family of transcription factors has been recognized for its significant contributions to plant organogenesis and morphogenesis. Recent research has shed light on the pivotal roles that TCPs play in fate determination. In this review, we delve into the current understanding of TCP functions, emphasizing their critical influence on fate determination from the organelle to the cell and organ levels. We also consolidate the molecular mechanisms through which TCPs exert their regulatory effects on fate determination. Additionally, we highlight intriguing points of TCPs that warrant further exploration in future research endeavors.
Collapse
Affiliation(s)
- Yutao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu Cao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
2
|
Lv W, Yang H, Zheng Q, Liao W, Chen L, Lian Y, Lin Q, Huo S, Rehman OU, Liu W, Zheng K, Zhang Y, Cao S. Identification and Expression Analysis of TCP Transcription Factors Under Abiotic Stress in Phoebe bournei. PLANTS (BASEL, SWITZERLAND) 2024; 13:3095. [PMID: 39520013 PMCID: PMC11548437 DOI: 10.3390/plants13213095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The TCP gene family encodes plant transcription factors crucial for regulating growth and development. While TCP genes have been identified in various species, they have not been studied in Phoebe bournei (Hemsl.). This study identified 29 TCP genes in the P. bournei genome, categorizing them into Class I (PCF) and Class II (CYC/TB1 and CIN). We conducted analyses on the PbTCP gene at both the protein level (physicochemical properties) and the gene sequence level (subcellular localization, chromosomal distribution, phylogenetic relationships, conserved motifs, and gene structure). Most P. bournei TCP genes are localized in the nucleus, except PbTCP9 in the mitochondria and PbTCP8 in both the chloroplast and nucleus. Chromosomal mapping showed 29 TCP genes unevenly distributed across 10 chromosomes, except chromosome 8 and 9. We also analyzed the promoter cis-regulatory elements, which are mainly involved in plant growth and development and hormone responses. Notably, most PbTCP transcription factors respond highly to light. Further analysis revealed three subfamily genes expressed in five P. bournei tissues: leaves, root bark, root xylem, stem xylem, and stem bark, with predominant PCF genes. Using qRT-PCR, we examined six representative genes-PbTCP16, PbTCP23, PbTCP7, PbTCP29, PbTCP14, and PbTCP15-under stress conditions such as high temperature, drought, light exposure, and dark. PbTCP14 and PbTCP15 showed significantly higher expression under heat, drought, light and dark stress. We hypothesize that TCP transcription factors play a key role in growth under varying light conditions, possibly mediated by auxin hormones. This work provides insights into the TCP gene family's functional characteristics and stress resistance regulation in P. bournei.
Collapse
Affiliation(s)
- Wenzhuo Lv
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hao Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (Q.Z.); (W.L.); (L.C.)
| | - Qiumian Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (Q.Z.); (W.L.); (L.C.)
| | - Wenhai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (Q.Z.); (W.L.); (L.C.)
| | - Li Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (Q.Z.); (W.L.); (L.C.)
| | - Yiran Lian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Q.L.)
| | - Qinmin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Q.L.)
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (S.H.); (O.U.R.)
| | - Obaid Ur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (S.H.); (O.U.R.)
| | - Wei Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China;
| | - Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanzi Zhang
- Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.Y.); (Q.Z.); (W.L.); (L.C.)
| |
Collapse
|
3
|
Wang Y, Wang N, Lan J, Pan Y, Jiang Y, Wu Y, Chen X, Feng X, Qin G. Arabidopsis transcription factor TCP4 controls the identity of the apical gynoecium. THE PLANT CELL 2024; 36:2668-2688. [PMID: 38581433 PMCID: PMC11218827 DOI: 10.1093/plcell/koae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
The style and stigma at the apical gynoecium are crucial for flowering plant reproduction. However, the mechanisms underlying specification of the apical gynoecium remain unclear. Here, we demonstrate that Class II TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors are critical for apical gynoecium specification in Arabidopsis (Arabidopsis thaliana). The septuple tcp2 tcp3 tcp4 tcp5 tcp10 tcp13 tcp17 (tcpSEP) and duodecuple tcp2 tcp3 tcp4 tcp5 tcp10 tcp13 tcp17 tcp24 tcp1 tcp12 tcp18 tcp16 (tcpDUO) mutants produce narrower and longer styles, while disruption of TCPs and CRABS CLAW (CRC) or NGATHAs (NGAs) in tcpDUO crc or tcpDUO nga1 nga2 nga4 causes the apical gynoecium to be replaced by lamellar structures with indeterminate growth. TCPs are predominantly expressed in the apex of the gynoecium. TCP4 interacts with CRC to synergistically upregulate the expression level of NGAs, and NGAs further form high-order complexes to control the expression of auxin-related genes in the apical gynoecium by directly interacting with TCP4. Our findings demonstrate that TCP4 physically associates with CRC and NGAs to control auxin biosynthesis in forming fine structures of the apical gynoecium.
Collapse
Affiliation(s)
- Yutao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yige Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yidan Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongqi Wu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuemei Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianzhong Feng
- Zhejiang Lab, Research Institute of Intelligent Computing, Hangzhou 310012, China
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
4
|
Williams J, Regedanz E, Lucinda N, Nava Fereira AR, Lacatus G, Berger M, O’Connell N, Coursey T, Ruan J, Bisaro DM, Sunter G. Mutation of the conserved late element in geminivirus CP promoters abolishes Arabidopsis TCP24 transcription factor binding and decreases H3K27me3 levels on viral chromatin. PLoS Pathog 2024; 20:e1012399. [PMID: 39024402 PMCID: PMC11288445 DOI: 10.1371/journal.ppat.1012399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/30/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
In geminiviruses belonging to the genus Begomovirus, coat protein (CP) expression depends on viral AL2 protein, which derepresses and activates the CP promoter through sequence elements that lie within the viral intergenic region (IR). However, AL2 does not exhibit sequence-specific DNA binding activity but is instead directed to responsive promoters through interactions with host factors, most likely transcriptional activators and/or repressors. In this study, we describe a repressive plant-specific transcription factor, Arabidopsis thaliana TCP24 (AtTCP24), that interacts with AL2 and recognizes a class II TCP binding site in the CP promoter (GTGGTCCC). This motif corresponds to the previously identified conserved late element (CLE). We also report that histone 3 lysine 27 trimethylation (H3K27me3), an epigenetic mark associated with facultative repression, is enriched over the viral IR. H3K27me3 is deposited by Polycomb Repressive Complex 2 (PRC2), a critical regulator of gene expression and development in plants and animals. Remarkably, mutation of the TCP24 binding site (the CLE) in tomato golden mosaic virus (TGMV) and cabbage leaf curl virus (CaLCuV) CP promoters greatly diminishes H3K27me3 levels on viral chromatin and causes a dramatic delay and attenuation of disease symptoms in infected Arabidopsis and Nicotiana benthamiana plants. Symptom remission is accompanied by decreased viral DNA levels in systemically infected tissue. Nevertheless, in transient replication assays CLE mutation delays but does not limit the accumulation of viral double-stranded DNA, although single-stranded DNA and CP mRNA levels are decreased. These findings suggest that TCP24 binding to the CLE leads to CP promoter repression and H3K27me3 deposition, while TCP24-AL2 interaction may recruit AL2 to derepress and activate the promoter. Thus, a repressive host transcription factor may be repurposed to target a viral factor essential for promoter activity. The presence of the CLE in many begomoviruses suggests a common scheme for late promoter regulation.
Collapse
Affiliation(s)
- Jacqueline Williams
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Elizabeth Regedanz
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Natalia Lucinda
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Alba Ruth Nava Fereira
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Gabriela Lacatus
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Mary Berger
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Nels O’Connell
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Tami Coursey
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Garry Sunter
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| |
Collapse
|
5
|
Sun X, Wang E, Yu L, Liu S, Liu T, Qin J, Jiang P, He S, Cai X, Jing S, Song B. TCP transcription factor StAST1 represses potato tuberization by regulating tuberigen complex activity. PLANT PHYSIOLOGY 2024; 195:1347-1364. [PMID: 38488068 DOI: 10.1093/plphys/kiae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/01/2024] [Indexed: 06/02/2024]
Abstract
Potato (Solanum tuberosum L.) is cultivated worldwide for its underground tubers, which provide an important part of human nutrition and serve as a model system for belowground storage organ formation. Similar to flowering, stolon-expressed FLOWERING LOCUS T-like (FT-like) protein SELF-PRUNING 6A (StSP6A) plays an instrumental role in tuberization by binding to the bZIP transcription factors StABI5-like 1 (StABL1) and StFD-like 1 (StFDL1), causing transcriptional reprogramming at the stolon subapical apices. However, the molecular mechanism regulating the widely conserved FT-bZIP interactions remains largely unexplored. Here, we identified a TCP transcription factor StAST1 (StABL1 and StSP6A-associated TCP protein 1) binding to both StSP6A and StABL1. StAST1 is specifically expressed in the vascular tissue of leaves and developing stolons. Silencing of StAST1 leads to accelerated tuberization and a shortened life cycle. Molecular dissection reveals that the interaction of StAST1 with StSP6A and StABL1 attenuates the formation of the alternative tuberigen activation complex (aTAC). We also observed StAST1 directly activates the expression of potato GA 20-oxidase gene (StGA20ox1) to regulate GA responses. These results demonstrate StAST1 functions as a tuberization repressor by regulating plant hormone levels; our findings also suggest a mechanism by which the widely conserved FT-FD genetic module is fine-tuned.
Collapse
Affiliation(s)
- Xiaomeng Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Enshuang Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tiantian Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jun Qin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Peng Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuangshuang He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xingkui Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shenglin Jing
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
6
|
Gao Y, Regad F, Li Z, Pirrello J, Bouzayen M, Van Der Rest B. Class I TCP in fruit development: much more than growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1411341. [PMID: 38863555 PMCID: PMC11165105 DOI: 10.3389/fpls.2024.1411341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Fruit development can be viewed as the succession of three main steps consisting of the fruit initiation, growth and ripening. These processes are orchestrated by different factors, notably the successful fertilization of flowers, the environmental conditions and the hormones whose action is coordinated by a large variety of transcription factors. Among the different transcription factor families, TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR (TCP) family has received little attention in the frame of fruit biology despite its large effects on several developmental processes and its action as modulator of different hormonal pathways. In this respect, the comprehension of TCP functions in fruit development remains an incomplete puzzle that needs to be assembled. Building on the abundance of genomic and transcriptomic data, this review aims at collecting available TCP expression data to allow their integration in the light of the different functional genetic studies reported so far. This reveals that several Class I TCP genes, already known for their involvement in the cell proliferation and growth, display significant expression levels in developing fruit, although clear evidence supporting their functional significance in this process remains scarce. The extensive expression data compiled in our study provide convincing elements that shed light on the specific involvement of Class I TCP genes in fruit ripening, once these reproductive organs acquire their mature size. They also emphasize their putative role in the control of specific biological processes such as fruit metabolism and hormonal dialogue.
Collapse
Affiliation(s)
- Yushuo Gao
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Farid Regad
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Benoît Van Der Rest
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| |
Collapse
|
7
|
Xu R, Chong L, Zhu Y. Mediator kinase subunit CDK8 phosphorylates transcription factor TCP15 during tomato pollen development. PLANT PHYSIOLOGY 2024; 195:865-878. [PMID: 38365204 DOI: 10.1093/plphys/kiae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 02/18/2024]
Abstract
Pollen development in flowering plants has strong implications for reproductive success. Pollen DNA can be targeted to improve plant traits for yield and stress tolerance. In this study, we demonstrated that the Mediator subunit CYCLIN-DEPENDENT KINASE 8 (CDK8) is a key modulator of pollen development in tomato (Solanum lycopersicum). SlCDK8 knockout led to significant decreases in pollen viability, fruit yield, and fruit seed number. We also found that SlCDK8 directly interacts with transcription factor TEOSINTE BRANCHED1-CYCLOIDEA-PCF15 (SlTCP15) using yeast two-hybrid screens. We subsequently showed that SlCDK8 phosphorylates Ser 187 of SlTCP15 to promote SlTCP15 stability. Phosphorylated TCP15 directly bound to the TGGGCY sequence in the promoters of DYSFUNCTIONAL TAPETUM 1 (SlDYT1) and MYB DOMAIN PROTEIN 103 (SlMYB103), which are responsible for pollen development. Consistently, disruption of SlTCP15 resembled slcdk8 tomato mutants. In sum, our work identified a new substrate of Mediator CDK8 and revealed an important regulatory role of SlCDK8 in pollen development via cooperation with SlTCP15.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
- Sanya Institute of Henan University, Sanya, Hainan 570203, China
| |
Collapse
|
8
|
Wei X, Yuan M, Zheng BQ, Zhou L, Wang Y. Genome-wide identification and characterization of TCP gene family in Dendrobium nobile and their role in perianth development. FRONTIERS IN PLANT SCIENCE 2024; 15:1352119. [PMID: 38375086 PMCID: PMC10875090 DOI: 10.3389/fpls.2024.1352119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
TCP is a widely distributed, essential plant transcription factor that regulates plant growth and development. An in-depth study of TCP genes in Dendrobium nobile, a crucial parent in genetic breeding and an excellent model material to explore perianth development in Dendrobium, has not been conducted. We identified 23 DnTCP genes unevenly distributed across 19 chromosomes and classified them as Class I PCF (12 members), Class II: CIN (10 members), and CYC/TB1 (1 member) based on the conserved domain and phylogenetic analysis. Most DnTCPs in the same subclade had similar gene and motif structures. Segmental duplication was the predominant duplication event for TCP genes, and no tandem duplication was observed. Seven genes in the CIN subclade had potential miR319 and -159 target sites. Cis-acting element analysis showed that most DnTCP genes contained many developmental stress-, light-, and phytohormone-responsive elements in their promoter regions. Distinct expression patterns were observed among the 23 DnTCP genes, suggesting that these genes have diverse regulatory roles at different stages of perianth development or in different organs. For instance, DnTCP4 and DnTCP18 play a role in early perianth development, and DnTCP5 and DnTCP10 are significantly expressed during late perianth development. DnTCP17, 20, 21, and 22 are the most likely to be involved in perianth and leaf development. DnTCP11 was significantly expressed in the gynandrium. Specially, MADS-specific binding sites were present in most DnTCP genes putative promoters, and two Class I DnTCPs were in the nucleus and interacted with each other or with the MADS-box. The interactions between TCP and the MADS-box have been described for the first time in orchids, which broadens our understanding of the regulatory network of TCP involved in perianth development in orchids.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
9
|
Tabusam J, Liu M, Luo L, Zulfiqar S, Shen S, Ma W, Zhao J. Physiological Control and Genetic Basis of Leaf Curvature and Heading in Brassica rapa L. J Adv Res 2023; 53:49-59. [PMID: 36581197 PMCID: PMC10658314 DOI: 10.1016/j.jare.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Heading is an important agronomic feature for Chinese cabbage, cabbage, and lettuce. The heading leaves function as nutrition storage organs, which contribute to the high quality and economic worth of leafy heads. Leaf development is crucial during the heading stage, most genes previously predicted to be involved in the heading process are based on Arabidopsis leaf development studies. AIM OF REVIEW Till date, there is no published review article that demonstrated a complete layout of all the identified regulators of leaf curvature and heading. In this review, we have summarized all the identified physiological and genetic regulators that are directly or indirectly involved in leaf curvature and heading in Brassica crops. By integrating all identified regulators that provide a coherent logic of leaf incurvature and heading, we proposed a molecular mechanism in Brassica crops with graphical illustrations. This review adds value to future breeding of distinct heading kinds of cabbage and Chinese cabbage by providing unique insights into leaf development. KEY SCIENTIFIC CONCEPTS OF REVIEW Leaf curvature and heading are established by synergistic interactions among genes, transcription factors, microRNAs, phytohormones, and environmental stimuli that regulate primary and secondary morphogenesis. Various genes have been identified using transformation and genome editing that are responsible for the formation of leaf curvature and heading in Brassica crops. A range of leaf morphologies have been observed in Brassica, which are established because of the mutated determinants that are responsible for cell division and leaf polarity.
Collapse
Affiliation(s)
- Javaria Tabusam
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Lei Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Sumer Zulfiqar
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China.
| |
Collapse
|
10
|
Wu X, Li J, Wen X, Zhang Q, Dai S. Genome-wide identification of the TCP gene family in Chrysanthemum lavandulifolium and its homologs expression patterns during flower development in different Chrysanthemum species. FRONTIERS IN PLANT SCIENCE 2023; 14:1276123. [PMID: 37841609 PMCID: PMC10570465 DOI: 10.3389/fpls.2023.1276123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
TCP proteins, part of the transcription factors specific to plants, are recognized for their involvement in various aspects of plant growth and development. Nevertheless, a thorough investigation of TCPs in Chrysanthemum lavandulifolium, a prominent ancestral species of cultivated chrysanthemum and an excellent model material for investigating ray floret (RF) and disc floret (DF) development in Chrysanthemum, remains unexplored yet. Herein, a comprehensive study was performed to analyze the genome-wide distribution of TCPs in C. lavandulifolium. In total, 39 TCPs in C. lavandulifolium were identified, showing uneven distribution on 8 chromosomes. Phylogenetic and gene structural analyses revealed that ClTCPs were grouped into classes I and II. The class II genes were subdivided into two subclades, the CIN and CYC/TB1 subclades, with members of each clade having similar conserved motifs and gene structures. Four CIN subclade genes (ClTCP24, ClTCP25, ClTCP26, and ClTCP27) contained the potential miR319 target sites. Promoter analysis revealed that ClTCPs had numerous cis-regulatory elements associated with phytohormone responses, stress responses, and plant growth/development. The expression patterns of ClTCPs during capitulum development and in two different florets were determined using RNA-seq and qRT-PCR. The expression levels of TCPs varied in six development stages of capitula; 25 out of the 36 TCPs genes were specifically expressed in flowers. Additionally, we identified six key ClCYC2 genes, which belong to the class II TCP subclade, with markedly upregulated expression in RFs compared with DFs, and these genes exhibited similar expression patterns in the two florets of Chrysanthemum species. It is speculated that they may be responsible for RFs and DFs development. Subcellular localization and transactivation activity analyses of six candidate genes demonstrated that all of them were localized in the nucleus, while three exhibited self-activation activities. This research provided a better understanding of TCPs in C. lavandulifolium and laid a foundation for unraveling the mechanism by which important TCPs involved in the capitulum development.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Junzhuo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaohui Wen
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiuling Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
Lan J, Wang N, Wang Y, Jiang Y, Yu H, Cao X, Qin G. Arabidopsis TCP4 transcription factor inhibits high temperature-induced homeotic conversion of ovules. Nat Commun 2023; 14:5673. [PMID: 37704599 PMCID: PMC10499876 DOI: 10.1038/s41467-023-41416-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Abnormal high temperature (HT) caused by global warming threatens plant survival and food security, but the effects of HT on plant organ identity are elusive. Here, we show that Class II TEOSINTE BRANCHED 1/CYCLOIDEA/ PCF (TCP) transcription factors redundantly protect ovule identity under HT. The duodecuple tcp2/3/4/5/10/13/17/24/1/12/18/16 (tcpDUO) mutant displays HT-induced ovule conversion into carpelloid structures. Expression of TCP4 in tcpDUO complements the ovule identity conversion. TCP4 interacts with AGAMOUS (AG), SEPALLATA3 (SEP3), and the homeodomain transcription factor BELL1 (BEL1) to strengthen the association of BEL1 with AG-SEP3. The tcpDUO mutant synergistically interacts with bel1 and the ovule identity gene seedstick (STK) mutant stk in tcpDUO bel1 and tcpDUO stk. Our findings reveal the critical roles of Class II TCPs in maintaining ovule identity under HT and shed light on the molecular mechanisms by which ovule identity is determined by the integration of internal factors and environmental temperature.
Collapse
Affiliation(s)
- Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yutao Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yidan Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Akbari A, Ismaili A, Amirbakhtiar N, Pouresmael M, Shobbar ZS. Genome-wide transcriptional profiling provides clues to molecular mechanisms underlying cold tolerance in chickpea. Sci Rep 2023; 13:6279. [PMID: 37072529 PMCID: PMC10113226 DOI: 10.1038/s41598-023-33398-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Chickpea is an important food legume cultivated in several countries. A sudden drop in autumn temperature, freezing winter temperature, and late spring cold events result in significant losses in chickpea production. The current study used RNA sequencing of two cold tolerant (Saral) and sensitive (ILC533) Kabuli chickpea genotypes to identify cold tolerance-associated genes/pathways. A total of 200.85 million raw reads were acquired from the leaf samples by Illumina sequencing, and around 86% of the clean reads (199 million) were mapped to the chickpea reference genome. The results indicated that 3710 (1980 up- and 1730 down-regulated) and 3473 (1972 up- and 1501 down-regulated) genes were expressed differentially under cold stress in the tolerant and sensitive genotypes, respectively. According to the GO enrichment analysis of uniquely down-regulated genes under cold stress in ILC533, photosynthetic membrane, photosystem II, chloroplast part, and photosystem processes were enriched, revealing that the photosynthesis is severely sensitive to cold stress in this sensitive genotype. Many remarkable transcription factors (CaDREB1E, CaMYB4, CaNAC47, CaTCP4, and CaWRKY33), signaling/regulatory genes (CaCDPK4, CaPP2C6, CaMKK2, and CaHSFA3), and protective genes (CaCOR47, CaLEA3, and CaGST) were identified among the cold-responsive genes of the tolerant genotype. These findings would help improve cold tolerance across chickpea genotypes by molecular breeding or genetic engineering.
Collapse
Affiliation(s)
- Alireza Akbari
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Nazanin Amirbakhtiar
- Genetic Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Masoumeh Pouresmael
- Genetic Research Department, Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization, Karaj, Iran.
| |
Collapse
|
13
|
Si C, Zhan D, Wang L, Sun X, Zhong Q, Yang S. Systematic Investigation of TCP Gene Family: Genome-Wide Identification and Light-Regulated Gene Expression Analysis in Pepino (Solanum Muricatum). Cells 2023; 12:cells12071015. [PMID: 37048089 PMCID: PMC10093338 DOI: 10.3390/cells12071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Plant-specific transcription factors such as the TCP family play crucial roles in light responses and lateral branching. The commercial development of S. muricatum has been influenced by the ease with which its lateral branches can be germinated, especially under greenhouse cultivation during the winter with supplemented LED light. The present study examined the TCP family genes in S. muricatum using bioinformatics analysis (whole-genome sequencing and RNA-seq) to explore the response of this family to different light treatments. Forty-one TCP genes were identified through a genome-wide search; phylogenetic analysis revealed that the CYC/TB1, CIN and Class I subclusters contained 16 SmTCP, 11 SmTCP and 14 SmTCP proteins, respectively. Structural and conserved sequence analysis of SmTCPs indicated that the motifs in the same subcluster were highly similar in structure and the gene structure of SmTCPs was simpler than that in Arabidopsis thaliana; 40 of the 41 SmTCPs were localized to 12 chromosomes. In S. muricatum, 17 tandem repeat sequences and 17 pairs of SmTCP genes were found. We identified eight TCPs that were significantly differentially expressed (DETCPs) under blue light (B) and red light (R), using RNA-seq. The regulatory network of eight DETCPs was preliminarily constructed. All three subclusters responded to red and blue light treatment. To explore the implications of regulatory TCPs in different light treatments for each species, the TCP regulatory gene networks and GO annotations for A. thaliana and S. muricatum were compared. The regulatory mechanisms suggest that the signaling pathways downstream of the TCPs may be partially conserved between the two species. In addition to the response to light, functional regulation was mostly enriched with auxin response, hypocotyl elongation, and lateral branch genesis. In summary, our findings provide a basis for further analysis of the TCP gene family in other crops and broaden the functional insights into TCP genes regarding light responses.
Collapse
Affiliation(s)
- Cheng Si
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Deli Zhan
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Lihui Wang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Xuemei Sun
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Qiwen Zhong
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- Correspondence: (Q.Z.); (S.Y.)
| | - Shipeng Yang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Correspondence: (Q.Z.); (S.Y.)
| |
Collapse
|
14
|
Lorenzo CD, Debray K, Herwegh D, Develtere W, Impens L, Schaumont D, Vandeputte W, Aesaert S, Coussens G, De Boe Y, Demuynck K, Van Hautegem T, Pauwels L, Jacobs TB, Ruttink T, Nelissen H, Inzé D. BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize. THE PLANT CELL 2023; 35:218-238. [PMID: 36066192 PMCID: PMC9806654 DOI: 10.1093/plcell/koac243] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/30/2022] [Indexed: 05/04/2023]
Abstract
Ensuring food security for an ever-growing global population while adapting to climate change is the main challenge for agriculture in the 21st century. Although new technologies are being applied to tackle this problem, we are approaching a plateau in crop improvement using conventional breeding. Recent advances in CRISPR/Cas9-mediated gene engineering have paved the way to accelerate plant breeding to meet this increasing demand. However, many traits are governed by multiple small-effect genes operating in complex interactive networks. Here, we present the gene discovery pipeline BREEDIT, which combines multiplex genome editing of whole gene families with crossing schemes to improve complex traits such as yield and drought tolerance. We induced gene knockouts in 48 growth-related genes into maize (Zea mays) using CRISPR/Cas9 and generated a collection of over 1,000 gene-edited plants. The edited populations displayed (on average) 5%-10% increases in leaf length and up to 20% increases in leaf width compared with the controls. For each gene family, edits in subsets of genes could be associated with enhanced traits, allowing us to reduce the gene space to be considered for trait improvement. BREEDIT could be rapidly applied to generate a diverse collection of mutants to identify promising gene modifications for later use in breeding programs.
Collapse
Affiliation(s)
| | | | - Denia Herwegh
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Ward Develtere
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Lennert Impens
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dries Schaumont
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9820 Merelbeke, Belgium
| | - Wout Vandeputte
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Stijn Aesaert
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Griet Coussens
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Yara De Boe
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Kirin Demuynck
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Tom Van Hautegem
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Laurens Pauwels
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Thomas B Jacobs
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9820 Merelbeke, Belgium
| | - Hilde Nelissen
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | | |
Collapse
|
15
|
Xiong W, Zhao Y, Gao H, Li Y, Tang W, Ma L, Yang G, Sun J. Genomic characterization and expression analysis of TCP transcription factors in Setaria italica and Setaria viridis. PLANT SIGNALING & BEHAVIOR 2022; 17:2075158. [PMID: 35616063 PMCID: PMC9154779 DOI: 10.1080/15592324.2022.2075158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific TCP transcription factor plays important roles in plant development and environment adaptation. Setaria italica and Setaria viridis, the C4 model plants, can grow on drought or arid soils. However, there is no systematic information about the genomic dissection and the expression of Setaria TCP genes. A total of 22 TCP genes were both identified from S. italica and S. viridis genomes. They all contained bHLH domain and were grouped into three main clades (PCF, CIN, and CYC/TB1). The TCP genes in the same clades shared similar gene structures. Cis-element in the TCP promoter regions were analyzed and associated with hormones and stress responsiveness. Ten TCP genes were predicted to be targets of miRNA319. Moreover, gene ontology analysis indicated three SiTCP and three SvTCP genes were involved in the regulation of shoot development, and SiTCP16/SvTCP16 were clustered together with tillering controlling gene TB1. The TCP genes were differentially expressed in the organs, but SiTCP/SvTCP orthologs shared similar expression patterns. Ten SiTCP members were downregulated under drought or salinity stresses, indicating they may play regulatory roles in abiotic stresses. The study provides detailed information regarding Setaria TCP genes, providing the theoretical basis for agricultural applications.
Collapse
Affiliation(s)
- Wangdan Xiong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yiran Zhao
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hanchi Gao
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yinghui Li
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wei Tang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lichao Ma
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Juan Sun
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
16
|
Yu L, Chen Q, Zheng J, Xu F, Ye J, Zhang W, Liao Y, Yang X. Genome-wide identification and expression pattern analysis of the TCP transcription factor family in Ginkgo biloba. PLANT SIGNALING & BEHAVIOR 2022; 17:1994248. [PMID: 35068346 PMCID: PMC9176236 DOI: 10.1080/15592324.2021.1994248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant-specific TCP transcription factors play an essential role in plant growth and development. They can regulate leaf curvature, flower symmetry and the synthesis of secondary metabolites. The flavonoids in Ginkgo biloba leaf are one of the main medicinally bioactivate compounds, which have pharmacological and beneficial health effects for humans. In this study, a total of 13 TCP genes were identified in G. biloba, and 5 of them belonged to PCF subclades (GbTCP03, GbTCP07, GbTCP05, GbTCP13, GbTCP02) while others belonged to CIN (GbTCP01, GbTCP04, GbTCP06, GbTCP08, GbTCP09, GbTCP10, GbTCP11, GbTCP12) subclades according to phylogenetic analysis. Numerous cis-acting elements related to various biotic and abiotic signals were predicted on the promoters by cis-element analysis, suggesting that the expression of GbTCPs might be co-regulated by multiple signals. Transcript abundance analysis exhibited that most of GbTCPs responded to multiple phytohormones. Among them, the relative expression levels of GbTCP06, GbTCP11, and GbTCP13 were found to be significantly influenced by exogenous ABA, SA and MeJA application. In addition, a total of 126 miRNAs were predicted to target 9 TCPs (including GbTCP01, GbTCP02, GbTCP04, GbTCP05, GbTCP06, GbTCP08, GbTCP11, GbTCP12, GbTCP13). The correlation analysis between the expression level of GbTCPs and the flavonoid contents showed that GbTCP03, GbTCP04, GbTCP07 might involve in flavonoid biosynthesis in G. biloba. In short, this study mainly provided a theoretical foundation for better understanding the potential function of TCPs in G. biloba.
Collapse
Affiliation(s)
- Li Yu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
- CONTACT Feng Xu
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
- Jiabao Ye College of Horticulture and Gardening, Yangtze University, Jingzhou434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
17
|
Mittelberger C, Hause B, Janik K. The 'Candidatus Phytoplasma mali' effector protein SAP11CaPm interacts with MdTCP16, a class II CYC/TB1 transcription factor that is highly expressed during phytoplasma infection. PLoS One 2022; 17:e0272467. [PMID: 36520844 PMCID: PMC9754288 DOI: 10.1371/journal.pone.0272467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
'Candidatus Phytoplasma mali', is a bacterial pathogen associated with the so-called apple proliferation disease in Malus × domestica. The pathogen manipulates its host with a set of effector proteins, among them SAP11CaPm, which shares similarity to SAP11AYWB from 'Candidatus Phytoplasma asteris'. SAP11AYWB interacts and destabilizes the class II CIN transcription factors of Arabidopsis thaliana, namely AtTCP4 and AtTCP13 as well as the class II CYC/TB1 transcription factor AtTCP18, also known as BRANCHED1 being an important factor for shoot branching. It has been shown that SAP11CaPm interacts with the Malus × domestica orthologues of AtTCP4 (MdTCP25) and AtTCP13 (MdTCP24), but an interaction with MdTCP16, the orthologue of AtTCP18, has never been proven. The aim of this study was to investigate this potential interaction and close a knowledge gap regarding the function of SAP11CaPm. A Yeast two-hybrid test and Bimolecular Fluorescence Complementation in planta revealed that SAP11CaPm interacts with MdTCP16. MdTCP16 is known to play a role in the control of the seasonal growth of perennial plants and an increase of MdTCP16 gene expression has been detected in apple leaves in autumn. In addition to this, MdTCP16 is highly expressed during phytoplasma infection. Binding of MdTCP16 by SAP11CaPm might lead to the induction of shoot proliferation and early bud break, both of which are characteristic symptoms of apple proliferation disease.
Collapse
Affiliation(s)
- Cecilia Mittelberger
- Molecular Biology and Microbiology, Group of Functional Genomics, Research Centre Laimburg, Pfatten (Vadena), South Tyrol, Italy
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Saxony-Anhalt, Germany
| | - Katrin Janik
- Molecular Biology and Microbiology, Group of Functional Genomics, Research Centre Laimburg, Pfatten (Vadena), South Tyrol, Italy
- * E-mail:
| |
Collapse
|
18
|
Damerval C, Claudot C, Le Guilloux M, Conde e Silva N, Brunaud V, Soubigou-Taconnat L, Caius J, Delannoy E, Nadot S, Jabbour F, Deveaux Y. Evolutionary analyses and expression patterns of TCP genes in Ranunculales. FRONTIERS IN PLANT SCIENCE 2022; 13:1055196. [PMID: 36531353 PMCID: PMC9752903 DOI: 10.3389/fpls.2022.1055196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
TCP transcription factors play a role in a large number of developmental processes and are at the crossroads of numerous hormonal biosynthetic and signaling pathways. The complete repertoire of TCP genes has already been characterized in several plant species, but not in any species of early diverging eudicots. We focused on the order Ranunculales because of its phylogenetic position as sister group to all other eudicots and its important morphological diversity. Results show that all the TCP genes expressed in the floral transcriptome of Nigella damascena (Ranunculaceae) are the orthologs of the TCP genes previously identified from the fully sequenced genome of Aquilegia coerulea. Phylogenetic analyses combined with the identification of conserved amino acid motifs suggest that six paralogous genes of class I TCP transcription factors were present in the common ancestor of angiosperms. We highlight independent duplications in core eudicots and Ranunculales within the class I and class II subfamilies, resulting in different numbers of paralogs within the main subclasses of TCP genes. This has most probably major consequences on the functional diversification of these genes in different plant clades. The expression patterns of TCP genes in Nigella damascena were consistent with the general suggestion that CIN and class I TCP genes may have redundant roles or take part in same pathways, while CYC/TB1 genes have more specific actions. Our findings open the way for future studies at the tissue level, and for investigating redundancy and subfunctionalisation in TCP genes and their role in the evolution of morphological novelties.
Collapse
Affiliation(s)
- Catherine Damerval
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Carmine Claudot
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Martine Le Guilloux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Natalia Conde e Silva
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Ludivine Soubigou-Taconnat
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - José Caius
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Sophie Nadot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Yves Deveaux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| |
Collapse
|
19
|
Wang L, Feng Y, Wang J, Jin X, Zhang Q, Ackah M, Wang Y, Xu D, Zhao W. ATAC-seq exposes differences in chromatin accessibility leading to distinct leaf shapes in mulberry. PLANT DIRECT 2022; 6:e464. [PMID: 36540416 PMCID: PMC9755926 DOI: 10.1002/pld3.464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Mulberry leaf shape is an important agronomic trait indicating yield, growth, development, and habitat variation. China was the earliest country in the world to grow mulberry for sericulture, and it is also one of the great contributions of the Chinese nation to human civilization. ATAC-seq (Assay for Transposase Accessible Chromatin using sequencing) is a recently developed technique for genome-wide analysis of chromatin accessibility. The samples used for ATAC sequencing in this study were divided into two groups of whole leaves (CK-1 and CK-2) and lobed leaves (HL-1 and HL-2), with two replicates in each group. The related motif analysis, differential expression motif screening, and functional annotation of mulberry leaf shape differences were performed by raw letter analysis to finally obtain the transcription factors (TFs) that lead to the production of heteromorphic leaves. These transcription factors are common in plants, especially the TCP family, shown to be associated with leaf development and growth in other woody plants and are a potential transcription factor responsible for leaf shape differences in mulberry. Dissecting the regulatory mechanisms of leaf shape of different forms of mulberry leaves by ATAC-seq is an important way to protect mulberry germplasm resources and improve mulberry yield. It is conducive to cultivating mulberry varieties with high resistance to adversity, promoting the sustainable development of sericulture, and protecting and improving the ecological environment.
Collapse
Affiliation(s)
- Lei Wang
- School of Biology and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| | - Yuming Feng
- School of Biology and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| | - Jiangying Wang
- Leisure Agriculture LaboratoryLianyungang Academy of Agricultural SciencesLianyungangChina
| | - Xin Jin
- School of Biology and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| | - Qiaonan Zhang
- School of Biology and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| | - Michael Ackah
- School of Biology and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| | - Yuhua Wang
- School of Biology and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| | - Dayong Xu
- Leisure Agriculture LaboratoryLianyungang Academy of Agricultural SciencesLianyungangChina
| | - Weiguo Zhao
- School of Biology and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| |
Collapse
|
20
|
Preusche M, Vahl M, Riediger J, Ulbrich A, Schulz M. Modulating Expression Levels of TCP Transcription Factors by Mentha x piperita Volatiles-An Allelopathic Tool to Influence Leaf Growth? PLANTS (BASEL, SWITZERLAND) 2022; 11:3078. [PMID: 36432807 PMCID: PMC9697212 DOI: 10.3390/plants11223078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Peppermint (Mentha x piperita) is a species with inhibitory allelopathic properties due to its high amounts of terpenes. Recent studies have disclosed dosage dependent growth promotion or defense reactions in plants when facing appropriate amounts of Mentha bouquet terpenes. These positive effects could be of interest for agricultural applications. To obtain more insights into leaf growth modulations, the expression of Arabidopsis and Brassica rapa TCP transcription factors were studied after fumigation with M. x piperita bouquets (Arabidopsis), with M. x piperita essential oil or with limonene (Arabidopsis and Chinese cabbage). According to qPCR studies, expression of TCP3, TCP24, and TCP20 were downregulated by all treatments in Arabidopsis, leading to altered leaf growth. Expressions of B. rapa TCPs after fumigation with the essential oil or limonene were less affected. Extensive greenhouse and polytunnel trials with white cabbage and Mentha plants showed that the developmental stage of the leaves, the dosage, and the fumigation time are of crucial importance for changed fresh and dry weights. Although further research is needed, the study may contribute to a more intensive utilization of ecologically friendly and species diversity conservation and positive allelopathic interactions in future agricultural systems.
Collapse
Affiliation(s)
- Matthias Preusche
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53127 Bonn, Germany
| | - Marvin Vahl
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
| | - Johanna Riediger
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53127 Bonn, Germany
| | - Andreas Ulbrich
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
| | - Margot Schulz
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
21
|
Zhou H, Hwarari D, Ma H, Xu H, Yang L, Luo Y. Genomic survey of TCP transcription factors in plants: Phylogenomics, evolution and their biology. Front Genet 2022; 13:1060546. [PMID: 36437962 PMCID: PMC9682074 DOI: 10.3389/fgene.2022.1060546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
The TEOSINTE BRANCHED1 (TBI1), CYCLOIDEA (CYC), and PROLIFERATING CELL NUCLEAR ANTIGEN FACTORS (PCF1 and PCF2) proteins truncated as TCP transcription factors carry conserved basic-helix-loop-helix (bHLH) structure, related to DNA binding functions. Evolutionary history of the TCP genes has shown their presence in early land plants. In this paper, we performed a comparative discussion on the current knowledge of the TCP Transcription Factors in lower and higher plants: their evolutionary history based on the phylogenetics of 849 TCP proteins from 37 plant species, duplication events, and biochemical roles in some of the plants species. Phylogenetics investigations confirmed the classification of TCP TFs into Class I (the PCF1/2), and Class II (the C- clade) factors; the Class II factors were further divided into the CIN- and CYC/TB1- subclade. A trace in the evolution of the TCP Factors revealed an absence of the CYC/TB1subclade in lower plants, and an independent evolution of the CYC/TB1subclade in both eudicot and monocot species. 54% of the total duplication events analyzed were biased towards the dispersed duplication, and we concluded that dispersed duplication events contributed to the expansion of the TCP gene family. Analysis in the TCP factors functional roles confirmed their involvement in various biochemical processes which mainly included promoting cell proliferation in leaves in Class I TCPs, and cell division during plant development in Class II TCP Factors. Apart from growth and development, the TCP Factors were also shown to regulate hormonal and stress response pathways. Although this paper does not exhaust the present knowledge of the TCP Transcription Factors, it provides a base for further exploration of the gene family.
Collapse
Affiliation(s)
- Haiying Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative In-novation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Haibin Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Jiangsu Collaborative In-novation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
22
|
Ahmar S, Gruszka D. In-Silico Study of Brassinosteroid Signaling Genes in Rice Provides Insight Into Mechanisms Which Regulate Their Expression. Front Genet 2022; 13:953458. [PMID: 35873468 PMCID: PMC9299959 DOI: 10.3389/fgene.2022.953458] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Brassinosteroids (BRs) regulate a diverse spectrum of processes during plant growth and development and modulate plant physiology in response to environmental fluctuations and stress factors. Thus, the BR signaling regulators have the potential to be targeted for gene editing to optimize the architecture of plants and make them more resilient to environmental stress. Our understanding of the BR signaling mechanism in monocot crop species is limited compared to our knowledge of this process accumulated in the model dicot species - Arabidopsis thaliana. A deeper understanding of the BR signaling and response during plant growth and adaptation to continually changing environmental conditions will provide insight into mechanisms that govern the coordinated expression of the BR signaling genes in rice (Oryza sativa) which is a model for cereal crops. Therefore, in this study a comprehensive and detailed in silico analysis of promoter sequences of rice BR signaling genes was performed. Moreover, expression profiles of these genes during various developmental stages and reactions to several stress conditions were analyzed. Additionally, a model of interactions between the encoded proteins was also established. The obtained results revealed that promoters of the 39 BR signaling genes are involved in various regulatory mechanisms and interdependent processes that influence growth, development, and stress response in rice. Different transcription factor-binding sites and cis-regulatory elements in the gene promoters were identified which are involved in regulation of the genes’ expression during plant development and reactions to stress conditions. The in-silico analysis of BR signaling genes in O. sativa provides information about mechanisms which regulate the coordinated expression of these genes during rice development and in response to other phytohormones and environmental factors. Since rice is both an important crop and the model species for other cereals, this information may be important for understanding the regulatory mechanisms that modulate the BR signaling in monocot species. It can also provide new ways for the plant genetic engineering technology by providing novel potential targets, either cis-elements or transcriptional factors, to create elite genotypes with desirable traits.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| |
Collapse
|
23
|
Zheng X, Lan J, Yu H, Zhang J, Zhang Y, Qin Y, Su XD, Qin G. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. PLANT COMMUNICATIONS 2022; 3:100309. [PMID: 35605201 PMCID: PMC9284284 DOI: 10.1016/j.xplc.2022.100309] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 05/06/2023]
Abstract
Green petals pose a challenge for pollinators to distinguish flowers from leaves, but they are valuable as a specialty flower trait. However, little is understood about the molecular mechanisms that underlie the development of green petals. Here, we report that CINCINNATA (CIN)-like TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) proteins play key roles in the control of petal color. The septuple tcp2/3/4/5/10/13/17 mutant produced flowers with green petals due to chlorophyll accumulation. Expression of TCP4 complemented the petal phenotype of tcp2/3/4/5/10/13/17. We found that chloroplasts were converted into leucoplasts in the distal parts of wild-type petals but not in the proximal parts during flower development, whereas plastid conversion was compromised in the distal parts of tcp2/3/4/5/10/13/17 petals. TCP4 and most CIN-like TCPs were predominantly expressed in distal petal regions, consistent with the green-white pattern in wild-type petals and the petal greening observed in the distal parts of tcp2/3/4/5/10/13/17 petals. RNA-sequencing data revealed that most chlorophyll biosynthesis genes were downregulated in the white distal parts of wild-type petals, but these genes had elevated expression in the distal green parts of tcp2/3/4/5/10/13/17 petals and the green proximal parts of wild-type petals. We revealed that TCP4 repressed chlorophyll biosynthesis by directly binding to the promoters of PROTOCHLOROPHYLLIDE REDUCTASE (PORB), DIVINYL REDUCTASE (DVR), and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), which are known to promote petal greening. We found that the conversion of chloroplasts to leucoplasts and the green coloration in the proximal parts of petals appeared to be conserved among plant species. Our findings uncover a major molecular mechanism that underpins the formation of petal color patterns and provide a foundation for the breeding of plants with green flowers.
Collapse
Affiliation(s)
- Xinhui Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jingzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yongmei Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
24
|
Analysis of TCP Transcription Factors Revealed Potential Roles in Plant Growth and Fusarium oxysporum f.sp. cubense Resistance in Banana (cv. Rasthali). Appl Biochem Biotechnol 2022; 194:5456-5473. [DOI: 10.1007/s12010-022-04065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
|
25
|
Yu Z, Tian C, Guan Y, He J, Wang Z, Wang L, Lin S, Guan Z, Fang W, Chen S, Zhang F, Jiang J, Chen F, Wang H. Expression Analysis of TCP Transcription Factor Family in Autopolyploids of Chrysanthemum nankingense. FRONTIERS IN PLANT SCIENCE 2022; 13:860956. [PMID: 35720599 PMCID: PMC9201386 DOI: 10.3389/fpls.2022.860956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Autopolyploids often exhibit plant characteristics different from their diploid ancestors and are frequently associated with altered genes expression controlling growth and development. TCP is a unique transcription factor family in plants that is closely related to plant growth and development. Based on transcriptome sequencing of Chrysanthemum nankingense, 23 full-length TCP genes were cloned. The expression of CnTCP9 was most variable in tetraploids, at least threefold greater than diploids. Due to the lack of a C. nankingense transgenic system, we overexpressed CnTCP9 in Arabidopsis thaliana (Col-0) and Chrysanthemum morifolium. Overexpression of CnTCP9 caused enlargement of leaves in A. thaliana and petals in C. morifolium, and the expression of genes downstream of the GA pathway in C. morifolium were increased. Our results suggest that autopolyploidization of C. nankingense led to differential expression of TCP family genes, thereby affecting plant characteristics by the GA pathway. This study improves the understanding of enlarged plant size after autopolyploidization.
Collapse
|
26
|
Tang Y, Gao X, Cui Y, Xu H, Yu J. 植物TCP转录因子研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Shen DD, Hua YP, Huang JY, Yu ST, Wu TB, Zhang Y, Chen HL, Yue CP. Multiomic Analysis Reveals Core Regulatory Mechanisms underlying Steroidal Glycoalkaloid Metabolism in Potato Tubers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:415-426. [PMID: 34951540 DOI: 10.1021/acs.jafc.1c06867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Steroidal glycoalkaloids (SGAs) present in germinated potato tubers are toxic; however, the mechanisms underlying SGA metabolism are poorly understood. Therefore, integrated transcriptome, metabolome, and hormone analyses were performed in this study to identify and characterize the key regulatory genes, metabolites, and phytohormones related to glycoalkaloid regulation. Based on transcriptome sequencing of bud eyes of germinated and dormant potato tubers, a total of 6260 differentially expressed genes were identified, which were mainly responsible for phytohormone signal transduction, carbohydrate metabolism, and secondary metabolite biosynthesis. Two TCP14 genes were identified as the core transcription factors that potentially regulate SGA synthesis. Metabolite analysis indicated that 149 significantly different metabolites were detected, and they were enriched in metabolic and biosynthetic pathways of secondary metabolites. In these pathways, the α-solanine content was increased and the expression of genes related to glycoalkaloid biosynthesis was upregulated. Levels of gibberellin and jasmonic acid were increased, whereas that of abscisic acid was decreased. This study lays a foundation for investigating the biosynthesis and regulation of SGAs and provides the reference for the production and consumption of potato tubers.
Collapse
Affiliation(s)
- Dan-Dan Shen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Ting Yu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Tai-Bo Wu
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yannning Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Huan-Li Chen
- Zhengzhou Vegetable Research Institute, Zhengzhou 450001, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
28
|
Systematic Characterization of TCP Gene Family in Four Cotton Species Revealed That GhTCP62 Regulates Branching in Arabidopsis. BIOLOGY 2021; 10:biology10111104. [PMID: 34827097 PMCID: PMC8614845 DOI: 10.3390/biology10111104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023]
Abstract
TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play an essential role in regulating various physiological and biochemical functions during plant growth. However, the function of TCP transcription factors in G. hirsutum has not yet been studied. In this study, we performed genome-wide identification and correlation analysis of the TCP transcription factor family in G. hirsutum. We identified 72 non-redundant GhTCP genes and divided them into seven subfamilies, based on phylogenetic analysis. Most GhTCP genes in the same subfamily displayed similar exon and intron structures and featured highly conserved motif structures in their subfamily. Additionally, the pattern of chromosomal distribution demonstrated that GhTCP genes were unevenly distributed on 24 out of 26 chromosomes, and that fragment replication was the main replication event of GhTCP genes. In TB1 sub-family genes, GhTCP62 was highly expressed in the axillary buds, suggesting that GhTCP62 significantly affected cotton branching. Additionally, subcellular localization results indicated that GhTCP62 is located in the nucleus and possesses typical transcription factor characteristics. The overexpression of GhTCP62 in Arabidopsis resulted in fewer rosette-leaf branches and cauline-leaf branches. Furthermore, the increased expression of HB21 and HB40 genes in Arabidopsis plants overexpressing GhTCP62 suggests that GhTCP62 may regulate branching by positively regulating HB21 and HB40.
Collapse
|
29
|
Zhang L, Li C, Yang D, Wang Y, Yang Y, Sun X. Genome-Wide Analysis of the TCP Transcription Factor Genes in Dendrobium catenatum Lindl. Int J Mol Sci 2021; 22:ijms221910269. [PMID: 34638610 PMCID: PMC8508941 DOI: 10.3390/ijms221910269] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Teosinte branched1/cycloidea/proliferating cell factor (TCP) gene family members are plant-specific transcription factors that regulate plant growth and development by controlling cell proliferation and differentiation. However, there are no reported studies on the TCP gene family in Dendrobium catenatum Lindl. Here, a genome-wide analysis of TCP genes was performed in D. catenatum, and 25 TCP genes were identified. A phylogenetic analysis classified the family into two clades: Class I and Class II. Genes in the same clade share similar conserved motifs. The GFP signals of the DcaTCP-GFPs were detected in the nuclei of tobacco leaf epidermal cells. The activity of DcaTCP4, which contains the miR319a-binding sequence, was reduced when combined with miR319a. A transient activity assay revealed antagonistic functions of Class I and Class II of the TCP proteins in controlling leaf development through the jasmonate-signaling pathway. After different phytohormone treatments, the DcaTCP genes showed varied expression patterns. In particular, DcaTCP4 and DcaTCP9 showed opposite trends after 3 h treatment with jasmonate. This comprehensive analysis provides a foundation for further studies on the roles of TCP genes in D. catenatum.
Collapse
Affiliation(s)
- Li Zhang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (C.L.); (D.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Li
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (C.L.); (D.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danni Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (C.L.); (D.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhua Wang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (C.L.); (D.Y.); (Y.W.)
| | - Yongping Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (C.L.); (D.Y.); (Y.W.)
- Correspondence: (Y.Y.); (X.S.); Tel.: +86-871-65230873 (X.S.)
| | - Xudong Sun
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (L.Z.); (C.L.); (D.Y.); (Y.W.)
- Correspondence: (Y.Y.); (X.S.); Tel.: +86-871-65230873 (X.S.)
| |
Collapse
|
30
|
Luo C, Wang S, Ning K, Chen Z, Wang Y, Yang J, Wang Q. LsAP2 regulates leaf morphology by inhibiting CIN-like TCP transcription factors and repressing LsKAN2 in lettuce. HORTICULTURE RESEARCH 2021; 8:184. [PMID: 34465756 PMCID: PMC8408249 DOI: 10.1038/s41438-021-00622-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/21/2021] [Accepted: 05/20/2021] [Indexed: 05/24/2023]
Abstract
Leaf size and flatness directly affect photosynthesis and are closely related to agricultural yield. The final leaf size and shape are coordinately determined by cell proliferation, differentiation, and expansion during leaf development. Lettuce (Lactuca sativa L.) is one of the most important leafy vegetables worldwide, and lettuce leaves vary in shape and size. However, the molecular mechanisms of leaf development in lettuce are largely unknown. In this study, we showed that the lettuce APETALA2 (LsAP2) gene regulates leaf morphology. LsAP2 encodes a transcriptional repressor that contains the conserved EAR motif, which mediates interactions with the TOPLESS/TOPLESS-RELATED (TPL/TPR) corepressors. Overexpression of LsAP2 led to small and crinkly leaves, and many bulges were seen on the surface of the leaf blade. LsAP2 physically interacted with the CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors and inhibited their transcriptional activation activity. RNA sequencing analysis showed that LsAP2 affected the expression of auxin- and polarity-related genes. In addition, LsAP2 directly repressed the abaxial identity gene KANADI2 (LsKAN2). Together, these results indicate that LsAP2 regulates leaf morphology by inhibiting CIN-like TCP transcription factors and repressing LsKAN2, and our work provides insights into the regulatory mechanisms of leaf development in lettuce.
Collapse
Affiliation(s)
- Chen Luo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shenglin Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kang Ning
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zijing Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yixin Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jingjing Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qian Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
31
|
The Effect of the Anticipated Nuclear Localization Sequence of ' Candidatus Phytoplasma mali' SAP11-like Protein on Localization of the Protein and Destabilization of TCP Transcription Factor. Microorganisms 2021; 9:microorganisms9081756. [PMID: 34442835 PMCID: PMC8401217 DOI: 10.3390/microorganisms9081756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/19/2022] Open
Abstract
SAP11 is an effector protein that has been identified in various phytoplasma species. It localizes in the plant nucleus and can bind and destabilize TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors. Although SAP11 of different phytoplasma species share similar activities, their protein sequences differ greatly. Here, we demonstrate that the SAP11-like protein of ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) strain PM19 localizes into the plant nucleus without requiring the anticipated nuclear localization sequence (NLS). We show that the protein induces crinkled leaves and siliques, and witches’ broom symptoms, in transgenic Arabidopsis thaliana (A. thaliana) plants and binds to six members of class I and all members of class II TCP transcription factors of A. thaliana in yeast two-hybrid assays. We also identified a 17 amino acid stretch previously predicted to be a nuclear localization sequence that is important for the binding of some of the TCPs, which results in a crinkled leaf and silique phenotype in transgenic A. thaliana. Moreover, we provide evidence that the SAP11-like protein has a destabilizing effect on some TCPs in vivo.
Collapse
|
32
|
Lan J, Zhang J, Yuan R, Yu H, An F, Sun L, Chen H, Zhou Y, Qian W, He H, Qin G. TCP transcription factors suppress cotyledon trichomes by impeding a cell differentiation-regulating complex. PLANT PHYSIOLOGY 2021; 186:434-451. [PMID: 33576799 PMCID: PMC8154074 DOI: 10.1093/plphys/kiab053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/21/2021] [Indexed: 05/04/2023]
Abstract
Trichomes are specialized epidermal cells that act as barriers against biotic and abiotic stresses. Although the formation of trichomes on hairy organs is well studied, the molecular mechanisms of trichome inhibition on smooth organs are still largely unknown. Here, we demonstrate that the CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors inhibit the formation of trichomes on cotyledons in Arabidopsis (Arabidopsis thaliana). The tcp2/3/4/5/10/13/17 septuple mutant produces cotyledons with ectopic trichomes on the adaxial sides. The expression patterns of TCP genes are developmentally regulated during cotyledon development. TCP proteins directly interact with GLABRA3 (GL3), a key component of the MYB transcription factor/basic helix-loop-helix domain protein/WD40-repeat proteins (MYB-bHLH-WD40, MBW) complex essential for trichome formation, to interfere with the transactivation activity of the MBW complex in cotyledons. TCPs also disrupt the MBW complex-R3 MYB negative feedback loop by directly promoting the expression of R3 MYB genes, which enhance the repression of the MBW complex. Our findings reveal a molecular framework in which TCPs suppress trichome formation on adaxial sides of cotyledons by repressing the activity of the MBW complex at the protein level and the transcripts of R3 MYB genes at the transcriptional level.
Collapse
Affiliation(s)
- Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Rongrong Yuan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Fengying An
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Yue Zhou
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Hang He
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
33
|
Zhang S, Zhou Q, Chen F, Wu L, Liu B, Li F, Zhang J, Bao M, Liu G. Genome-Wide Identification, Characterization and Expression Analysis of TCP Transcription Factors in Petunia. Int J Mol Sci 2020; 21:ijms21186594. [PMID: 32916908 PMCID: PMC7554992 DOI: 10.3390/ijms21186594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
The plant-specific TCP transcription factors are well-characterized in both monocots and dicots, which have been implicated in multiple aspects of plant biological processes such as leaf morphogenesis and senescence, lateral branching, flower development and hormone crosstalk. However, no systematic analysis of the petunia TCP gene family has been described. In this work, a total of 66 petunia TCP genes (32 PaTCP genes in P. axillaris and 34 PiTCP genes in P. inflata) were identified. Subsequently, a systematic analysis of 32 PaTCP genes was performed. The phylogenetic analysis combined with structural analysis clearly distinguished the 32 PaTCP proteins into two classes—class Ι and class Ⅱ. Class Ⅱ was further divided into two subclades, namely, the CIN-TCP subclade and the CYC/TB1 subclade. Plenty of cis-acting elements responsible for plant growth and development, phytohormone and/or stress responses were identified in the promoter of PaTCPs. Distinct spatial expression patterns were determined among PaTCP genes, suggesting that these genes may have diverse regulatory roles in plant growth development. Furthermore, differential temporal expression patterns were observed between the large- and small-flowered petunia lines for most PaTCP genes, suggesting that these genes are likely to be related to petal development and/or petal size in petunia. The spatiotemporal expression profiles and promoter analysis of PaTCPs indicated that these genes play important roles in petunia diverse developmental processes that may work via multiple hormone pathways. Moreover, three PaTCP-YFP fusion proteins were detected in nuclei through subcellular localization analysis. This is the first comprehensive analysis of the petunia TCP gene family on a genome-wide scale, which provides the basis for further functional characterization of this gene family in petunia.
Collapse
Affiliation(s)
- Shuting Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Feng Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Lan Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Baojun Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Fei Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (Q.Z.); (F.C.); (L.W.); (B.L.); (F.L.); (J.Z.)
- Correspondence: (M.B.); (G.L.)
| | - Guofeng Liu
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, China
- Correspondence: (M.B.); (G.L.)
| |
Collapse
|
34
|
Shim JS, Jang G. Environmental Signal-Dependent Regulation of Flowering Time in Rice. Int J Mol Sci 2020; 21:ijms21176155. [PMID: 32858992 PMCID: PMC7504671 DOI: 10.3390/ijms21176155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 01/11/2023] Open
Abstract
The transition from the vegetative to the reproductive stage of growth is a critical event in the lifecycle of a plant and is required for the plant’s reproductive success. Flowering time is tightly regulated by an internal time-keeping system and external light conditions, including photoperiod, light quality, and light quantity. Other environmental factors, such as drought and temperature, also participate in the regulation of flowering time. Thus, flexibility in flowering time in response to environmental factors is required for the successful adaptation of plants to the environment. In this review, we summarize our current understanding of the molecular mechanisms by which internal and environmental signals are integrated to regulate flowering time in Arabidopsis thaliana and rice (Oryza sativa).
Collapse
|