1
|
Gupta M, Dwivedi V, Kumar S, Patel A, Niazi P, Yadav VK. Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. PLANT SIGNALING & BEHAVIOR 2024; 19:2365576. [PMID: 38899525 PMCID: PMC11195469 DOI: 10.1080/15592324.2024.2365576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Soil toxicity is a major environmental issue that leads to numerous harmful effects on plants and human beings. Every year a huge amount of Pb is dumped into the environment either from natural sources or anthropogenically. Being a heavy metal it is highly toxic and non-biodegradable but remains in the environment for a long time. It is considered a neurotoxic and exerts harmful effects on living beings. In the present review article, investigators have emphasized the side effects of Pb on the plants. Further, the authors have focused on the various sources of Pb in the environment. Investigators have emphasized the various responses including molecular, biochemical, and morphological of plants to the toxic levels of Pb. Further emphasis was given to the effect of elevated levels of Pb on the microbial population in the rhizospheres. Further, emphasized the various remediation strategies for the Pb removal from the soil and water sources.
Collapse
Affiliation(s)
- Minoti Gupta
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Chandigarh, Punjab, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh, India
| | - Swatantar Kumar
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Chandigarh, Punjab, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
- Department of Plant Protection, Faculty of Agriculture, EGE University, İzmir, Turkey
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
2
|
Zhong XN, Peng JJ, Wang MY, Yang XL, Sun L. Overexpression of NAC transcription factors from Eremopyrum triticeum promoted abiotic stress tolerance. Transgenic Res 2024; 34:3. [PMID: 39738759 DOI: 10.1007/s11248-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/21/2024] [Indexed: 01/02/2025]
Abstract
Eremopyrum triticeum is a typical spring ephemeral species, which in China mainly distributed in the desert regions of northern Xinjiang, and play an important role in the desert ecosystems. E. triticeum has several adaptive characteristics such as short growth rhythms, high photosynthetic efficiency, high seed production, drought and salt resistance. However, the molecular regulatory mechanism of E. triticeum in responses to abiotic stress resistance is still unknown. In this study, two NAC-like transcription factor-encoding genes, EtNAC1 and EtNAC2, were isolated from E. triticeum. The predicted EtNAC1 and EtNAC2 proteins possess a typical NAC DNA-binding domain at the N-terminal region. The qRT-PCR analysis showed that EtNAC1 and EtNAC2 were highly expressed in mature roots of E. triticeum, and were significantly up-regulated under drought, high salt and abscisic acid (ABA) stresses. Subcellular localization analysis in onion epidermal cells revealed that EtNAC1 and EtNAC2 were located in the nucleus. Expression of EtNAC1 and EtNAC2 in yeast cells improved the survival rate of yeast under low temperature, H2O2, high drought and salt stresses. Overexpression of EtNAC1 and EtNAC2 in Arabidopsis thaliana conferred enhanced tolerance to drought and salt stresses, increased ABA sensitivity, and transgenic plants showed higher proline (Pro) content, but lower malondialdehyde content, lower chlorophyll leaching, lower water loss rate and stomatal aperture (width/length) than WT plants. In conclusion, EtNAC1 and EtNAC2 play important roles in abiotic stress responses of E. triticeum, which might have significant potential in crop molecular breeding for abiotic stress tolerance.
Collapse
Affiliation(s)
- Xue-Ni Zhong
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Jun-Jie Peng
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Meng-Yao Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Xiu-Li Yang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Li Sun
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
3
|
Hadish JA, Hargarten HL, Zhang H, Mattheis JP, Ficklin SP, Honaas LA. Transcriptomics of long-term, low oxygen storage coupled with ethylene signaling interference suggests neofunctionalization of hypoxia response pathways in apple ( Malus domestica). PLANT DIRECT 2024; 8:e70025. [PMID: 39712348 PMCID: PMC11660084 DOI: 10.1002/pld3.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 12/24/2024]
Abstract
Research on how plants respond to hypoxia has concentrated on model organisms where tissues can only survive hypoxic conditions for a few hours to a few days. In contrast, hypoxic conditions are used commercially as a method to prolong the shelf life of Malus domestica (apple) fruit for up to a year of storage without substantial changes in fruit quality, not to mention a lack of tissue death. This ability of apples to withstand protracted hypoxic conditions is an interesting adaptation that has had limited molecular investigation despite its economic importance. Here, we investigate the long-term apple hypoxia response using a time-course RNA-seq analysis of several postharvest storage conditions. We use phylogenetics, differential expression, and regulatory networks to identify genes that regulate and are regulated by the hypoxia response. We identify potential neofunctionalization of core-hypoxia response genes in apples, including novel regulation of group VII ethylene response factor (ERF VII) and plant cysteine oxidase (PCO) family members.
Collapse
Affiliation(s)
- John A. Hadish
- Molecular Plant Science ProgramWashington State UniversityPullmanWAUSA
- Department of HorticultureWashington State UniversityPullmanWAUSA
| | - Heidi L. Hargarten
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits ResearchWenatcheeWAUSA
| | - Huiting Zhang
- Department of HorticultureWashington State UniversityPullmanWAUSA
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits ResearchWenatcheeWAUSA
| | - James P. Mattheis
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits ResearchWenatcheeWAUSA
| | - Stephen P. Ficklin
- Molecular Plant Science ProgramWashington State UniversityPullmanWAUSA
- Department of HorticultureWashington State UniversityPullmanWAUSA
| | - Loren A. Honaas
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits ResearchWenatcheeWAUSA
| |
Collapse
|
4
|
Guo D, Li D, Liu F, Ma Y, Zhou JJ, Sheth S, Song B, Chen Z. LncRNA81246 regulates resistance against tea leaf spot by interrupting the miR164d-mediated degradation of NAC1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39590921 DOI: 10.1111/tpj.17173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Non-coding RNAs play crucial roles in plant responses to viral stresses. However, their molecular mechanisms in tea leaf spot responses remain unclear. In this study, using Camellia sinensis, we identified lncRNA81246 as a long non-coding RNA that localizes to both the nucleus and cytoplasm. It functions as a competitive endogenous RNA, thereby disrupting CsNAC1 (encoding NAC domain-containing protein 1) degradation mediated by miR164d. Silencing lncRNA81246 increased the resistance of tea plants to presistanceathogens, whereas transient lncRNA81246-overexpression plants showed decreased resistance to pathogens. Co-expression assays in Nicotiana benthamiana revealed that lncRNA81246 affects the miR164d-CsNAC1 regulatory module. Transient miR164d-overexpression and silencing assays demonstrated its positive regulation of tea plant resistance. Specifically, silencing its target, CsNAC1,enhanced disease resistance, whereas transient overexpression reduced plant resistance. Yeast one-hybrid, dual-luciferase, and RT-qPCR assay results suggested that CsNAC1 alters the expression of CsEXLB1, whereas AsODN and tobacco transient overexpression assays showed that CsEXLB1 negatively regulated tea plant resistance. Thus, our research demonstrated that lncRNA81246 acts as a mediator to interfere with the miR164d-CsNAC1 regulatory module involved in the disease resistance of tea plants.
Collapse
Affiliation(s)
- Di Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
- College of Tea Science, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Dongxue Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Fenghua Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Yue Ma
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
- College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jing-Jiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Sujitraj Sheth
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Baoan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zhuo Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
5
|
Thabet SG, Safhi FA, Börner A, Alqudah AM. Genome-wide association scan reveals the reinforcing effect of nano-potassium in improving the yield and quality of salt-stressed barley via enhancing the antioxidant defense system. PLANT MOLECULAR BIOLOGY 2024; 114:97. [PMID: 39249621 DOI: 10.1007/s11103-024-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 09/10/2024]
Abstract
Salinity is one of the major environmental factor that can greatly impact the growth, development, and productivity of barley. Our study aims to detect the natural phenotypic variation of morphological and physiological traits under both salinity and potassium nanoparticles (n-K) treatment. In addition to understanding the genetic basis of salt tolerance in barley is a critical aspect of plant breeding for stress resilience. Therefore, a foliar application of n-K was applied at the vegetative stage for 138 barley accessions to enhance salt stress resilience. Interestingly, barley accessions showed high significant increment under n-K treatment compared to saline soil. Based on genome-wide association studies (GWAS) analysis, causative alleles /reliable genomic regions were discovered underlying improved salt resilience through the application of potassium nanoparticles. On chromosome 2H, a highly significant QTN marker (A:C) was located at position 36,665,559 bp which is associated with APX, AsA, GSH, GS, WGS, and TKW under n-K treatment. Inside this region, our candidate gene is HORVU.MOREX.r3.2HG0111480 that annotated as NAC domain protein. Allelic variation detected that the accessions carrying C allele showed higher antioxidants (APX, AsA, and GSH) and barley yield traits (GS, WGS, and TKW) than the accessions carrying A allele, suggesting a positive selection of the accessions carrying C allele that could be used to develop barley varieties with improved salt stress resilience.
Collapse
Affiliation(s)
- Samar G Thabet
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr 3, D-06466, Seeland, Germany
| | - Ahmad M Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Wang H, Bi Y, Yan Y, Yuan X, Gao Y, Noman M, Li D, Song F. A NAC transcription factor MNAC3-centered regulatory network negatively modulates rice immunity against blast disease. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2017-2041. [PMID: 38953747 DOI: 10.1111/jipb.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/02/2024] [Indexed: 07/04/2024]
Abstract
NAC transcription factors (TFs) are pivotal in plant immunity against diverse pathogens. Here, we report the functional and regulatory network of MNAC3, a novel NAC TF, in rice immunity. MNAC3, a transcriptional activator, negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen-associated molecular pattern (PAMP)-triggered immune responses. MNAC3 binds to a CACG cis-element and activates the transcription of immune-negative target genes OsINO80, OsJAZ10, and OsJAZ11. The negative function of MNAC3 in rice immunity depends on its transcription of downstream genes such as OsINO80 and OsJAZ10. MNAC3 interacts with immunity-related OsPP2C41 (a protein phosphatase), ONAC066 (a NAC TF), and OsDjA6 (a DnaJ chaperone). ONAC066 and OsPP2C41 attenuate MNAC3 transcriptional activity, while OsDjA6 promotes it. Phosphorylation of MNAC3 at S163 is critical for its negative functions in rice immunity. OsPP2C41, which plays positive roles in rice blast resistance and chitin-triggered immune responses, dephosphorylates MNAC3, suppressing its transcriptional activity on the target genes OsINO80, OsJAZ10, and OsJAZ11 and promoting the translocation of MNAC3 from nucleus to cytoplasm. These results establish a MNAC3-centered regulatory network in which OsPP2C41 dephosphorylates MNAC3, attenuating its transcriptional activity on downstream immune-negative target genes in rice. Together, these findings deepen our understanding of molecular mechanisms in rice immunity and offer a novel strategy for genetic improvement of rice disease resistance.
Collapse
Affiliation(s)
- Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xi Yuan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Noman
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Guo Y, Zhang G, Li Z, Liao X, Sun W, Jiang X. Revealing the Effects of Zinc Sulphate Treatment on Melatonin Synthesis and Regulatory Gene Expression in Germinating Hull-Less Barley through Transcriptomic Analysis. Genes (Basel) 2024; 15:1077. [PMID: 39202436 PMCID: PMC11354046 DOI: 10.3390/genes15081077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This study investigated the transcriptomic mechanisms underlying melatonin accumulation and the enhancement of salt tolerance in hull-less barley seeds subjected to zinc sulphate stress. Following zinc sulphate treatment, hull-less barley seeds demonstrated increased melatonin accumulation and improved salt tolerance. Through transcriptome analysis, the study compared gene expression alterations in seeds (using the first letter of seed, this group is marked as 'S'), seeds treated with pure water (as the control group, is marked as 'C'), and germinated seeds exposed to varying concentrations of zinc sulphate (0.2 mM and 0.8 mM, the first letter of zinc sulphate, 'Z', is used to mark groups 'Z1' and 'Z2'). The analysis revealed that 8176, 759, and 622 differentially expressed genes (DEGs) were identified in the three comparison groups S.vs.C, C.vs.Z1, and C.vs.Z2, respectively. Most of the DEGs were closely associated with biological processes, including oxidative-stress response, secondary metabolite biosynthesis, and plant hormone signaling. Notably, zinc sulphate stress influenced the expression levels of Tryptophan decarboxylase 1 (TDC1), Acetylserotonin O-methyltransferase 1 (ASMT1), and Serotonin N-acetyltransferase 2 (SNAT2), which are key genes involved in melatonin synthesis. Furthermore, the expression changes of genes such as Probable WRKY transcription factor 75 (WRKY75) and Ethylene-responsive transcription factor ERF13 (EFR13) exhibited a strong correlation with fluctuations in melatonin content. These findings contribute to our understanding of the mechanisms underlying melatonin enrichment in response to zinc sulphate stress.
Collapse
Affiliation(s)
| | - Guoqiang Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (Y.G.); (Z.L.); (X.L.); (W.S.); (X.J.)
| | | | | | | | | |
Collapse
|
8
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
9
|
Afreen U, Kumar M. 5-mC methylation study of sORFs in 3'UTR of transcription factor JUNGBRUNNEN 1-like during leaf rust pathogenesis in wheat. Mol Biol Rep 2024; 51:801. [PMID: 39001882 DOI: 10.1007/s11033-024-09718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/11/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND JUB1, a NAC domain containing hydrogen peroxide-induced transcription factor, plays a critical role in plant immunity. Little is known about how JUB1 responds to leaf rust disease in wheat. Recent discoveries in genomics have also unveiled a multitude of sORFs often assumed to be non-functional, to argue for the necessity of including them as potential regulatory players of translation. However, whether methylation on sORFs spanning the 3'UTR of regulatory genes like JUB1 modulate gene expression, remains unclear. METHODS AND RESULTS In this study, we identified the methylation states of two sORFs in 3'UTR of a homologous gene of JUB1 in wheat, TaJUB1-L, at cytosine residues in CpG, CHH and CHG sites at different time points of disease progression in two near-isogenic lines of wheat (HD2329), with and without Lr24 gene during leaf rust pathogenesis. Here, we report a significant demethylation of the CpG dinucleotides occurring in the sORFs of the 3'UTR in the resistant isolines after 24 h post-infection. Also, the up-regulated gene expression observed through RT-qPCR was directly proportional to the demethylation of the CpG sites in the sORFs. CONCLUSIONS Our findings indicate that TaJUB1-L might be a positive regulator in providing tolerance during leaf rust pathogenesis and cytosine methylation at 3'UTR might act as a switch for its expression control. These results enrich the potential benefit of conventional methylation assay techniques for unraveling the unexplored enigma in epigenetics during plant-pathogen interaction in a cost-effective and confidentially conclusive manner.
Collapse
Affiliation(s)
- Uzma Afreen
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
10
|
Elsisi M, Elshiekh M, Sabry N, Aziz M, Attia K, Islam F, Chen J, Abdelrahman M. The genetic orchestra of salicylic acid in plant resilience to climate change induced abiotic stress: critical review. STRESS BIOLOGY 2024; 4:31. [PMID: 38880851 PMCID: PMC11180647 DOI: 10.1007/s44154-024-00160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Climate change, driven by human activities and natural processes, has led to critical alterations in varying patterns during cropping seasons and is a vital threat to global food security. The climate change impose several abiotic stresses on crop production systems. These abiotic stresses include extreme temperatures, drought, and salinity, which expose agricultural fields to more vulnerable conditions and lead to substantial crop yield and quality losses. Plant hormones, especially salicylic acid (SA), has crucial roles for plant resiliency under unfavorable environments. This review explores the genetics and molecular mechanisms underlying SA's role in mitigating abiotic stress-induced damage in plants. It also explores the SA biosynthesis pathways, and highlights the regulation of their products under several abiotic stresses. Various roles and possible modes of action of SA in mitigating abiotic stresses are discussed, along with unraveling the genetic mechanisms and genes involved in responses under stress conditions. Additionally, this review investigates molecular pathways and mechanisms through which SA exerts its protective effects, such as redox signaling, cross-talks with other plant hormones, and mitogen-activated protein kinase pathways. Moreover, the review discusses potentials of using genetic engineering approaches, such as CRISPR technology, for deciphering the roles of SA in enhancing plant resilience to climate change related abiotic stresses. This comprehensive analysis bridges the gap between genetics of SA role in response to climate change related stressors. Overall goal is to highlight SA's significance in safeguarding plants and by offering insights of SA hormone for sustainable agriculture under challenging environmental conditions.
Collapse
Affiliation(s)
- Mohamed Elsisi
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Moaz Elshiekh
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Nourine Sabry
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Mark Aziz
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Kotb Attia
- College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | | |
Collapse
|
11
|
Ou X, Sun L, Chen Y, Zhao Z, Jian W. Characteristics of NAC transcription factors in Solanaceae crops and their roles in responding to abiotic and biotic stresses. Biochem Biophys Res Commun 2024; 709:149840. [PMID: 38564941 DOI: 10.1016/j.bbrc.2024.149840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
As one of the largest transcription factor (TF) families in plants, the NAC (NAM, ATAF1/2, and CUC2) family plays important roles in response pathways to various abiotic and biotic stresses, such as drought, high salinity, low temperature, and pathogen infection. Although, there are a number of reviews on the involvement of NAC TF in plant responses to biotic and abiotic stresses, most of them are focused on the model plants Arabidopsis thaliana and Oryza sativa, and there is a lack of systematic evaluation of specific species. Solanaceae, the world's third most significant cash crop, has been seriously affected by environmental disturbances in recent years in terms of yield and quality, posing a severe threat to global food security. This review focuses on the functional roles of NAC transcription factors in response to external stresses involved in five important Solanaceae crops: tomato, potato, pepper, eggplant and tobacco, and analyzes the affinities between them. It will provide resources for stress-resistant breeding of Solanaceae crops using transgenic technology.
Collapse
Affiliation(s)
- Xiaogang Ou
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lixinyu Sun
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yu Chen
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhengwu Zhao
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wei Jian
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
12
|
Prusty A, Panchal A, Singh RK, Prasad M. Major transcription factor families at the nexus of regulating abiotic stress response in millets: a comprehensive review. PLANTA 2024; 259:118. [PMID: 38592589 DOI: 10.1007/s00425-024-04394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.
Collapse
Affiliation(s)
- Ankita Prusty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- Department of Botany, Mahishadal Raj College, Purba Medinipur, Garh Kamalpur, West Bengal, 721628, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Genetics, University of Delhi, South Campus, Benito-Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
13
|
Berrabah F, Benaceur F, Yin C, Xin D, Magne K, Garmier M, Gruber V, Ratet P. Defense and senescence interplay in legume nodules. PLANT COMMUNICATIONS 2024; 5:100888. [PMID: 38532645 PMCID: PMC11009364 DOI: 10.1016/j.xplc.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Immunity and senescence play a crucial role in the functioning of the legume symbiotic nodules. The miss-regulation of one of these processes compromises the symbiosis leading to death of the endosymbiont and the arrest of the nodule functioning. The relationship between immunity and senescence has been extensively studied in plant organs where a synergistic response can be observed. However, the interplay between immunity and senescence in the symbiotic organ is poorly discussed in the literature and these phenomena are often mixed up. Recent studies revealed that the cooperation between immunity and senescence is not always observed in the nodule, suggesting complex interactions between these two processes within the symbiotic organ. Here, we discuss recent results on the interplay between immunity and senescence in the nodule and the specificities of this relationship during legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Fathi Berrabah
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria.
| | - Farouk Benaceur
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Chaoyan Yin
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Dawei Xin
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
14
|
Yang T, Zhao X, Bai J, Lv W, Chen Q, Hu J, Liu G, Zhao Y, Zhou H, Zhao M, Zheng H. Transcriptome analysis of genes involved in the pathogenesis mechanism of potato virus Y in potato cultivar YouJin. Front Microbiol 2024; 15:1353814. [PMID: 38511006 PMCID: PMC10951100 DOI: 10.3389/fmicb.2024.1353814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Potatoes (Solanum tuberosum L.) can be infected by various viruses, but out of all of viruses, the potato virus Y (PVY) is the most detrimental. Research shows that the potato cultivar YouJin is especially vulnerable to PVY and displays severe symptoms, including leaf vein chlorosis, curled leaf margins, large necrotic spots on the leaf blades, and the growth of small new leaves. Methods PVY infection in potato cultivar YouJin was confirmed through symptom observation, RT-PCR, and Western blot analysis. Transcriptome sequencing was used to analyze the genes associated with PVY pathogenesis in this cultivar. Result Transcriptome analysis of differential genes was conducted in this study to examine the pathogenesis of PVY on YouJin. The results showed that 1,949 genes were differentially regulated, including 853 upregulated genes and 1,096 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that carbohydrate synthesis and metabolism pathways were suppressed, and electron transferase and hydrolase activities were reduced. Moreover, there were increased expression levels of protein kinase genes. By focusing on plant-pathogen interaction pathways, six core genes all upregulating the WARK family of transcription factors were obtained. Additionally, a constructed PPI network revealed the identification of key modular differential genes, such as downregulated photosynthesis-related protein genes and upregulated AP2/ERF-ERF transcription factors. Functional network enrichment analysis revealed that PVY infection limited RNA metabolism, glutathionylation, and peroxiredoxin activity while triggering the expression of associated defense genes in YouJin. After analyzing the above, 26 DEGs were screened and 12 DEGs were confirmed via RT-qPCR. Conclusion These results establish a hypothetical framework for clarifying the pathogenesis of PVY in the YouJin variety of potatoes, which will help design the disease resistance of YouJin.
Collapse
Affiliation(s)
- Tianqi Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Xingyue Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinjiang Bai
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenxia Lv
- Inner Mongolia Zhongjia Agricultural Biotechnology Co., Siziwang Banner, China
| | - Qi Chen
- Siziwang Banner Agricultural and Livestock Products Quality and Safety Inspection and Testing Station, Siziwang Banner, China
| | - Jun Hu
- Inner Mongolia Zhongjia Agricultural Biotechnology Co., Siziwang Banner, China
| | - Guangjing Liu
- Inner Mongolia Zhongjia Agricultural Biotechnology Co., Siziwang Banner, China
| | - Yuanzheng Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of the Development and Resource Utilization of Biological Pesticide in Inner Mongolia, Hohhot, China
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of the Development and Resource Utilization of Biological Pesticide in Inner Mongolia, Hohhot, China
| | - Hongli Zheng
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
15
|
Rocher F, Dou S, Philippe G, Martin ML, Label P, Langin T, Bonhomme L. Integrative systems biology of wheat susceptibility to Fusarium graminearum uncovers a conserved gene regulatory network and identifies master regulators targeted by fungal core effectors. BMC Biol 2024; 22:53. [PMID: 38443953 PMCID: PMC10916188 DOI: 10.1186/s12915-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Plant diseases are driven by an intricate set of defense mechanisms counterbalanced by the expression of host susceptibility factors promoted through the action of pathogen effectors. In spite of their central role in the establishment of the pathology, the primary components of plant susceptibility are still poorly understood and challenging to trace especially in plant-fungal interactions such as in Fusarium head blight (FHB) of bread wheat. Designing a system-level transcriptomics approach, we leveraged the analysis of wheat responses from a susceptible cultivar facing Fusarium graminearum strains of different aggressiveness and examined their constancy in four other wheat cultivars also developing FHB. RESULTS In this study, we describe unexpected differential expression of a conserved set of transcription factors and an original subset of master regulators were evidenced using a regulation network approach. The dual-integration with the expression data of pathogen effector genes combined with database mining, demonstrated robust connections with the plant molecular regulators and identified relevant candidate genes involved in plant susceptibility, mostly able to suppress plant defense mechanisms. Furthermore, taking advantage of wheat cultivars of contrasting susceptibility levels, a refined list of 142 conserved susceptibility gene candidates was proposed to be necessary host's determinants for the establishment of a compatible interaction. CONCLUSIONS Our findings emphasized major FHB determinants potentially controlling a set of conserved responses associated with susceptibility in bread wheat. They provide new clues for improving FHB control in wheat and also could conceivably leverage further original researches dealing with a broader spectrum of plant pathogens.
Collapse
Affiliation(s)
- Florian Rocher
- UMR 1095 Génétique Diversité Ecophysiologie Des Céréales, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Samir Dou
- UMR 1095 Génétique Diversité Ecophysiologie Des Céréales, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Géraldine Philippe
- UMR 1095 Génétique Diversité Ecophysiologie Des Céréales, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Marie-Laure Martin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif Sur Yvette, 91190, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Gif Sur Yvette, 91190, France
- UMR MIA Paris-Saclay, AgroParisTech, INRAE, Université Paris-Saclay, Gif Sur Yvette, France
| | - Philippe Label
- Physique Et Physiologie Intégratives de L'Arbre en Environnement Fluctuant, Université Clermont Auvergne, INRAE, UMR 547, Aubière, Cedex, France
| | - Thierry Langin
- UMR 1095 Génétique Diversité Ecophysiologie Des Céréales, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Ludovic Bonhomme
- UMR 1095 Génétique Diversité Ecophysiologie Des Céréales, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France.
| |
Collapse
|
16
|
De Pascali M, Greco D, Vergine M, Carluccio G, De Bellis L, Luvisi A. A Physiological and Molecular Focus on the Resistance of "Filippo Ceo" Almond Tree to Xylella fastidiosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:576. [PMID: 38475423 DOI: 10.3390/plants13050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The impact of Xylella fastidiosa (Xf) subsp. pauca on the environment and economy of Southern Italy has been devastating. To restore the landscape and support the local economy, introducing new crops is crucial for restoring destroyed olive groves, and the almond tree (Prunus dulcis Mill. D. A. Webb) could be a promising candidate. This work focused on the resistance of the cultivar "Filippo Ceo" to Xf and evaluated its physiological and molecular responses to individual stresses (drought or pathogen stress) and combined stress factors under field conditions over three seasons. Filippo Ceo showed a low pathogen concentration (≈103 CFU mL-1) and a lack of almond leaf scorch symptoms. Physiologically, an excellent plant water status was observed (RWC 82-89%) regardless of the stress conditions, which was associated with an increased proline content compared to that of the control plants, particularly in response to Xf stress (≈8-fold). The plant's response did not lead to a gene modulation that was specific to different stress factors but seemed more indistinct: upregulation of the LEA and DHN gene transcripts by Xf was observed, while the PR transcript was upregulated by drought stress. In addition, the genes encoding the transcription factors (TFs) were differentially induced by stress conditions. Filippo Ceo could be an excellent cultivar for coexistence with Xf subps. pauca, confirming its resistance to both water stress and the pathogen, although this similar health status was achieved differently due to transcriptional reprogramming that results in the modulation of genes directly or indirectly involved in defence strategies.
Collapse
Affiliation(s)
- Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Giambattista Carluccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
17
|
Garcia E, Koh J, Wu X, Sarkhosh A, Liu T. Tissue-specific proteome profile analysis reveals regulatory and stress responsive networks in passion fruit during storage. Sci Rep 2024; 14:3564. [PMID: 38346991 PMCID: PMC10861471 DOI: 10.1038/s41598-024-52557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/20/2024] [Indexed: 02/15/2024] Open
Abstract
Passiflora edulis, commonly known as passion fruit, is a crop with a fragrant aroma and refreshingly tropical flavor that is a valuable source of antioxidants. It offers a unique opportunity for growers because of its adaptability to tropical and subtropical climates. Passion fruit can be sold in the fresh market or used in value-added products, but its postharvest shelf life has not been well-researched, nor have superior cultivars been well-developed. Understanding the proteins expressed at the tissue level during the postharvest stage can help improve fruit quality and extend shelf life. In this study, we carried out comparative proteomics analysis on four passion fruit tissues, the epicarp, mesocarp, endocarp, and pulp, using multiplexed isobaric tandem mass tag (TMT) labeling quantitation. A total of 3352 proteins were identified, including 295 differentially expressed proteins (DEPs). Of these DEPs, 213 showed a fold increase greater than 1.45 (50 proteins) or a fold decrease less than 0.45 (163 proteins) with different patterns among tissue types. Among the DEPs, there were proteins expressed with functions in oxygen scavenging, lipid peroxidation, response to heat stress, and pathogen resistance. Thirty-six proteins were designated as hypothetical proteins were characterized for potential functions in immunity, cell structure, homeostasis, stress response, protein metabolism and miraculin biosynthesis. This research provides insight into tissue-specific pathways that can be further studied within fruit physiology and postharvest shelf life to aid in implementing effective plant breeding programs. Knowing the tissue-specific function of fruit is essential for improving fruit quality, developing new varieties, identifying health benefits, and optimizing processing techniques.
Collapse
Affiliation(s)
- Ellen Garcia
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Jin Koh
- The Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32611, USA
| | - Xingbo Wu
- Department of Environmental Horticulture, Tropical Research and Education Center, University of Florida, Homestead, FL, 33031, USA
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| | - Tie Liu
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
18
|
Zhang H, Huang Y. Genome-wide identification and characterization of greenbug-inducible NAC transcription factors in sorghum. Mol Biol Rep 2024; 51:207. [PMID: 38270755 DOI: 10.1007/s11033-023-09158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Sorghum (Sorghum bicolor) is an important cereal crop grown worldwide because of its multipurpose uses such as food, forage, and bioenergy feedstock and its wide range of adaption even in marginal environments. Greenbug can cause severe damage to sorghum plants and yield loss. Plant NAC transcription factors (TFs) have been reported to have diverse functions in plant development and plant defense but has not been studied in sorghum yet. METHODS AND RESULTS In this study, a comprehensive analysis of the sorghum NAC (SbNAC) gene family was conducted through genome-wide analysis. A total of 112 NAC genes has been identified in the sorghum genome. These SbNAC genes are phylogenetically clustered into 15 distinct subfamilies and unevenly distribute in clusters at the telomeric ends of each chromosome. Twelve pairs of SbNAC genes are possibly involved in the segmental duplication among nine chromosomes except chromosome 10. Structure analysis showed the diverse structures with a highly variable number of exons in the SbNAC genes. Furthermore, most of the SbNAC genes showed specific temporal and spatial expression patterns according to the results of RNA-seq analysis, suggesting their diverse functions during sorghum growth and development. We have also identified nine greenbug-inducible SbNAC genes by comparing the expression profiles between two sorghum genotypes (susceptible BTx623 and resistant PI607900) in response to greenbug infestation. CONCLUSIONS Our systematic analysis of the NAC gene expression profiles provides both a preliminary survey into their roles in plant defense against insect pests and a useful reference for in-depth characterization of the SbNAC genes and the regulatory network that contributes genetic resistance to aphids.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yinghua Huang
- USDA-ARS Plant Science Research Laboratory, 1301 N. Western Road, Stillwater, OK, 74075, USA.
| |
Collapse
|
19
|
Ahmed J, Sajjad Y, Gatasheh MK, Ibrahim KE, Huzafa M, Khan SA, Situ C, Abbasi AM, Hassan A. Genome-wide identification of NAC transcription factors and regulation of monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2023; 14:1286584. [PMID: 38223288 PMCID: PMC10785006 DOI: 10.3389/fpls.2023.1286584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Abstract
NAC transcription factors (TFs) are crucial to growth and defense responses in plants. Though NACs have been characterized for their role in several plants, comprehensive information regarding their role in Catharanthus roseus, a perennial ornamental plant, is lacking. Homology modelling was employed to identify and characterize NACs in C. roseus. In-vitro propagation of C. roseus plants was carried out using cell suspension and nodal culture and were elicited with two auxin-antagonists, 5-fluoro Indole Acetic Acid (5-F-IAA) and α-(phenyl ethyl-2-oxo)-Indole-Acetic-Acid (PEO-IAA) for the enhanced production of monoterpenoid indole alkaloids (MIAs) namely catharanthine, vindoline, and vinblastine. Analyses revealed the presence of 47 putative CrNAC genes in the C. roseus genome, primarily localized in the nucleus. Phylogenetic analysis categorized these CrNACs into eight clusters, demonstrating the highest synteny with corresponding genes in Camptotheca acuminata. Additionally, at least one defense or hormone-responsive cis-acting element was identified in the promoter region of all the putative CrNACs. Of the two elicitors, 5-F-IAA was effective at 200 µM to elicit a 3.07-fold increase in catharanthine, 2.76-fold in vindoline, and 2.4-fold in vinblastine production in nodal culture. While a relatively lower increase in MIAs was recorded in suspension culture. Validation of RNA-Seq by qRT-PCR showed upregulated expression of stress-related genes (CrNAC-07 and CrNAC-24), and downregulated expression of growth-related gene (CrNAC-25) in elicited nodal culture of C. roseus. Additionally, the expression of genes involved in the biosynthesis of MIAs was significantly upregulated upon elicitation. The current study provides the first report on the role of CrNACs in regulating the biosynthesis of MIAs.
Collapse
Affiliation(s)
- Jawad Ahmed
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Yasar Sajjad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Huzafa
- Department of Plant Sciences, Quaid-e-Azam University, Islamabad, Pakistan, Pakistan
| | - Sabaz Ali Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Chen Situ
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University, Islamabad, Abbottabad, Pakistan
| | - Amjad Hassan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
20
|
Priya P, Patil M, Pandey P, Singh A, Babu VS, Senthil-Kumar M. Stress combinations and their interactions in plants database: a one-stop resource on combined stress responses in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1097-1117. [PMID: 37824297 DOI: 10.1111/tpj.16497] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
We have developed a compendium and interactive platform, named Stress Combinations and their Interactions in Plants Database (SCIPDb; http://www.nipgr.ac.in/scipdb.php), which offers information on morpho-physio-biochemical (phenome) and molecular (transcriptome and metabolome) responses of plants to different stress combinations. SCIPDb is a plant stress informatics hub for data mining on phenome, transcriptome, trait-gene ontology, and data-driven research for advancing mechanistic understanding of combined stress biology. We analyzed global phenome data from 939 studies to delineate the effects of various stress combinations on yield in major crops and found that yield was substantially affected under abiotic-abiotic stresses. Transcriptome datasets from 36 studies hosted in SCIPDb identified novel genes, whose roles have not been earlier established in combined stress. Integretome analysis under combined drought-heat stress pinpointed carbohydrate, amino acid, and energy metabolism pathways as the crucial metabolic, proteomic, and transcriptional components in plant tolerance to combined stress. These examples illustrate the application of SCIPDb in identifying novel genes and pathways involved in combined stress tolerance. Further, we showed the application of this database in identifying novel candidate genes and pathways for combined drought and pathogen stress tolerance. To our knowledge, SCIPDb is the only publicly available platform offering combined stress-specific omics big data visualization tools, such as an interactive scrollbar, stress matrix, radial tree, global distribution map, meta-phenome analysis, search, BLAST, transcript expression pattern table, Manhattan plot, and co-expression network. These tools facilitate a better understanding of the mechanisms underlying plant responses to combined stresses.
Collapse
Affiliation(s)
- Piyush Priya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Mahesh Patil
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Anupriya Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Vishnu Sudha Babu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India
| |
Collapse
|
21
|
Tao X, Zhao Y, Ma L, Wu J, Zeng R, Jiao J, Li R, Ma W, Lian Y, Wang W, Pu Y, Yang G, Liu L, Li X, Sun W. Cloning and functional analysis of the BrCUC2 gene in Brassica rapa L. FRONTIERS IN PLANT SCIENCE 2023; 14:1274567. [PMID: 37965013 PMCID: PMC10642757 DOI: 10.3389/fpls.2023.1274567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
The CUP-SHAPED COTYLEDON2 (CUC2) gene plays an important role in the formation of apical meristem and organ edges in plants. The apical meristematic tissue of Brassica rapa (B. rapa) is associated with cold resistance, however, the role of the CUC2 gene in cold resistance of B.rapa is unclear. In this study, we used bioinformatics software to analyze the structure of BrCUC2 gene, real-time fluorescence quantitative PCR to detect the expression level of BrCUC2, constructed transgenic Arabidopsis thaliana by the flower dipping method and subcellular localization for functional validation. The results showed that, we isolated a 1104 bp open reading frame of BrCUC2 from the winter B. rapa cultivar 'Longyou 7'. The BrCUC2 contains a highly conserved domain belonging to the NAM superfamily. Its homologus CUC genes contain similar conserved motifs and are closely related to Brassica oleracea (B.oleracea), and the N-terminal of amino acid sequence contains NAC domain. BrCUC2 protein was localized in the nucleus and self-activation tests showed that pGBKT7-BrCUC2 had self-activation. Tissue-specific expression analysis and promoter β-Glucuronidase (GUS) activity showed that BrCUC2 had high expression levels in B. rapa growth points and A. thaliana leaf edges, stems and growth points. After low-temperature stress, BrCUC2 showed greater expression in 'Longyou 7,' which presents strong cold resistance and concave growth points, than in 'Longyou 99,' which presents weak cold resistance and protruding growth points. BrCUC2 promoter contains multiple elements related to stress responses. BrCUC2 overexpression revealed that the phenotype did not differ from that of the wild type during the seedling stage but showed weak growth and a dwarf phenotype during the flowering and mature stages. After low-temperature treatment, the physiological indexes and survival rate of BrCUC2-overexpression lines of Arabidopsis thaliana (A. thaliana) were better than those of the wild type within 12 h, although differences were not observed after 24 h. These results showed that BrCUC2 improved the low-temperature tolerance of transgenic A. thaliana within a short time. It can provide a foundation for the study of cold resistance in winter B. rapa.
Collapse
Affiliation(s)
- Xiaolei Tao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Yuhong Zhao
- Gansu Yasheng Agricultural Research Institute Co. Ltd, Crop Office, Lanzhou, China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Rui Zeng
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - JinTang Jiao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Rong Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Weiming Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Yintao Lian
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Xuecai Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
22
|
Hazra A, Ghosh S, Naskar S, Rahaman P, Roy C, Kundu A, Chaudhuri RK, Chakraborti D. Global transcriptome analysis reveals fungal disease responsive core gene regulatory landscape in tea. Sci Rep 2023; 13:17186. [PMID: 37821523 PMCID: PMC10567763 DOI: 10.1038/s41598-023-44163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Fungal infections are the inevitable limiting factor for productivity of tea. Transcriptome reprogramming recruits multiple regulatory pathways during pathogen infection. A comprehensive meta-analysis was performed utilizing previously reported, well-replicated transcriptomic datasets from seven fungal diseases of tea. The study identified a cumulative set of 18,517 differentially expressed genes (DEGs) in tea, implicated in several functional clusters, including the MAPK signaling pathway, transcriptional regulation, and the biosynthesis of phenylpropanoids. Gene set enrichment analyses under each pathogen stress elucidated that DEGs were involved in ethylene metabolism, secondary metabolism, receptor kinase activity, and various reactive oxygen species detoxification enzyme activities. Expressional fold change of combined datasets highlighting 2258 meta-DEGs shared a common transcriptomic response upon fungal stress in tea. Pervasive duplication events caused biotic stress-responsive core DEGs to appear in multiple copies throughout the tea genome. The co-expression network of meta-DEGs in multiple modules demonstrated the coordination of appropriate pathways, most of which involved cell wall organization. The functional coordination was controlled by a number of hub genes and miRNAs, leading to pathogenic resistance or susceptibility. This first-of-its-kind meta-analysis of host-pathogen interaction generated consensus candidate loci as molecular signatures, which can be associated with future resistance breeding programs in tea.
Collapse
Affiliation(s)
- Anjan Hazra
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sanatan Ghosh
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sudipta Naskar
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Piya Rahaman
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Chitralekha Roy
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | | | - Dipankar Chakraborti
- Department of Genetics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
23
|
Hu L, Yang D, Wang H, Du X, Zhang Y, Niu L, Wan B, Xia M, Qi H, Mou T, You A, Li J. Transcriptome analysis revealed differentially expressed genes in rice functionally associated with brown planthopper defense in near isogenic lines pyramiding BPH14 and BPH15. FRONTIERS IN PLANT SCIENCE 2023; 14:1250590. [PMID: 37615020 PMCID: PMC10442831 DOI: 10.3389/fpls.2023.1250590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Although rice has many pests, brown planthopper (BPH) in particular is known to cause substantial damage. The pyramiding application of BPH-resistance genes BPH14 and BPH15 has proven effective in enhancing rice defense against BPH. However, the molecular mechanisms underlying BPH14/BPH15-conferred resistance remain unexplained. In this investigation, we analyzed the transcriptomes of near isogenic lines (NILs) containing either BPH14 (B14), BPH15 (B15), or BPH14/BPH15 (B1415), as well as their recurrent parent (RP) 'Wushansimiao'. In total, we detected 14,492 differentially expressed genes (DEGs) across 12 mRNA profiles of resistant NILs and RP at different feeding stages. In the transcriptomic analysis, 531 DEGs appeared to be common among the resistant NILs compared to RP before and after BPH feeding. These common DEGs were enriched in defense response, phosphorylation, and salt stress response. In addition, 258 DEGs shared only in resistant NILs were obtained among the different feeding stages, which were enriched in oxidative stress response, karrikin response, and chloroplast organization. Considering the expression patterns and relevant research reports associated with these DEGs, 21 were chosen as BPH resistance candidates. In rice protoplasts, the candidate DEG OsPOX8.1 was confirmed to increase reactive oxygen species (ROS) accumulation by chemiluminescence measurement. Our results provide valuable information to further explore the defense mechanism of insect-resistant gene pyramiding lines and develop robust strategies for insect control.
Collapse
Affiliation(s)
- Liang Hu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dabing Yang
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hongbo Wang
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xueshu Du
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yanming Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liping Niu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingliang Wan
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mingyuan Xia
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huaxiong Qi
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Tongmin Mou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Aiqing You
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jinbo Li
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
24
|
Yuan X, Xu J, Yu J, Zhu D, Li H, Zhao Q. The NAC transcription factor ZmNAC132 regulates leaf senescence and male fertility in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111774. [PMID: 37331633 DOI: 10.1016/j.plantsci.2023.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Leaf senescence is an integral step in the final stages of plant development, as nutrient remobilization from leaves to sink organs is accomplished during this process. NACs compose a large superfamily of plant-specific TFs involved in multiple plant development processes. Here, we identified a maize NAC TF, ZmNAC132, involved in leaf senescence and male fertility. ZmNAC132 expression was tightly linked to leaf senescence in an age-dependent manner. Knockout of ZmNAC132 led to delays in chlorophyll degradation and leaf senescence, whereas overexpression of ZmNAC132 had the opposite effects. ZmNAC132 could bind to and transactivate the promoter of ZmNYE1, a major chlorophyll catabolic gene, to accelerate chlorophyll degradation during leaf senescence. Moreover, ZmNAC132 affected male fertility through the upregulation of ZmEXPB1, an expansin-encoding gene associated with sexual reproduction and other related genes. Together, the results show that ZmNAC132 participates in the regulation of leaf senescence and male fertility through the targeting of different downstream genes in maize.
Collapse
Affiliation(s)
- Xiaohong Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jianghai Xu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Hongjie Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
25
|
Viswanath KK, Kuo SY, Tu CW, Hsu YH, Huang YW, Hu CC. The Role of Plant Transcription Factors in the Fight against Plant Viruses. Int J Mol Sci 2023; 24:ijms24098433. [PMID: 37176135 PMCID: PMC10179606 DOI: 10.3390/ijms24098433] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Plants are vulnerable to the challenges of unstable environments and pathogen infections due to their immobility. Among various stress conditions, viral infection is a major threat that causes significant crop loss. In response to viral infection, plants undergo complex molecular and physiological changes, which trigger defense and morphogenic pathways. Transcription factors (TFs), and their interactions with cofactors and cis-regulatory genomic elements, are essential for plant defense mechanisms. The transcriptional regulation by TFs is crucial in establishing plant defense and associated activities during viral infections. Therefore, identifying and characterizing the critical genes involved in the responses of plants against virus stress is essential for the development of transgenic plants that exhibit enhanced tolerance or resistance. This article reviews the current understanding of the transcriptional control of plant defenses, with a special focus on NAC, MYB, WRKY, bZIP, and AP2/ERF TFs. The review provides an update on the latest advances in understanding how plant TFs regulate defense genes expression during viral infection.
Collapse
Affiliation(s)
- Kotapati Kasi Viswanath
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Song-Yi Kuo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Tu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
26
|
Zhou T, Cao L, Hu K, Yu X, Qu S. miR164-NAC21/22 module regulates the resistance of Malus hupehensis against Alternaria alternata by controlling jasmonic acid signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111635. [PMID: 36787851 DOI: 10.1016/j.plantsci.2023.111635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Apple leaf spot disease caused by Alternaria alternata apple pathotype (A. alternata AP) is one of the most severe fungal diseases affecting apple cultivation. Transcription factors are involved in various disease-resistance responses, and many of them are regulated by miRNAs. Here, we performed RNA-Seq to investigate gene expression changes during the defense response of Malus hupehensis against A. alternata AP. NAC21/22 was induced upon A. alternata AP infection and silenced by miR164 via direct mRNA cleavage. Contrasting expression patterns were noted between mature miR164 and NAC21/22 during infection. Contrary to NAC21/22 silencing, transiently overexpressing NAC21/22 in M. hupehensis alleviated disease symptoms on 'gala' leaves, impeded A. alternata AP growth, and promoted jasmonic acid (JA) signaling-related gene expression. Importantly, transient miR164f overexpression in 'gala' leaves enhanced A. alternata AP sensitivity, due perhaps to NAC21/22 downregulation, whereas miR164 suppression produced an opposite effect. In summary, the miR164-NAC21/22 module plays a pivotal role in apple resistance against A. alternata AP by regulating JA signaling.
Collapse
Affiliation(s)
- Tingting Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Kaixu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
27
|
Lv G, Han R, Shi J, Chen K, Liu G, Yu Q, Yang C, Jiang J. Genome-wide identification of the TIFY family reveals JAZ subfamily function in response to hormone treatment in Betula platyphylla. BMC PLANT BIOLOGY 2023; 23:143. [PMID: 36922795 PMCID: PMC10015818 DOI: 10.1186/s12870-023-04138-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The TIFY family is a plant-specific gene family and plays an important role in plant growth and development. But few reports have been reported on the phylogenetic analysis and gene expression profiling of TIFY family genes in birch (Betula platyphylla). RESULTS In this study, we characterized TIFY family and identified 12 TIFY genes and using phylogeny and chromosome mapping analysis in birch. TIFY family members were divided into JAZ, ZML, PPD and TIFY subfamilies. Phylogenetic analysis revealed that 12 TIFY genes were clustered into six evolutionary branches. The chromosome distribution showed that 12 TIFY genes were unevenly distributed on 5 chromosomes. Some TIFY family members were derived from gene duplication in birch. We found that six JAZ genes from JAZ subfamily played essential roles in response to Methyl jasmonate (MeJA), the JAZ genes were correlated with COI1 under MeJA. Co-expression and GO enrichment analysis further revealed that JAZ genes were related to hormone. JAZ proteins involved in the ABA and SA pathways. Subcellular localization experiments confirmed that the JAZ proteins were localized in the nucleus. Yeast two-hybrid assay showed that the JAZ proteins may form homologous or heterodimers to regulate hormones. CONCLUSION Our results provided novel insights into biological function of TIFY family and JAZ subfamily in birch. It provides the theoretical reference for in-depth analysis of plant hormone and molecular breeding design for resistance.
Collapse
Affiliation(s)
- Guanbin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Rui Han
- College of Forestry and Grassland Science, Jilin Agricultural University, Jilin, China
| | - Jingjing Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Qibin Yu
- University of Florida, Lake Alfred, FL, USA
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| |
Collapse
|
28
|
Bi Y, Wang H, Yuan X, Yan Y, Li D, Song F. The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:854-875. [PMID: 36308720 DOI: 10.1111/jipb.13399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
NAC transcription factors (TFs) play critical roles in plant immunity by modulating the expression of downstream genes via binding to specific cis-elements in promoters. Here, we report the function and regulatory network of a pathogen- and defense phytohormone-inducible NAC TF gene, ONAC083, in rice (Oryza sativa) immunity. ONAC083 localizes to the nucleus and exhibits transcriptional activation activity that depends on its C-terminal region. Knockout of ONAC083 enhances rice immunity against Magnaporthe oryzae, strengthening pathogen-induced defense responses, and boosting chitin-induced pattern-triggered immunity (PTI), whereas ONAC083 overexpression has opposite effects. We identified ONAC083-binding sites in the promoters of 82 genes, and showed that ONAC083 specifically binds to a conserved element with the core sequence ACGCAA. ONAC083 activated the transcription of the genes OsRFPH2-6, OsTrx1, and OsPUP4 by directly binding to the ACGCAA element. OsRFPH2-6, encoding a RING-H2 protein with an N-terminal transmembrane region and a C-terminal typical RING domain, negatively regulated rice immunity against M. oryzae and chitin-triggered PTI. These data demonstrate that ONAC083 negatively contributes to rice immunity against M. oryzae by directly activating the transcription of OsRFPH2-6 through the ACGCAA element in its promoter. Overall, our study provides new insight into the molecular regulatory network of NAC TFs in rice immunity.
Collapse
Affiliation(s)
- Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xi Yuan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
29
|
Aknadibossian V, Huguet-Tapia JC, Golyaev V, Pooggin MM, Folimonova SY. Transcriptomic alterations in the sweet orange vasculature correlate with growth repression induced by a variant of citrus tristeza virus. Front Microbiol 2023; 14:1162613. [PMID: 37138615 PMCID: PMC10150063 DOI: 10.3389/fmicb.2023.1162613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Citrus tristeza virus (CTV, family Closteroviridae) is an economically important pathogen of citrus. CTV resides in the phloem of the infected plants and induces a range of disease phenotypes, including stem pitting and quick decline as well as a number of other deleterious syndromes. To uncover the biological processes underlying the poorly understood damaging symptoms of CTV, we profiled the transcriptome of sweet orange (Citrus sinensis) phloem-rich bark tissues of non-infected, mock-inoculated trees and trees singly infected with two distinct variants of CTV, T36 or T68-1. The T36 and T68-1 variants accumulated in the infected plants at similar titers. With that, young trees infected with T68-1 were markedly repressed in growth, while the growth rate of the trees infected with T36 was comparable to the mock-inoculated trees. Only a small number of differentially expressed genes (DEGs) were identified in the nearly asymptomatic T36-infected trees, whereas almost fourfold the number of DEGs were identified with the growth-restricting T68-1 infection. DEGs were validated using quantitative reverse transcription-PCR. While T36 did not induce many noteworthy changes, T68-1 altered the expression of numerous host mRNAs encoding proteins within significant biological pathways, including immunity and stress response proteins, papain-like cysteine proteases (PLCPs), cell-wall modifying enzymes, vascular development proteins and others. The transcriptomic alterations in the T68-1-infected trees, in particular, the strong and persistent increase in the expression levels of PLCPs, appear to contribute to the observed stem growth repression. On the other hand, analysis of the viral small interfering RNAs revealed that the host RNA silencing-based response to the infection by T36 and that by T68-1 was comparable, and thus, the induction of this antiviral mechanism may not contribute to the difference in the observed symptoms. The DEGs identified in this study promote our understanding of the underlying mechanisms of the yet unexplained growth repression induced by severe CTV isolates in sweet orange trees.
Collapse
Affiliation(s)
- Vicken Aknadibossian
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jose C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- *Correspondence: Svetlana Y. Folimonova,
| |
Collapse
|
30
|
Qalavand F, Nasr-Esfahani M, Vatandoost J, Azarm DA. Transcriptome-based analysis of resistance mechanisms to Bipolaris sorokiniana, a common wheat root-rot disease. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:119-130. [PMID: 36177724 DOI: 10.1111/plb.13470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
In common root and crown rot (CRR), Bipolaris sorokiniana (Sace.) is one of the important in wheat, causing considerable yield losses globally. Sources of resistance can provide a feasible and effective method of control for plant disease management. However, knowledge on mechanisms of resistance is scarce. We screened 33 wheat genotypes against B. sorokiniana under greenhouse and field conditions. In addition, real-time quantitative PCR (qPCR) analysis using ten novel candidate gene markers, Cre3, EDS1, LTP5, PGIP, PR-1, PIEP1, TLP, UGT, Stb6 and PFT, was conducted on leaves and roots, along with changes in activity of antioxidant enzymes, peroxidase, catalase, β-1,3-glucanase, and phenolic content for their involvement in disease impact mechanisms. Lowest disease severity was in 'Alvand', followed by 'Baharan' and 'Bam' as resistant genotypes. Quantitative gene expression showed that, although the candidate defence genes were upregulated 1.24- to 3.5-fold in wheat roots and leaves inoculated with B. sorokiniana, they were highly regulated in resistant varieties 'Alvand', 'Mehregan' and 'Bam'. Cre3, a resistance gene to cereal cyst nematode Heterodera filipjevi, was regulated in cultivars resistant to B. sorokiniana. Similar results were obtained for Stb6, a gene resistant to Septoria tritici blotch, EDS1 resistant to powdery mildew, Blumeria graminis, and the genes PR-1 and UGT resistant to leaf rust, Puccinia triticina. Antioxidant enzyme activity also showed the highest increases in resistant genotypes. In conclusion, the T. aestivum-B. sorokiniana interaction in resistant wheat cultivars uses defence-related genes and enzymes that protect wheat towards sustainable development. Further such studies will shed light on simultaneous resistance to other diseases in wheat cultivars.
Collapse
Affiliation(s)
- F Qalavand
- Department of Agricultural-Biotechnology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - M Nasr-Esfahani
- Plant Protection Research Department, Isfahan Agriculture and Natural Resource Research and Education Center, AREEO, Isfahan, Iran
| | - J Vatandoost
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - D A Azarm
- Horticulture Crop Research Department, Isfahan Agriculture and Natural Resource Research and Education Center, AREEO, Isfahan, Iran
| |
Collapse
|
31
|
Xie YN, Yang T, Zhang BT, Qi QQ, Ding AM, Shang LG, Zhang Y, Qian Q, Zhang ZF, Yan N. Systematic Analysis of BELL Family Genes in Zizania latifolia and Functional Identification of ZlqSH1a/b in Rice Seed Shattering. Int J Mol Sci 2022; 23:15939. [PMID: 36555582 PMCID: PMC9781759 DOI: 10.3390/ijms232415939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The loss of seed shattering is an important event in crop domestication, and elucidating the genetic mechanisms underlying seed shattering can help reduce yield loss during crop production. This study is the first to systematically identify and analyse the BELL family of transcription factor-encoding genes in Chinese wild rice (Zizania latifolia). ZlqSH1a (Zla04G033720) and ZlqSH1b (Zla02G027130) were identified as key candidate genes involved in seed shattering in Z. latifolia. These genes were involved in regulating the development of the abscission layer (AL) and were located in the nucleus of the cell. Over-expression of ZlqSH1a and ZlqSH1b resulted in a complete AL between the grain and pedicel and significantly enhanced seed shattering after grain maturation in rice. Transcriptome sequencing revealed that 172 genes were differentially expressed between the wild type (WT) and the two transgenic (ZlqSH1a and ZlqSH1b over-expressing) plants. Three of the differentially expressed genes related to seed shattering were validated using qRT-PCR analysis. These results indicate that ZlqSH1a and ZlqSH1b are involved in AL development in rice grains, thereby regulating seed shattering. Our results could facilitate the genetic improvement of seed-shattering behaviour in Z. latifolia and other cereal crops.
Collapse
Affiliation(s)
- Yan-Ning Xie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ting Yang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Bin-Tao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian-Qian Qi
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - An-Ming Ding
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lian-Guang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
32
|
Boufleur TR, Massola Júnior NS, Becerra S, Baraldi E, Bibiano LBJ, Sukno SA, Thon MR, Baroncelli R. Comparative transcriptomic provides novel insights into the soybean response to Colletotrichum truncatum infection. FRONTIERS IN PLANT SCIENCE 2022; 13:1046418. [PMID: 36507428 PMCID: PMC9732023 DOI: 10.3389/fpls.2022.1046418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Introduction Soybean (Glycine max) is among the most important crops in the world, and its production can be threatened by biotic diseases, such as anthracnose. Soybean anthracnose is a seed-borne disease mainly caused by the hemibiotrophic fungus Colletotrichum truncatum. Typical symptoms are pre- and post-emergence damping off and necrotic lesions on cotyledons, petioles, leaves, and pods. Anthracnose symptoms can appear early in the field, causing major losses to soybean production. Material and Methods In preliminary experiments, we observed that the same soybean cultivar can have a range of susceptibility towards different strains of C. truncatum, while the same C. truncatum strain can cause varying levels of disease severity in different soybean cultivars. To gain a better understanding of the molecular mechanisms regulating the early response of different soybean cultivars to different C. truncatum strains, we performed pathogenicity assays to select two soybean cultivars with significantly different susceptibility to two different C. truncatum strains and analyzed their transcriptome profiles at different time points of interaction (0, 12, 48, and 120 h post-inoculation, hpi). Results and Discussion The pathogenicity assays showed that the soybean cultivar Gm1 is more resistant to C. truncatum strain 1080, and it is highly susceptible to strain 1059, while cultivar Gm2 shows the opposite behavior. However, if only trivial anthracnose symptoms appeared in the more resistant phenotype (MRP; Gm1-1080; Gm2-1059) upon 120 hpi, in the more susceptible phenotype (MSP; Gm-1059; Gm2- 1080) plants show mild symptoms already at 72 hpi, after which the disease evolved rapidly to severe necrosis and plant death. Interestingly, several genes related to different cellular responses of the plant immune system (pathogen recognition, signaling events, transcriptional reprogramming, and defense-related genes) were commonly modulated at the same time points only in both MRP. The list of differentially expressed genes (DEGs) specific to the more resistant combinations and related to different cellular responses of the plant immune system may shed light on the important host defense pathways against soybean anthracnose.
Collapse
Affiliation(s)
- Thaís R. Boufleur
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca (USAL), Villamayor, Spain
| | - Nelson S. Massola Júnior
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Sioly Becerra
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca (USAL), Villamayor, Spain
| | - Elena Baraldi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Líllian B. J. Bibiano
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Serenella A. Sukno
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca (USAL), Villamayor, Spain
| | - Michael R. Thon
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca (USAL), Villamayor, Spain
| | - Riccardo Baroncelli
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca (USAL), Villamayor, Spain
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Comprehensive Analysis of NAC Genes Reveals Differential Expression Patterns in Response to Pst DC3000 and Their Overlapping Expression Pattern during PTI and ETI in Tomato. Genes (Basel) 2022; 13:genes13112015. [DOI: 10.3390/genes13112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
NAC (NAM/ATAF/CUC) transcription factors belong to a unique gene family in plants, which play vital roles in regulating diverse biological processes, including growth, development, senescence, and in response to biotic and abiotic stresses. Tomato (Solanum lycopersicum), as the most highly valued vegetable and fruit crop worldwide, is constantly attacked by Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), causing huge losses in production. Thus, it is essential to conduct a comprehensive identification of the SlNAC genes involved in response to Pst DC3000 in tomato. In this study, a complete overview of this gene family in tomato is presented, including genome localization, protein domain architectures, physical and chemical features, and nuclear location score. Phylogenetic analysis identified 20 SlNAC genes as putative stress-responsive genes, named SSlNAC 1–20. Expression profiles analysis revealed that 18 of these 20 SSlNAC genes were significantly induced in defense response to Pst DC3000 stress. Furthermore, the RNA-seq data were mined and analyzed, and the results revealed the expression pattern of the 20 SSlNAC genes in response to Pst DC3000 during the PTI and ETI. Among them, SSlNAC3, SSlNAC4, SSlNAC7, SSlNAC8, SSlNAC12, SSlNAC17, and SSlNAC19 were up-regulated against Pst DC3000 during PTI and ETI, which suggested that these genes may participate in both the PTI and ETI pathway during the interaction between tomato and Pst DC3000. In addition, SSlNAC genes induced by exogenous hormones, including indole-3-acetic acid (IAA), abscisic acid (ABA), salicylic acid (SA), and methyl jasmonic acid (MeJA), were also recovered. These results implied that SSlNAC genes may participate in the Pst DC3000 stress response by multiple regulatory pathways of the phytohormones. In all, this study provides important clues for further functional analysis and of the regulatory mechanism of SSlNAC genes under Pst DC3000 stress.
Collapse
|
34
|
Liu X, Zong X, Wu X, Liu H, Han J, Yao Z, Ren Y, Ma L, Wang B, Zhang H. Ectopic expression of NAC transcription factor HaNAC3 from Haloxylon ammodendron increased abiotic stress resistance in tobacco. PLANTA 2022; 256:105. [PMID: 36315282 DOI: 10.1007/s00425-022-04021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
HaNAC3 is a transcriptional activator located in the nucleus that may be involved in the response to high temperature, high salt and drought stresses as well as phytohormone IAA and ABA treatments. Our study demonstrated that HaNAC3 increased the tolerance of transgenic tobacco to abiotic stress and was involved in the regulation of a range of downstream genes and metabolic pathways. This also indicates the potential application of HaNAC3 as a plant tolerance gene. NAC transcription factors play a key role in plant growth and development and plant responses to biotic and abiotic stresses. However, the biological functions of NAC transcription factors in the desert plant Haloxylon ammodendron are still poorly understood. In this study, the NAC transcription factor HaNAC3 was isolated and cloned from a typical desert plant H. ammodendron, and its possible biological functions were investigated. Bioinformatics analysis showed that HaNAC3 has the unique N-terminal NAC structural domain of NAC transcription factor. Quantitative real-time fluorescence analysis showed that HaNAC3 was able to participate in the response to simulated drought, high temperature, high salt, and phytohormone IAA and ABA treatments, and was very sensitive to simulated high temperature and phytohormone ABA treatments. Subcellular localization analysis showed that the GFP-HaNAC3 fusion protein was localized in the nucleus of tobacco epidermal cells. The transcriptional self-activation assay showed that HaNAC3 had transcriptional self-activation activity, and the truncation assay confirmed that the transcriptional activation activity was located at the C-terminus. HaNAC3 gene was expressed exogenously in wild-type Nicotiana benthamiana, and the physiological function of HaNAC3 was verified by simulating drought and other abiotic stresses. The results indicated that transgenic tobacco had better resistance to abiotic stresses than wild-type B. fuminata. Further transcriptome analysis showed that HaNAC3 was involved in the regulation of a range of downstream resistance genes, wax biosynthesis and other metabolic pathways. These results suggest that HaNAC3 may have a stress resistance role in H. ammodendron and has potential applications in plant molecular breeding.
Collapse
Affiliation(s)
- Xiashun Liu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xingfeng Zong
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xia Wu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Hao Liu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Jvdong Han
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Zhengpei Yao
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yanping Ren
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Li Ma
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Bo Wang
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Hua Zhang
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China.
- Arid Desert Research Institute, Ürümqi, China.
| |
Collapse
|
35
|
Bai S, Niu Q, Wu Y, Xu K, Miao M, Mei J. Genome-Wide Identification of the NAC Transcription Factors in Gossypium hirsutum and Analysis of Their Responses to Verticillium wilt. PLANTS (BASEL, SWITZERLAND) 2022; 11:2661. [PMID: 36235527 PMCID: PMC9571985 DOI: 10.3390/plants11192661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The NAC transcription factors (NACs) are among the largest plant-specific gene regulators and play essential roles in the transcriptional regulation of both biotic and abiotic stress responses. Verticillium wilt of cotton caused by Verticillium dahliae (V. dahliae) is a destructive soil-borne disease that severely decreases cotton yield and quality. Although NACs constitute a large family in upland cotton (G. hirsutum L.), there is little systematic investigation of the NACs’ responsive to V. dahliae that has been reported. To further explore the key NACs in response to V. dahliae resistance and obtain a better comprehension of the molecular basis of the V. dahliae stress response in cotton, a genome-wide survey was performed in this study. To investigate the roles of GhNACs under V. dahliae induction in upland cotton, mRNA libraries were constructed from mocked and infected roots of upland cotton cultivars with the V. dahliae-sensitive cultivar “Jimian 11” (J11) and V. dahliae-tolerant cultivar “Zhongzhimian 2” (Z2). A total of 271 GhNACs were identified. Genome analysis showed GhNACs phylogenetically classified into 12 subfamilies and distributed across 26 chromosomes and 20 scaffolds. A comparative transcriptome analysis revealed 54 GhNACs were differentially expressed under V. dahliae stress, suggesting a potential role of these GhNACs in disease response. Additionally, one NAC090 homolog, GhNAC204, could be a positive regulator of cotton resistance to V. dahliae infection. These results give insight into the GhNAC gene family, identify GhNACs’ responsiveness to V. dahliae infection, and provide potential molecular targets for future studies for improving V. dahliae resistance in cotton.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Mei
- Correspondence: (M.M.); (J.M.)
| |
Collapse
|
36
|
Huded AKC, Jingade P, Mishra MK, Ercisli S, Ilhan G, Marc RA, Vodnar D. Comparative genomic analysis and phylogeny of NAC25 gene from cultivated and wild Coffea species. FRONTIERS IN PLANT SCIENCE 2022; 13:1009733. [PMID: 36186041 PMCID: PMC9523601 DOI: 10.3389/fpls.2022.1009733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Coffee is a high value agricultural commodity grown in about 80 countries. Sustainable coffee cultivation is hampered by multiple biotic and abiotic stress conditions predominantly driven by climate change. The NAC proteins are plants specific transcription factors associated with various physiological functions in plants which include cell division, secondary wall formation, formation of shoot apical meristem, leaf senescence, flowering embryo and seed development. Besides, they are also involved in biotic and abiotic stress regulation. Due to their ubiquitous influence, studies on NAC transcription factors have gained momentum in different crop plant species. In the present study, NAC25 like transcription factor was isolated and characterized from two cultivated coffee species, Coffea arabica and Coffea canephora and five Indian wild coffee species for the first time. The full-length NAC25 gene varied from 2,456 bp in Coffea jenkinsii to 2,493 bp in C. arabica. In all the seven coffee species, sequencing of the NAC25 gene revealed 3 exons and 2 introns. The NAC25 gene is characterized by a highly conserved 377 bp NAM domain (N-terminus) and a highly variable C terminus region. The sequence analysis revealed an average of one SNP per every 40.92 bp in the coding region and 37.7 bp in the intronic region. Further, the non-synonymous SNPs are 8-11 fold higher compared to synonymous SNPs in the non-coding and coding region of the NAC25 gene, respectively. The expression of NAC25 gene was studied in six different tissue types in C. canephora and higher expression levels were observed in leaf and flower tissues. Further, the relative expression of NAC25 in comparison with the GAPDH gene revealed four folds and eight folds increase in expression levels in green fruit and ripen fruit, respectively. The evolutionary relationship revealed the independent evolution of the NAC25 gene in coffee.
Collapse
Affiliation(s)
- Arun Kumar C. Huded
- Plant Biotechnology Division, Unit of Central Coffee Research Institute, Coffee Board, Mysore, Karnataka, India
| | - Pavankumar Jingade
- Plant Biotechnology Division, Unit of Central Coffee Research Institute, Coffee Board, Mysore, Karnataka, India
| | - Manoj Kumar Mishra
- Plant Biotechnology Division, Unit of Central Coffee Research Institute, Coffee Board, Mysore, Karnataka, India
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Erzurum, Turkey
| | - Gulce Ilhan
- Department of Horticulture, Faculty of Agriculture, Erzurum, Turkey
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Dan Vodnar
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
37
|
Soheili-Moghaddam B, Mousanejad S, Nasr-Esfahani M, Hassanzade-Khankahdani H, Karbalaie-Khiyavie H. Identification of novel associations of candidate genes with resistance to Rhizoctonia solani AG-3PT in Solanum tuberosum stem canker. Int J Biol Macromol 2022; 215:321-333. [PMID: 35718157 DOI: 10.1016/j.ijbiomac.2022.06.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/05/2022]
Abstract
To develop an understanding mechanism to define responding of potatoes to R. solani, we analyzed the expression of ten novel candidate gene-markers using reverse-transcription-quantitative PCR (RT-qPCR) in resistant 'Savalan' and partially resistant 'Agria' in contrast to susceptible 'Sagita', and partially susceptible 'Pashandi'. In addition, oxidant-enzymatic-activity of catalase and superoxide-dismutase, as well as biomass-growth-parameters; shoot and root length, fresh and dry weight, and root volume were considered as complementary factors to the involving mechanism accordingly. Gene-markers up-regulated maximum up to 3.5-fold with the highest correlation, r = 0.939** following R. solani-inoculation, predominantly in resistant genotypes. Surprisingly, WRKY8-gene, basically resistant to late-blight-Phytophtora infestans was also up-regulated to 2.3-fold in resistant 'Savalan' followed by 'Agria'. Similar results with 3.1-fold were obtained on Osmotin-gene resistant to early-blight-Alternaria alternata. Enzymatic-activity of catalase with 1.6-fold and superoxide-dismutase, 6.8-fold also showed the highest level of activity in resistant genotypes, and had a high significant correlation, r = 773** and r = 0.881** with expression levels of related gene-markers respectively. Similarly, there were significant differences in biomass-growth-parameters, but with reductions in partially susceptible 'Sagita' and susceptible 'Pashandi'. Conclusively, S. tuberosum-R. solani interaction revealed that certain gene-markers can cover resistance to more than one disease simultaneously.
Collapse
Affiliation(s)
- Bita Soheili-Moghaddam
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Sedigheh Mousanejad
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | - Mehdi Nasr-Esfahani
- Department of Plant Protection Research, Esfahan Agricultural and Natural Resources Research and Education Center, Esfahan, AREEO, Iran.
| | - Hamed Hassanzade-Khankahdani
- Department of Horticulture Crops Research, Hormozgan Agricultural and Natural Resources Research and Education Center, AREEO, Bandar Abbas, Iran
| | - Houssein Karbalaie-Khiyavie
- Department of Plant Protection Research, Ardebil Agricultural and Natural Resources Research and Education Center, Ardebil, AREEO, Iran
| |
Collapse
|
38
|
Liu J, Yang R, Liang Y, Wang Y, Li X. The DREB A-5 Transcription Factor ScDREB5 From Syntrichia caninervis Enhanced Salt Tolerance by Regulating Jasmonic Acid Biosynthesis in Transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:857396. [PMID: 35463447 PMCID: PMC9019590 DOI: 10.3389/fpls.2022.857396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Salinity is a major limiting factor in crop productivity. Dehydration-responsive element-binding protein (DREB) transcription factors have been widely identified in a variety of plants and play important roles in plant stress responses. Studies on DREBs have primarily focused on the A-1 and A-2 DREB groups, while few have focused on the A-5 group. In this study, we concentrated on ScDREB5, an A-5b type DREB gene from the desiccation-tolerant moss Syntrichia caninervis. ScDREB5 is a transcription factor localized to the nucleus that exhibits transactivation activity in yeast. Ectopic ScDREB5 expression in Arabidopsis thaliana increased seed germination and improved seedling tolerance under salt stress. ScDREB5-overexpression transgenic Arabidopsis lines showed lower methane dicarboxylic aldehyde (MDA) and hydrogen peroxide (H2O2) contents, but higher peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities compared to wild plants. Moreover, the transcriptional levels of stress marker genes, including RD29B, COR47, LEA6, LEA7, ERD1, P5CS1, and salt overly sensitive (SOS) genes (SOS1, SOS2, and SOS3), were upregulated in the transgenic lines when subjected to salt treatment. Transcriptome and real-time quantitative PCR (RT-qPCR) analyses indicated that transgenic lines were accompanied by an increased expression of jasmonic acid (JA) biosynthesis genes, as well as a higher JA content under salt stress. Our results suggest that ScDREB5 could improve salt tolerance by enhancing the scavenging abilities of reactive oxygen species (ROS), increasing JA content by upregulating JA synthesis gene expression, regulating ion homeostasis by up-regulating stress-related genes, osmotic adjustment, and protein protection, making ScDREB5 a promising candidate gene for crop salt stress breeding.
Collapse
Affiliation(s)
- Jinyuan Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
39
|
Niu X, Fu D. The Roles of BLH Transcription Factors in Plant Development and Environmental Response. Int J Mol Sci 2022; 23:3731. [PMID: 35409091 PMCID: PMC8998993 DOI: 10.3390/ijms23073731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent advancements in plant molecular biology and biotechnology, providing enough, and safe, food for an increasing world population remains a challenge. The research into plant development and environmental adaptability has attracted more and more attention from various countries. The transcription of some genes, regulated by transcript factors (TFs), and their response to biological and abiotic stresses, are activated or inhibited during plant development; examples include, rooting, flowering, fruit ripening, drought, flooding, high temperature, pathogen infection, etc. Therefore, the screening and characterization of transcription factors have increasingly become a hot topic in the field of plant research. BLH/BELL (BEL1-like homeodomain) transcription factors belong to a subfamily of the TALE (three-amino-acid-loop-extension) superfamily and its members are involved in the regulation of many vital biological processes, during plant development and environmental response. This review focuses on the advances in our understanding of the function of BLH/BELL TFs in different plants and their involvement in the development of meristems, flower, fruit, plant morphogenesis, plant cell wall structure, the response to the environment, including light and plant resistance to stress, biosynthesis and signaling of ABA (Abscisic acid), IAA (Indoleacetic acid), GA (Gibberellic Acid) and JA (Jasmonic Acid). We discuss the theoretical basis and potential regulatory models for BLH/BELL TFs' action and provide a comprehensive view of their multiple roles in modulating different aspects of plant development and response to environmental stress and phytohormones. We also present the value of BLHs in the molecular breeding of improved crop varieties and the future research direction of the BLH gene family.
Collapse
Affiliation(s)
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
40
|
Zeng C, Wu H, Cao M, Zhou C, Wang X, Fu S. Integrated Analysis of the miRNAome and Transcriptome Reveals miRNA-mRNA Regulatory Networks in Catharanthus roseus Through Cuscuta campestris-Mediated Infection With " Candidatus Liberibacter asiaticus". Front Microbiol 2022; 13:799819. [PMID: 35308338 PMCID: PMC8928264 DOI: 10.3389/fmicb.2022.799819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Citrus Huanglongbing (HLB) is the most devastating disease of citrus caused by the Gram-negative phloem-limited bacterium "Candidatus Liberibacter asiaticus" (CLas). It can be transmitted by the Asian citrus psyllid "Diaphorina citri," by grafting, and by the holoparasitic dodder. In this study, the non-natural host periwinkle (Catharanthus roseus) was infected via dodder (Cuscuta campestris) from CLas-infected citrus plants, and the asymptomatic leaves (AS) were subjected to transcriptomic and small-RNA profiling. The results were analyzed together with a transcriptome dataset from the NCBI repository that included leaves for which symptoms had just occurred (S) and yellowing leaves (Y). There were 3,675 differentially expressed genes (DEGs) identified in AS, and 6,390 more DEGs in S and further 2109 DEGs in Y. These DEGs were commonly enriched in photosystem, chloroplast, membrane, oxidation-reduction process, metal/zinc ion binding on GO. A total of 14,974 DEGs and 336 DE miRNAs (30 conserved and 301 novel) were identified. Through weighted gene co-expression network and nested network analyses, two critical nested miRNA-mRNA regulatory networks were identified with four conserved miRNAs. The primary miR164-NAC1 network is potentially involved in plant defense responses against CLas from the early infection stage to symptom development. The secondary network revealed the regulation of secondary metabolism and nutrient homeostasis through miR828-MYB94/miR1134-HSF4 and miR827-ATG8 regulatory networks, respectively. The findings discovered new potential mechanisms in periwinkle-CLas interactions, and its confirmation can be done in citrus-CLas system later on. The advantages of periwinkle plants in facilitating the quick establishment and greater multiplication of CLas, and shortening latency for disease symptom development make it a great surrogate for further studies, which could expedite our understanding of CLas pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Shimin Fu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
41
|
Yan H, Ma G, Teixeira da Silva JA, Qiu L, Xu J, Zhou H, Wei M, Xiong J, Li M, Zhou S, Wu J, Tang X. Genome-Wide Identification and Analysis of NAC Transcription Factor Family in Two Diploid Wild Relatives of Cultivated Sweet Potato Uncovers Potential NAC Genes Related to Drought Tolerance. Front Genet 2021; 12:744220. [PMID: 34899836 DOI: 10.3389/fgene.021.744220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) proteins play a pivotal role in modulating plant development and offer protection against biotic and abiotic stresses. Until now, no systematic knowledge of NAC family genes is available for the food security crop, sweet potato. Here, a comprehensive genome-wide survey of NAC domain-containing proteins identified 130 ItbNAC and 144 ItfNAC genes with full length sequences in the genomes of two diploid wild relatives of cultivated sweet potato, Ipomoea triloba and Ipomoea trifida, respectively. These genes were physically mapped onto 15 I. triloba and 16 I. trifida chromosomes, respectively. Phylogenetic analysis divided all 274 NAC proteins into 20 subgroups together with NAC transcription factors (TFs) from Arabidopsis. There were 9 and 15 tandem duplication events in the I. triloba and I. trifida genomes, respectively, indicating an important role of tandem duplication in sweet potato gene expansion and evolution. Moreover, synteny analysis suggested that most NAC genes in the two diploid sweet potato species had a similar origin and evolutionary process. Gene expression patterns based on RNA-Seq data in different tissues and in response to various hormone, biotic or abiotic treatments revealed their possible involvement in organ development and response to various biotic/abiotic stresses. The expression of 36 NAC TFs, which were upregulated in the five tissues and in response to mannitol treatment, was also determined by real-time quantitative polymerase chain reaction (RT-qPCR) in hexaploid cultivated sweet potato exposed to drought stress. Those results largely corroborated the expression profile of mannitol treatment uncovered by the RNA-Seq data. Some significantly up-regulated genes related to drought stress, such as ItbNAC110, ItbNAC114, ItfNAC15, ItfNAC28, and especially ItfNAC62, which had a conservative spatial conformation with a closely related paralogous gene, ANAC019, may be potential candidate genes for a sweet potato drought tolerance breeding program. This analysis provides comprehensive and systematic information about NAC family genes in two diploid wild relatives of cultivated sweet potato, and will provide a blueprint for their functional characterization and exploitation to improve the tolerance of sweet potato to abiotic stresses.
Collapse
Affiliation(s)
- Haifeng Yan
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | | | - Lihang Qiu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Juan Xu
- Biological Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Minzheng Wei
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Xiong
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mingzhi Li
- Biodata Biotechnology Co., Ltd, Hefei, China
| | - Shaohuan Zhou
- GuangXi Center for Disease Prevention and Control, Nanning, China
| | - Jianming Wu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Xiuhua Tang
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
42
|
Wang H, Bi Y, Gao Y, Yan Y, Yuan X, Xiong X, Wang J, Liang J, Li D, Song F. A Pathogen-Inducible Rice NAC Transcription Factor ONAC096 Contributes to Immunity Against Magnaprothe oryzae and Xanthomonas oryzae pv. oryzae by Direct Binding to the Promoters of OsRap2.6, OsWRKY62, and OsPAL1. FRONTIERS IN PLANT SCIENCE 2021; 12:802758. [PMID: 34956298 PMCID: PMC8702954 DOI: 10.3389/fpls.2021.802758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The rice NAC transcriptional factor family harbors 151 members, and some of them play important roles in rice immunity. Here, we report the function and molecular mechanism of a pathogen-inducible NAC transcription factor, ONAC096, in rice immunity against Magnaprothe oryzae and Xanthomonas oryzae pv. oryzae. Expression of ONAC096 was induced by M. oryzae and by abscisic acid and methyl jasmonate. ONAC096 had the DNA binding ability to NAC recognition sequence and was found to be a nucleus-localized transcriptional activator whose activity depended on its C-terminal. CRISPR/Cas9-mediated knockout of ONAC096 attenuated rice immunity against M. oryzae and X. oryzae pv. oryzae as well as suppressed chitin- and flg22-induced reactive oxygen species burst and expression of PTI marker genes OsWRKY45 and OsPAL4; by contrast, overexpression of ONAC096 enhanced rice immunity against these two pathogens and strengthened chitin- or flg22-induced PTI. RNA-seq transcriptomic profiling and qRT-PCR analysis identified a small set of defense and signaling genes that are putatively regulated by ONAC096, and further biochemical analysis validated that ONAC096 could directly bind to the promoters of OsRap2.6, OsWRKY62, and OsPAL1, three known defense and signaling genes that regulate rice immunity. ONAC096 interacts with ONAC066, which is a positive regulator of rice immunity. These results demonstrate that ONAC096 positively contributes to rice immunity against M. oryzae and X. oryzae pv. oryzae through direct binding to the promoters of downstream target genes including OsRap2.6, OsWRKY62, and OsPAL1.
Collapse
Affiliation(s)
- Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xi Yuan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Xiaohui Xiong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiajing Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiayu Liang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Yan H, Ma G, Teixeira da Silva JA, Qiu L, Xu J, Zhou H, Wei M, Xiong J, Li M, Zhou S, Wu J, Tang X. Genome-Wide Identification and Analysis of NAC Transcription Factor Family in Two Diploid Wild Relatives of Cultivated Sweet Potato Uncovers Potential NAC Genes Related to Drought Tolerance. Front Genet 2021; 12:744220. [PMID: 34899836 PMCID: PMC8653416 DOI: 10.3389/fgene.2021.744220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) proteins play a pivotal role in modulating plant development and offer protection against biotic and abiotic stresses. Until now, no systematic knowledge of NAC family genes is available for the food security crop, sweet potato. Here, a comprehensive genome-wide survey of NAC domain-containing proteins identified 130 ItbNAC and 144 ItfNAC genes with full length sequences in the genomes of two diploid wild relatives of cultivated sweet potato, Ipomoea triloba and Ipomoea trifida, respectively. These genes were physically mapped onto 15 I. triloba and 16 I. trifida chromosomes, respectively. Phylogenetic analysis divided all 274 NAC proteins into 20 subgroups together with NAC transcription factors (TFs) from Arabidopsis. There were 9 and 15 tandem duplication events in the I. triloba and I. trifida genomes, respectively, indicating an important role of tandem duplication in sweet potato gene expansion and evolution. Moreover, synteny analysis suggested that most NAC genes in the two diploid sweet potato species had a similar origin and evolutionary process. Gene expression patterns based on RNA-Seq data in different tissues and in response to various hormone, biotic or abiotic treatments revealed their possible involvement in organ development and response to various biotic/abiotic stresses. The expression of 36 NAC TFs, which were upregulated in the five tissues and in response to mannitol treatment, was also determined by real-time quantitative polymerase chain reaction (RT-qPCR) in hexaploid cultivated sweet potato exposed to drought stress. Those results largely corroborated the expression profile of mannitol treatment uncovered by the RNA-Seq data. Some significantly up-regulated genes related to drought stress, such as ItbNAC110, ItbNAC114, ItfNAC15, ItfNAC28, and especially ItfNAC62, which had a conservative spatial conformation with a closely related paralogous gene, ANAC019, may be potential candidate genes for a sweet potato drought tolerance breeding program. This analysis provides comprehensive and systematic information about NAC family genes in two diploid wild relatives of cultivated sweet potato, and will provide a blueprint for their functional characterization and exploitation to improve the tolerance of sweet potato to abiotic stresses.
Collapse
Affiliation(s)
- Haifeng Yan
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | | | - Lihang Qiu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Juan Xu
- Biological Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Minzheng Wei
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Xiong
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mingzhi Li
- Biodata Biotechnology Co., Ltd, Hefei, China
| | - Shaohuan Zhou
- GuangXi Center for Disease Prevention and Control, Nanning, China,*Correspondence: Shaohuan Zhou, ; Jianming Wu, ; Xiuhua Tang,
| | - Jianming Wu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China,*Correspondence: Shaohuan Zhou, ; Jianming Wu, ; Xiuhua Tang,
| | - Xiuhua Tang
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China,*Correspondence: Shaohuan Zhou, ; Jianming Wu, ; Xiuhua Tang,
| |
Collapse
|
44
|
Martin RC, Kronmiller BA, Dombrowski JE. Transcriptome Analysis of Lolium temulentum Exposed to a Combination of Drought and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112247. [PMID: 34834610 PMCID: PMC8621252 DOI: 10.3390/plants10112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Drought and heat are two major stresses predicted to increase in the future due to climate change. Plants exposed to multiple stressors elicit unique responses from those observed under individual stresses. A comparative transcriptome analysis of Lolium temulentum exposed to drought plus heat and non-stressed control plants revealed 20,221 unique up-regulated and 17,034 unique down-regulated differentially regulated transcripts. Gene ontology analysis revealed a strong emphasis on transcriptional regulation, protein folding, cell cycle/parts, organelles, binding, transport, signaling, oxidoreductase, and antioxidant activity. Differentially expressed genes (DEGs) encoding for transcriptional control proteins such as basic leucine zipper, APETALA2/Ethylene Responsive Factor, NAC, and WRKY transcription factors, and Zinc Finger (CCCH type and others) proteins were more often up-regulated, while DEGs encoding Basic Helix-Loop-Helix, MYB and GATA transcription factors, and C2H2 type Zinc Finger proteins were more often down-regulated. The DEGs encoding heat shock transcription factors were only up-regulated. Of the hormones, auxin-related DEGs were the most prevalent, encoding for auxin response factors, binding proteins, and efflux/influx carriers. Gibberellin-, cytokinin- and ABA-related DEGs were also prevalent, with fewer DEGs related to jasmonates and brassinosteroids. Knowledge of genes/pathways that grasses use to respond to the combination of heat/drought will be useful in developing multi-stress resistant grasses.
Collapse
Affiliation(s)
- Ruth C. Martin
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| | - Brent A. Kronmiller
- Center for Quantitative Life Sciences, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-7102, USA;
| | - James E. Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| |
Collapse
|
45
|
Yuan X, Wang H, Bi Y, Yan Y, Gao Y, Xiong X, Wang J, Li D, Song F. ONAC066, A Stress-Responsive NAC Transcription Activator, Positively Contributes to Rice Immunity Against Magnaprothe oryzae Through Modulating Expression of OsWRKY62 and Three Cytochrome P450 Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:749186. [PMID: 34567053 PMCID: PMC8458891 DOI: 10.3389/fpls.2021.749186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
NAC transcriptional factors constitute a large family in rice and some of them have been demonstrated to play crucial roles in rice immunity. The present study investigated the function and mechanism of ONAC066 in rice immunity. ONAC066 shows transcription activator activity that depends on its C-terminal region in rice cells. ONAC066-OE plants exhibited enhanced resistance while ONAC066-Ri and onac066-1 plants showed attenuated resistance to Magnaporthe oryzae. A total of 81 genes were found to be up-regulated in ONAC066-OE plants, and 26 of them were predicted to be induced by M. oryzae. Four OsWRKY genes, including OsWRKY45 and OsWRKY62, were up-regulated in ONAC066-OE plants but down-regulated in ONAC066-Ri plants. ONAC066 bound to NAC core-binding site in OsWRKY62 promoter and activated OsWRKY62 expression, indicating that OsWRKY62 is a ONAC066 target. A set of cytochrome P450 genes were found to be co-expressed with ONAC066 and 5 of them were up-regulated in ONAC066-OE plants but down-regulated in ONAC066-Ri plants. ONAC066 bound to promoters of cytochrome P450 genes LOC_Os02g30110, LOC_Os06g37300, and LOC_Os02g36150 and activated their transcription, indicating that these three cytochrome P450 genes are ONAC066 targets. These results suggest that ONAC066, as a transcription activator, positively contributes to rice immunity through modulating the expression of OsWRKY62 and a set of cytochrome P450 genes to activate defense response.
Collapse
Affiliation(s)
- Xi Yuan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaohui Xiong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiajing Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Dong S, Sang L, Xie H, Chai M, Wang ZY. Comparative Transcriptome Analysis of Salt Stress-Induced Leaf Senescence in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:666660. [PMID: 34305965 PMCID: PMC8299074 DOI: 10.3389/fpls.2021.666660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
Leaves are the most critical portion of forage crops such as alfalfa (Medicago sativa). Leaf senescence caused by environmental stresses significantly impacts the biomass and quality of forages. To understand the molecular mechanisms and identify the key regulator of the salt stress-induced leaf senescence process, we conducted a simple and effective salt stress-induced leaf senescence assay in Medicago truncatula, which was followed by RNA-Seq analysis coupled with physiological and biochemical characterization. By comparing the observed expression data with that derived from dark-induced leaf senescence at different time points, we identified 3,001, 3,787, and 4,419 senescence-associated genes (SAGs) for salt stress-induced leaf senescence on day 2, 4, and 6, respectively. There were 1546 SAGs shared by dark and salt stress treatment across the three time points. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the 1546 SAGs were mainly related to protein and amino acids metabolism, photosynthesis, chlorophyll metabolism, and hormone signaling during leaf senescence. Strikingly, many different transcription factors (TFs) families out of the 1546 SAGs, including NAC, bHLH, MYB, and ERF, were associated with salt stress-induced leaf senescence processes. Using the transient expression system in Nicotiana benthamiana, we verified that three functional NAC TF genes from the 1546 SAGs were related to leaf senescence. These results clarify SAGs under salt stress in M. truncatula and provide new insights and additional genetic resources for further forage crop breeding.
Collapse
Affiliation(s)
| | | | | | - Maofeng Chai
- *Correspondence: Maofeng Chai orcid.org/0000-0001-9915-0321
| | | |
Collapse
|