1
|
Albuquerque AV, Soares da Costa D, Correia C, Reis RL, Alves NM, Costa RR, Pashkuleva I. Effect of Hyaluronan Molecular Weight on the Stability and Biofunctionality of Microfibers Assembled by Interfacial Polyelectrolyte Complexation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4199-4209. [PMID: 39763065 DOI: 10.1021/acsami.4c18335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Nervous system disorders are characterized by a progressive loss of function and structure of neurons that ultimately leads to a decline in cognitive and motor functions. In this study, we used interfacial polyelectrolyte complexation (IPC) to produce fibers for neural tissue regeneration. IPC is a processing method that allows spinning of sensitive biopolymers. The rate of spinning and the properties of the used biopolymers (charge and molecular weight) influence different characteristics of the fibers such as size and stability, among others. We used two major components of the neuronal stem cell niche, the polycationic collagen (Col) and the polyanionic hyaluronic acid (HA), to obtain bioactive fibers. We tested HA with different molecular weights and found that HA with medium and high molecular weights (350 and 1200 kDa, respectively) enabled drawing of microfibers with a homogeneous distribution of Col and HA, whereas low-molecular-weight HA (40 kDa) did not allow spinning. The obtained microfibers showed high swelling ability in a physiological buffer: their diameters increased more than 5-fold from their dry state. At these conditions, the tensile storage moduli of the fibers were similar to nervous tissues. Collagenase and hyaluronidase did not change the morphology of the fibers for up to 3 days but reduced their moduli 2- to 3-fold. Assays with PC12 neuronal-like cells showed that IPC microfibers support cell adhesion and viability regardless of the molecular weight of the used HA.
Collapse
Affiliation(s)
- Afonso V Albuquerque
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| | - Cátia Correia
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| | - Rui R Costa
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Simińska-Stanny J, Podstawczyk D, Delporte C, Nie L, Shavandi A. Hyaluronic Acid Role in Biomaterials Prevascularization. Adv Healthc Mater 2024; 13:e2402045. [PMID: 39254277 DOI: 10.1002/adhm.202402045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 09/11/2024]
Abstract
Tissue vascularization is a major bottleneck in tissue engineering. In this review, the state of the art on the intricate role of hyaluronic acid (HA) in angiogenesis is explored. HA plays a twofold role in angiogenesis. First, when released as a free polymer in the extracellular matrix (ECM), HA acts as a signaling molecule triggering multiple cascades that foster smooth muscle cell differentiation, migration, and proliferation thereby contributing to vessel wall thickening. Simultaneously, HA bound to the plasma membrane in the pericellular space functions as a polymer block, participating in vessel formation. Starting with the HA origins in native vascular tissues, the approaches aimed at achieving vascularization in vivo are reviewed. The significance of HA molecular weight (MW) in angiogenesis and the challenges associated with utilizing HA in vascular tissue engineering (VTE) are conscientiously addressed. The review finally focuses on a thorough examination and comparison of the diverse strategies adopted to harness the benefits of HA in the vascularization of bioengineered materials. By providing a nuanced perspective on the multifaceted role of HA in angiogenesis, this review contributes to the ongoing discourse in tissue engineering and advances the collective understanding of optimizing vascularization processes assisted by functional biomaterials.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, Wroclaw, 50-373, Poland
| | - Christine Delporte
- Laboratoire de Biochimie physiopathologique et nutritionnelle (LBNP), Faculté de Médecine, Université libre de Bruxelles (ULB), Campus Erasme - CP 611, Route de Lennik 808, Bruxelles, 1070, Belgium
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang, 464031, China
| | - Armin Shavandi
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
3
|
Peters A, Banine F, Yasuhara K, Hoffman A, Basappa, Metri PK, Gunning L, Huffman A, VanCampen J, Shock CC, Back SA, Sherman LS. Distinct chemical structures inhibit the CEMIP hyaluronidase and promote oligodendrocyte progenitor cell maturation. J Biol Chem 2024; 300:107916. [PMID: 39454959 PMCID: PMC11742310 DOI: 10.1016/j.jbc.2024.107916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Growing evidence supports pathogenic roles for chronically elevated hyaluronidase activity in numerous conditions. Elevated expression of one such hyaluronidase, the Cell Migration Inducing and hyaluronan binding Protein (CEMIP), has been implicated in the pathogenesis and progression of several cancers as well as demyelinating diseases in the central nervous system (CNS). Developing effective and selective CEMIP inhibitors could therefore have efficacy in treating a variety of conditions where CEMIP is chronically elevated. Using two distinct screens for novel hyaluronidase inhibitors, we identified two synthetic thiocarbamates and one plant-derived flavonoid, sulfuretin, that effectively blocked CEMIP activity in live cells, including a tumorigenic cell line and primary cultures of oligodendrocyte progenitor cells (OPCs). None of these agents influenced cell proliferation, but they had differential dose-dependent and cell type-specific effects on cell survival. Furthermore, we found that each of these agents could promote oligodendrocyte maturation by OPCs in the presence of high molecular weight (>2 Mda) hyaluronan, the accumulation of which is linked to the inhibition of OPC maturation and remyelination failure in demyelinating diseases. These findings indicate that CEMIP can be inhibited through distinct chemical interactions and that CEMIP inhibitors have potential efficacy for treating demyelinating diseases or other conditions where CEMIP is elevated.
Collapse
Affiliation(s)
- Alec Peters
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA; Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Fatima Banine
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Kanon Yasuhara
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Angela Hoffman
- Department of Chemistry, University of Portland, Portland, Oregon, USA
| | - Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, India
| | - Prashant K Metri
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, India
| | - Lily Gunning
- Department of Chemistry, University of Portland, Portland, Oregon, USA
| | - Ava Huffman
- Department of Chemistry, University of Portland, Portland, Oregon, USA
| | - Jake VanCampen
- Department of Chemistry, University of Portland, Portland, Oregon, USA
| | - Clinton C Shock
- College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Stephen A Back
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA; Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
4
|
Borsdorf S, Zeug A, Wu Y, Mitroshina E, Vedunova M, Gaitonde SA, Bouvier M, Wehr MC, Labus J, Ponimaskin E. The cell adhesion molecule CD44 acts as a modulator of 5-HT7 receptor functions. Cell Commun Signal 2024; 22:563. [PMID: 39580460 PMCID: PMC11585102 DOI: 10.1186/s12964-024-01931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Homo- and heteromerization of G protein-coupled receptors (GPCRs) plays an important role in the regulation of receptor functions. Recently, we demonstrated an interaction between the serotonin receptor 7 (5-HT7R), a class A GPCR, and the cell adhesion molecule CD44. However, the functional consequences of this interaction on 5-HT7R-mediated signaling remained enigmatic. METHODS Using a quantitative FRET (Förster resonance energy transfer) approach, we determined the affinities for the formation of homo- and heteromeric complexes of 5-HT7R and CD44. The impact of heteromerization on 5-HT7R-mediated cAMP signaling was assessed using a cAMP responsive luciferase assay and a FRET-based cAMP biosensor under basal conditions as well as upon pharmacological modulation of the 5-HT7R and/or CD44 with specific ligands. We also investigated receptor-mediated G protein activation using BRET (bioluminescence resonance energy transfer)-based biosensors in both, homo- and heteromeric conditions. Finally, we analyzed expression profiles for 5-HT7R and CD44 in the brain during development. RESULTS We found that homo- and heteromerization of the 5-HT7R and CD44 occur at similar extent. Functionally, heteromerization increased 5-HT7R-mediated cAMP production under basal conditions. In contrast, agonist-mediated cAMP production was decreased in the presence of CD44. Mechanistically, this might be explained by increased Gαs and decreased GαoB activation by 5-HT7R/CD44 heteromers. Unexpectedly, treatment of the heteromeric complex with the CD44 ligand hyaluronic acid boosted constitutive 5-HT7R-mediated cAMP signaling and receptor-mediated transcription, suggesting the existence of a transactivation mechanism. CONCLUSIONS Interaction with the hyaluronan receptor CD44 modulates both the constitutive activity of 5-HT7R as well as its agonist-mediated signaling. Heteromerization also results in the transactivation of 5-HT7R-mediated signaling via CD44 ligand.
Collapse
Affiliation(s)
- Saskia Borsdorf
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elena Mitroshina
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Maria Vedunova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Supriya A Gaitonde
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Michael C Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Systasy Bioscience GmbH, Planegg-Martinsried, Germany
| | - Josephine Labus
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Evans AD, Pournoori N, Saksala E, Oommen OP. Glycosaminoglycans' for brain health: Harnessing glycosaminoglycan based biomaterials for treating central nervous system diseases and in-vitro modeling. Biomaterials 2024; 309:122629. [PMID: 38797120 DOI: 10.1016/j.biomaterials.2024.122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Dysfunction of the central nervous system (CNS) following traumatic brain injuries (TBI), spinal cord injuries (SCI), or strokes remains challenging to address using existing medications and cell-based therapies. Although therapeutic cell administration, such as stem cells and neuronal progenitor cells (NPCs), have shown promise in regenerative properties, they have failed to provide substantial benefits. However, the development of living cortical tissue engineered grafts, created by encapsulating these cells within an extracellular matrix (ECM) mimetic hydrogel scaffold, presents a promising functional replacement for damaged cortex in cases of stroke, SCI, and TBI. These grafts facilitate neural network repair and regeneration following CNS injuries. Given that natural glycosaminoglycans (GAGs) are a major constituent of the CNS, GAG-based hydrogels hold potential for the next generation of CNS healing therapies and in vitro modeling of CNS diseases. Brain-specific GAGs not only offer structural and biochemical signaling support to encapsulated neural cells but also modulate the inflammatory response in lesioned brain tissue, facilitating host integration and regeneration. This review briefly discusses different roles of GAGs and their related proteoglycan counterparts in healthy and diseases brain and explores current trends and advancements in GAG-based biomaterials for treating CNS injuries and modeling diseases. Additionally, it examines injectable, 3D bioprintable, and conductive GAG-based scaffolds, highlighting their clinical potential for in vitro modeling of patient-specific neural dysfunction and their ability to enhance CNS regeneration and repair following CNS injury in vivo.
Collapse
Affiliation(s)
- Austin D Evans
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Negin Pournoori
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Emmi Saksala
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| |
Collapse
|
6
|
Fink SP, Triggs-Raine B. Genetic Deficiencies of Hyaluronan Degradation. Cells 2024; 13:1203. [PMID: 39056785 PMCID: PMC11275217 DOI: 10.3390/cells13141203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronan (HA) is a large polysaccharide that is broadly distributed and highly abundant in the soft connective tissues and embryos of vertebrates. The constitutive turnover of HA is very high, estimated at 5 g per day in an average (70 kg) adult human, but HA turnover must also be tightly regulated in some processes. Six genes encoding homologues to bee venom hyaluronidase (HYAL1, HYAL2, HYAL3, HYAL4, HYAL6P/HYALP1, SPAM1/PH20), as well as genes encoding two unrelated G8-domain-containing proteins demonstrated to be involved in HA degradation (CEMIP/KIAA1199, CEMIP2/TMEM2), have been identified in humans. Of these, only deficiencies in HYAL1, HYAL2, HYAL3 and CEMIP have been identified as the cause or putative cause of human genetic disorders. The phenotypes of these disorders have been vital in determining the biological roles of these enzymes but there is much that is still not understood. Deficiencies in these HA-degrading proteins have been created in mice and/or other model organisms where phenotypes could be analyzed and probed to expand our understanding of HA degradation and function. This review will describe what has been found in human and animal models of hyaluronidase deficiency and discuss how this has advanced our understanding of HA's role in health and disease.
Collapse
Affiliation(s)
- Stephen P. Fink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Barbara Triggs-Raine
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
7
|
Dallatana A, Cremonesi L, Pezzini F, Fontana G, Innamorati G, Giacomello L. The Placenta as a Source of Human Material for Neuronal Repair. Biomedicines 2024; 12:1567. [PMID: 39062139 PMCID: PMC11275125 DOI: 10.3390/biomedicines12071567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Stem cell therapy has the potential to meet unsolved problems in tissue repair and regeneration, particularly in the neural tissues. However, an optimal source has not yet been found. Growing evidence indicates that positive effects produced in vivo by mesenchymal stem cells (MSCs) can be due not only to their plasticity but also to secreted molecules including extracellular vesicles (EVs) and the extracellular matrix (ECM). Trophic effects produced by MSCs may reveal the key to developing effective tissue-repair strategies, including approaches based on brain implants or other implantable neural electrodes. In this sense, MSCs will become increasingly valuable and needed in the future. The placenta is a temporary organ devoted to protecting and supporting the fetus. At the same time, the placenta represents an abundant and extremely convenient source of MSCs. Nonetheless, placenta-derived MSCs (P-MSCs) remain understudied as compared to MSCs isolated from other sources. This review outlines the limited literature describing the neuroregenerative effects of P-MSC-derived biomaterials and advocates for exploiting the potential of this untapped source for human regenerative therapies.
Collapse
Affiliation(s)
| | | | | | | | - Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy; (A.D.); (L.C.); (F.P.); (G.F.); (L.G.)
| | | |
Collapse
|
8
|
Herder C, Thorand B, Strom A, Rathmann W, Heier M, Koenig W, Morrison H, Ziegler D, Roden M, Peters A, Bönhof GJ, Maalmi H. Associations between multiple neurological biomarkers and distal sensorimotor polyneuropathy: KORA F4/FF4 study. Diabetes Metab Res Rev 2024; 40:e3807. [PMID: 38872492 DOI: 10.1002/dmrr.3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
AIMS The aim of this study was to assess associations between neurological biomarkers and distal sensorimotor polyneuropathy (DSPN). MATERIALS AND METHODS Cross-sectional analyses were based on 1032 participants aged 61-82 years from the population-based KORA F4 survey, 177 of whom had DSPN at baseline. The prevalence of type 2 diabetes was 20%. Prospective analyses used data from 505 participants without DSPN at baseline, of whom 125 had developed DSPN until the KORA FF4 survey. DSPN was defined based on the examination part of the Michigan Neuropathy Screening Instrument. Serum levels of neurological biomarkers were measured using proximity extension assay technology. Associations between 88 biomarkers and prevalent or incident DSPN were estimated using Poisson regression with robust error variance and are expressed as risk ratios (RR) and 95% CI per 1-SD increase. Results were adjusted for multiple confounders and multiple testing using the Benjamini-Hochberg procedure. RESULTS Higher serum levels of CTSC (cathepsin C; RR [95% CI] 1.23 (1.08; 1.39), pB-H = 0.044) and PDGFRα (platelet-derived growth factor receptor A; RR [95% CI] 1.21 (1.08; 1.35), pB-H = 0.044) were associated with prevalent DSPN in the total study sample. CDH3, JAM-B, LAYN, RGMA and SCARA5 were positively associated with DSPN in the diabetes subgroup, whereas GCP5 was positively associated with DSPN in people without diabetes (all pB-H for interaction <0.05). None of the biomarkers showed an association with incident DSPN (all pB-H>0.05). CONCLUSIONS This study identified multiple novel associations between neurological biomarkers and prevalent DSPN, which may be attributable to functions of these proteins in neuroinflammation, neural development and myelination.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Partner Neuherberg, Partner Düsseldorf, Munich, Germany
- Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
| | - Wolfgang Rathmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- KORA Study Centre, University Hospital of Augsburg, Augsburg, Germany
| | - Wolfgang Koenig
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Partner Site München Heart Alliance, Munich, Germany
| | - Helen Morrison
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller University, Jena, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Diabetes Research (DZD), Partner Neuherberg, Partner Düsseldorf, Munich, Germany
- Institute for Medical Information Processing Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Munich, Germany
| |
Collapse
|
9
|
Kawai K, Ho MT, Ueno Y, Abdo D, Xue C, Nonaka H, Nishida H, Honma Y, Wallace VA, Shoichet MS. Hyaluronan improves photoreceptor differentiation and maturation in human retinal organoids. Acta Biomater 2024; 181:117-132. [PMID: 38705224 DOI: 10.1016/j.actbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Human stem cell-derived organoids enable both disease modeling and serve as a source of cells for transplantation. Human retinal organoids are particularly important as a source of human photoreceptors; however, the long differentiation period required and lack of vascularization in the organoid often results in a necrotic core and death of inner retinal cells before photoreceptors are fully mature. Manipulating the in vitro environment of differentiating retinal organoids through the incorporation of extracellular matrix components could influence retinal development. We investigated the addition of hyaluronan (HA), a component of the interphotoreceptor matrix, as an additive to promote long-term organoid survival and enhance retinal maturation. HA treatment had a significant reduction in the proportion of proliferating (Ki67+) cells and increase in the proportion of photoreceptors (CRX+), suggesting that HA accelerated photoreceptor commitment in vitro. HA significantly upregulated genes specific to photoreceptor maturation and outer segment development. Interestingly, prolonged HA-treatment significantly decreased the length of the brush border layer compared to those in control retinal organoids, where the photoreceptor outer segments reside; however, HA-treated organoids also had more mature outer segments with organized discs structures, as revealed by transmission electron microscopy. The brush border layer length was inversely proportional to the molar mass and viscosity of the hyaluronan added. This is the first study to investigate the role of exogenous HA, viscosity, and polymer molar mass on photoreceptor maturation, emphasizing the importance of material properties on organoid culture. STATEMENT OF SIGNIFICANCE: Retinal organoids are a powerful tool to study retinal development in vitro, though like many other organoid systems, can be highly variable. In this work, Shoichet and colleagues investigated the use of hyaluronan (HA), a native component of the interphotoreceptor matrix, to improve photoreceptor maturation in developing human retinal organoids. HA promoted human photoreceptor differentiation leading to mature outer segments with disc formation and more uniform and healthy retinal organoids. These findings highlight the importance of adding components native to the developing retina to generate more physiologically relevant photoreceptors for cell therapy and in vitro models to drive drug discovery and uncover novel disease mechanisms.
Collapse
Affiliation(s)
- Kotoe Kawai
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Margaret T Ho
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Yui Ueno
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Dhana Abdo
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Chang Xue
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Hidenori Nonaka
- Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Hiroyuki Nishida
- Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Yoichi Honma
- Regenerative Medicine Research and Planning Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan
| | - Valerie A Wallace
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Canada
| | - Molly S Shoichet
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Department of Chemistry, University of Toronto, Canada.
| |
Collapse
|
10
|
De Sousa PA, Perfect L, Ye J, Samuels K, Piotrowska E, Gordon M, Mate R, Abranches E, Wishart TM, Dockrell DH, Courtney A. Hyaluronan in mesenchymal stromal cell lineage differentiation from human pluripotent stem cells: application in serum free culture. Stem Cell Res Ther 2024; 15:130. [PMID: 38702837 PMCID: PMC11069290 DOI: 10.1186/s13287-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.
Collapse
Affiliation(s)
- Paul A De Sousa
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Stroma Therapeutics Ltd, Glasgow, UK.
| | - Leo Perfect
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Jinpei Ye
- Institute of Biomedical Science, Shanxi University, Taiyuan, Shanxi, China
| | - Kay Samuels
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Ewa Piotrowska
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Molecular Biology, University of Gdansk, Gdańsk, Poland
| | - Martin Gordon
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Ryan Mate
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Elsa Abranches
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | | | - David H Dockrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
11
|
Huber RE, Babbitt C, Peyton SR. Heterogeneity of brain extracellular matrix and astrocyte activation. J Neurosci Res 2024; 102:e25356. [PMID: 38773875 DOI: 10.1002/jnr.25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/01/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
From the blood brain barrier to the synaptic space, astrocytes provide structural, metabolic, ionic, and extracellular matrix (ECM) support across the brain. Astrocytes include a vast array of subtypes, their phenotypes and functions varying both regionally and temporally. Astrocytes' metabolic and regulatory functions poise them to be quick and sensitive responders to injury and disease in the brain as revealed by single cell sequencing. Far less is known about the influence of the local healthy and aging microenvironments on these astrocyte activation states. In this forward-looking review, we describe the known relationship between astrocytes and their local microenvironment, the remodeling of the microenvironment during disease and injury, and postulate how they may drive astrocyte activation. We suggest technology development to better understand the dynamic diversity of astrocyte activation states, and how basal and activation states depend on the ECM microenvironment. A deeper understanding of astrocyte response to stimuli in ECM-specific contexts (brain region, age, and sex of individual), paves the way to revolutionize how the field considers astrocyte-ECM interactions in brain injury and disease and opens routes to return astrocytes to a healthy quiescent state.
Collapse
Affiliation(s)
- Rebecca E Huber
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Courtney Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
12
|
Scodellaro C, Pina RR, Ferreira FC, Sanjuan-Alberte P, Fernandes TG. Unlocking the Potential of Stem Cell Microenvironments In Vitro. Bioengineering (Basel) 2024; 11:289. [PMID: 38534563 DOI: 10.3390/bioengineering11030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The field of regenerative medicine has recently witnessed groundbreaking advancements that hold immense promise for treating a wide range of diseases and injuries. At the forefront of this revolutionary progress are stem cells. Stem cells typically reside in specialized environments in vivo, known as microenvironments or niches, which play critical roles in regulating stem cell behavior and determining their fate. Therefore, understanding the complex microenvironments that surround stem cells is crucial for advancing treatment options in regenerative medicine and tissue engineering applications. Several research articles have made significant contributions to this field by exploring the interactions between stem cells and their surrounding niches, investigating the influence of biomechanical and biochemical cues, and developing innovative strategies for tissue regeneration. This review highlights the key findings and contributions of these studies, shedding light on the diverse applications that may arise from the understanding of stem cell microenvironments, thus harnessing the power of these microenvironments to transform the landscape of medicine and offer new avenues for regenerative therapies.
Collapse
Affiliation(s)
- Chiara Scodellaro
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Raquel R Pina
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Paola Sanjuan-Alberte
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
13
|
Melrose J. Hippo cell signaling and HS-proteoglycans regulate tissue form and function, age-dependent maturation, extracellular matrix remodeling, and repair. Am J Physiol Cell Physiol 2024; 326:C810-C828. [PMID: 38223931 DOI: 10.1152/ajpcell.00683.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This review examined how Hippo cell signaling and heparan sulfate (HS)-proteoglycans (HSPGs) regulate tissue form and function. Despite being a nonweight-bearing tissue, the brain is regulated by Hippo mechanoresponsive cell signaling pathways during embryonic development. HS-proteoglycans interact with growth factors, morphogens, and extracellular matrix components to regulate development and pathology. Pikachurin and Eyes shut (Eys) interact with dystroglycan to stabilize the photoreceptor axoneme primary cilium and ribbon synapse facilitating phototransduction and neurotransduction with bipolar retinal neuronal networks in ocular vision, the primary human sense. Another HSPG, Neurexin interacts with structural and adaptor proteins to stabilize synapses and ensure specificity of neural interactions, and aids in synaptic potentiation and plasticity in neurotransduction. HSPGs also stabilize the blood-brain barrier and motor neuron basal structures in the neuromuscular junction. Agrin and perlecan localize acetylcholinesterase and its receptors in the neuromuscular junction essential for neuromuscular control. The primary cilium is a mechanosensory hub on neurons, utilized by YES associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) Hippo, Hh, Wnt, transforming growth factor (TGF)-β/bone matrix protein (BMP) receptor tyrosine kinase cell signaling. Members of the glypican HSPG proteoglycan family interact with Smoothened and Patched G-protein coupled receptors on the cilium to regulate Hh and Wnt signaling during neuronal development. Control of glycosyl sulfotransferases and endogenous protease expression by Hippo TAZ YAP represents a mechanism whereby the fine structure of HS-proteoglycans can be potentially modulated spatiotemporally to regulate tissue morphogenesis in a similar manner to how Hippo signaling controls sialyltransferase expression and mediation of cell-cell recognition, dysfunctional sialic acid expression is a feature of many tumors.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Sydney Medical School-Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Park SR, Kook MG, Kim SR, Lee JW, Yu YS, Park CH, Lim S, Oh BC, Jung Y, Hong IS. A microscale 3D organ on a chip for recapitulating reciprocal neuroendocrine crosstalk between the hypothalamus and the pituitary gland. Biofabrication 2024; 16:025011. [PMID: 38277677 DOI: 10.1088/1758-5090/ad22f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Conventional 2D or even recently developed 3Din vitroculture models for hypothalamus and pituitary gland cannot successfully recapitulate reciprocal neuroendocrine communications between these two pivotal neuroendocrine tissues known to play an essential role in controlling the body's endocrine system, survival, and reproduction. In addition, most currentvitroculture models for neuroendocrine tissues fail to properly reflect their complex multicellular structure. In this context, we developed a novel microscale chip platform, termed the 'hypothalamic-pituitary (HP) axis-on-a-chip,' which integrates various cellular components of the hypothalamus and pituitary gland with biomaterials such as collagen and hyaluronic acid. We used non-toxic blood coagulation factors (fibrinogen and thrombin) as natural cross-linking agents to increase the mechanical strength of biomaterials without showing residual toxicity to overcome drawbacks of conventional chemical cross-linking agents. Furthermore, we identified and verified SERPINB2 as a reliable neuroendocrine toxic marker, with its expression significantly increased in both hypothalamus and pituitary gland cells following exposure to various types of toxins. Next, we introduced SERPINB2-fluorescence reporter system into loaded hypothalamic cells and pituitary gland cells within each chamber of the HP axis on a chip, respectively. By incorporating this SERPINB2 detection system into the loaded hypothalamic and pituitary gland cells within our chip platform, Our HP axis-on-chip platform can better mimic reciprocal neuroendocrine crosstalk between the hypothalamus and the pituitary gland in the brain microenvironments with improved efficiency in evaluating neuroendocrine toxicities of certain drug candidates.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Myung Geun Kook
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Young Soo Yu
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| | - Chan Hum Park
- Department of Otolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Soyi Lim
- Gachon University Gil Hospital VIP Health Promotion Center, Incheon, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| |
Collapse
|
15
|
Huang X, Zheng Y, Ming J, Ning X, Bai S. Natural polymer-based bioadhesives as hemostatic platforms for wound healing. Int J Biol Macromol 2024; 256:128275. [PMID: 38000608 DOI: 10.1016/j.ijbiomac.2023.128275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Medical adhesives are advanced but challenging alternatives to wound closure and repair, especially in mitigating uncontrolled hemorrhage. Ideal hemostatic adhesives need to meet good biocompatibility and biodegradability, adequate mechanical strength, and strong tissue adhesion functionality under wet and dynamic conditions. Considering these requirements, natural polymers such as polysaccharide, protein and DNA, attract great attention as candidates for making bioadhesives because of their distinctive physicochemical performances and biological properties. This review systematically summarizes the advances of bioadhesives based on natural polysaccharide, protein and DNA. Various physical and chemical cross-linking strategies have been introduced for adhesive synthesis and their hemostatic applications are introduced from the aspect of versatility. Furthermore, the possible challenges and future opportunities of bioadhesives are discussed, providing insights into the development of high-performance hemostatic materials.
Collapse
Affiliation(s)
- Xiaowei Huang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yankun Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jinfa Ming
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China.
| | - Xin Ning
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
16
|
Dong Y, Zhao K, Qin X, Du G, Gao L. The mechanisms of perineuronal net abnormalities in contributing aging and neurological diseases. Ageing Res Rev 2023; 92:102092. [PMID: 37839757 DOI: 10.1016/j.arr.2023.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The perineuronal net (PNN) is a highly latticed extracellular matrix in the central nervous system, which is composed of hyaluronic acid, proteoglycan, hyaluronan and proteoglycan link protein (Hapln), and tenascin. PNN is predominantly distributed in GABAergic interneurons expressing Parvalbumin (PV) and plays a critical role in synaptic function, learning and memory, oxidative stress, and inflammation. In addition, PNN's structure and function are also modulated by a variety of factors, including protein tyrosine phosphatase σ (PTPσ), orthodenticle homeo-box 2 (Otx2), and erb-b2 receptor tyrosine kinase 4 (ErbB4). Glycosaminoglycan (GAG), a component of proteoglycan, also influences PNN through its sulfate mode. PNN undergoes abnormal changes during aging and in various neurological diseases, such as Alzheimer's disease, Parkinson's disease, schizophrenia, autism spectrum disorder, and multiple sclerosis. Nevertheless, there is limited report on the relationship between PNN and aging or age-related neurological diseases. This review elaborates on the mechanisms governing PNN regulation and summarizes how PNN abnormalities contribute to aging and neurological diseases, offering insights for potential treatments.
Collapse
Affiliation(s)
- Yixiao Dong
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Kunkun Zhao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| |
Collapse
|
17
|
Khanal P, Patil VS, Patil BM, Bhattacharya K, Shrivastava AK, Chaudhary RK, Singh L, Dwivedi PS, Harish DR, Roy S. The marijuana-schizophrenia multifaceted nexus: Connections and conundrums towards neurophysiology. Comput Biol Chem 2023; 107:107957. [PMID: 37729848 DOI: 10.1016/j.compbiolchem.2023.107957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Delta-9-tetrahydrocannabinol, a component of marijuana, interacts with cannabinoid receptors in brain involved in memory, cognition, and emotional control. However, marijuana use and schizophrenia development is a complicated and contentious topic. As a result, more investigation is needed to understand this relationship. Through the functional enrichment analysis, we report the delta-9-tetrahydrocannabinol to manipulate the homeostatic biological process and molecular function of different macromolecules. Additionally, using molecular docking and subsequent processing for molecular simulations, we assessed the binding ability of delta-9-tetrahydrocannabinol with the estrogen-related protein, dopamine receptor 5, and hyaluronidase. It was found that delta-9-tetrahydrocannabinol may have an impact on the brain's endocannabinoid system and may trigger the schizophrenia progression in vulnerable people. Delta-9-tetrahydrocannabinol may interfere with the biological function of 18 proteins linked to schizophrenia and disrupt the synaptic transmission (dopamine, glutamine, and gamma-aminobutyric acid). It was discovered that it may affect lipid homeostasis, which is closely related to membrane integrity and synaptic plasticity. The negative control of cellular and metabolic processes, fatty acids binding /activity, and the manipulated endocannabinoid system (targeting cannabinoid receptors) were also concerned with delta-9-tetrahydrocannabinol. Hence, this may alter neurotransmitter signaling involved in memory, cognition, and emotional control, showing its direct impact on brain physiological processes. This may be one of the risk factors for schizophrenia development which is also closely tied to some other variables such as frequency, genetic vulnerability, dosage, and individual susceptibility.
Collapse
Affiliation(s)
- Pukar Khanal
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi 590010, India.
| | - Vishal S Patil
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi 590010, India; Indian Council of Medical Research-National Institute of Traditional Medicine, Belagavi 590010, India
| | - B M Patil
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi 590010, India; PRES's Pravara Rural College of Pharmacy Pravaranagar, Loni, Maharashtra, India.
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India; Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, India
| | - Amit Kumar Shrivastava
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicine Research Institute, Wonkwang University, Iksan 570-749, South Korea
| | - Raushan K Chaudhary
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi 590010, India
| | - Lokjan Singh
- Department of Microbiology, Karnali Academy of Health Sciences, Teaching Hospital Jumla, Karnali, Nepal
| | - Prarambh Sr Dwivedi
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi 590010, India
| | - Darasaguppe R Harish
- Indian Council of Medical Research-National Institute of Traditional Medicine, Belagavi 590010, India
| | - Subarna Roy
- Indian Council of Medical Research-National Institute of Traditional Medicine, Belagavi 590010, India
| |
Collapse
|
18
|
Chen MH, Lin HC, Chao T, Lee VSY, Hou CL, Wang TJ, Chen JR. Hyaluronic Acid Conjugated with 17β-Estradiol Effectively Alleviates Estropause-Induced Cognitive Deficits in Rats. Int J Mol Sci 2023; 24:15569. [PMID: 37958552 PMCID: PMC10649161 DOI: 10.3390/ijms242115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Women are at a higher risk of cognitive impairments and Alzheimer's disease (AD), particularly after the menopause, when the estrous cycle becomes irregular and diminishes. Numerous studies have shown that estrogen deficiency, especially estradiol (E2) deficiency, plays a key role in this phenomenon. Recently, a novel polymeric drug, hyaluronic acid-17β-estradiol conjugate (HA-E2), has been introduced for the delivery of E2 to brain tissues. Studies have indicated that HA-E2 crosses the blood-brain barrier (BBB) and facilitates a prolonged E2 release profile while lowering the risk of estrogen-supplement-related side effects. In this study, we used ovariohysterectomy (OHE) rats, a postmenopausal cognitive deficit model, to explore the effect of a 2-week HA-E2 treatment (210 ng/kg body weight, twice a week) on the cholinergic septo-hippocampal innervation system, synaptic transmission in hippocampal pyramidal neurons and cognitive improvements. Our study revealed an 11% rise in choline acetyltransferase (ChAT) expression in both the medial septal nucleus (MS nucleus) and the hippocampus, along with a 14-18% increase in dendritic spine density in hippocampal pyramidal neurons, following HA-E2 treatment in OHE rats. These enhancements prompted the recovery of cognitive functions such as spatial learning and memory. These findings suggest that HA-E2 may prevent and improve estrogen-deficiency-induced cognitive impairment and AD.
Collapse
Affiliation(s)
- Mu-Hsuan Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| | - Hsiao-Chun Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| | - Tzu Chao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| | - Viola Szu-Yuan Lee
- Basic Research Division, Holy Stone Healthcare Co., Ltd., Taipei 11493, Taiwan; (V.S.-Y.L.); (C.-L.H.)
| | - Chia-Lung Hou
- Basic Research Division, Holy Stone Healthcare Co., Ltd., Taipei 11493, Taiwan; (V.S.-Y.L.); (C.-L.H.)
| | - Tsyr-Jiuan Wang
- Department of Nursing, National Taichung University of Science and Technology, No. 193, Section 1, Sanmin Rd., Taichung 403027, Taiwan
| | - Jeng-Rung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| |
Collapse
|
19
|
Li H, Ghorbani S, Ling CC, Yong VW, Xue M. The extracellular matrix as modifier of neuroinflammation and recovery in ischemic stroke and intracerebral hemorrhage. Neurobiol Dis 2023; 186:106282. [PMID: 37683956 DOI: 10.1016/j.nbd.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Stroke is the second leading cause of death worldwide and has two major subtypes: ischemic stroke and hemorrhagic stroke. Neuroinflammation is a pathological hallmark of ischemic stroke and intracerebral hemorrhage (ICH), contributing to the extent of brain injury but also in its repair. Neuroinflammation is intricately linked to the extracellular matrix (ECM), which is profoundly altered after brain injury and in aging. In the early stages after ischemic stroke and ICH, immune cells are involved in the deposition and remodeling of the ECM thereby affecting processes such as blood-brain barrier and cellular integrity. ECM components regulate leukocyte infiltration into the central nervous system, activate a variety of immune cells, and induce the elevation of matrix metalloproteinases (MMPs) after stroke. In turn, excessive MMPs may degrade ECM into components that are pro-inflammatory and injurious. Conversely, in the later stages after stroke, several ECM molecules may contribute to tissue recovery. For example, thrombospondin-1 and biglycan may promote activity of regulatory T cells, inhibit the synthesis of proinflammatory cytokines, and aid regenerative processes. We highlight these roles of the ECM in ischemic stroke and ICH and discuss their potential cellular and molecular mechanisms. Finally, we discuss therapeutics that could be considered to normalize the ECM in stroke. Our goal is to spur research on the ECM in order to improve the prognosis of ischemic stroke and ICH.
Collapse
Affiliation(s)
- Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China; Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
20
|
Farrugia BL, Melrose J. The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour. Int J Mol Sci 2023; 24:14101. [PMID: 37762403 PMCID: PMC10531531 DOI: 10.3390/ijms241814101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.
Collapse
Affiliation(s)
- Brooke L. Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School (Northern), University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
21
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
22
|
Valeri J, Gisabella B, Pantazopoulos H. Dynamic regulation of the extracellular matrix in reward memory processes: a question of time. Front Cell Neurosci 2023; 17:1208974. [PMID: 37396928 PMCID: PMC10311570 DOI: 10.3389/fncel.2023.1208974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Substance use disorders are a global health problem with increasing prevalence resulting in significant socioeconomic burden and increased mortality. Converging lines of evidence point to a critical role of brain extracellular matrix (ECM) molecules in the pathophysiology of substance use disorders. An increasing number of preclinical studies highlight the ECM as a promising target for development of novel cessation pharmacotherapies. The brain ECM is dynamically regulated during learning and memory processes, thus the time course of ECM alterations in substance use disorders is a critical factor that may impact interpretation of the current studies and development of pharmacological therapies. This review highlights the evidence for the involvement of ECM molecules in reward learning, including drug reward and natural reward such as food, as well as evidence regarding the pathophysiological state of the brain's ECM in substance use disorders and metabolic disorders. We focus on the information regarding time-course and substance specific changes in ECM molecules and how this information can be leveraged for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
23
|
Štěpánková K, Mareková D, Kubášová K, Sedláček R, Turnovcová K, Vacková I, Kubinová Š, Makovický P, Petrovičová M, Kwok JCF, Jendelová P, Machová Urdzíková L. 4-Methylumbeliferone Treatment at a Dose of 1.2 g/kg/Day Is Safe for Long-Term Usage in Rats. Int J Mol Sci 2023; 24:3799. [PMID: 36835210 PMCID: PMC9959083 DOI: 10.3390/ijms24043799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
4-methylumbelliferone (4MU) has been suggested as a potential therapeutic agent for a wide range of neurological diseases. The current study aimed to evaluate the physiological changes and potential side effects after 10 weeks of 4MU treatment at a dose of 1.2 g/kg/day in healthy rats, and after 2 months of a wash-out period. Our findings revealed downregulation of hyaluronan (HA) and chondroitin sulphate proteoglycans throughout the body, significantly increased bile acids in blood samples in weeks 4 and 7 of the 4MU treatment, as well as increased blood sugars and proteins a few weeks after 4MU administration, and significantly increased interleukins IL10, IL12p70 and IFN gamma after 10 weeks of 4MU treatment. These effects, however, were reversed and no significant difference was observed between control treated and 4MU-treated animals after a 9-week wash-out period.
Collapse
Affiliation(s)
- Kateřina Štěpánková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Dana Mareková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Kristýna Kubášová
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic
| | - Radek Sedláček
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic
| | - Karolína Turnovcová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Irena Vacková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Šárka Kubinová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Pavol Makovický
- Department of Biology, Faculty of Education, J. Seyle University, SK-94501 Komarno, Slovakia
| | - Michaela Petrovičová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jessica C. F. Kwok
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Lucia Machová Urdzíková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| |
Collapse
|
24
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
25
|
Grieco M, Ursini O, Palamà IE, Gigli G, Moroni L, Cortese B. HYDRHA: Hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering. Mater Today Bio 2022; 17:100453. [PMID: 36254248 PMCID: PMC9568881 DOI: 10.1016/j.mtbio.2022.100453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/30/2022] Open
Abstract
In the last decade, hyaluronic acid (HA) has attracted an ever-growing interest in the biomedical engineering field as a biocompatible, biodegradable, and chemically versatile molecule. In fact, HA is a major component of the extracellular matrix (ECM) and is essential for the maintenance of cellular homeostasis and crosstalk. Innovative experimental strategies in vitro and in vivo using three-dimensional (3D) HA systems have been increasingly reported in studies of diseases, replacement of tissue and organ damage, repairing wounds, and encapsulating stem cells for tissue regeneration. The present work aims to give an overview and comparison of recent work carried out on HA systems showing advantages, limitations, and their complementarity, for a comprehensive characterization of their use. A special attention is paid to the use of HA in three important areas: cancer, diseases of the central nervous system (CNS), and tissue regeneration, discussing the most innovative experimental strategies. Finally, perspectives within and beyond these research fields are discussed.
Collapse
Affiliation(s)
- Maddalena Grieco
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
| | - Ornella Ursini
- National Research Council-Nanotechnology Institute (CNR Nanotec), 00185, Rome, Italy
| | - Ilaria Elena Palamà
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
| | - Giuseppe Gigli
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
- Department of Mathematics and Physics “Ennio De Giorgi” University of Salento, Via Arnesano, 73100, Lecce, Italy
| | - Lorenzo Moroni
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, the Netherlands
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute (CNR Nanotec), 00185, Rome, Italy
| |
Collapse
|
26
|
Tewari BP, Chaunsali L, Prim CE, Sontheimer H. A glial perspective on the extracellular matrix and perineuronal net remodeling in the central nervous system. Front Cell Neurosci 2022; 16:1022754. [PMID: 36339816 PMCID: PMC9630365 DOI: 10.3389/fncel.2022.1022754] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
A structural scaffold embedding brain cells and vasculature is known as extracellular matrix (ECM). The physical appearance of ECM in the central nervous system (CNS) ranges from a diffused, homogeneous, amorphous, and nearly omnipresent matrix to highly organized distinct morphologies such as basement membranes and perineuronal nets (PNNs). ECM changes its composition and organization during development, adulthood, aging, and in several CNS pathologies. This spatiotemporal dynamic nature of the ECM and PNNs brings a unique versatility to their functions spanning from neurogenesis, cell migration and differentiation, axonal growth, and pathfinding cues, etc., in the developing brain, to stabilizing synapses, neuromodulation, and being an active partner of tetrapartite synapses in the adult brain. The malleability of ECM and PNNs is governed by both intrinsic and extrinsic factors. Glial cells are among the major extrinsic factors that facilitate the remodeling of ECM and PNN, thereby acting as key regulators of diverse functions of ECM and PNN in health and diseases. In this review, we discuss recent advances in our understanding of PNNs and how glial cells are central to ECM and PNN remodeling in normal and pathological states of the CNS.
Collapse
|
27
|
Zhang YS, Gong JS, Yao ZY, Jiang JY, Su C, Li H, Kang CL, Liu L, Xu ZH, Shi JS. Insights into the source, mechanism and biotechnological applications of hyaluronidases. Biotechnol Adv 2022; 60:108018. [PMID: 35853550 DOI: 10.1016/j.biotechadv.2022.108018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/10/2023]
Abstract
It has long been found that hyaluronidases exist in a variety of organisms, playing their roles in various biological processes including infection, envenomation and metabolic regulation through degrading hyaluronan. However, exploiting them as a bioresource for specific applications had not been extensively studied until the latest decades. In recent years, new application scenarios have been developed, which extended the field of application, and emphasized the research value of hyaluronidase. This critical review comprehensively summarizes existing studies on hyaluronidase from different source, particularly in their structures, action patterns, and biological functions in human and mammals. Furthermore, we give in-depth insight into the resource mining and protein engineering process of hyaluronidase, as well as strategies for their high-level production, indicating that mixed strategies should be adopted to obtain well-performing hyaluronidase with efficiency. In addition, advances in application of hyaluronidase were summarized and discussed. Finally, prospects for future researches are proposed, highlighting the importance of further investigation into the characteristics of hyaluronidases, and the necessity of investigating their products for the development of their application value.
Collapse
Affiliation(s)
- Yue-Sheng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Zhi-Yuan Yao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chuan-Li Kang
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Lei Liu
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
28
|
Cardoso LMDF, Barreto T, Gama JFG, Alves LA. Natural Biopolymers as Additional Tools for Cell Microencapsulation Applied to Cellular Therapy. Polymers (Basel) 2022; 14:polym14132641. [PMID: 35808686 PMCID: PMC9268758 DOI: 10.3390/polym14132641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
One of the limitations in organ, tissue or cellular transplantations is graft rejection. To minimize or prevent this, recipients must make use of immunosuppressive drugs (IS) throughout their entire lives. However, its continuous use generally causes several side effects. Although some IS dose reductions and withdrawal strategies have been employed, many patients do not adapt to these protocols and must return to conventional IS use. Therefore, many studies have been carried out to offer treatments that may avoid IS administration in the long term. A promising strategy is cellular microencapsulation. The possibility of microencapsulating cells originates from the opportunity to use biomaterials that mimic the extracellular matrix. This matrix acts as a support for cell adhesion and the syntheses of new extracellular matrix self-components followed by cell growth and survival. Furthermore, by involving the cells in a polymeric matrix, the matrix acts as an immunoprotective barrier, protecting cells against the recipient’s immune system while still allowing essential cell survival molecules to diffuse bilaterally through the polymer matrix pores. In addition, this matrix can be associated with IS, thus diminishing systemic side effects. In this context, this review will address the natural biomaterials currently in use and their importance in cell therapy.
Collapse
|
29
|
Melrose J. Fractone Stem Cell Niche Components Provide Intuitive Clues in the Design of New Therapeutic Procedures/Biomatrices for Neural Repair. Int J Mol Sci 2022; 23:5148. [PMID: 35563536 PMCID: PMC9103880 DOI: 10.3390/ijms23095148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to illustrate recent developments in neural repair utilizing hyaluronan as a carrier of olfactory bulb stem cells and in new bioscaffolds to promote neural repair. Hyaluronan interacts with brain hyalectan proteoglycans in protective structures around neurons in perineuronal nets, which also have roles in the synaptic plasticity and development of neuronal cognitive properties. Specialist stem cell niches termed fractones located in the sub-ventricular and sub-granular regions of the dentate gyrus of the hippocampus migrate to the olfactory bulb, which acts as a reserve of neuroprogenitor cells in the adult brain. The extracellular matrix associated with the fractone stem cell niche contains hyaluronan, perlecan and laminin α5, which regulate the quiescent recycling of stem cells and also provide a means of escaping to undergo the proliferation and differentiation to a pluripotent migratory progenitor cell type that can participate in repair processes in neural tissues. Significant improvement in the repair of spinal cord injury and brain trauma has been reported using this approach. FGF-2 sequestered by perlecan in the neuroprogenitor niche environment aids in these processes. Therapeutic procedures have been developed using olfactory ensheathing stem cells and hyaluronan as a carrier to promote neural repair processes. Now that recombinant perlecan domain I and domain V are available, strategies may also be expected in the near future using these to further promote neural repair strategies.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia;
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
30
|
Wang Y, Li L, Wu Y, Zhang S, Ju Q, Yang Y, Jin Y, Shi H, Sun C. CD44 deficiency represses neuroinflammation and rescues dopaminergic neurons in a mouse model of Parkinson's disease. Pharmacol Res 2022; 177:106133. [PMID: 35182746 DOI: 10.1016/j.phrs.2022.106133] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
CD44 is a transmembrane protein that transduces extracellular stimuli to immune response. Neuroinflammation is a causative factor in neurodegenerative diseases, such as Parkinson's disease (PD). Owing to its role in inflammation, this study investigated whether CD44 is involved in the pathological progression of PD. Our data showed that CD44 deficiency largely abolished proinflammatory cytokine expression in primary microglia and astrocytes. In PD model mice, CD44 knockout improved behavioral defects, prevented TH loss in the SNpc and striatum, and blocked activation of microglia and astrocytes. Moreover, CD44 neutralization by anti-CD44 antibody recapitulated the phenotypes observed in CD44 knockout mice. Mechanistically, CD44 neutralization blocked TLR4 expression and NF-κB p65 nuclear translocation induced by lipopolysaccharide in BV2 cells. Overall, our results indicate that CD44 deficiency has a beneficial role against PD, which is likely due to repression of the TLR4/NF-κB axis, leading to reduced neuroinflammation. Therefore, CD44 might be a therapeutic target for the development of anti-PD agents.
Collapse
Affiliation(s)
- Yuejun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Li Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Yuting Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Shouping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Qianqian Ju
- Department of Cardiothoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Diseases, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinuo Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Yan Jin
- School of Life Sciences, Nantong University, Nantong, China.
| | - Hui Shi
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China; Department of Cardiothoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Diseases, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
31
|
Adeniyi PA, Fopiano KA, Banine F, Garcia M, Gong X, Keene CD, Sherman LS, Bagi Z, Back SA. Multispectral LEDs Eliminate Lipofuscin-Associated Autofluorescence for Immunohistochemistry and CD44 Variant Detection by in Situ Hybridization in Aging Human, non-Human Primate, and Murine Brain. ASN Neuro 2022; 14:17590914221123138. [PMID: 36164936 PMCID: PMC9520168 DOI: 10.1177/17590914221123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
A major limitation of mechanistic studies in aging brains is the lack of routine methods to robustly visualize and discriminate the cellular distribution of tissue antigens using fluorescent immunohistochemical multi-labeling techniques. Although such approaches are routine in non-aging brains, they are not consistently feasible in the aging brain due to the progressive accumulation of autofluorescent pigments, particularly lipofuscin, which strongly excite and emit over a broad spectral range. Consequently, aging research has relied upon colorimetric antibody techniques, where discrimination of tissue antigens is often challenging. We report the application of a simple, reproducible, and affordable protocol using multispectral light-emitting diodes (mLEDs) exposure for the reduction/elimination of lipofuscin autofluorescence (LAF) in aging brain tissue from humans, non-human primates, and mice. The mLEDs lamp has a broad spectral range that spans from the UV to infrared range and includes spectra in the violet/blue and orange/red. After photo quenching, the LAF level was markedly reduced when the tissue background fluorescence before and after mLEDs exposure was compared (p < 0.0001) across the spectral range. LAF elimination was estimated at 95 ± 1%. This approach permitted robust specific fluorescent immunohistochemical co-visualization of commonly studied antigens in aging brains. We also successfully applied this method to specifically visualize CD44 variant expression in aging human cerebral white matter using RNAscope fluorescent in-situ hybridization. Photo quenching provides an attractive means to accelerate progress in aging research by increasing the number of molecules that can be topologically discriminated by fluorescence detection in brain tissue from normative or pathological aging.
Collapse
Affiliation(s)
- Philip A. Adeniyi
- Departments of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Katie-Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Fatima Banine
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Mariel Garcia
- Departments of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Xi Gong
- Departments of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Larry S. Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Stephen A. Back
- Departments of Pediatrics, Oregon Health & Science University, Portland, Oregon
- Departments of Neurology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
32
|
Hayes AJ, Melrose J. Neural Tissue Homeostasis and Repair Is Regulated via CS and DS Proteoglycan Motifs. Front Cell Dev Biol 2021; 9:696640. [PMID: 34409033 PMCID: PMC8365427 DOI: 10.3389/fcell.2021.696640] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
Chondroitin sulfate (CS) is the most abundant and widely distributed glycosaminoglycan (GAG) in the human body. As a component of proteoglycans (PGs) it has numerous roles in matrix stabilization and cellular regulation. This chapter highlights the roles of CS and CS-PGs in the central and peripheral nervous systems (CNS/PNS). CS has specific cell regulatory roles that control tissue function and homeostasis. The CNS/PNS contains a diverse range of CS-PGs which direct the development of embryonic neural axonal networks, and the responses of neural cell populations in mature tissues to traumatic injury. Following brain trauma and spinal cord injury, a stabilizing CS-PG-rich scar tissue is laid down at the defect site to protect neural tissues, which are amongst the softest tissues of the human body. Unfortunately, the CS concentrated in gliotic scars also inhibits neural outgrowth and functional recovery. CS has well known inhibitory properties over neural behavior, and animal models of CNS/PNS injury have demonstrated that selective degradation of CS using chondroitinase improves neuronal functional recovery. CS-PGs are present diffusely in the CNS but also form denser regions of extracellular matrix termed perineuronal nets which surround neurons. Hyaluronan is immobilized in hyalectan CS-PG aggregates in these perineural structures, which provide neural protection, synapse, and neural plasticity, and have roles in memory and cognitive learning. Despite the generally inhibitory cues delivered by CS-A and CS-C, some CS-PGs containing highly charged CS disaccharides (CS-D, CS-E) or dermatan sulfate (DS) disaccharides that promote neural outgrowth and functional recovery. CS/DS thus has varied cell regulatory properties and structural ECM supportive roles in the CNS/PNS depending on the glycoform present and its location in tissue niches and specific cellular contexts. Studies on the fruit fly, Drosophila melanogaster and the nematode Caenorhabditis elegans have provided insightful information on neural interconnectivity and the role of the ECM and its PGs in neural development and in tissue morphogenesis in a whole organism environment.
Collapse
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Wales, United Kingdom
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard’s, NSW, Australia
| |
Collapse
|
33
|
Kakizaki I, Kobayashi T, Tamura S, Akagi H, Takagaki K. Effect of glycosaminoglycan structure on all-trans-retinoic acid-induced neural differentiation of P19 embryonal carcinoma cells. Biochem Biophys Res Commun 2021; 570:169-174. [PMID: 34284143 DOI: 10.1016/j.bbrc.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/17/2022]
Abstract
Glycosaminoglycan polysaccharides are components of animal extracellular matrices and regulate cell functions based on their various sulfation and epimerization pattern structures. The present study aimed to find glycosaminoglycan structures to promote neural differentiation. We investigated the effect of exogenous glycosaminoglycans with well-defined structures on the all-trans-retinoic acid-induced neural differentiation of P19 embryonal carcinoma cells, which is an ideal model culture system for studying neural differentiation. We found that chondroitin sulfate E and heparin, but not any other glycosaminoglycans, upregulated the expressions of neural specific markers but not a grail specific marker. Chondroitin sulfate E was suggested to function during spheroid formation, however, equimolar concentration of its oligosaccharide did not show promotive effect on the neural differentiation. Another finding was that hyaluronan oligosaccharide mixture markedly downregulated the expressions of a myelin specific marker. These findings suggested that the specific sulfation pattern and/or chain length of exogenous added glycosaminoglycan is important to regulate neural differentiation and myelination.
Collapse
Affiliation(s)
- Ikuko Kakizaki
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan; Department of Biochemistry, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Takayasu Kobayashi
- Support Center for Laboratory Animal and Gene Researches, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Shinri Tamura
- Geriatic Health Service Facility Satsuki-En, 42-1 Yamazaki, Ooshio, Higashimatsushima, 981-0505, Japan
| | - Hiroshi Akagi
- Corporate Research and Development, Otsuka Chemical Co., Ltd., 463 Kagasuno, Kawauchi-cho, Tokushima, 771-0193, Japan
| | - Keiichi Takagaki
- Department of Biochemistry, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| |
Collapse
|
34
|
Diao S, Xiao M, Chen C. The role of hyaluronan in myelination and remyelination after white matter injury. Brain Res 2021; 1766:147522. [PMID: 34010609 DOI: 10.1016/j.brainres.2021.147522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Hyaluronan is one of the major components of the neural extracellular matrix (ECM) and provides structural support in physiological conditions. Altered hyaluronan regulation is implicated in the pathogenesis of white matter injury (WMI), such as perinatal WMI, multiple sclerosis (MS), traumatic brain injury (TBI). Early research reported diverse central nervous system (CNS) insults led to accumulated high-molecular-weight (HMW) hyaluronan in hypomyelinating/demyelinating lesions. Furthermore, recent findings have shown an elevated production of hyaluronan fragments in WMI, possibly resulting from HMW hyaluronan degradation. Subsequent in vitro studies identified bioactive hyaluronan fragments with a specific molecular weight (around 2x105 Da) regulating oligodendrocyte precursor cells (OPCs) maturation and myelination/remyelination in WMI. However, it is unclear about the effective hyaluronidases in generating bioactive hyaluronan fragments. Several hyaluronidases are proposed recently. Although PH20 is shown to block OPCs maturation by generating bioactive hyaluronan fragments in vitro, it seems unlikely to play a primary role in WMI with negligible expression levels in vivo. The role of other hyaluronidases on OPCs maturation and myelination/remyelination is still unknown. Other than hyaluronidases, CD44 and Toll-like receptors 2 (TLR2) are also implicated in HMW hyaluronan degradation in WMI. Moreover, recent studies elucidated bioactive hyaluronan fragments interact with TLR4, initiating signaling cascades to mediate myelin basic protein (MBP) transcription. Identifying key factors in hyaluronan actions may provide novel therapeutic targets to promote OPCs maturation and myelination/remyelination in WMI.
Collapse
Affiliation(s)
- Sihao Diao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Mili Xiao
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, National Health Commission, China.
| |
Collapse
|