1
|
Hone AJ, Santiago U, Harvey PJ, Tekarli B, Gajewiak J, Craik DJ, Camacho CJ, McIntosh JM. Design, Synthesis, and Structure-Activity Relationships of Novel Peptide Derivatives of the Severe Acute Respiratory Syndrome-Coronavirus-2 Spike-Protein that Potently Inhibit Nicotinic Acetylcholine Receptors. J Med Chem 2024; 67:9587-9598. [PMID: 38814877 PMCID: PMC11444331 DOI: 10.1021/acs.jmedchem.4c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The spike-protein of SARS-CoV-2 has a distinctive amino-acid sequence (682RRARS686) that forms a cleavage site for the enzyme furin. Strikingly, the structure of the spike-protein loop containing the furin cleavage site bears substantial similarity to neurotoxin peptides found in the venoms of certain snakes and marine cone snails. Leveraging this relationship, we designed and synthesized disulfide-constrained peptides with amino-acid sequences corresponding to the furin cleavage-sites of wild-type (B.1 variant) SARS-CoV-2 or the Alpha, Delta, and Omicron variants. Remarkably, some of these peptides potently inhibited α7 and α9α10 nicotinic acetylcholine receptors (nAChR) with nM affinity and showed SARS-CoV-2 variant and nAChR subtype-dependent potencies. Nuclear magnetic resonance spectroscopy and molecular dynamics were used to rationalize structure-activity relationships between peptides and their cognate receptors. These findings delineate nAChR subtypes that can serve as high-affinity spike-protein targets in tissues central to COVID-19 pathophysiology and identify ligands and target receptors to inform the development of novel SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Arik J Hone
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
- MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148, United States
| | - Ulises Santiago
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Peta J Harvey
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bassel Tekarli
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Joanna Gajewiak
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - David J Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - J Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Psychiatry, University of Utah, Salt Lake City, Utah 84112, United States
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148, United States
| |
Collapse
|
2
|
Akbar Z, Kunhipurayil HH, Saliba J, Ahmad J, Al-Mansoori L, Al-Khatib HA, Al Thani AA, Shi Z, Shaito AA. The Association between Lifestyle Factors and COVID-19: Findings from Qatar Biobank. Nutrients 2024; 16:1037. [PMID: 38613072 PMCID: PMC11013885 DOI: 10.3390/nu16071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 04/14/2024] Open
Abstract
Coronavirus Disease 2019 (COVID-19) manifestations range from mild to severe life-threatening symptoms, including death. COVID-19 susceptibility has been associated with various factors, but studies in Qatar are limited. The objective of this study was to investigate the correlation between COVID-19 susceptibility and various sociodemographic and lifestyle factors, including age, gender, body mass index, smoking status, education level, dietary patterns, supplement usage, physical activity, a history of bariatric surgery, diabetes, and hypertension. We utilized logistic regression to analyze these associations, using the data of 10,000 adult participants, aged from 18 to 79, from Qatar Biobank. In total, 10.5% (n = 1045) of the participants had COVID-19. Compared to non-smokers, current and ex-smokers had lower odds of having COVID-19 (odds ratio [OR] = 0.55; 95% CI: 0.44-0.68 and OR = 0.70; 95% CI: 0.57-0.86, respectively). Vitamin D supplement use was associated with an 18% reduction in the likelihood of contracting COVID-19 (OR = 0.82; 95% CI: 0.69-0.97). Obesity (BMI ≥ 30 kg/m2), a history of bariatric surgery, and higher adherence to the modern dietary pattern-characterized by the consumption of foods high in saturated fat and refined carbohydrates-were positively associated with COVID-19. Our findings indicate that adopting a healthy lifestyle may be helpful in the prevention of COVID-19 infection.
Collapse
Affiliation(s)
- Zoha Akbar
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | | | - Jessica Saliba
- Department of Public Health, Faculty of Health Sciences, University of Balamand, Beirut P.O. Box 100, Lebanon
- Department of Biology, Faculty of Sciences, Lebanese University, Beirut P.O. Box 90656, Lebanon
| | - Jamil Ahmad
- Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar (H.A.A.-K.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hebah A. Al-Khatib
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar (H.A.A.-K.)
| | - Asmaa A. Al Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar (H.A.A.-K.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Zumin Shi
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Abdullah A. Shaito
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar (H.A.A.-K.)
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Ahsanuddin S, Jin R, Dhanda AK, Georges K, Baredes S, Eloy JA, Fang CH. Otolaryngologic Side Effects After COVID-19 Vaccination. Laryngoscope 2024; 134:1163-1168. [PMID: 37539984 DOI: 10.1002/lary.30923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES With widespread vaccination against COVID-19, concerns regarding side effects have been raised. We aim to assess the frequency of otolaryngologic adverse events (AEs) following COVID-19 vaccination as compared with other vaccines in a national database. STUDY DESIGN Retrospective analysis of national registry. METHODS The Food and Drug Administration's Vaccine Adverse Event Reporting System (VAERS) database was queried from December 2020 to May 2021 for all COVID-19 vaccination AEs. Complaints were categorized as otolaryngologic and sub stratified into different anatomic components. Reporting odds ratios (ROR) and proportional reporting ratios (PRR) were determined for AEs of clinical significance. RESULTS The total number of AEs reported from vaccination with the Moderna, Pfizer-BioNTech, and Janssen vaccines equaled 1,280,950. Of these, 62,660 (4.9%) were otolaryngologic in nature, with 32.6% associated with the oropharynx/larynx, 18.3% with the nasal cavity/sinuses, 17.1% with the ears/vestibular system, 10.0% with the oral cavity, and 21.9% miscellaneous. Signal ratios reached significance levels for dysgeusia (n = 2124, PRR: 17.33, ROR: 16.36), ageusia (n = 1376, PRR: 2.81, ROR: 2.81), anosmia (n = 983, PRR: 4.01, ROR: 4.01), rhinorrhea (n = 2203, PRR: 2.99, ROR: 3.00), throat tightness (n = 3666, PRR: 4.99, ROR: 5.00), throat irritation (n = 3313, PRR: 4.51, ROR: 4.52), dysphagia (n = 2538, PRR: 2.07, ROR: 2.07), tinnitus (n = 4377, PRR: 3.97, ROR: 3.98), and vertigo (n = 2887, PRR: 3.93, ROR: 3.93). Signal ratios were not significant for facial paralysis, Bell's palsy, anaphylaxis, sinusitis, hearing disability, and ear pain. CONCLUSIONS Although several otolaryngologic symptoms were reported, few were found to be clinically significant. Of note, facial paralysis, Bell's palsy, and anaphylaxis did not meet signal thresholds to be determined significant. LEVEL OF EVIDENCE 4 Laryngoscope, 134:1163-1168, 2024.
Collapse
Affiliation(s)
- Salma Ahsanuddin
- Department of Otorhinolaryngology - Head and Neck Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Ryan Jin
- Department of Otolaryngology-Head & Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Aatin K Dhanda
- Department of Otolaryngology-Head & Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Kirolos Georges
- Department of Otolaryngology-Head & Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Soly Baredes
- Department of Otolaryngology-Head & Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jean Anderson Eloy
- Department of Otolaryngology-Head & Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Center for Skull Base and Pituitary Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Otolaryngology and Facial Plastic Surgery, Saint Barnabas Medical Center, RWJBarnabas Health, Livingston, New Jersey, USA
| | - Christina H Fang
- Department of Otorhinolaryngology - Head and Neck Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
4
|
Rieder AS, Wyse ATS. Regulation of Inflammation by IRAK-M Pathway Can Be Associated with nAchRalpha7 Activation and COVID-19. Mol Neurobiol 2024; 61:581-592. [PMID: 37640915 DOI: 10.1007/s12035-023-03567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
In spite of the vaccine development and its importance, the SARS-CoV-2 pandemic is still impacting the world. It is known that the COVID-19 severity is related to the cytokine storm phenomenon, being inflammation a common disease feature. The nicotinic cholinergic system has been widely associated with COVID-19 since it plays a protective role in inflammation via nicotinic receptor alpha 7 (nAchRalpha7). In addition, SARS-CoV-2 spike protein (Spro) subunits can interact with nAchRalpha7. Moreover, Spro causes toll-like receptor (TLR) activation, leading to pro- and anti-inflammatory pathways. The increase and maturation of the IL-1 receptor-associated kinase (IRAK) family are mediated by activation of membrane receptors, such as TLRs. IRAK-M, a member of this family, is responsible for negatively regulating the activity of other active IRAKs. In addition, IRAK-M can regulate microglia phenotype by specific protein expression. Furthermore, there exists an antagonist influence of SARS-CoV-2 Spro and the cholinergic system action on the IRAK-M pathway and microglia phenotype. We discuss the overexpression and suppression of IRAK-M in inflammatory cell response to inflammation in SARS-CoV-2 infection when the cholinergic system is constantly activated via nAchRalpha7.
Collapse
Affiliation(s)
- Alessanda S Rieder
- Laboratory of Neuroprotection and Neurometabolic Diseases (Wyse's Lab), Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases (Wyse's Lab), Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre RS, 90035-003, Brazil.
| |
Collapse
|
5
|
Rasmi Y, Shokati A, Hatamkhani S, Farnamian Y, Naderi R, Jalali L. Assessment of the relationship between the dopaminergic pathway and severe acute respiratory syndrome coronavirus 2 infection, with related neuropathological features, and potential therapeutic approaches in COVID-19 infection. Rev Med Virol 2024; 34:e2506. [PMID: 38282395 DOI: 10.1002/rmv.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/06/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Dopamine is a known catecholamine neurotransmitter involved in several physiological processes, including motor control, motivation, reward, cognition, and immune function. Dopamine receptors are widely distributed throughout the nervous system and in immune cells. Several viruses, including human immunodeficiency virus and Japanese encephalitis virus, can use dopaminergic receptors to replicate in the nervous system and are involved in viral neuropathogenesis. In addition, studies suggest that dopaminergic receptors may play a role in the progression and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. When SARS-CoV-2 binds to angiotensin-converting enzyme 2 receptors on the surface of neuronal cells, the spike protein of the virus can bind to dopaminergic receptors on neighbouring cells to accelerate its life cycle and exacerbate neurological symptoms. In addition, recent research has shown that dopamine is an important regulator of the immune-neuroendocrine system. Most immune cells express dopamine receptors and other dopamine-related proteins, indicating the importance of dopaminergic immune regulation. The increase in dopamine concentration during SARS-CoV2 infection may reduce immunity (innate and adaptive) that promotes viral spread, which could lead to neuronal damage. In addition, dopaminergic signalling in the nervous system may be affected by SARS-CoV-2 infection. COVID -19 can cause various neurological symptoms as it interacts with the immune system. One possible treatment strategy for COVID -19 patients could be the use of dopamine antagonists. To fully understand how to protect the neurological system and immune cells from the virus, we need to study the pathophysiology of the dopamine system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Lykhmus O, Kalashnyk O, Sullivan R, Skok M. Hydroxyurea interaction with α7 nicotinic acetylcholine receptor can underlie its therapeutic efficacy upon COVID-19. J Neuroimmunol 2023; 385:578244. [PMID: 38016403 DOI: 10.1016/j.jneuroim.2023.578244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
In this paper the authors provide evidence that hydroxyurea (hydroxycarbamide) interacts with α7 nicotinic acetylcholine receptor, exerts anti-inflammatory and pro-survival effect, prevents α7 nicotinic receptor interaction with angiotensin-converting enzyme-2 and stimulates IgM to IgG class switch upon immunization with SARS spike protein fragment 674-685. Hydroxyurea shifts immunoglobulin glycosylation profile to anti-inflammatory phenotype and prevents the appearance of anti-idiotypic α7(179-190)-specific antibodies, as well as memory impairment. According to these results, interaction with α7 nicotinic acetylcholine receptor may underlie positive therapeutic effects of hydroxyurea upon SARS-Cov-2 infection by interfering with virus penetration into the cell and providing anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
| | | | | | - Maryna Skok
- Palladin Institute of Biochemistry, Kyiv, Ukraine.
| |
Collapse
|
7
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
8
|
Antwi I, Watkins D, Pedawi A, Ghrayeb A, Van de Vuurst C, Cory TJ. Substances of abuse and their effect on SAR-CoV-2 pathogenesis. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:301-316. [PMID: 38013836 PMCID: PMC10474379 DOI: 10.1515/nipt-2023-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/19/2023] [Indexed: 11/29/2023]
Abstract
Following the emergence of SARS-CoV-2, various reports suggest that there has been a significant increase in substance abuse due to social distancing and related issues. Several reports have suggested the impact of chronic substance use on individuals' physiological and psychological health. Therefore, there is a need to know the impact of SARS-CoV-2 on persons with substance use disorders. Individuals with substance use disorders are the most vulnerable groups and are at a high risk of SARS-CoV-2 infection due to their already existing health issues associated with substance use. This review discusses some of the molecular and systemic/organic effects chronic substance use such as alcohol, nicotine, marijuana (cannabis), opioids, methamphetamine, and cocaine have on SARS-CoV-2 infectivity and its potential cause for worsened disease outcomes in persons with substance use disorder. This will provide healthcare providers, public health policies, and researchers with the needed knowledge to address some of the many challenges faced during the Covid-19 pandemic to facilitate treatment strategies for persons with substance use disorders.
Collapse
Affiliation(s)
- Ivy Antwi
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Destiny Watkins
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alahn Pedawi
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Atheel Ghrayeb
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Christine Van de Vuurst
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Theodore J. Cory
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
9
|
Ebrahimi Kalan M, Jebai R, Li W, Gautam P, Alemohammad SY, Mortazavizadeh Z, Kenneth DW, Chakraborty A, Dargahi Abbasabad G, Behaleh R, Bursac Z, Ben Taleb Z. COVID-19 and tobacco products use among US adults, 2021 National Health Interview Survey. Health Sci Rep 2023; 6:e1542. [PMID: 37662541 PMCID: PMC10469725 DOI: 10.1002/hsr2.1542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background Smoking and vaping are linked to lung inflammation and lowered immune response. Objective Examine the prevalence of coronavirus disease 2019 (COVID-19) cases, testing, symptoms, and vaccine uptake, and associations with tobacco product use. Methods Data came from the 2021 National Health Interview Survey. The 2021 Sample Adult component included 29,482 participants with a response rate of 50.9%. We investigated COVID-19-related outcomes by tobacco product use status and reported national estimates. Multivariable regression models were performed accounting for demographics (e.g., age, sex, poverty level), serious psychological distress, disability, and chronic health conditions. Results In our regression analyses, odds of self-reported COVID-19 infection were significantly lower for combustible tobacco product users (vs. nonusers; adjusted odds ratio [AOR = 0.73; 95% confidence interval [CI] = 0.62-0.85]). Combustible tobacco users also were less likely to report ever testing for COVID-19 (AOR = 0.88; 95% CI = 0.79-0.98), ever testing positive for COVID-19 (AOR = 0.66; 95% CI = 0.56-0.77), and ever receiving COVID-19 vaccine (AOR = 0.58; 95% CI = 0.51-0.66) compared with their nonuser peers. Compared to nonusers, users of any type of tobacco who contracted COVID-19 had higher odds of losing smell (AOR = 1.36; 95%CI = 1.04-1.77), which was more pronounced among exclusive e-cigarette users. The odds of receiving vaccine were lower for all current exclusive tobacco product users compared to nonusers (AORs = 0.40 to 0.70). Conclusions Continued monitoring of tobacco product use and its association with respiratory diseases such as COVID-19 is crucial to inform public health policies and programs. In addition, efforts to promote vaccination, especially among tobacco product users, are warranted.
Collapse
Affiliation(s)
| | - Rime Jebai
- Department of Epidemiology, Robert Stempel College of Public HealthFlorida International UniversityMiamiFloridaUSA
| | - Wei Li
- Department of Psychiatry, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | | | - Seyedeh Yasaman Alemohammad
- Department of Epidemiology, Robert Stempel College of Public HealthFlorida International UniversityMiamiFloridaUSA
| | | | - D. Ward Kenneth
- School of Public HealthUniversity of MemphisMemphisTennesseeUSA
| | | | | | - Raed Behaleh
- School of Health SciencesBaldwin Wallace UniversityBereaOhioUSA
| | - Zoran Bursac
- Department of Biostatistics, Robert Stempel College of Public HealthFlorida International UniversityMiamiFloridaUSA
| | - Ziyad Ben Taleb
- Department of Kinesiology, College of Nursing and Health InnovationUniversity of Texas at ArlingtonArlingtonTexasUSA
| |
Collapse
|
10
|
Yu X, Kong Q. Potential value of neuroimmunotherapy for COVID-19: efficacies and mechanisms of vagus nerve stimulation, electroacupuncture, and cholinergic drugs. Front Immunol 2023; 14:1197467. [PMID: 37475861 PMCID: PMC10355152 DOI: 10.3389/fimmu.2023.1197467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/23/2023] [Indexed: 07/22/2023] Open
Abstract
COVID-19 is an inflammatory disease with multiple organs involved, mainly respiratory symptoms. Although the majority of patients with COVID-19 present with a mild to moderate self-limited course of illness, about 5-10% of patients with inflammatory disorders in severe COVID-19 have life-threatening progression. With the exception of a few drugs that have shown outstanding anti-COVID-19 effects, the efficacy of most drugs remains controversial. An increasing number of animal and clinical studies have shown that neuromodulation has a significant effect on reducing inflammatory markers of COVID-19, thus exerting an effective neuroimmunotherapeutic value. Currently, the main neuroimmunomodulatory measures effective against COVID-19 include vagus nerve stimulation, electroacupuncture, and cholinergic drugs. In this review, we will summarize the research progress of potential value of this neuroimmunotherapy measures for COVID-19 and elaborate its efficacies and mechanisms, in order to provide reliable evidence for clinical intervention.
Collapse
Affiliation(s)
- Xianqiang Yu
- Women and Children's Hospital Affiliated to Qingdao University, Heart center, Qingdao, China
- University of California, Los Angeles, Department of Cardiology, Los Angeles, CA, United States
| | - Qingming Kong
- School of Laboratory Medicine and Bioengineering, Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
11
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
O'Brien BCV, Weber L, Hueffer K, Weltzin MM. SARS-CoV-2 spike ectodomain targets α7 nicotinic acetylcholine receptors. J Biol Chem 2023; 299:104707. [PMID: 37061001 PMCID: PMC10101490 DOI: 10.1016/j.jbc.2023.104707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Virus entry into animal cells is initiated by attachment to target macromolecules located on host cells. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) trimeric spike glycoprotein targets host angiotensin converting enzyme 2 to gain cellular access. The SARS-CoV-2 glycoprotein contains a neurotoxin-like region that has sequence similarities to the rabies virus and the HIV glycoproteins, as well as to snake neurotoxins, which interact with nicotinic acetylcholine receptor (nAChR) subtypes via this region. Using a peptide of the neurotoxin-like region of SARS-CoV-2 (SARS-CoV-2 glycoprotein peptide [SCoV2P]), we identified that this area moderately inhibits α3β2, α3β4, and α4β2 subtypes, while potentiating and inhibiting α7 nAChRs. These nAChR subtypes are found in target tissues including the nose, lung, central nervous system, and immune cells. Importantly, SCoV2P potentiates and inhibits ACh-induced α7 nAChR responses by an allosteric mechanism, with nicotine enhancing these effects. Live-cell confocal microscopy was used to confirm that SCoV2P interacts with α7 nAChRs in transfected neuronal-like N2a and human embryonic kidney 293 cells. The SARS-CoV-2 ectodomain functionally potentiates and inhibits the α7 subtype with nanomolar potency. Our functional findings identify that the α7 nAChR is a target for the SARS-CoV-2 glycoprotein, providing a new aspect to our understanding of SARS-CoV-2 and host cell interactions, in addition to disease pathogenesis.
Collapse
Affiliation(s)
- Brittany C V O'Brien
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Lahra Weber
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Maegan M Weltzin
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
| |
Collapse
|
13
|
Shelukhina I, Siniavin A, Kasheverov I, Ojomoko L, Tsetlin V, Utkin Y. α7- and α9-Containing Nicotinic Acetylcholine Receptors in the Functioning of Immune System and in Pain. Int J Mol Sci 2023; 24:ijms24076524. [PMID: 37047495 PMCID: PMC10095066 DOI: 10.3390/ijms24076524] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) present as many different subtypes in the nervous and immune systems, muscles and on the cells of other organs. In the immune system, inflammation is regulated via the vagus nerve through the activation of the non-neuronal α7 nAChR subtype, affecting the production of cytokines. The analgesic properties of α7 nAChR-selective compounds are mostly based on the activation of the cholinergic anti-inflammatory pathway. The molecular mechanism of neuropathic pain relief mediated by the inhibition of α9-containing nAChRs is not fully understood yet, but the role of immune factors in this process is becoming evident. To obtain appropriate drugs, a search of selective agonists, antagonists and modulators of α7- and α9-containing nAChRs is underway. The naturally occurring three-finger snake α-neurotoxins and mammalian Ly6/uPAR proteins, as well as neurotoxic peptides α-conotoxins, are not only sophisticated tools in research on nAChRs but are also considered as potential medicines. In particular, the inhibition of the α9-containing nAChRs by α-conotoxins may be a pathway to alleviate neuropathic pain. nAChRs are involved in the inflammation processes during AIDS and other viral infections; thus they can also be means used in drug design. In this review, we discuss the role of α7- and α9-containing nAChRs in the immune processes and in pain.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuri Utkin
- Correspondence: or ; Tel.: +7-495-3366522
| |
Collapse
|
14
|
Leitzke M. Is the post-COVID-19 syndrome a severe impairment of acetylcholine-orchestrated neuromodulation that responds to nicotine administration? Bioelectron Med 2023; 9:2. [PMID: 36650574 PMCID: PMC9845100 DOI: 10.1186/s42234-023-00104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Following a SARS-CoV-2 infection, many individuals suffer from post-COVID-19 syndrome. It makes them unable to proceed with common everyday activities due to weakness, memory lapses, pain, dyspnea and other unspecific physical complaints. Several investigators could demonstrate that the SARS-CoV-2 related spike glycoprotein (SGP) attaches not only to ACE-2 receptors but also shows DNA sections highly affine to nicotinic acetylcholine receptors (nAChRs). The nAChR is the principal structure of cholinergic neuromodulation and is responsible for coordinated neuronal network interaction. Non-intrinsic viral nAChR attachment compromises integrative interneuronal communication substantially. This explains the cognitive, neuromuscular and mood impairment, as well as the vegetative symptoms, characterizing post-COVID-19 syndrome. The agonist ligand nicotine shows an up to 30-fold higher affinity to nACHRs than acetylcholine (ACh). We therefore hypothesize that this molecule could displace the virus from nAChR attachment and pave the way for unimpaired cholinergic signal transmission. Treating several individuals suffering from post-COVID-19 syndrome with a nicotine patch application, we witnessed improvements ranging from immediate and substantial to complete remission in a matter of days.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Anesthesiology, Helios Clinics, Colditzer Straße 48, 04703, Leisnig, Germany.
| |
Collapse
|
15
|
Dobre D, Schwan R, Jansen C, Schwitzer T, Martin O, Ligier F, Rolland B, Ahad PA, Capdevielle D, Corruble E, Delamillieure P, Dollfus S, Drapier D, Bennabi D, Joubert F, Lecoeur W, Massoubre C, Pelissolo A, Roser M, Schmitt C, Teboul N, Vansteene C, Yekhlef W, Yrondi A, Haoui R, Gaillard R, Leboyer M, Thomas P, Gorwood P, Laprevote V. Clinical features and outcomes of COVID-19 patients hospitalized for psychiatric disorders: a French multi-centered prospective observational study. Psychol Med 2023; 53:342-350. [PMID: 33902760 PMCID: PMC8144831 DOI: 10.1017/s0033291721001537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Patients with psychiatric disorders are exposed to high risk of COVID-19 and increased mortality. In this study, we set out to assess the clinical features and outcomes of patients with current psychiatric disorders exposed to COVID-19. METHODS This multi-center prospective study was conducted in 22 psychiatric wards dedicated to COVID-19 inpatients between 28 February and 30 May 2020. The main outcomes were the number of patients transferred to somatic care units, the number of deaths, and the number of patients developing a confusional state. The risk factors of confusional state and transfer to somatic care units were assessed by a multivariate logistic model. The risk of death was analyzed by a univariate analysis. RESULTS In total, 350 patients were included in the study. Overall, 24 (7%) were transferred to medicine units, 7 (2%) died, and 51 (15%) patients presented a confusional state. Severe respiratory symptoms predicted the transfer to a medicine unit [odds ratio (OR) 17.1; confidence interval (CI) 4.9-59.3]. Older age, an organic mental disorder, a confusional state, and severe respiratory symptoms predicted mortality in univariate analysis. Age >55 (OR 4.9; CI 2.1-11.4), an affective disorder (OR 4.1; CI 1.6-10.9), and severe respiratory symptoms (OR 4.6; CI 2.2-9.7) predicted a higher risk, whereas smoking (OR 0.3; CI 0.1-0.9) predicted a lower risk of a confusional state. CONCLUSION COVID-19 patients with severe psychiatric disorders have multiple somatic comorbidities and have a risk of developing a confusional state. These data underline the need for extreme caution given the risks of COVID-19 in patients hospitalized for psychiatric disorders.
Collapse
Affiliation(s)
- Daniela Dobre
- Centre Psychothérapique de Nancy, LaxouF-54520, France
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, StrasbourgF-67 000, France
| | - Raymund Schwan
- Centre Psychothérapique de Nancy, LaxouF-54520, France
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, StrasbourgF-67 000, France
- Faculté de Médecine, Université de Lorraine, F-54500Vandoeuvre-lès-Nancy, France
| | - Claire Jansen
- Centre Psychothérapique de Nancy, LaxouF-54520, France
- Faculté de Médecine, Université de Lorraine, F-54500Vandoeuvre-lès-Nancy, France
| | - Thomas Schwitzer
- Centre Psychothérapique de Nancy, LaxouF-54520, France
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, StrasbourgF-67 000, France
- Faculté de Médecine, Université de Lorraine, F-54500Vandoeuvre-lès-Nancy, France
| | | | - Fabienne Ligier
- Centre Psychothérapique de Nancy, LaxouF-54520, France
- Faculté de Médecine, Université de Lorraine, F-54500Vandoeuvre-lès-Nancy, France
- EA 4360 APEMAC, Université de Lorraine, F-54500Vandoeuvre-lès-Nancy, France
| | - Benjamin Rolland
- Service Universitaire d'Addictologie de Lyon (SUAL), CH Le Vinatier, Bron, France
- Services hospitalo-universitaires d'addictologie, Hospices Civils de Lyon, Lyon, France
- Université de Lyon, UCBL, Centre de recherche en neurosciences de Lyon (CRNL), INSERM U1028, CNRS UMR5292, PSYR2, Bron, France
| | - Pierre Abdel Ahad
- Pôle hospitalo-universitaire de psychiatrie adultes Paris 15ème, GHU Paris psychiatrie et neurosciences, site Sainte-Anne, Paris, France
| | - Delphine Capdevielle
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
- University Department of Adult Psychiatry, CHU, Montpellier, France
| | - Emmanuelle Corruble
- Université department of Adult Psychiatry, Hôpital La Colombière, CHU de Montpellier, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin BicêtreF-94275, France
| | - Pascal Delamillieure
- CHU de Caen, Service de psychiatrie, Centre Esquirol, CaenF-14000, France
- Imagerie et Stratégies Thérapeutiques de la Schizophrénie (ISTS) EA 7466, Normandie Univ, GIP Cyceron, CaenF-14000, France
- UFR Santé, Normandie Univ, CaenF-14000, France
| | - Sonia Dollfus
- CHU de Caen, Service de psychiatrie, Centre Esquirol, CaenF-14000, France
- Imagerie et Stratégies Thérapeutiques de la Schizophrénie (ISTS) EA 7466, Normandie Univ, GIP Cyceron, CaenF-14000, France
- UFR Santé, Normandie Univ, CaenF-14000, France
| | - Dominique Drapier
- Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Centre Hospitalier Guillaume Régnier, RennesF-35703, France
- EA 47 12 Comportement et Noyaux Gris Centraux, Université Rennes 1, RennesF-35703, France
| | - Djamila Bennabi
- Service de psychiatrie de l'adulte, CHRU de Besançon, F-25000Besançon, France
- Centre expert dépression résistante FondaMental, F-25000Besançon, France
| | - Fabien Joubert
- Département d'Information Médicale, CH Le Vinatier, Bron, France
| | | | - Catherine Massoubre
- Service Universitaire de Psychiatrie, EA TAPE 7423, CHU de Saint-Etienne, Saint Etienne, France
| | - Antoine Pelissolo
- UPEC, Université Paris-Est, Faculté de médecine, CréteilF-94000, France
- AP-HP, DMU IMPACT, Hôpitaux universitaires Henri-Mondor, Service de Psychiatrie, CréteilF-94000, France
- INSERM U955, Laboratoire Neuro-Psychiatrie translationnelle, CréteilF-94000, France
| | - Mathilde Roser
- UPEC, Université Paris-Est, Faculté de médecine, CréteilF-94000, France
- AP-HP, DMU IMPACT, Hôpitaux universitaires Henri-Mondor, Service de Psychiatrie, CréteilF-94000, France
- INSERM U955, Laboratoire Neuro-Psychiatrie translationnelle, CréteilF-94000, France
| | - Christophe Schmitt
- Département d'Information Médicale, Centre Hospitalier de Jury, MetzF-57073, France
| | - Noé Teboul
- Département d'Information Médicale, CH Le Vinatier, Bron, France
| | - Clément Vansteene
- Clinique des Maladies Mentales et de l'Encéphale (CMME), Hôpital Sainte-Anne, 1 Rue Cabanis, 75014Paris, France
- INSERM U894, Centre de Psychiatrie et Neurosciences (CPN), Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Wanda Yekhlef
- Département Soins Somatiques-Préventions-Santé Publique, Pôle CRISTALES, EPS de Ville-Evrard, Neuilly sur Marne, France
| | - Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU de Toulouse, Hôpital Purpan, Toulouse, France
- ToNIC Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Radoine Haoui
- Pôle de Psychiatrie Générale Rive Gauche, Centre Hospitalier Gérard Marchant, F-31057Toulouse, France
| | - Raphaël Gaillard
- Pôle hospitalo-universitaire de psychiatrie adultes Paris 15ème, GHU Paris psychiatrie et neurosciences, site Sainte-Anne, Paris, France
- Université de Paris, Paris, France
- Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, Paris, France
| | - Marion Leboyer
- UPEC, Université Paris-Est, Faculté de médecine, CréteilF-94000, France
- AP-HP, DMU IMPACT, Hôpitaux universitaires Henri-Mondor, Service de Psychiatrie, CréteilF-94000, France
- INSERM U955, Laboratoire Neuro-Psychiatrie translationnelle, CréteilF-94000, France
| | - Pierre Thomas
- Univ. Lille, INSERM U1172, CHU Lille, Centre Lille Neuroscience & Cognition (PSY), F-59000Lille, France
- CHU Lille, Pôle de Psychiatrie, F-59000Lille, France
| | - Philip Gorwood
- Clinique des Maladies Mentales et de l'Encéphale (CMME), Hôpital Sainte-Anne, 1 Rue Cabanis, 75014Paris, France
- Institute of Psychiatry and Neuroscience of Paris, University of Paris, INSERM U1266, Paris, France
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, Paris, France
| | - Vincent Laprevote
- Centre Psychothérapique de Nancy, LaxouF-54520, France
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, StrasbourgF-67 000, France
- Faculté de Médecine, Université de Lorraine, F-54500Vandoeuvre-lès-Nancy, France
| |
Collapse
|
16
|
Godellas NE, Cymes GD, Grosman C. An experimental test of the nicotinic hypothesis of COVID-19. Proc Natl Acad Sci U S A 2022; 119:e2204242119. [PMID: 36279466 PMCID: PMC9636949 DOI: 10.1073/pnas.2204242119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
The pathophysiological mechanisms underlying the constellation of symptoms that characterize COVID-19 are only incompletely understood. In an effort to fill these gaps, a "nicotinic hypothesis," which posits that nicotinic acetylcholine receptors (AChRs) act as additional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptors, has recently been put forth. A key feature of the proposal (with potential clinical ramifications) is the suggested competition between the virus' spike protein and small-molecule cholinergic ligands for the receptor's orthosteric binding sites. This notion is reminiscent of the well-established role of the muscle AChR during rabies virus infection. To address this hypothesis directly, we performed equilibrium-type ligand-binding competition assays using the homomeric human α7-AChR (expressed on intact cells) as the receptor, and radio-labeled α-bungarotoxin (α-BgTx) as the orthosteric-site competing ligand. We tested different SARS-CoV-2 spike protein peptides, the S1 domain, and the entire S1-S2 ectodomain, and found that none of them appreciably outcompete [125I]-α-BgTx in a specific manner. Furthermore, patch-clamp recordings showed no clear effect of the S1 domain on α7-AChR-mediated currents. We conclude that the binding of the SARS-CoV-2 spike protein to the human α7-AChR's orthosteric sites-and thus, its competition with ACh, choline, or nicotine-is unlikely to be a relevant aspect of this complex disease.
Collapse
Affiliation(s)
- Nicole E. Godellas
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Gisela D. Cymes
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Claudio Grosman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Neuroscience Program, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
17
|
Chrestia JF, Oliveira AS, Mulholland AJ, Gallagher T, Bermúdez I, Bouzat C. A Functional Interaction Between Y674-R685 Region of the SARS-CoV-2 Spike Protein and the Human α7 Nicotinic Receptor. Mol Neurobiol 2022; 59:6076-6090. [PMID: 35859025 PMCID: PMC9299415 DOI: 10.1007/s12035-022-02947-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is present in neuronal and non-neuronal cells and has anti-inflammatory actions. Molecular dynamics simulations suggested that α7 nAChR interacts with a region of the SARS-CoV-2 spike protein (S), and a potential contribution of nAChRs to COVID-19 pathophysiology has been proposed. We applied whole-cell and single-channel recordings to determine whether a peptide corresponding to the Y674-R685 region of the S protein can directly affect α7 nAChR function. The S fragment exerts a dual effect on α7. It activates α7 nAChRs in the presence of positive allosteric modulators, in line with our previous molecular dynamics simulations showing favourable binding of this accessible region of the S protein to the nAChR agonist binding site. The S fragment also exerts a negative modulation of α7, which is evidenced by a profound concentration-dependent decrease in the durations of openings and activation episodes of potentiated channels and in the amplitude of macroscopic responses elicited by ACh. Our study identifies a potential functional interaction between α7 nAChR and a region of the S protein, thus providing molecular foundations for further exploring the involvement of nAChRs in COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Juan Facundo Chrestia
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Camino La Carrindanga Km 7-8000, Bahía Blanca, Argentina
| | - Ana Sofia Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Isabel Bermúdez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Camino La Carrindanga Km 7-8000, Bahía Blanca, Argentina.
| |
Collapse
|
18
|
Tomaselli V, Ferrara P, Cantone GG, Romeo AC, Rust S, Saitta D, Caraci F, Romano C, Thangaraju M, Zuccarello P, Rose J, Ferrante M, Belsey J, Cibella F, Caci G, Ferri R, Polosa R. The effect of laboratory-verified smoking on SARS-CoV-2 infection: results from the Troina sero-epidemiological survey. Intern Emerg Med 2022; 17:1617-1630. [PMID: 35419722 PMCID: PMC9007731 DOI: 10.1007/s11739-022-02975-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
Previous research yielded conflicting results on the association between cigarette smoking and risk of SARS-CoV-2 infection. Since the prevalence of smoking is high globally, the study of its impact on COVID-19 pandemic may have considerable implications for public health. This study is the first to investigate the association between the SARS-CoV-2 antibody sero-positivity and biochemically verified smoking status, to refine current estimates on this association. SARS-CoV-2-specific IgG and serum cotinine levels (a well-known marker of tobacco exposure) were assessed in a large sero-epidemiological survey conducted in the town of Troina (Sicily, Italy). A propensity score matching was carried out to reduce the effect of possible factors on SARS-CoV-2 infection risk among study participants. Of the 1785 subjects included in our study, one-third was classified as current smokers, based on serum cotinine levels. The overall proportion of subjects with positive serology for SARS-CoV-2 IgG was 5.4%. The prevalence of SARS-CoV-2 antibody positivity and previous COVID-19 diagnosis were reduced in smokers. This reduced prevalence persisted after adjusting for possible confounders (such as sex, age, previous infection, chronic conditions, and risk group) at regression analyses, and the point estimates based on the PS-matched models resulted consistent with those for the unmatched population. This study found a lower proportion of positive SARS-CoV-2 serology among current smokers, using direct laboratory measures of tobacco exposure and thus avoiding possible bias associated with self-reported smoking status. Results may also serve as a reference for future clinical research on potential pharmaceutical role of nicotine or nicotinic-cholinergic agonists against COVID-19.
Collapse
Affiliation(s)
- Venera Tomaselli
- Department of Political and Social Sciences, University of Catania, Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University di Catania, Catania, Italy
| | - Pietro Ferrara
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Center for Public Health Research, University of Milan-Bicocca, Monza, Italy
| | - Giulio G Cantone
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | | | - Sonja Rust
- ECLAT Srl, Spin-off of the University of Catania, Catania, Italy
| | - Daniela Saitta
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University di Catania, Catania, Italy
- ECLAT Srl, Spin-off of the University of Catania, Catania, Italy
| | - Filippo Caraci
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University di Catania, Catania, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Murugesan Thangaraju
- Bioanalytical Laboratory, Center for Smoking Cessation, Duke University Medical Center, Durham, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, USA
| | - Pietro Zuccarello
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Jed Rose
- Bioanalytical Laboratory, Center for Smoking Cessation, Duke University Medical Center, Durham, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, USA
| | - Margherita Ferrante
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University di Catania, Catania, Italy
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | | | - Fabio Cibella
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University di Catania, Catania, Italy
- Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy
| | - Grazia Caci
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Riccardo Polosa
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University di Catania, Catania, Italy.
- ECLAT Srl, Spin-off of the University of Catania, Catania, Italy.
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Institute of Internal Medicine, AOU "Policlinico-V. Emanuele", Via S. Sofia, 78, Catania, Italy.
| |
Collapse
|
19
|
Benowitz NL, Goniewicz ML, Halpern-Felsher B, Krishnan-Sarin S, Ling PM, O'Connor RJ, Pentz MA, Robertson RM, Bhatnagar A. Tobacco product use and the risks of SARS-CoV-2 infection and COVID-19: current understanding and recommendations for future research. THE LANCET. RESPIRATORY MEDICINE 2022; 10:900-915. [PMID: 35985357 PMCID: PMC9381032 DOI: 10.1016/s2213-2600(22)00182-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/27/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023]
Abstract
Heterogeneity in the clinical presentation of SARS-CoV-2 infection and COVID-19 progression underscores the urgent need to identify individual-level susceptibility factors that affect infection vulnerability and disease severity. Tobacco product use is a potential susceptibility factor. In this Personal View, we provide an overview of the findings of peer-reviewed, published studies relating tobacco product use to SARS-CoV-2 infection and COVID-19 outcomes, with most studies focusing on cigarette smoking in adults. Findings pertaining to the effects of tobacco product use on the incidence of SARS-CoV-2 infection are inconsistent. However, evidence supports a role for cigarette smoking in increasing the risk of poor COVID-19 outcomes, including hospital admission, progression in disease severity, and COVID-19-related mortality. We discuss the potential effects of tobacco use behaviour on SARS-CoV-2 transmission and infection, and highlight the pathophysiological changes associated with cigarette smoking that could promote SARS-CoV-2 infection and increased disease severity. We consider the biological mechanisms by which nicotine and other tobacco product constituents might affect immune and inflammatory responses to SARS-CoV-2 infection. Finally, we identify current knowledge gaps and suggest priorities for research to address acute and post-acute health outcomes of COVID-19 during and after the pandemic.
Collapse
Affiliation(s)
- Neal L Benowitz
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | - Pamela M Ling
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Richard J O'Connor
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mary Ann Pentz
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rose Marie Robertson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aruni Bhatnagar
- Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
20
|
Zheng F, Lian E, Ramirez G, McAlister C, Zhou S, Zhang W, Liu C, Perera R, Zhan CG. Nicotine has no significant cytoprotective activity against SARS-CoV-2 infection. PLoS One 2022; 17:e0272941. [PMID: 35980910 PMCID: PMC9387791 DOI: 10.1371/journal.pone.0272941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/30/2022] [Indexed: 01/08/2023] Open
Abstract
When coronavirus disease 2019 (COVID-19) became a pandemic, one of most important questions was whether people who smoke are at more risk of COVID-19 infection. A number of clinical data have been reported in the literature so far, but controversy exists in the collection and interpretation of the data. Particularly, there is a controversial hypothesis that nicotine might be able to prevent SARS-CoV-2 infection. In the present study, motivated by the reported controversial clinical data and the controversial hypothesis, we carried out cytotoxicity assays in Vero E6 cells to examine the potential cytoprotective activity of nicotine against SARS-CoV-2 infection and demonstrated for the first time that nicotine had no significant cytoprotective activity against SARS-CoV-2 infection in these cells.
Collapse
Affiliation(s)
- Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Elena Lian
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Gaby Ramirez
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Carley McAlister
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Shuo Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Wen Zhang
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, United States of America
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Chunming Liu
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, United States of America
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
- * E-mail:
| |
Collapse
|
21
|
Understanding the Pivotal Role of the Vagus Nerve in Health from Pandemics. Bioengineering (Basel) 2022; 9:bioengineering9080352. [PMID: 36004877 PMCID: PMC9405360 DOI: 10.3390/bioengineering9080352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
The COVID-19 pandemic seems endless with the regular emergence of new variants. Is the SARS-CoV-2 virus particularly evasive to the immune system, or is it merely disrupting communication between the body and the brain, thus pre-empting homeostasis? Retrospective analysis of the COVID-19 and AIDS pandemics, as well as prion disease, emphasizes the pivotal but little-known role of the 10th cranial nerve in health. Considering neuroimmunometabolism from the point of view of the vagus nerve, non-invasive bioengineering solutions aiming at monitoring and stimulating the vagal tone are subsequently discussed as the next optimal and global preventive treatments, far beyond pandemics.
Collapse
|
22
|
Lykhmus O, Kalashnyk O, Koval L, Krynina O, Komisarenko S, Skok M. Immunization with 674-685 fragment of SARS-Cov-2 spike protein induces neuroinflammation and impairs episodic memory of mice. Biochem Biophys Res Commun 2022; 622:57-63. [PMID: 35843095 PMCID: PMC9263688 DOI: 10.1016/j.bbrc.2022.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
COVID-19 is accompanied by strong inflammatory reaction and is often followed by long-term cognitive disorders. The fragment 674-685 of SARS-Cov-2 spike protein was shown to interact with α7 nicotinic acetylcholine receptor involved in regulating both inflammatory reactions and cognitive functions. Here we show that mice immunized with the peptide corresponding to 674-685 fragment of SARS-Cov-2 spike protein conjugated to hemocyanin (KLH-674-685) demonstrate decreased level of α7 nicotinic acetylcholine receptors, increased levels of IL-1β and TNFα in the brain and impairment of episodic memory. Choline injections prevented α7 nicotinic receptor decline and memory loss. Mice injected with immunoglobulins obtained from the blood of (KLH-674-685)-immunized mice also demonstrated episodic memory decline. These data allow suggesting that post-COVID memory impairment in humans is related to SARS-Cov-2 spike protein-specific immune reaction. The mechanisms of such effect are being discussed.
Collapse
Affiliation(s)
- Olena Lykhmus
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Lyudmyla Koval
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Olga Krynina
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Serhiy Komisarenko
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| | - Maryna Skok
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha str., 01054, Kyiv, Ukraine.
| |
Collapse
|
23
|
Labro G, Tubach F, Belin L, Dubost JL, Osman D, Muller G, Quenot JP, Da Silva D, Zarka J, Turpin M, Mayaux J, Lamer C, Doyen D, Chevrel G, Plantefeve G, Demeret S, Piton G, Manzon C, Ochin E, Gaillard R, Dautzenberg B, Baldacini M, Lebbah S, Miyara M, Pineton de Chambrun M, Amoura Z, Combes A. Nicotine patches in patients on mechanical ventilation for severe COVID-19: a randomized, double-blind, placebo-controlled, multicentre trial. Intensive Care Med 2022; 48:876-887. [PMID: 35676335 PMCID: PMC9177407 DOI: 10.1007/s00134-022-06721-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/27/2022] [Indexed: 01/08/2023]
Abstract
Purpose Epidemiologic studies have documented lower rates of active smokers compared to former or non-smokers in symptomatic patients affected by coronavirus disease 2019 (COVID-19). We assessed the efficacy and safety of nicotine administered by a transdermal patch in critically ill patients with COVID-19 pneumonia. Methods In this multicentre, double-blind, placebo-controlled trial conducted in 18 intensive care units in France, we randomly assigned adult patients (non-smokers, non-vapers or who had quit smoking/vaping for at least 12 months) with proven COVID-19 pneumonia receiving invasive mechanical ventilation for up to 72 h to receive transdermal patches containing either nicotine at a daily dose of 14 mg or placebo until 48 h following successful weaning from mechanical ventilation or for a maximum of 30 days, followed by 3-week dose tapering by 3.5 mg per week. Randomization was stratified by centre, non- or former smoker status and Sequential Organ Function Assessment score (< or ≥ 7). The primary outcome was day-28 mortality. Main prespecified secondary outcomes included 60-day mortality, time to successful extubation, days alive and free from mechanical ventilation, renal replacement therapy, vasopressor support or organ failure at day 28. Results Between November 6th 2020, and April 2nd 2021, 220 patients were randomized from 18 active recruiting centers. After excluding 2 patients who withdrew consent, 218 patients (152 [70%] men) were included in the analysis: 106 patients to the nicotine group and 112 to the placebo group. Day-28 mortality did not differ between the two groups (30 [28%] of 106 patients in the nicotine group vs 31 [28%] of 112 patients in the placebo group; odds ratio 1.03 [95% confidence interval, CI 0.57–1.87]; p = 0.46). The median number of day-28 ventilator-free days was 0 (IQR 0–14) in the nicotine group and 0 (0–13) in the placebo group (with a difference estimate between the medians of 0 [95% CI -3–7]). Adverse events likely related to nicotine were rare (3%) and similar between the two groups. Conclusion In patients having developed severe COVID-19 pneumonia requiring invasive mechanical ventilation, transdermal nicotine did not significantly reduce day-28 mortality. There is no indication to use nicotine in this situation. Supplementary Information The online version contains supplementary material available at 10.1007/s00134-022-06721-1.
Collapse
Affiliation(s)
- Guylaine Labro
- Service de Médecine Intensive-Réanimation Groupement Hospitalier Régional Mulhouse Et Sud Alsace, Hôpital Emile Muller, 68100, Mulhouse, France
| | - Florence Tubach
- Département de Santé Publique, Unité de Recherche Clinique PSL-CFX, INSERM, Institut Pierre Louis d'Epidémiologie Et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne Université, CIC-1901, 75013, Paris, France
| | - Lisa Belin
- Département de Santé Publique, Unité de Recherche Clinique PSL-CFX, INSERM, Institut Pierre Louis d'Epidémiologie Et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne Université, CIC-1901, 75013, Paris, France
| | - Jean-Louis Dubost
- Centre Hospitalier René Dubos, 6, avenue de l'Ile de, 95303, Cergy-Pontoise, France
| | - David Osman
- CHU Bicêtre, 78 Rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France
| | - Grégoire Muller
- Service de Médecine Intensive Réanimation, Centre Hospitalier Régional d'Orléans, Orléans, France
| | - Jean-Pierre Quenot
- Department of Intensive Care, Burgundy University Hospital, Dijon, France.,Lipness Team, INSERM Research Center LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, Dijon, France.,INSERM CIC 1432, Clinical Epidemiology, University of Burgundy, Dijon, France
| | - Daniel Da Silva
- Service de Médecine Intensive Réanimation du Centre, Hospitalier de Saint-Denis, Saint-Denis, France
| | - Jonathan Zarka
- Service de Réanimation Polyvalente, Grand Hôpital de L'Est Francilien, site de Marne-La-Vallée, Jossigny, France
| | - Matthieu Turpin
- Assistance Publique - Hôpitaux de Paris, Service de Médecine Intensive RéanimationHôpital Tenon, Sorbonne Université, Paris, France
| | - Julien Mayaux
- Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Médecine Intensive Et Réanimation (Département R3S), AP-HP, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale Et Clinique, Sorbonne Université, Paris, France
| | - Christian Lamer
- Service de RéanimationInstitut Mutualiste Montsouris, 42 Bd Jourdan, 75014, Paris, France
| | - Denis Doyen
- Médecine Intensive RéanimationHôpital L'Archet 1, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Guillaume Chevrel
- Service de Réanimation; Centre Hospitalier Sud Francilien (CHSF), 40 Avenue Serge Dassault, Corbeil-Essonne, France
| | - Gaétan Plantefeve
- Service de Médecine Intensive-Réanimation, Centre Hospitalier Victor Dupouy, 95107, Argenteuil, France
| | - Sophie Demeret
- Médecine Intensive Réanimation À Orientation Neurologique - Site Pitié Salpêtrière - Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Gaël Piton
- Service de Réanimation Médicale, CHRU de Besançon, Boulevard Fleming, Besançon, France
| | - Cyril Manzon
- Service de Réanimation, Médipole Lyon Villeurbanne. Service de Réanimation, 158 rue Léon Blum, 69100, Villeurbanne, France
| | - Evelina Ochin
- Service de Médecine Intensive-Réanimation Hôpital Simone Veil, Eaubonne, France
| | - Raphael Gaillard
- Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie & Neurosciences, 75014, Paris, France.,Université de Paris, 75006, Paris, France
| | - Bertrand Dautzenberg
- Sorbonne Université APHP (La Pitié-Salpêtrière), 75013, Paris, France.,Tabacologue Institut Arthur Vernes, Paris, France
| | - Mathieu Baldacini
- Service de Médecine Intensive-Réanimation Groupement Hospitalier Régional Mulhouse Et Sud Alsace, Hôpital Emile Muller, 68100, Mulhouse, France
| | - Said Lebbah
- Département de Santé Publique, Unité de Recherche Clinique PSL-CFX, INSERM, Institut Pierre Louis d'Epidémiologie Et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne Université, CIC-1901, 75013, Paris, France
| | - Makoto Miyara
- Service de Médecine Interne 2, Institut E3M, CRMR Lupus. SAPL Et Autres Maladies Auto-Immunes, Hôpital Pitié Salpêtrière Et Université Paris 6, Paris, France
| | - Marc Pineton de Chambrun
- Service de Médecine Intensive-Réanimation, Institut de Cardiologie, APHP Hôpital Pitié-Salpêtrière, 75013, Paris, France.,INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Sorbonne Université, 47, Boulevard de l'Hôpital, 75013, Paris, France
| | - Zahir Amoura
- Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie & Neurosciences, 75014, Paris, France
| | - Alain Combes
- Service de Médecine Intensive-Réanimation, Institut de Cardiologie, APHP Hôpital Pitié-Salpêtrière, 75013, Paris, France. .,INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Sorbonne Université, 47, Boulevard de l'Hôpital, 75013, Paris, France.
| | | |
Collapse
|
24
|
Peng H, Ding C, Jiang L, Tang W, Liu Y, Zhao L, Yi Z, Ren H, Li C, He Y, Zheng X, Tang H, Chen Z, Qi Z, Zhao P. Discovery of potential anti-SARS-CoV-2 drugs based on large-scale screening in vitro and effect evaluation in vivo. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1181-1197. [PMID: 34962614 PMCID: PMC8713546 DOI: 10.1007/s11427-021-2031-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis. Clinical candidates with high efficacy, ready availability, and that do not develop resistance are in urgent need. Despite that screening to repurpose clinically approved drugs has provided a variety of hits shown to be effective against SARS-CoV-2 infection in cell culture, there are few confirmed antiviral candidates in vivo. In this study, 94 compounds showing high antiviral activity against SARS-CoV-2 in Vero E6 cells were identified from 2,580 FDA-approved small-molecule drugs. Among them, 24 compounds with low cytotoxicity were selected, and of these, 17 compounds also effectively suppressed SARS-CoV-2 infection in HeLa cells transduced with human ACE2. Six compounds disturb multiple processes of the SARS-CoV-2 life cycle. Their prophylactic efficacies were determined in vivo using Syrian hamsters challenged with SARS-CoV-2 infection. Seven compounds reduced weight loss and promoted weight regain of hamsters infected not only with the original strain but also the D614G variant. Except for cisatracurium, six compounds reduced hamster pulmonary viral load, and IL-6 and TNF-α mRNA when assayed at 4 d postinfection. In particular, sertraline, salinomycin, and gilteritinib showed similar protective effects as remdesivir in vivo and did not induce antiviral drug resistance after 10 serial passages of SARS-CoV-2 in vitro, suggesting promising application for COVID-19 treatment.
Collapse
Affiliation(s)
- Haoran Peng
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Cuiling Ding
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Liangliang Jiang
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Wanda Tang
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Yan Liu
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Lanjuan Zhao
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hao Ren
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Chong Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Yanhua He
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Xu Zheng
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Hailin Tang
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Zhihui Chen
- Department of Infectious Disease, Changhai Hospital, Shanghai, 200433, China.
| | - Zhongtian Qi
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China.
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China.
| |
Collapse
|
25
|
The association between tobacco use and COVID-19 in Qatar. Prev Med Rep 2022; 28:101832. [PMID: 35607613 PMCID: PMC9116971 DOI: 10.1016/j.pmedr.2022.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 01/08/2023] Open
Abstract
Tobacco smoking prevalence in the total sample was only 11.0% Smokeless tobacco users may be at an increased risk for severe disease. Smoking was not associated with an increased risk of greater disease severity. Increased age and co-morbidities were the most important risk factors for severity. Considering limitations, COVID-19 severity may be affected by other factors.
The effects of smoking on COVID-19 are controversial. Some studies show no link between smoking and severe COVID-19, whereas others demonstrate a significant link. This cross-sectional study aims to determine the prevalence of tobacco use among COVID-19 patients, examine the relationship between tobacco use and hospitalized COVID-19 (non-severe and severe), and quantify its risk factors. A random sample of 7430 COVID-19 patients diagnosed between 27 February-30 May 2020 in Qatar were recruited over the telephone to complete an interviewer-administered questionnaire. The prevalence of tobacco smoking in the total sample was 11.0%, with 12.6% among those quarantined, 5.7% among hospitalized patients, and 2.5% among patients with severe COVID-19. Smokeless tobacco and e-cigarette use were reported by 3.2% and 0.6% of the total sample, respectively. We found a significant lower risk for hospitalization and severity of COVID-19 among current tobacco smokers (p < 0.001) relative to non-smokers (never and ex-smokers). Risk factors significantly related to an increased risk of being hospitalized with COVID-19 were older age (aged 55 + ), being male, non-Qatari, and those with heart disease, hypertension, diabetes, asthma, cancer, and chronic renal disease. Smokeless tobacco use, older age (aged 55 + ), being male, non-Qatari, previously diagnosed with heart disease and diabetes were significant risk factors for severe COVID-19. Our data suggests that only smokeless tobacco users may be at an increased risk for severe disease, yet this requires further investigation as other studies have reported smoking to be associated with an increased risk of greater disease severity.
Collapse
|
26
|
Hajiasgharzadeh K, Jafarlou M, Mansoori B, Dastmalchi N, Baradaran B, Khabbazi A. Inflammatory reflex disruption in COVID-19. CLINICAL & EXPERIMENTAL NEUROIMMUNOLOGY 2022; 13:CEN312703. [PMID: 35600135 PMCID: PMC9111569 DOI: 10.1111/cen3.12703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China, in late 2019 and caused coronavirus disease 2019 (COVID-19), which is still a global pandemic. In most infected people, SARS-CoV-2 can only cause moderate symptoms, while in other patients, it leads to severe illness and eventually death. Although the main clinical manifestation of COVID-19 is often seen in the lungs, this disease affects almost all body organs. The excessive and prolonged release of inflammatory cytokines that may occur in COVID-19 patients, known as cytokine storms, stimulates undesired immune responses and can cause various tissues damage. In the current review article, we focus on the potential advantages of the intrinsic cholinergic anti-inflammatory pathway (CAP) as the efferent arm of inflammatory reflex in COVID-19 management. Considering this endogenous protective mechanism against chronic inflammation, we focused on the effects of SARS-CoV-2 in the destruction of this anti-inflammatory system. Several studies indicated the interaction of SARS-CoV-2 with the alpha7 subtype of the nicotinic acetylcholine receptor as the effector molecule of the inflammatory reflex. On the other hand, neurological manifestations have increasingly been identified as significant extrapulmonary manifestations of COVID-19. The rational connection between these findings and COVID-19 pathogenesis may be an important issue in both our understanding and dealing with this disease. COVID-19 is deeply rooted in our daily life and requires an urgent need for the establishment of effective therapeutic options, and all the possible treatments must be considered for the control of such inflammatory conditions.
Collapse
Affiliation(s)
- Khalil Hajiasgharzadeh
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mahdi Jafarlou
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Behzad Mansoori
- Cellular and Molecular Oncogenesis ProgramThe Wistar InstitutePhiladelphiaPennsylvaniaUSA
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Pharmaceutical Analysis Research CenterTabriz University of Medical SciencesTabrizIran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
27
|
In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds. COMPUTATION 2022. [DOI: 10.3390/computation10040051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Some clinical studies have indicated activity of ivermectin, a macrocyclic lactone, against COVID-19, but a biological mechanism initially proposed for this anti-viral effect is not applicable at physiological concentrations. This in silico investigation explores potential modes of action of ivermectin and 14 related compounds, by which the infectivity and morbidity of the SARS-CoV-2 virus may be limited. Binding affinity computations were performed for these agents on several docking sites each for models of (1) the spike glycoprotein of the virus, (2) the CD147 receptor, which has been identified as a secondary attachment point for the virus, and (3) the alpha-7 nicotinic acetylcholine receptor (α7nAChr), an indicated point of viral penetration of neuronal tissue as well as an activation site for the cholinergic anti-inflammatory pathway controlled by the vagus nerve. Binding affinities were calculated for these multiple docking sites and binding modes of each compound. Our results indicate the high affinity of ivermectin, and even higher affinities for some of the other compounds evaluated, for all three of these molecular targets. These results suggest biological mechanisms by which ivermectin may limit the infectivity and morbidity of the SARS-CoV-2 virus and stimulate an α7nAChr-mediated anti-inflammatory pathway that could limit cytokine production by immune cells.
Collapse
|
28
|
Cafiero C, Micera A, Re A, Schiavone B, Benincasa G, Palmirotta R. Comment on Kopańska et al. Disorders of the Cholinergic System in COVID-19 Era-A Review of the Latest Research. Int. J. Mol. Sci. 2022, 23, 672. Int J Mol Sci 2022; 23:2818. [PMID: 35269960 PMCID: PMC8910927 DOI: 10.3390/ijms23052818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
We read the recent review article by Marta Kopańska et al. [...].
Collapse
Affiliation(s)
- Concetta Cafiero
- Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinon, Italy;
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS—Fondazione Bietti, 00184 Rome, Italy
| | - Agnese Re
- Department of Chemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Beniamino Schiavone
- General Management Unit, Pineta Grande Hospital, 81030 Castel Volturno, Italy;
| | - Giulio Benincasa
- Department of Clinical Pathology and Molecular Biology, Pineta Grande Hospital, 81030 Castel Volturno, Italy;
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| |
Collapse
|
29
|
Lauwers M, Au M, Yuan S, Wen C. COVID-19 in Joint Ageing and Osteoarthritis: Current Status and Perspectives. Int J Mol Sci 2022; 23:720. [PMID: 35054906 PMCID: PMC8775477 DOI: 10.3390/ijms23020720] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
COVID-19 is a trending topic worldwide due to its immense impact on society. Recent trends have shifted from acute effects towards the long-term morbidity of COVID-19. In this review, we hypothesize that SARS-CoV-2 contributes to age-related perturbations in endothelial and adipose tissue, which are known to characterize the early aging process. This would explain the long-lasting symptoms of SARS-CoV-2 as the result of an accelerated aging process. Connective tissues such as adipose tissue and musculoskeletal tissue are the primary sites of aging. Therefore, current literature was analyzed focusing on the musculoskeletal symptoms in COVID-19 patients. Hypovitaminosis D, increased fragility, and calcium deficiency point towards bone aging, while joint and muscle pain are typical for joint and muscle aging, respectively. These characteristics could be classified as early osteoarthritis-like phenotype. Exploration of the impact of SARS-CoV-2 and osteoarthritis on endothelial and adipose tissue, as well as neuronal function, showed similar perturbations. At a molecular level, this could be attributed to the angiotensin-converting enzyme 2 expression, renin-angiotensin system dysfunction, and inflammation. Finally, the influence of the nicotinic cholinergic system is being evaluated as a new treatment strategy. This is combined with the current knowledge of musculoskeletal aging to pave the road towards the treatment of long-term COVID-19.
Collapse
Affiliation(s)
- Marianne Lauwers
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong; (M.L.); (M.A.)
| | - Manting Au
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong; (M.L.); (M.A.)
| | - Shuofeng Yuan
- Department of Microbiology, The University of Hong Kong, Pok Fu Lam, Hong Kong;
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong; (M.L.); (M.A.)
| |
Collapse
|
30
|
Kopańska M, Batoryna M, Bartman P, Szczygielski J, Banaś-Ząbczyk A. Disorders of the Cholinergic System in COVID-19 Era-A Review of the Latest Research. Int J Mol Sci 2022; 23:ijms23020672. [PMID: 35054856 PMCID: PMC8775685 DOI: 10.3390/ijms23020672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The appearance of the SARS-CoV-2 virus initiated many studies on the effects of the virus on the human body. So far, its negative influence on the functioning of many morphological and physiological units, including the nervous system, has been demonstrated. Consequently, research has been conducted on the changes that SARS-CoV-2 may cause in the cholinergic system. The aim of this study is to review the latest research from the years 2020/2021 regarding disorders in the cholinergic system caused by the SARS-CoV-2 virus. As a result of the research, it was found that the presence of the COVID-19 virus disrupts the activity of the cholinergic system, for example, causing the development of myasthenia gravis or a change in acetylcholine activity. The SARS-CoV-2 spike protein has a sequence similar to neurotoxins, capable of binding nicotinic acetylcholine receptors (nAChR). This may be proof that SARS-CoV-2 can bind nAChR. Nicotine and caffeine have similar structures to antiviral drugs, capable of binding angiotensin-converting enzyme 2 (ACE 2) epitopes that are recognized by SARS-CoV-2, with the potential to inhibit the formation of the ACE 2/SARS-CoV-2 complex. The blocking is enhanced when nicotine and caffeine are used together with antiviral drugs. This is proof that nAChR agonists can be used along with antiviral drugs in COVID-19 therapy. As a result, it is possible to develop COVID-19 therapies that use these compounds to reduce cytokine production. Another promising therapy is non-invasive stimulation of the vagus nerve, which soothes the body’s cytokine storm. Research on the influence of COVID-19 on the cholinergic system is an area that should continue to be developed as there is a need for further research. It can be firmly stated that COVID-19 causes a dysregulation of the cholinergic system, which leads to a need for further research, because there are many promising therapies that will prevent the SARS-CoV-2 virus from binding to the nicotinic receptor. There is a need for further research, both in vitro and in vivo. It should be noted that in the functioning of the cholinergic system and its connection with the activity of the COVID-19 virus, there might be many promising dependencies and solutions.
Collapse
Affiliation(s)
- Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Correspondence:
| | - Marta Batoryna
- Sensusmed, Psychotherapy and Neurorehabilitation Center, 30-084 Cracow, Poland;
| | - Paulina Bartman
- Students Science Club “Reh-Tech”, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
- Department of Neurosurgery, Faculty of Medicine, Saarland University, 66424 Homburg, Germany
| | - Agnieszka Banaś-Ząbczyk
- Departament of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| |
Collapse
|
31
|
Stefano GB, Büttiker P, Weissenberger S, Ptacek R, Wang F, Esch T, Bilfinger TV, Raboch J, Kream RM. Biomedical Perspectives of Acute and Chronic Neurological and Neuropsychiatric Sequelae of COVID-19. Curr Neuropharmacol 2022; 20:1229-1240. [PMID: 34951387 PMCID: PMC9886822 DOI: 10.2174/1570159x20666211223130228] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022] Open
Abstract
The incidence of infections from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent for coronavirus disease 2019 (COVID-19), has dramatically escalated following the initial outbreak in China, in late 2019, resulting in a global pandemic with millions of deaths. Although the majority of infected patients survive, and the rapid advent and deployment of vaccines have afforded increased immunity against SARS-CoV-2, long-term sequelae of SARS-CoV-2 infection have become increasingly recognized. These include, but are not limited to, chronic pulmonary disease, cardiovascular disorders, and proinflammatory-associated neurological dysfunction that may lead to psychological and neurocognitive impairment. A major component of cognitive dysfunction is operationally categorized as "brain fog" which comprises difficulty concentrating, forgetfulness, confusion, depression, and fatigue. Multiple parameters associated with long-term neuropsychiatric sequelae of SARS-CoV-2 infection have been detailed in clinical studies. Empirically elucidated mechanisms associated with the neuropsychiatric manifestations of COVID-19 are by nature complex, but broad-based working models have focused on mitochondrial dysregulation, leading to systemic reductions of metabolic activity and cellular bioenergetics within the CNS structures. Multiple factors underlying the expression of brain fog may facilitate future pathogenic insults, leading to repetitive cycles of viral and bacterial propagation. Interestingly, diverse neurocognitive sequelae associated with COVID-19 are not dissimilar from those observed in other historical pandemics, thereby providing a broad and integrative perspective on potential common mechanisms of CNS dysfunction subsequent to viral infection. Poor mental health status may be reciprocally linked to compromised immune processes and enhanced susceptibility to infection by diverse pathogens. By extrapolation, we contend that COVID-19 may potentiate the severity of neurological/neurocognitive deficits in patients afflicted by well-studied neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Accordingly, the prevention, diagnosis, and management of sustained neuropsychiatric manifestations of COVID-19 are pivotal health care directives and provide a compelling rationale for careful monitoring of infected patients, as early mitigation efforts may reduce short- and long-term complications.
Collapse
Affiliation(s)
- George B. Stefano
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pascal Büttiker
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Simon Weissenberger
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Psychology, University of New York in Prague, Prague, Czech Republic
| | - Radek Ptacek
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Fuzhou Wang
- Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC27510, USA
| | - Tobias Esch
- Institute for Integrative Health Care and Health Promotion, Faculty of Health/School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Thomas V. Bilfinger
- Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY11794, USA
| | - Jiri Raboch
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Richard M. Kream
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
32
|
Dormoy V, Perotin JM, Gosset P, Maskos U, Polette M, Deslée G. Nicotinic receptors as SARS-CoV-2 spike co-receptors? Med Hypotheses 2021; 158:110741. [PMID: 34924680 PMCID: PMC8669939 DOI: 10.1016/j.mehy.2021.110741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play an important role in homeostasis and respiratory diseases. Controversies regarding the association between COVID-19 hospitalizations and smoking suggest that nAChRs may contribute to SARS-CoV-2 respiratory syndrome. We recently detailed the expression and localization of all nAChR subunits in the human lung. Since virus association with nAChRs has been shown in the past, we hypothesize that nAChR subunits act as SARS-CoV-2 Spike co-receptors. Based on sequence alignment analysis, we report domains of high molecular similarities in nAChRs with the binding domain of hACE2 for SARS-CoV-2 Spike protein. This hypothesis supported by in silico pilot data provides a rational for the modelling and the in vitro experimental validation of the interaction between SARS-CoV-2 and the nAChRs.
Collapse
Affiliation(s)
- Valérian Dormoy
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, SFR CAP-SANTE, 51092 Reims, France
| | - Jeanne-Marie Perotin
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, SFR CAP-SANTE, 51092 Reims, France.,CHU of Reims, Hôpital Maison Blanche, Department of Respiratory Diseases, 51092 Reims, France
| | - Philippe Gosset
- University of Lille, CNRS UMR8204, Inserm U1019, CHRU Lille, Institut Pasteur Lille, CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Uwe Maskos
- Institut Pasteur Paris, Université de Paris, Integrative Neurobiology of Cholinergic Systems, CNRS, UMR 3571, Paris, France
| | - Myriam Polette
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, SFR CAP-SANTE, 51092 Reims, France.,CHU Reims, Hôpital Maison Blanche, Department of Biopathology, 51092 Reims, France
| | - Gaëtan Deslée
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, SFR CAP-SANTE, 51092 Reims, France.,CHU of Reims, Hôpital Maison Blanche, Department of Respiratory Diseases, 51092 Reims, France
| |
Collapse
|
33
|
Response to McMahon et al's "Cutaneous reactions reported after Moderna and Pfizer COVID-19 vaccination: A registry-based study of four hundred fourteen cases". J Am Acad Dermatol 2021; 86:e163-e164. [PMID: 34801633 PMCID: PMC8600750 DOI: 10.1016/j.jaad.2021.09.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022]
|
34
|
Johnson SD, Olwenyi OA, Bhyravbhatla N, Thurman M, Pandey K, Klug EA, Johnston M, Dyavar SR, Acharya A, Podany AT, Fletcher CV, Mohan M, Singh K, Byrareddy SN. Therapeutic implications of SARS-CoV-2 dysregulation of the gut-brain-lung axis. World J Gastroenterol 2021; 27:4763-4783. [PMID: 34447225 PMCID: PMC8371510 DOI: 10.3748/wjg.v27.i29.4763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence and rapid spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 180 million confirmed cases resulting in over 4 million deaths worldwide with no clear end in sight for the coronavirus disease 19 (COVID-19) pandemic. Most SARS-CoV-2 exposed individuals experience mild to moderate symptoms, including fever, cough, fatigue, and loss of smell and taste. However, many individuals develop pneumonia, acute respiratory distress syndrome, septic shock, and multiorgan dysfunction. In addition to these primarily respiratory symptoms, SARS-CoV-2 can also infiltrate the central nervous system, which may damage the blood-brain barrier and the neuron's synapses. Resultant inflammation and neurodegeneration in the brain stem can further prevent efferent signaling to cranial nerves, leading to the loss of anti-inflammatory signaling and normal respiratory and gastrointestinal functions. Additionally, SARS-CoV-2 can infect enterocytes resulting in gut damage followed by microbial dysbiosis and translocation of bacteria and their byproducts across the damaged epithelial barrier. As a result, this exacerbates pro-inflammatory responses both locally and systemically, resulting in impaired clinical outcomes. Recent evidence has highlighted the complex interactions that mutually modulate respiratory, neurological, and gastrointestinal function. In this review, we discuss the ways SARS-CoV-2 potentially disrupts the gut-brain-lung axis. We further highlight targeting specific responses to SARS-CoV-2 for the development of novel, urgently needed therapeutic interventions. Finally, we propose a prospective related to the individuals from Low- and Middle-Income countries. Here, the underlying propensity for heightened gut damage/microbial translocation is likely to result in worse clinical outcomes during this COVID-19 pandemic.
Collapse
Affiliation(s)
- Samuel D Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Omalla A Olwenyi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Namita Bhyravbhatla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kabita Pandey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Elizabeth A Klug
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Morgan Johnston
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Shetty Ravi Dyavar
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE 68198, United States
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Anthony T Podany
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE 68198, United States
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE 68198, United States
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, United States
| | - Kamal Singh
- Department of Molecular Microbiology and Immunology and Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
35
|
Torshin IY, Gromova OA, Chuchalin AG, Zhuravlev YI. Chemoreactome screening of pharmaceutical effects on SARS-CoV-2 and human virome to help decide on drug-based COVID-19 therapy. FARMAKOEKONOMIKA. MODERN PHARMACOECONOMIC AND PHARMACOEPIDEMIOLOGY 2021; 14:191-211. [DOI: 10.17749/2070-4909/farmakoekonomika.2021.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background. So-called rational drug design is suboptimal when it comes to finding effective and safe drug-based treatment for COVID-19. Another approach seems promising: to reprofile the pharmaceuticals registered in the Anatomical, Therapeutic, and Chemical Classifier (ATC).Material and methods. Chemoreactome screening, a method that simulates the results of inhibiting viral growth in a cell culture, models the effects of pharmaceuticals on the human virome, and estimates the adverse effects of medicines, was used to reprofile about 2700 pharmaceuticals from the ATC. The information technology behind chemoreactome analysis is based on the topological recognition theory advanced by the Institute of Pharmaceutical Informatics, Federal Research Center for Informatics and Control, Russian Academy of Sciences.Results. Sixty two pharmaceuticals and 20 micronutrients were found to have a pronounced antiviral effect with minimal side effects. Comparison against data of basic research and clinical trials showed 31 out of 62 pharmaceuticals to have been independently confirmed usable in COVID-19 treatment. These inhibit coronaviral proteins and/or function as adaptogenic molecules that improve the functioning of cells exposed to viral stress. Glucosamine sulfate was found to have the best safety profile and minimum effects on the healthy human virome out of all the tested anticoronaviral micronutrients.Conclusions. Reprofiling of pharmaceuticals registered in the ATC could significantly speed up the search for more effective and safer drugbased COVID-19 treatments. Several micronutrients show promise for long-term coronavirus prevention, especially in the elderly.
Collapse
Affiliation(s)
- I. Yu. Torshin
- Institute of Pharmacoinformatics, Federal Research Center “Informatics and Management”, Russian Academy of Sciences; Big Data Storage and Analysis Center, Lomonosov Moscow State University
| | - O. A. Gromova
- Institute of Pharmacoinformatics, Federal Research Center “Informatics and Management”, Russian Academy of Sciences; Big Data Storage and Analysis Center, Lomonosov Moscow State University
| | | | - Yu. I. Zhuravlev
- Institute of Pharmacoinformatics, Federal Research Center “Informatics and Management”, Russian Academy of Sciences
| |
Collapse
|
36
|
Conventional and Unconventional Approaches for Innovative Drug Treatments in COVID-19: Looking Outside of Plato's Cave. Int J Mol Sci 2021; 22:ijms22137208. [PMID: 34281262 PMCID: PMC8268874 DOI: 10.3390/ijms22137208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
|
37
|
Elephants in the Dark: Insights and Incongruities in Pentameric Ligand-gated Ion Channel Models. J Mol Biol 2021; 433:167128. [PMID: 34224751 DOI: 10.1016/j.jmb.2021.167128] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.
Collapse
|
38
|
Walach H, Klement RJ, Aukema W. Retracted: The Safety of COVID-19 Vaccinations-We Should Rethink the Policy. Vaccines (Basel) 2021; 9:693. [PMID: 34202529 PMCID: PMC8294615 DOI: 10.3390/vaccines9070693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Background: COVID-19 vaccines have had expedited reviews without sufficient safety data. We wanted to compare risks and benefits. Method: We calculated the number needed to vaccinate (NNTV) from a large Israeli field study to prevent one death. We accessed the Adverse Drug Reactions (ADR) database of the European Medicines Agency and of the Dutch National Register (lareb.nl) to extract the number of cases reporting severe side effects and the number of cases with fatal side effects. Result: The NNTV is between 200-700 to prevent one case of COVID-19 for the mRNA vaccine marketed by Pfizer, while the NNTV to prevent one death is between 9000 and 50,000 (95% confidence interval), with 16,000 as a point estimate. The number of cases experiencing adverse reactions has been reported to be 700 per 100,000 vaccinations. Currently, we see 16 serious side effects per 100,000 vaccinations, and the number of fatal side effects is at 4.11/100,000 vaccinations. For three deaths prevented by vaccination we have to accept two inflicted by vaccination. Conclusions: This lack of clear benefit should cause governments to rethink their vaccination policy.
Collapse
Affiliation(s)
- Harald Walach
- Poznan University of the Medical Sciences, Pediatric Hospital, 60-572 Poznan, Poland
- Department of Psychology, University of Witten/Herdecke, 58448 Witten, Germany
- Change Health Science Institute, 10178 Berlin, Germany
| | - Rainer J. Klement
- Department of Radiation Oncology, Leopoldina Hospital, 97422 Schweinfurt, Germany;
| | - Wouter Aukema
- Independent Data and Pattern Scientist, Brinkenbergweg 1, 7351 BD Hoenderloo, The Netherlands;
| |
Collapse
|
39
|
Konstantinidis I, Tsakiropoulou E, Hähner A, de With K, Poulas K, Hummel T. Olfactory dysfunction after coronavirus disease 2019 (COVID-19) vaccination. Int Forum Allergy Rhinol 2021; 11:1399-1401. [PMID: 34047498 PMCID: PMC8222866 DOI: 10.1002/alr.22809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Iordanis Konstantinidis
- 2nd Academic Otorhinolaryngology (ORL) Department, Papageorgiou Hospital, Aristotle University, Thessaloniki, Greece
| | - Evangelia Tsakiropoulou
- 2nd Academic Otorhinolaryngology (ORL) Department, Papageorgiou Hospital, Aristotle University, Thessaloniki, Greece
| | - Antje Hähner
- Department of Otorhinolaryngology (ORL), Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany
| | - Katja de With
- Department of Clinical Infectious Diseases, Technische Universität Dresden, Dresden, Germany
| | - Konstantinos Poulas
- Department of Pharmacy, Laboratory of Molecular Biology and Immunology, University of Patras, Rio-Patras, Greece
| | - Thomas Hummel
- Department of Otorhinolaryngology (ORL), Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
40
|
SARS-Cov-2 spike protein fragment 674-685 protects mitochondria from releasing cytochrome c in response to apoptogenic influence. Biochem Biophys Res Commun 2021; 561:14-18. [PMID: 34000512 PMCID: PMC8112323 DOI: 10.1016/j.bbrc.2021.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/13/2023]
Abstract
In spite of numerous studies, many details of SARS-Cov-2 interaction with human cells are still poorly understood. The 674–685 fragment of SARS-Cov-2 spike protein is homologous to the fragment of α-cobratoxin underlying its interaction with α7 nicotinic acetylcholine receptors (nAChRs). The interaction of 674–685 peptide with α7 nAChR has been predicted in silico. In the present paper we confirm this prediction experimentally and investigate the effect of SARS-Cov-2 spike protein peptide on mitochondria, which express α7 nAChRs to regulate apoptosis-related events. We demonstrate that SARS-Cov-2 spike protein peptide 674–685 competes with the antibody against 179–190 fragment of α7 nAChR subunit for the binding to α7-expressing cells and mitochondria and prevents the release of cytochrome c from isolated mitochondria in response to 0.5 mM H2O2 but does not protect intact U373 cells against apoptogenic effect of H2O2. Our data suggest that the α7 nAChR-binding portion of SARS-Cov-2 spike protein prevents mitochondria-driven apoptosis when the virus is uncoated inside the cell and, therefore, supports the infected cell viability before the virus replication cycle is complete.
Collapse
|
41
|
Neagu M, Calina D, Docea AO, Constantin C, Filippini T, Vinceti M, Drakoulis N, Poulas K, Nikolouzakis TK, Spandidos DA, Tsatsakis A. Back to basics in COVID-19: Antigens and antibodies-Completing the puzzle. J Cell Mol Med 2021; 25:4523-4533. [PMID: 33734600 PMCID: PMC8107083 DOI: 10.1111/jcmm.16462] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) has gathered 1 year of scientific/clinical information. This informational asset should be thoroughly and wisely used in the coming year colliding in a global task force to control this infection. Epidemiology of this infection shows that the available estimates of SARS-CoV-2 infection prevalence largely depended on the availability of molecular testing and the extent of tested population. Within molecular diagnosis, the viability and infectiousness of the virus in the tested samples should be further investigated. Moreover, SARS-CoV-2 has a genetic normal evolution that is a dynamic process. The immune system participates to the counterattack of the viral infection by pathogen elimination, cellular homoeostasis, tissue repair and generation of memory cells that would be reactivated upon a second encounter with the same virus. In all these stages, we still have knowledge to be gathered regarding antibody persistence, protective effects and immunological memory. Moreover, information regarding the intense pro-inflammatory action in severe cases still lacks and this is important in stratifying patients for difficult to treat cases. Without being exhaustive, the review will cover these important issues to be acknowledged to further advance in the battle against the current pandemia.
Collapse
Affiliation(s)
- Monica Neagu
- Department of ImmunologyVictor Babes National Institute of PathologyBucharestRomania
- Department of PathologyColentina Clinical HospitalBucharestRomania
- Doctoral SchoolUniversity of BucharestBucharestRomania
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Anca Oana Docea
- Department of ToxicologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Carolina Constantin
- Department of ImmunologyVictor Babes National Institute of PathologyBucharestRomania
- Department of PathologyColentina Clinical HospitalBucharestRomania
| | - Tommaso Filippini
- Section of Public HealthDepartment of Biomedical, Metabolic and Neural SciencesEnvironmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN)University of Modena and Reggio EmiliaModenaItaly
| | - Marco Vinceti
- Section of Public HealthDepartment of Biomedical, Metabolic and Neural SciencesEnvironmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN)University of Modena and Reggio EmiliaModenaItaly
- Department of EpidemiologyBoston University School of Public HealthBostonMAUSA
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and PharmacogenomicsFaculty of PhrarmacySchool of Health SciencesNational and Kapodistrian University of AthensAthensGreece
| | - Konstantinos Poulas
- Department of PharmacyLaboratory of Molecular Biology and ImmunologyUniversity of PatrasPatrasGreece
| | | | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and ToxicologyFaculty of MedicineUniversity of CreteHeraklionGreece
- Department of Analytical and Forensic Medical ToxicologySechenov UniversityMoscowRussia
| |
Collapse
|
42
|
Gauthier AG, Lin M, Wu J, Kennedy TP, Daley LA, Ashby CR, Mantell LL. From nicotine to the cholinergic anti-inflammatory reflex - Can nicotine alleviate the dysregulated inflammation in COVID-19? J Immunotoxicol 2021; 18:23-29. [PMID: 33860730 DOI: 10.1080/1547691x.2021.1875085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The coronavirus SARS-CoV-2 of 2019 (COVID-19) causes a pandemic that has been diagnosed in more than 70 million people worldwide. Mild-to-moderate COVID-19 symptoms include coughing, fever, myalgia, shortness of breath, and acute inflammatory lung injury (ALI). In contrast, acute respiratory distress syndrome (ARDS) and respiratory failure occur in patients diagnosed with severe COVID-19. ARDS is mediated, at least in part, by a dysregulated inflammatory response due to excessive levels of circulating cytokines, a condition known as the "cytokine-storm syndrome." Currently, there are FDA-approved therapies that attenuate the dysregulated inflammation that occurs in COVID-19 patients, such as dexamethasone or other corticosteroids and IL-6 inhibitors, including sarilumab, tocilizumab, and siltuximab. However, the efficacy of these treatments have been shown to be inconsistent. Compounds that activate the vagus nerve-mediated cholinergic anti-inflammatory reflex, such as the α7 nicotinic acetylcholine receptor agonist, GTS-21, attenuate ARDS/inflammatory lung injury by decreasing the extracellular levels of high mobility group box-1 (HMGB1) in the airways and the circulation. It is possible that HMGB1 may be an important mediator of the "cytokine-storm syndrome." Notably, high plasma levels of HMGB1 have been reported in patients diagnosed with severe COVID-19, and there is a significant negative correlation between HMGB1 plasma levels and clinical outcomes. Nicotine can activate the cholinergic anti-inflammatory reflex, which attenuates the up-regulation and the excessive release of pro-inflammatory cytokines/chemokines. Therefore, we hypothesize that low molecular weight compounds that activate the cholinergic anti-inflammatory reflex, such as nicotine or GTS-21, may represent a potential therapeutic approach to attenuate the dysregulated inflammatory responses in patients with severe COVID-19.
Collapse
Affiliation(s)
- Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | | | - Lee-Anne Daley
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA.,The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| |
Collapse
|
43
|
Campbell GR, To RK, Hanna J, Spector SA. SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway. iScience 2021; 24:102295. [PMID: 33718825 PMCID: PMC7939994 DOI: 10.1016/j.isci.2021.102295] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophages promote an early host response to infection by releasing pro-inflammatory cytokines such as interleukin-1β (IL-1β), TNF, and IL-6. The bioactivity of IL-1β is classically dependent on NLRP3 inflammasome activation, which culminates in caspase-1 activation and pyroptosis. Recent studies suggest a role for NLRP3 inflammasome activation in lung inflammation and fibrosis in both COVID-19 and SARS, and there is evidence of NLRP3 involvement in HIV-1 disease. Here, we show that GU-rich single-stranded RNA (GU-rich RNA) derived from SARS-CoV-2, SARS-CoV-1, and HIV-1 trigger a TLR8-dependent pro-inflammatory cytokine response from human macrophages in the absence of pyroptosis, with GU-rich RNA from the SARS-CoV-2 spike protein triggering the greatest inflammatory response. Using genetic and pharmacological inhibition, we show that the induction of mature IL-1β is through a non-classical pathway dependent on caspase-1, caspase-8, the NLRP3 inflammasome, potassium efflux, and autophagy while being independent of TRIF (TICAM1), vitamin D3, and pyroptosis.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Rachel K. To
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan Hanna
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Rady Children's Hospital, San Diego, CA 92123, USA
| |
Collapse
|
44
|
Böhm R, Bulin C, Waetzig V, Cascorbi I, Klein HJ, Herdegen T. Pharmacovigilance-based drug repurposing: The search for inverse signals via OpenVigil identifies putative drugs against viral respiratory infections. Br J Clin Pharmacol 2021; 87:4421-4431. [PMID: 33871897 DOI: 10.1111/bcp.14868] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ruwen Böhm
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein Campus Kiel, Germany
| | - Claudia Bulin
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein Campus Kiel, Germany
| | - Vicki Waetzig
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein Campus Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein Campus Kiel, Germany
| | | | - Thomas Herdegen
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein Campus Kiel, Germany
| |
Collapse
|
45
|
Is SARS-CoV-2 Spike glycoprotein impairing macrophage function via α7-nicotinic acetylcholine receptors? Food Chem Toxicol 2021; 152:112184. [PMID: 33838172 PMCID: PMC8026244 DOI: 10.1016/j.fct.2021.112184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/22/2022]
Abstract
The innate immune cells play an important role in handling early infections, and can eliminate them completely up to a certain threshold. Beyond that threshold they take up their role in “The Resolution of Inflammation”. The recognition of the SARS-CoV-2 antigen triggers an eicosanoid storm and initiates a robust inflammatory response. This establishes a positive feedback loop which develops into a sustained cytokine storm which interferes with the activation of adaptive immune cells. The mechanism of this interaction, and hence the pathogenesis of the virus with the immune system, is yet to be determined. In silico studies predict a direct SARS-CoV-2 spike glycoprotein interaction with nicotinic acetylcholine receptors, which could impair macrophage function and initiate the cascade of events in severe infections. We here, add to the hypothesis that immune dysregulation can be caused by the interaction of the SARS-CoV-2 spike glycoprotein via a cryptic epitope with the α7-nAChR in Type-1 macrophages, discuss its implications for the treatment of COVID-19 patients, and present better prospects for the design and dissemination of more effective vaccines and their importance.
Collapse
|
46
|
Maggi F, Rosellini A, Spezia PG, Focosi D, Macera L, Lai M, Pistello M, de Iure A, Tomino C, Bonassi S, Russo P. Nicotine upregulates ACE2 expression and increases competence for SARS-CoV-2 in human pneumocytes. ERJ Open Res 2021; 7:00713-2020. [PMID: 33850935 PMCID: PMC7942220 DOI: 10.1183/23120541.00713-2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has a variable degree of severity according to underlying comorbidities and life-style. Several research groups have reported an association between cigarette smoking and increased severity of COVID-19. The exact mechanism of action is largely unclear. We exposed low angiotensin-converting enzyme 2 (ACE2)-expressing human pulmonary adenocarcinoma A549 epithelial cells to nicotine and assessed ACE2 expression at different times. We further used the nicotine-exposed cells in a virus neutralisation assay. Nicotine exposure induces rapid and long-lasting increases in gene and protein expression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor ACE2, which in turn translates into increased competence for SARS-CoV-2 replication and cytopathic effect. These findings show that nicotine worsens SARS-CoV-2 pulmonary infection and have implications for public health policies.
Collapse
Affiliation(s)
- Fabrizio Maggi
- Dept of Medicine and Surgery, University of Insubria, Varese, Italy
- Laboratory of Clinical Microbiology, ASST dei Sette Laghi, Varese, Italy
| | | | | | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Lisa Macera
- Virology Division, Pisa University Hospital, Pisa, Italy
- Dept of Translational Research, University of Pisa, Pisa, Italy
| | - Michele Lai
- Dept of Translational Research, University of Pisa, Pisa, Italy
| | - Mauro Pistello
- Virology Division, Pisa University Hospital, Pisa, Italy
- Dept of Translational Research, University of Pisa, Pisa, Italy
| | - Antonio de Iure
- Experimental Neurophysiology, IRCSS San Raffaele Pisana, Rome, Italy
| | - Carlo Tomino
- Scientific Direction, IRCSS San Raffaele Pisana, Rome, Italy
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Rome, Italy
- Dept of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Rome, Italy
- Dept of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| |
Collapse
|
47
|
Ho KS, Narasimhan B, Sheehan J, Wu L, Fung JY. Controversy over smoking in COVID-19-A real world experience in New York city. J Med Virol 2021; 93:4537-4543. [PMID: 33325049 DOI: 10.1002/jmv.26738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
Data are conflicting regarding the impact of tobacco smoking in people with pneumonia due to SARS-CoV-2 infection (COVID-19). We performed a retrospective multicentre cohort study of 9991 consecutive patients hospitalized in a major New York academic center between March 7th and June 5th, 2020 with laboratory-confirmed COVID-19. The clinical outcomes assessed included risk of hospitalization, in-hospital mortality, risk of intensive care unit (ICU) admission, and need for mechanical ventilation among smokers (current and former). Multivariable logistic regression and propensity score models were built to adjust for potential confounders. Among 9991 consecutive patients diagnosed with COVID-19, 2212 (22.1%) patients were self-reported smokers (406 current and 1806 former). Current smoking was not associated with an increased risk of hospitalization (propensity score [PS]-adjusted OR 0.91; p = .46), in-hospital mortality (PS-OR 0.77; p = .12), ICU admission (PS-OR 1.18; p = .37), or intubation (PS-OR 1.04; p = .85). Similarly, former smoking was not associated with an increased risk of hospitalization (PS-OR 0.88; p = .11), in-hospital mortality (PS-OR 1.03; p = .78), ICU admission (PS-OR 1.03; p = .95), or intubation (PS-OR 0.93; p = .57). Furthermore, smoking (current or former) was not associated with an increased risk of hospitalization (PS-OR 0.85; p = .05), in-hospital mortality (PS-OR 0.94; p = .49), ICU admission (PS-OR 0.86; p = .17), or intubation (PS-OR 0.79; p = .06). Smoking is a well-known risk factor associated with greater susceptibility and subsequent increased severity of respiratory infections. In the current COVID-19 pandemic, smokers may have increased risk and severe pneumonia. In the current COVID-19 pandemic, smokers are believed to have an increased risk of mortality as well as severe pneumonia. However, in our analysis of real-world clinical data, smoking was not associated with increased in-patient mortality in COVID-19 pneumonia, in accordance with prior reports.
Collapse
Affiliation(s)
- Kam Sing Ho
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Bharat Narasimhan
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jacqueline Sheehan
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - LingLing Wu
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jennifer Y Fung
- Department of Pulmonary & Critical Care, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Hospice & Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
48
|
Fu X, Zong T, Yang P, Li L, Wang S, Wang Z, Li M, Li X, Zou Y, Zhang Y, Htet Aung LH, Yang Y, Yu T. Nicotine: Regulatory roles and mechanisms in atherosclerosis progression. Food Chem Toxicol 2021; 151:112154. [PMID: 33774093 DOI: 10.1016/j.fct.2021.112154] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Smoking is an independent risk factor for atherosclerosis. The smoke produced by tobacco burning contains more than 7000 chemicals, among which nicotine is closely related to the occurrence and development of atherosclerosis. Nicotine, a selective cholinergic agonist, accelerates the formation of atherosclerosis by stimulating nicotinic acetylcholine receptors (nAChRs) located in neuronal and non-neuronal tissues. This review introduces the pathogenesis of atherosclerosis and the mechanisms involving nicotine and its receptors. Herein, we focus on the various roles of nicotine in atherosclerosis, such as upregulation of growth factors, inflammation, and the dysfunction of endothelial cells, vascular smooth muscle cells (VSMC) as well as macrophages. In addition, nicotine can stimulate the generation of reactive oxygen species, cause abnormal lipid metabolism, and activate immune cells leading to the onset and progression of atherosclerosis. Exosomes, are currently a research hotspot, due to their important connections with macrophages and the VSMC, and may represent a novel application into future preventive treatment to promote the prevention of smoking-related atherosclerosis. In this review, we will elaborate on the regulatory mechanism of nicotine on atherosclerosis, as well as the effects of interference with nicotine receptors and the use of exosomes to prevent atherosclerosis development.
Collapse
Affiliation(s)
- Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lin Li
- Department of Vascular Surgery, The Qingdao Hiser Medical Center, Qingdao, Shandong Province, China
| | - Shizhong Wang
- The Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 66000, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266021, People's Republic of China.
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| |
Collapse
|
49
|
Oliveira ASF, Ibarra AA, Bermudez I, Casalino L, Gaieb Z, Shoemark DK, Gallagher T, Sessions RB, Amaro RE, Mulholland AJ. A potential interaction between the SARS-CoV-2 spike protein and nicotinic acetylcholine receptors. Biophys J 2021; 120:983-993. [PMID: 33609494 PMCID: PMC7889469 DOI: 10.1016/j.bpj.2021.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Changeux et al. (Changeux et al. C. R. Biol. 343:33-39.) recently suggested that the SARS-CoV-2 spike protein may interact with nicotinic acetylcholine receptors (nAChRs) and that such interactions may be involved in pathology and infectivity. This hypothesis is based on the fact that the SARS-CoV-2 spike protein contains a sequence motif similar to known nAChR antagonists. Here, we use molecular simulations of validated atomically detailed structures of nAChRs and of the spike to investigate the possible binding of the Y674-R685 region of the spike to nAChRs. We examine the binding of the Y674-R685 loop to three nAChRs, namely the human α4β2 and α7 subtypes and the muscle-like αβγδ receptor from Tetronarce californica. Our results predict that Y674-R685 has affinity for nAChRs. The region of the spike responsible for binding contains a PRRA motif, a four-residue insertion not found in other SARS-like coronaviruses. The conformational behavior of the bound Y674-R685 is highly dependent on the receptor subtype; it adopts extended conformations in the α4β2 and α7 complexes but is more compact when bound to the muscle-like receptor. In the α4β2 and αβγδ complexes, the interaction of Y674-R685 with the receptors forces the loop C region to adopt an open conformation, similar to other known nAChR antagonists. In contrast, in the α7 complex, Y674-R685 penetrates deeply into the binding pocket in which it forms interactions with the residues lining the aromatic box, namely with TrpB, TyrC1, and TyrC2. Estimates of binding energy suggest that Y674-R685 forms stable complexes with all three nAChR subtypes. Analyses of simulations of the glycosylated spike show that the Y674-R685 region is accessible for binding. We suggest a potential binding orientation of the spike protein with nAChRs, in which they are in a nonparallel arrangement to one another.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom; Bristol Synthetic Biology Centre, BrisSynBio, Bristol, United Kingdom
| | - Amaurys Avila Ibarra
- Research Software Engineering, Advanced Computing Research Centre, University of Bristol, Bristol, United Kingdom
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Zied Gaieb
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Bristol, United Kingdom; Bristol Synthetic Biology Centre, BrisSynBio, Bristol, United Kingdom
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | | | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
50
|
Salonia A, Pontillo M, Capogrosso P, Gregori S, Tassara M, Boeri L, Carenzi C, Abbate C, Cignoli D, Ferrara AM, Cazzaniga W, Rowe I, Ramirez GA, Tresoldi C, Mushtaq J, Locatelli M, Santoleri L, Castagna A, Zangrillo A, De Cobelli F, Tresoldi M, Landoni G, Rovere-Querini P, Ciceri F, Montorsi F. Severely low testosterone in males with COVID-19: A case-control study. Andrology 2021; 9:1043-1052. [PMID: 33635589 PMCID: PMC8013327 DOI: 10.1111/andr.12993] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
Background Circulating androgens could have a relevant pathobiological role in clinical outcomes in men with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection (COVID‐19). Objectives We aimed to assess: (a) circulating sex steroids levels in a cohort of 286 symptomatic men with laboratory‐confirmed COVID‐19 at hospital admission compared to a cohort of 281 healthy men; and (b) the association between serum testosterone levels (tT), COVID‐19, and clinical outcomes. Materials and Methods Demographic, clinical, and hormonal values were collected for all patients. Hypogonadism was defined as tT ≤9.2 nmol/l. The Charlson Comorbidity Index (CCI) was used to score health‐significant comorbidities. Severe clinical outcomes were defined as patients either transferred to intensive care unit (ICU) or death. Descriptive statistics and multivariable linear and logistic regression models tested the association between clinical and laboratory variables and tT levels. Univariable and multivariable logistic regression models tested the association between tT and severe clinical outcomes. Results Overall, a significantly lower levels of LH and tT were found in patients with COVID‐19 compared to healthy controls (all p < 0.0001); conversely, healthy controls depicted lower values of circulating E2 (p < 0.001). Testosterone levels suggestive for hypogonadism were observed in 257 (89.8%) patients at hospital admission. In as many as 243 (85%) cases, hypogonadism was secondary. SARS‐CoV‐2 infection status was independently associated with lower tT levels (p < 0.0001) and greater risk of hypogonadism (p < 0.0001), after accounting for age, BMI, CCI, and IL‐6 values. Lower tT levels were associated with higher risk of ICU admission and death outcomes (all p ≤ 0.05), after accounting for clinical and laboratory parameters. Conclusions We unveil an independent association between SARS‐CoV‐2 infection status and secondary hypogonadism already at hospital admission, with lower testosterone levels predicting the most severe clinical outcomes.
Collapse
Affiliation(s)
- Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Marina Pontillo
- Laboratory Medicine Service, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Capogrosso
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,Department of Urology and Andrology, Ospedale di Circolo and Macchi Foundation, Varese, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Michela Tassara
- Immunohematology and Transfusion Medicine, IRRCS Ospedale San Raffaele, Milan, Italy
| | - Luca Boeri
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,Department of Urology, IRCCS Foundation Ca' Granda, Maggiore Policlinico Hospital, University of Milan, Milan, Italy
| | - Cristina Carenzi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Costantino Abbate
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniele Cignoli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Anna Maria Ferrara
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Walter Cazzaniga
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Isaline Rowe
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giuseppe A Ramirez
- University Vita-Salute San Raffaele, Milan, Italy.,Immunology, Rheumatology, Allergology and Rare Diseases Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cristina Tresoldi
- Molecular Hematology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Junaid Mushtaq
- University Vita-Salute San Raffaele, Milan, Italy.,Department of Radiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Locatelli
- Laboratory Medicine Service, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Santoleri
- Immunohematology and Transfusion Medicine, IRRCS Ospedale San Raffaele, Milan, Italy
| | - Antonella Castagna
- University Vita-Salute San Raffaele, Milan, Italy.,Department of Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alberto Zangrillo
- University Vita-Salute San Raffaele, Milan, Italy.,Anesthesia and Intensive Care Department, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco De Cobelli
- University Vita-Salute San Raffaele, Milan, Italy.,Department of Radiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Moreno Tresoldi
- General Medicine and Advanced Care Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanni Landoni
- University Vita-Salute San Raffaele, Milan, Italy.,Anesthesia and Intensive Care Department, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Rovere-Querini
- University Vita-Salute San Raffaele, Milan, Italy.,Internal Medicine, Diabetes, and Endocrinology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- University Vita-Salute San Raffaele, Milan, Italy.,Hematology and Bone Marrow Transplant Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|