1
|
Kolokathis PD, Zouraris D, Voyiatzis E, Sidiropoulos NK, Tsoumanis A, Melagraki G, Tämm K, Lynch I, Afantitis A. NanoConstruct: A web application builder of ellipsoidal nanoparticles for the investigation of their crystal growth, stability, and the calculation of atomistic descriptors. Comput Struct Biotechnol J 2024; 25:81-90. [PMID: 38883847 PMCID: PMC11179235 DOI: 10.1016/j.csbj.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
NanoConstruct is a state-of-the-art computational tool that enables a) the digital construction of ellipsoidal neutral energy minimized nanoparticles (NPs) in vacuum through its graphical user-friendly interface, and b) the calculation of NPs atomistic descriptors. It allows the user to select NP's shape and size by inserting its ellipsoidal axes and rotation angle while the NP material is selected by uploading its Crystallography Information File (CIF). To investigate the stability of materials not yet synthesised, NanoConstruct allows the substitution of the chemical elements of an already synthesized material with chemical elements that belong into the same group and neighbouring rows of the periodic table. The process is divided into three stages: 1) digital construction of the unit cell, 2) digital construction of NP using geometry rules and keeping its stoichiometry and 3) energy minimization of the geometrically constructed NP and calculation of its atomistic descriptors. In this study, NanoConstruct was applied for the investigation of the crystal growth of Zirconia (ZrO2) NPs when in the rutile form. The most stable configuration and the crystal growth route were identified, showing a preferential direction for the crystal growth of ZrO2 in its rutile form. NanoConstruct is freely available through the Enalos Cloud Platform (https://enaloscloud.novamechanics.com/riskgone/nanoconstruct/).
Collapse
Affiliation(s)
| | - Dimitrios Zouraris
- NovaMechanics Ltd, Nicosia 1070, Cyprus
- Entelos Institute, Larnaca 6059, Cyprus
| | | | | | - Andreas Tsoumanis
- NovaMechanics MIKE, Piraeus 18545, Greece
- NovaMechanics Ltd, Nicosia 1070, Cyprus
| | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, Vari 16672, Greece
| | - Kaido Tämm
- Institute of Chemistry, University of Tartu, Tartu 50090, Estonia
| | - Iseult Lynch
- Entelos Institute, Larnaca 6059, Cyprus
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Antreas Afantitis
- NovaMechanics MIKE, Piraeus 18545, Greece
- NovaMechanics Ltd, Nicosia 1070, Cyprus
- Entelos Institute, Larnaca 6059, Cyprus
| |
Collapse
|
2
|
Wang Y. Novel drug discovery approaches for MMP-13 inhibitors in the treatment of osteoarthritis. Bioorg Med Chem Lett 2024; 114:130009. [PMID: 39477129 DOI: 10.1016/j.bmcl.2024.130009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/05/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Recently, the key role of matrix metalloproteinase-13 (MMP-13) in a variety of diseases has attracted much attention. In the field of osteoarthritis (OA) treatment, the study of MMP-13 inhibitors has become a hotspot, and the development of selective MMP-13 inhibitors is a key direction of OA treatment strategies. This paper aims to summarize the latest research progress on MMP-13 inhibitors in drug design and delivery systems in OA treatment, in order to provide new ideas and strategies for the development of MMP-13 inhibitors. In the context of drug design, researchers have utilized innovative drug discovery strategies to developed a number of potential MMP-13 inhibitors by accurately simulating the active site and analyzing the structure of known inhibitors. With regard to delivery systems, nanotechnology has been extensively employed to enhance the targeting and bioavailability of MMP-13 inhibitors, effectively improving therapeutic efficacy through precise delivery to the lesion site. The latest research developments not only reveal the significant potential of MMP-13 inhibitors in disease treatment, but also provide new directions and challenges for future research.
Collapse
Affiliation(s)
- Yi Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
3
|
Son A, Park J, Kim W, Yoon Y, Lee S, Park Y, Kim H. Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence. Molecules 2024; 29:4626. [PMID: 39407556 PMCID: PMC11477718 DOI: 10.3390/molecules29194626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Sangwoon Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Yongho Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, Prove beyond AI, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Chakraborty C, Bhattacharya M, Lee SS, Wen ZH, Lo YH. The changing scenario of drug discovery using AI to deep learning: Recent advancement, success stories, collaborations, and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102295. [PMID: 39257717 PMCID: PMC11386122 DOI: 10.1016/j.omtn.2024.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Due to the transformation of artificial intelligence (AI) tools and technologies, AI-driven drug discovery has come to the forefront. It reduces the time and expenditure. Due to these advantages, pharmaceutical industries are concentrating on AI-driven drug discovery. Several drug molecules have been discovered using AI-based techniques and tools, and several newly AI-discovered drug molecules have already entered clinical trials. In this review, we first present the data and their resources in the pharmaceutical sector for AI-driven drug discovery and illustrated some significant algorithms or techniques used for AI and ML which are used in this field. We gave an overview of the deep neural network (NN) models and compared them with artificial NNs. Then, we illustrate the recent advancement of the landscape of drug discovery using AI to deep learning, such as the identification of drug targets, prediction of their structure, estimation of drug-target interaction, estimation of drug-target binding affinity, design of de novo drug, prediction of drug toxicity, estimation of absorption, distribution, metabolism, excretion, toxicity; and estimation of drug-drug interaction. Moreover, we highlighted the success stories of AI-driven drug discovery and discussed several collaboration and the challenges in this area. The discussions in the article will enrich the pharmaceutical industry.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung 813204, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung 821004, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
5
|
Li B, Tan K, Lao AR, Wang H, Zheng H, Zhang L. A comprehensive review of artificial intelligence for pharmacology research. Front Genet 2024; 15:1450529. [PMID: 39290983 PMCID: PMC11405247 DOI: 10.3389/fgene.2024.1450529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
With the innovation and advancement of artificial intelligence, more and more artificial intelligence techniques are employed in drug research, biomedical frontier research, and clinical medicine practice, especially, in the field of pharmacology research. Thus, this review focuses on the applications of artificial intelligence in drug discovery, compound pharmacokinetic prediction, and clinical pharmacology. We briefly introduced the basic knowledge and development of artificial intelligence, presented a comprehensive review, and then summarized the latest studies and discussed the strengths and limitations of artificial intelligence models. Additionally, we highlighted several important studies and pointed out possible research directions.
Collapse
Affiliation(s)
- Bing Li
- College of Computer Science, Sichuan University, Chengdu, China
| | - Kan Tan
- College of Computer Science, Sichuan University, Chengdu, China
| | - Angelyn R Lao
- Department of Mathematics and Statistics, De La Salle University, Manila, Philippines
| | - Haiying Wang
- School of Computing, Ulster University, Belfast, United Kingdom
| | - Huiru Zheng
- School of Computing, Ulster University, Belfast, United Kingdom
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Liu Y, Yu Y, Wu B, Qian J, Mu H, Gu L, Zhou R, Zhang H, Wu H, Bu Y. A comprehensive prediction system for silkworm acute toxicity assessment of environmental and in-silico pesticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116759. [PMID: 39029220 DOI: 10.1016/j.ecoenv.2024.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The excessive application and loss of pesticides poses a great risk to the ecosystem, and the environmental safety assessment of pesticides is time-consuming and expensive using traditional animal toxicity tests. In this work, a pesticide acute toxicity dataset was created for silkworm integrating extensive experiments and various common pesticide formulations considering the sensitivity of silkworm to adverse environment, its economic value in China, and a gap in machine learning (ML) research on the toxicity prediction of this species, which addressed the previous limitation of only being able to predict toxicity classification without specific toxicity values. A new comprehensive voting model (CVR) was developed based on ML, combined with three regression algorithms, namely, Bayesian Ridge (BR), K Neighbors Regressor (KNN), Random Forest Regressor (RF) to accurately calculate lethal concentration 50 % (LC50). Three conformal models were successfully constructed, marking the first combination of conformal models with confidence intervals to predict silkworm toxicity. Further, the mechanism by analyzing structural alerts was summarized, and identified 25 warning structures, 24 positive compounds and 14 negative compounds. Importantly, a novel comprehensive prediction system was constructed that can provide LC50 and confidence intervals, structural alerts analysis, lipid-water partition coefficient (LogP) and similarity analysis, which can comprehensively evaluate the ecological toxicity risk of substances to make up for the incomplete toxicity data of new pesticides. The validity and generalization of the CVR model were verified by an external validation set. In addition, five new, low-toxic and green pesticide alternatives were designed through 50,000 cycles. Moreover, our software and ST Profiler can provide low-cost information access to accelerate environmental risk assessment, which can predict not only a single chemical, but also batches of chemicals, simply by inputting the SMILES / CAS / (Chinese / English) name of chemicals.
Collapse
Affiliation(s)
- Yutong Liu
- Research Center of Solid Waste Pollution and Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, PR China; Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Yu
- Research Center of Solid Waste Pollution and Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jieshu Qian
- School of Environmental Engineering, Wuxi University, Jiangsu 214105, PR China
| | - Hongxin Mu
- Research Center of Solid Waste Pollution and Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Luyao Gu
- Research Center of Solid Waste Pollution and Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Rong Zhou
- Research Center of Solid Waste Pollution and Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Houhu Zhang
- Research Center of Solid Waste Pollution and Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Hua Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yuanqing Bu
- Research Center of Solid Waste Pollution and Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, PR China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, PR China.
| |
Collapse
|
7
|
Ivachtchenko AV, Khvat AV, Shkil DO. Development and Prospects of Furin Inhibitors for Therapeutic Applications. Int J Mol Sci 2024; 25:9199. [PMID: 39273149 PMCID: PMC11394684 DOI: 10.3390/ijms25179199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target, leading to the active development of furin inhibitors for potential use in antiviral, antibacterial, anticancer, and other therapeutic applications. This review provides a comprehensive overview of the progress in the development and characterization of furin inhibitors, encompassing peptides, linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in the treatment of both infectious and non-infectious diseases.
Collapse
|
8
|
Rezić I, Somogyi Škoc M. Computational Methodologies in Synthesis, Preparation and Application of Antimicrobial Polymers, Biomolecules, and Nanocomposites. Polymers (Basel) 2024; 16:2320. [PMID: 39204538 PMCID: PMC11359845 DOI: 10.3390/polym16162320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The design and optimization of antimicrobial materials (polymers, biomolecules, or nanocomposites) can be significantly advanced by computational methodologies like molecular dynamics (MD), which provide insights into the interactions and stability of the antimicrobial agents within the polymer matrix, and machine learning (ML) or design of experiment (DOE), which predicts and optimizes antimicrobial efficacy and material properties. These innovations not only enhance the efficiency of developing antimicrobial polymers but also enable the creation of materials with tailored properties to meet specific application needs, ensuring safety and longevity in their usage. Therefore, this paper will present the computational methodologies employed in the synthesis and application of antimicrobial polymers, biomolecules, and nanocomposites. By leveraging advanced computational techniques such as MD, ML, or DOE, significant advancements in the design and optimization of antimicrobial materials are achieved. A comprehensive review on recent progress, together with highlights of the most relevant methodologies' contributions to state-of-the-art materials science will be discussed, as well as future directions in the field will be foreseen. Finally, future possibilities and opportunities will be derived from the current state-of-the-art methodologies, providing perspectives on the potential evolution of polymer science and engineering of novel materials.
Collapse
Affiliation(s)
- Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Maja Somogyi Škoc
- Department of Materials Testing, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
9
|
Duo L, Liu Y, Ren J, Tang B, Hirst JD. Artificial intelligence for small molecule anticancer drug discovery. Expert Opin Drug Discov 2024; 19:933-948. [PMID: 39074493 DOI: 10.1080/17460441.2024.2367014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION The transition from conventional cytotoxic chemotherapy to targeted cancer therapy with small-molecule anticancer drugs has enhanced treatment outcomes. This approach, which now dominates cancer treatment, has its advantages. Despite the regulatory approval of several targeted molecules for clinical use, challenges such as low response rates and drug resistance still persist. Conventional drug discovery methods are costly and time-consuming, necessitating more efficient approaches. The rise of artificial intelligence (AI) and access to large-scale datasets have revolutionized the field of small-molecule cancer drug discovery. Machine learning (ML), particularly deep learning (DL) techniques, enables the rapid identification and development of novel anticancer agents by analyzing vast amounts of genomic, proteomic, and imaging data to uncover hidden patterns and relationships. AREA COVERED In this review, the authors explore the important landmarks in the history of AI-driven drug discovery. They also highlight various applications in small-molecule cancer drug discovery, outline the challenges faced, and provide insights for future research. EXPERT OPINION The advent of big data has allowed AI to penetrate and enable innovations in almost every stage of medicine discovery, transforming the landscape of oncology research through the development of state-of-the-art algorithms and models. Despite challenges in data quality, model interpretability, and technical limitations, advancements promise breakthroughs in personalized and precision oncology, revolutionizing future cancer management.
Collapse
Affiliation(s)
- Lihui Duo
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Yu Liu
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Jianfeng Ren
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Bencan Tang
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham University Park, Nottingham, UK
| |
Collapse
|
10
|
Chen S, Xie J, Ye R, Xu DD, Yang Y. Structure-aware dual-target drug design through collaborative learning of pharmacophore combination and molecular simulation. Chem Sci 2024; 15:10366-10380. [PMID: 38994407 PMCID: PMC11234869 DOI: 10.1039/d4sc00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/09/2024] [Indexed: 07/13/2024] Open
Abstract
Dual-target drug design has gained significant attention in the treatment of complex diseases, such as cancers and autoimmune disorders. A widely employed design strategy is combining pharmacophores to leverage the knowledge of structure-activity relationships of both targets. Unfortunately, pharmacophore combination often struggles with long and expensive trial and error, because the protein pockets of the two targets impose complex structural constraints. In this study, we propose AIxFuse, a structure-aware dual-target drug design method that learns pharmacophore fusion patterns to satisfy the dual-target structural constraints simulated by molecular docking. AIxFuse employs two self-play reinforcement learning (RL) agents to learn pharmacophore selection and fusion by comprehensive feedback including dual-target molecular docking scores. Collaboratively, the molecular docking scores are learned by active learning (AL). Through collaborative RL and AL, AIxFuse learns to generate molecules with multiple desired properties. AIxFuse is shown to outperform state-of-the-art methods in generating dual-target drugs against glycogen synthase kinase-3 beta (GSK3β) and c-Jun N-terminal kinase 3 (JNK3). When applied to another task against retinoic acid receptor-related orphan receptor γ-t (RORγt) and dihydroorotate dehydrogenase (DHODH), AIxFuse exhibits consistent performance while compared methods suffer from performance drops, leading to a 5 times higher performance in success rate. Docking studies demonstrate that AIxFuse can generate molecules concurrently satisfying the binding mode required by both targets. Further free energy perturbation calculation indicates that the generated candidates have promising binding free energies against both targets.
Collapse
Affiliation(s)
- Sheng Chen
- School of Computer Science and Engineering, Sun Yat-sen University Guangzhou 510006 China
- AixplorerBio Inc. Jiaxing 314031 China
| | - Junjie Xie
- School of Computer Science and Engineering, Sun Yat-sen University Guangzhou 510006 China
- AixplorerBio Inc. Jiaxing 314031 China
| | | | | | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
11
|
Yang L, Guo Q, Zhang L. AI-assisted chemistry research: a comprehensive analysis of evolutionary paths and hotspots through knowledge graphs. Chem Commun (Camb) 2024; 60:6977-6987. [PMID: 38910536 DOI: 10.1039/d4cc01892c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Artificial intelligence (AI) offers transformative potential for chemical research through its ability to optimize reactions and processes, enhance energy efficiency, and reduce waste. AI-assisted chemical research (AI + chem) has become a global hotspot. To better understand the current research status of "AI + chem", this study conducted a scientific bibliometric investigation using CiteSpace. The web of science core collection was utilized to retrieve original articles related to "AI + chem" published from 2000 to 2024. The obtained data allowed for the visualization of the knowledge background, current research status, and latest knowledge structure of "AI + chem". The "AI + chem" has entered a stage of explosive growth, and the number of papers will maintain long-term high-speed growth. This article systematically analyzes the latest progress in "AI + chem" and objectively predicts future trends, including molecular design, reaction prediction, materials design, drug design, and quantum chemistry. The outcomes of this study will provide readers with a comprehensive understanding of the overall landscape of "AI + chem".
Collapse
Affiliation(s)
- Lin Yang
- School of Intellectual Property, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Qingle Guo
- School of Intellectual Property, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Lijing Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China.
| |
Collapse
|
12
|
Achappa S, Aldabaan NA, Desai SV, Muddapur UM, Shaikh IA, Mahnashi MH, Alshehri AA, Mannasaheb BA, Khan AA. Computational Exploration of Potential Pharmacological Inhibitors Targeting the Envelope Protein of the Kyasanur Forest Disease Virus. Pharmaceuticals (Basel) 2024; 17:884. [PMID: 39065734 PMCID: PMC11279457 DOI: 10.3390/ph17070884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
The limitations of the current vaccination strategy for the Kyasanur Forest Disease virus (KFDV) underscore the critical need for effective antiviral treatments, highlighting the crucial importance of exploring novel therapeutic approaches through in silico drug design. Kyasanur Forest Disease, caused by KFDV, is a tick-borne disease with a mortality of 3-5% and an annual incidence of 400 to 500 cases. In the early stage of infection, the envelope protein plays a crucial role by facilitating host-virus interactions. The objective of this research is to develop effective antivirals targeting the envelope protein to disrupt the virus-host interaction. In line with this, the 3D structure of the envelope protein was modeled and refined through molecular modeling techniques, and subsequently, ligands were designed via de novo design and pharmacophore screening, yielding 12 potential hits followed by ADMET analysis. The top five candidates underwent geometry optimization and molecular docking. Notably, compounds L4 (SA28) and L3 (CNP0247967) are predicted to have significant binding affinities of -8.91 and -7.58 kcal/mol, respectively, toward the envelope protein, based on computational models. Both compounds demonstrated stability during 200 ns molecular dynamics simulations, and the MM-GBSA binding free-energy values were -85.26 ± 4.63 kcal/mol and -66.60 ± 2.92 kcal/mol for the envelope protein L3 and L4 complexes, respectively. Based on the computational prediction, it is suggested that both compounds have potential as drug candidates for controlling host-virus interactions by targeting the envelope protein. Further validation through in-vitro assays would complement the findings of the present in silico investigations.
Collapse
Affiliation(s)
- Sharanappa Achappa
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India; (S.A.); (U.M.M.)
| | | | - Shivalingsarj V. Desai
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India; (S.A.); (U.M.M.)
| | - Uday M. Muddapur
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India; (S.A.); (U.M.M.)
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | - Abdullateef A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 66462, Saudi Arabia;
| | | | - Aejaz Abdullatif Khan
- Department of General Science, Ibn Sina National College for Medical Studies, Jeddah 21418, Saudi Arabia
| |
Collapse
|
13
|
Moayedpour S, Broadbent J, Riahi S, Bailey M, V Thu H, Dobchev D, Balsubramani A, N D Santos R, Kogler-Anele L, Corrochano-Navarro A, Li S, U Montoya F, Agarwal V, Bar-Joseph Z, Jager S. Representations of lipid nanoparticles using large language models for transfection efficiency prediction. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 40:btae342. [PMID: 38810107 DOI: 10.1093/bioinformatics/btae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/08/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
MOTIVATION Lipid nanoparticles (LNPs) are the most widely used vehicles for mRNA vaccine delivery. The structure of the lipids composing the LNPs can have a major impact on the effectiveness of the mRNA payload. Several properties should be optimized to improve delivery and expression including biodegradability, synthetic accessibility, and transfection efficiency. RESULTS To optimize LNPs, we developed and tested models that enable the virtual screening of LNPs with high transfection efficiency. Our best method uses the lipid Simplified Molecular-Input Line-Entry System (SMILES) as inputs to a large language model. Large language model-generated embeddings are then used by a downstream gradient-boosting classifier. As we show, our method can more accurately predict lipid properties, which could lead to higher efficiency and reduced experimental time and costs. AVAILABILITY AND IMPLEMENTATION Code and data links available at: https://github.com/Sanofi-Public/LipoBART.
Collapse
Affiliation(s)
| | | | - Saleh Riahi
- Digital R&D, Sanofi, Cambridge, MA, 02141, United States
| | - Michael Bailey
- Digital R&D, Sanofi, Cambridge, MA, 02141, United States
| | - Hoa V Thu
- DataSentics, Brno 602 00, Czech Republic
| | - Dimitar Dobchev
- mRNA Center of Excellence, Marcy L'Etoile, Sanofi, 69280, France
| | | | | | | | | | - Sizhen Li
- Digital R&D, Sanofi, Cambridge, MA, 02141, United States
| | | | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi, Waltham, MA, 02451, United States
| | - Ziv Bar-Joseph
- Digital R&D, Sanofi, Cambridge, MA, 02141, United States
| | - Sven Jager
- Digital R&D, Sanofi, Cambridge, MA, 02141, United States
| |
Collapse
|
14
|
Prado-Romero DL, Saldívar-González FI, López-Mata I, Laurel-García PA, Durán-Vargas A, García-Hernández E, Sánchez-Cruz N, Medina-Franco JL. De Novo Design of Inhibitors of DNA Methyltransferase 1: A Critical Comparison of Ligand- and Structure-Based Approaches. Biomolecules 2024; 14:775. [PMID: 39062489 PMCID: PMC11274800 DOI: 10.3390/biom14070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Designing and developing inhibitors against the epigenetic target DNA methyltransferase (DNMT) is an attractive strategy in epigenetic drug discovery. DNMT1 is one of the epigenetic enzymes with significant clinical relevance. Structure-based de novo design is a drug discovery strategy that was used in combination with similarity searching to identify a novel DNMT inhibitor with a novel chemical scaffold and warrants further exploration. This study aimed to continue exploring the potential of de novo design to build epigenetic-focused libraries targeted toward DNMT1. Herein, we report the results of an in-depth and critical comparison of ligand- and structure-based de novo design of screening libraries focused on DNMT1. The newly designed chemical libraries focused on DNMT1 are freely available on GitHub.
Collapse
Affiliation(s)
- Diana L. Prado-Romero
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico; (D.L.P.-R.); (F.I.S.-G.); (P.A.L.-G.)
| | - Fernanda I. Saldívar-González
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico; (D.L.P.-R.); (F.I.S.-G.); (P.A.L.-G.)
| | - Iván López-Mata
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa de Méndez, Km 1, Cunduacán 86690, Tabasco, Mexico;
- Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú 97357, Yucatán, Mexico;
| | - Pedro A. Laurel-García
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico; (D.L.P.-R.); (F.I.S.-G.); (P.A.L.-G.)
| | - Adrián Durán-Vargas
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (A.D.-V.); (E.G.-H.)
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico; (A.D.-V.); (E.G.-H.)
| | - Norberto Sánchez-Cruz
- Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú 97357, Yucatán, Mexico;
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacál 97302, Yucatán, Mexico
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico; (D.L.P.-R.); (F.I.S.-G.); (P.A.L.-G.)
| |
Collapse
|
15
|
Aksamit N, Hou J, Li Y, Ombuki-Berman B. Integrating transformers and many-objective optimization for drug design. BMC Bioinformatics 2024; 25:208. [PMID: 38849719 PMCID: PMC11161990 DOI: 10.1186/s12859-024-05822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Drug design is a challenging and important task that requires the generation of novel and effective molecules that can bind to specific protein targets. Artificial intelligence algorithms have recently showed promising potential to expedite the drug design process. However, existing methods adopt multi-objective approaches which limits the number of objectives. RESULTS In this paper, we expand this thread of research from the many-objective perspective, by proposing a novel framework that integrates a latent Transformer-based model for molecular generation, with a drug design system that incorporates absorption, distribution, metabolism, excretion, and toxicity prediction, molecular docking, and many-objective metaheuristics. We compared the performance of two latent Transformer models (ReLSO and FragNet) on a molecular generation task and show that ReLSO outperforms FragNet in terms of reconstruction and latent space organization. We then explored six different many-objective metaheuristics based on evolutionary algorithms and particle swarm optimization on a drug design task involving potential drug candidates to human lysophosphatidic acid receptor 1, a cancer-related protein target. CONCLUSION We show that multi-objective evolutionary algorithm based on dominance and decomposition performs the best in terms of finding molecules that satisfy many objectives, such as high binding affinity and low toxicity, and high drug-likeness. Our framework demonstrates the potential of combining Transformers and many-objective computational intelligence for drug design.
Collapse
Affiliation(s)
- Nicholas Aksamit
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON, P7B 6V4, Canada
| | - Yifeng Li
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| | - Beatrice Ombuki-Berman
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
16
|
Gangwal A, Lavecchia A. Unleashing the power of generative AI in drug discovery. Drug Discov Today 2024; 29:103992. [PMID: 38663579 DOI: 10.1016/j.drudis.2024.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 05/04/2024]
Abstract
Artificial intelligence (AI) is revolutionizing drug discovery by enhancing precision, reducing timelines and costs, and enabling AI-driven computer-aided drug design. This review focuses on recent advancements in deep generative models (DGMs) for de novo drug design, exploring diverse algorithms and their profound impact. It critically analyses the challenges that are intricately interwoven into these technologies, proposing strategies to unlock their full potential. It features case studies of both successes and failures in advancing drugs to clinical trials with AI assistance. Last, it outlines a forward-looking plan for optimizing DGMs in de novo drug design, thereby fostering faster and more cost-effective drug development.
Collapse
Affiliation(s)
- Amit Gangwal
- Department of Natural Product Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Antonio Lavecchia
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy.
| |
Collapse
|
17
|
Tang X, Dai H, Knight E, Wu F, Li Y, Li T, Gerstein M. A survey of generative AI for de novo drug design: new frontiers in molecule and protein generation. Brief Bioinform 2024; 25:bbae338. [PMID: 39007594 PMCID: PMC11247410 DOI: 10.1093/bib/bbae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Artificial intelligence (AI)-driven methods can vastly improve the historically costly drug design process, with various generative models already in widespread use. Generative models for de novo drug design, in particular, focus on the creation of novel biological compounds entirely from scratch, representing a promising future direction. Rapid development in the field, combined with the inherent complexity of the drug design process, creates a difficult landscape for new researchers to enter. In this survey, we organize de novo drug design into two overarching themes: small molecule and protein generation. Within each theme, we identify a variety of subtasks and applications, highlighting important datasets, benchmarks, and model architectures and comparing the performance of top models. We take a broad approach to AI-driven drug design, allowing for both micro-level comparisons of various methods within each subtask and macro-level observations across different fields. We discuss parallel challenges and approaches between the two applications and highlight future directions for AI-driven de novo drug design as a whole. An organized repository of all covered sources is available at https://github.com/gersteinlab/GenAI4Drug.
Collapse
Affiliation(s)
- Xiangru Tang
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Howard Dai
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Elizabeth Knight
- School of Medicine, Yale University, New Haven, CT 06520, United States
| | - Fang Wu
- Computer Science Department, Stanford University, CA 94305, United States
| | - Yunyang Li
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Tianxiao Li
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520, United States
| | - Mark Gerstein
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520, United States
- Department of Statistics & Data Science, Yale University, New Haven, CT 06520, United States
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, United States
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
18
|
Ahlawat V, Sura K, Singh B, Dangi M, Chhillar AK. Bioinformatics Approaches in the Development of Antifungal Therapeutics and Vaccines. Curr Genomics 2024; 25:323-333. [PMID: 39323620 PMCID: PMC11420568 DOI: 10.2174/0113892029281602240422052210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/31/2023] [Accepted: 03/11/2024] [Indexed: 09/27/2024] Open
Abstract
Fungal infections are considered a great threat to human life and are associated with high mortality and morbidity, especially in immunocompromised individuals. Fungal pathogens employ various defense mechanisms to evade the host immune system, which causes severe infections. The available repertoire of drugs for the treatment of fungal infections includes azoles, allylamines, polyenes, echinocandins, and antimetabolites. However, the development of multidrug and pandrug resistance to available antimycotic drugs increases the need to develop better treatment approaches. In this new era of -omics, bioinformatics has expanded options for treating fungal infections. This review emphasizes how bioinformatics complements the emerging strategies, including advancements in drug delivery systems, combination therapies, drug repurposing, epitope-based vaccine design, RNA-based therapeutics, and the role of gut-microbiome interactions to combat anti-fungal resistance. In particular, we focused on computational methods that can be useful to obtain potent hits, and that too in a short period.
Collapse
Affiliation(s)
- Vaishali Ahlawat
- Centre for Biotechnology, M.D. University, Rohtak, Haryana, India
- Centre for Bioinformatics, M.D. University, Rohtak, Haryana, India
| | - Kiran Sura
- Centre for Bioinformatics, M.D. University, Rohtak, Haryana, India
| | - Bharat Singh
- Department of Biotechnology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana-133207, India
| | - Mehak Dangi
- Centre for Bioinformatics, M.D. University, Rohtak, Haryana, India
| | | |
Collapse
|
19
|
Monsia R, Bhattacharyya S. Virtual Screening of Molecules via Neural Fingerprint-based Deep Learning Technique. RESEARCH SQUARE 2024:rs.3.rs-4355625. [PMID: 38766198 PMCID: PMC11100899 DOI: 10.21203/rs.3.rs-4355625/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A machine learning-based drug screening technique has been developed and optimized using convolutional neural network-derived fingerprints. The optimization of weights in the neural network-based fingerprinting technique was compared with fixed Morgan fingerprints in regard to binary classification on drug-target binding affinity. The assessment was carried out using six different target proteins using randomly chosen small molecules from the ZINC15 database for training. This new architecture proved to be more efficient in screening molecules that less favorably bind to specific targets and retaining molecules that favorably bind to it. Scientific contribution We have developed a new neural fingerprint-based screening model that has a significant ability to capture hits. Despite using a smaller dataset, this model is capable of mapping chemical space similar to other contemporary algorithms designed for molecular screening. The novelty of the present algorithm lies in the speed with which the models are trained and tuned before testing its predictive capabilities and hence is a significant step forward in the field of machine learning-embedded computational drug discovery.
Collapse
|
20
|
Fang N, Wu L, Duan S, Li J. The Structural and Molecular Mechanisms of Mycobacterium tuberculosis Translational Elongation Factor Proteins. Molecules 2024; 29:2058. [PMID: 38731549 PMCID: PMC11085428 DOI: 10.3390/molecules29092058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Ning Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Lingyun Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| | - Shuyan Duan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai 200438, China; (N.F.); (L.W.)
| |
Collapse
|
21
|
Mauri A, Bertola M. AlvaBuilder: A Software for De Novo Molecular Design. J Chem Inf Model 2024; 64:2136-2142. [PMID: 37399048 PMCID: PMC11005826 DOI: 10.1021/acs.jcim.3c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 07/04/2023]
Abstract
AlvaBuilder is a software tool for de novo molecular design and can be used to generate novel molecules having desirable characteristics. Such characteristics can be defined using a simple step by step graphical interface, and they can be based on molecular descriptors, on predictions of QSAR/QSPR models, and on matching molecular fragments or used to design compounds similar to a given one. The molecules generated are always syntactically valid since they are composed by combining fragments of molecules taken from a training data set chosen by the user. In this paper, we demonstrate how the software can be used to design new compounds for a defined case study. AlvaBuilder is available at https://www.alvascience.com/alvabuilder/.
Collapse
Affiliation(s)
- Andrea Mauri
- Alvascience
Srl, Via Giuseppe Parini,
35, 23900 Lecco, Italy
| | - Matteo Bertola
- Alvascience
Srl, Via Giuseppe Parini,
35, 23900 Lecco, Italy
| |
Collapse
|
22
|
Cieślak M, Danel T, Krzysztyńska-Kuleta O, Kalinowska-Tłuścik J. Machine learning accelerates pharmacophore-based virtual screening of MAO inhibitors. Sci Rep 2024; 14:8228. [PMID: 38589405 PMCID: PMC11369158 DOI: 10.1038/s41598-024-58122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Nowadays, an efficient and robust virtual screening procedure is crucial in the drug discovery process, especially when performed on large and chemically diverse databases. Virtual screening methods, like molecular docking and classic QSAR models, are limited in their ability to handle vast numbers of compounds and to learn from scarce data, respectively. In this study, we introduce a universal methodology that uses a machine learning-based approach to predict docking scores without the need for time-consuming molecular docking procedures. The developed protocol yielded 1000 times faster binding energy predictions than classical docking-based screening. The proposed predictive model learns from docking results, allowing users to choose their preferred docking software without relying on insufficient and incoherent experimental activity data. The methodology described employs multiple types of molecular fingerprints and descriptors to construct an ensemble model that further reduces prediction errors and is capable of delivering highly precise docking score values for monoamine oxidase ligands, enabling faster identification of promising compounds. An extensive pharmacophore-constrained screening of the ZINC database resulted in a selection of 24 compounds that were synthesized and evaluated for their biological activity. A preliminary screen discovered weak inhibitors of MAO-A with a percentage efficiency index close to a known drug at the lowest tested concentration. The approach presented here can be successfully applied to other biological targets as target-specific knowledge is not incorporated at the screening phase.
Collapse
Affiliation(s)
- Marcin Cieślak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Małopolska, Poland.
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, 30-348, Kraków, Małopolska, Poland.
- Computational Chemistry Department, Selvita, Bobrzynskiego 14, 30-348, Kraków, Małopolska, Poland.
| | - Tomasz Danel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Małopolska, Poland
- Faculty of Mathematics and Computer Science, Jagiellonian University, Prof. S. Łojasiewicza 6, 30-348, Kraków, Małopolska, Poland
| | - Olga Krzysztyńska-Kuleta
- Cell and Molecular Biology Department, Selvita, Bobrzynskiego 14, 30-348, Kraków, Małopolska, Poland
| | | |
Collapse
|
23
|
Nandi S, Bhaduri S, Das D, Ghosh P, Mandal M, Mitra P. Deciphering the Lexicon of Protein Targets: A Review on Multifaceted Drug Discovery in the Era of Artificial Intelligence. Mol Pharm 2024; 21:1563-1590. [PMID: 38466810 DOI: 10.1021/acs.molpharmaceut.3c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Understanding protein sequence and structure is essential for understanding protein-protein interactions (PPIs), which are essential for many biological processes and diseases. Targeting protein binding hot spots, which regulate signaling and growth, with rational drug design is promising. Rational drug design uses structural data and computational tools to study protein binding sites and protein interfaces to design inhibitors that can change these interactions, thereby potentially leading to therapeutic approaches. Artificial intelligence (AI), such as machine learning (ML) and deep learning (DL), has advanced drug discovery and design by providing computational resources and methods. Quantum chemistry is essential for drug reactivity, toxicology, drug screening, and quantitative structure-activity relationship (QSAR) properties. This review discusses the methodologies and challenges of identifying and characterizing hot spots and binding sites. It also explores the strategies and applications of artificial-intelligence-based rational drug design technologies that target proteins and protein-protein interaction (PPI) binding hot spots. It provides valuable insights for drug design with therapeutic implications. We have also demonstrated the pathological conditions of heat shock protein 27 (HSP27) and matrix metallopoproteinases (MMP2 and MMP9) and designed inhibitors of these proteins using the drug discovery paradigm in a case study on the discovery of drug molecules for cancer treatment. Additionally, the implications of benzothiazole derivatives for anticancer drug design and discovery are deliberated.
Collapse
Affiliation(s)
- Suvendu Nandi
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumyadeep Bhaduri
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debraj Das
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Priya Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
24
|
Bhatnagar A, Nath V, Kumar N, Kumar V. Discovery of novel PARP-1 inhibitors using tandem in silico studies: integrated docking, e-pharmacophore, deep learning based de novo and molecular dynamics simulation approach. J Biomol Struct Dyn 2024; 42:3396-3409. [PMID: 37216358 DOI: 10.1080/07391102.2023.2214223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Cancer accounts for the majority of deaths worldwide, and the increasing incidence of breast cancer is a matter of grave concern. Poly (ADP-ribose) polymerase-1 (PARP-1) has emerged as an attractive target for the treatment of breast cancer as it has an important role in DNA repair. The focus of the study was to identify novel PARP-1 inhibitors using a blend of tandem structure-based screening (Docking and e-pharmacophore-based screening) and artificial intelligence (deep learning)-based de novo approaches. The scrutiny of compounds having good binding characteristics for PARP-1 was carried out using a tandem mode of screening along with parameters such as binding energy and ADME analysis. The efforts afforded compound Vab1 (PubChem ID 129142036), which was chosen as a seed for obtaining novel compounds through a trained artificial intelligence (AI)-based model. Resultant compounds were assessed for PARP-1 inhibition; binding affinity prediction and interaction pattern analysis were carried out using the extra precision (XP) mode of docking. Two best hits, Vab1-b and Vab1-g, exhibiting good dock scores and suitable interactions, were subjected to 100 nanoseconds (ns) of molecular dynamics simulation in the active site of PARP-1 and compared with the reference Protein-Ligand Complex. The stable nature of PARP-1 upon binding to these compounds was revealed through MD simulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aayushi Bhatnagar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Virendra Nath
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Neeraj Kumar
- Bhupal Nobles' College of Pharmacy, Bhupal Nobles' University, Udaipur, India
| | - Vipin Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
25
|
Tang Y, Moretti R, Meiler J. Recent Advances in Automated Structure-Based De Novo Drug Design. J Chem Inf Model 2024; 64:1794-1805. [PMID: 38485516 PMCID: PMC10966644 DOI: 10.1021/acs.jcim.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
As the number of determined and predicted protein structures and the size of druglike 'make-on-demand' libraries soar, the time-consuming nature of structure-based computer-aided drug design calls for innovative computational algorithms. De novo drug design introduces in silico heuristics to accelerate searching in the vast chemical space. This review focuses on recent advances in structure-based de novo drug design, ranging from conventional fragment-based methods, evolutionary algorithms, and Metropolis Monte Carlo methods to deep generative models. Due to the historical limitation of de novo drug design generating readily available drug-like molecules, we highlight the synthetic accessibility efforts in each category and the benchmarking strategies taken to validate the proposed framework.
Collapse
Affiliation(s)
- Yidan Tang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Rocco Moretti
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Jens Meiler
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Institute
of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
26
|
Sankar S, Vasudevan S, Chandra N. CRD: A de novo design algorithm for the prediction of cognate protein receptors for small molecule ligands. Structure 2024; 32:362-375.e4. [PMID: 38194962 DOI: 10.1016/j.str.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
While predicting a ligand that binds to a protein is feasible with current methods, the opposite, i.e., the prediction of a receptor for a ligand remains challenging. We present an approach for predicting receptors of a given ligand that uses de novo design and structural bioinformatics. We have developed the algorithm CRD, comprising multiple modules combining fragment-based sub-site finding, a machine learning function to estimate the size of the site, a genetic algorithm that encodes knowledge on protein structures and a physics-based fitness scoring scheme. CRD includes a pseudo-receptor design component followed by a mapping component to identify proteins that might contain these sites. CRD recovers the sites and receptors of several natural ligands. It designs similar sites for similar ligands, yet to some extent can distinguish between closely related ligands. CRD correctly predicts receptor classes for several drugs and might become a valuable tool for drug discovery.
Collapse
Affiliation(s)
- Santhosh Sankar
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sneha Vasudevan
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India; Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
27
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
28
|
Napolitano G, Has C, Schwerk A, Yuan JH, Ullrich C. Potential of Artificial Intelligence to Accelerate Drug Development for Rare Diseases. Pharmaceut Med 2024; 38:79-86. [PMID: 38315404 DOI: 10.1007/s40290-023-00504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 02/07/2024]
Abstract
The growth in breadth and depth of artificial intelligence (AI) applications has been fast, running hand in hand with the increasing amount of digital data available. Here, we comment on the application of AI in the field of drug development, with a strong focus on the specific achievements and challenges posed by rare diseases. Data paucity and high costs make drug development for rare diseases especially hard. AI can enable otherwise inaccessible approaches based on the large-scale integration of heterogeneous datasets and knowledge bases, guided by expert biological understanding. Obstacles still exist for the routine use of AI in the usually conservative pharmaceutical domain, which can easily become disillusioned. It is crucial to acknowledge that AI is a powerful, supportive tool that can assist but not replace human expertise in the various phases and aspects of drug discovery and development.
Collapse
Affiliation(s)
| | - Canan Has
- Centogene GmbH, Alboinstraße 36-42, 12103, Berlin, Germany
| | - Anne Schwerk
- Beriln Institute of Health Center for Regenerative Therapies (BCRT), Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jui-Hung Yuan
- Beriln Institute of Health Center for Regenerative Therapies (BCRT), Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Ullrich
- Beriln Institute of Health Center for Regenerative Therapies (BCRT), Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
He D, Liu Q, Mi Y, Meng Q, Xu L, Hou C, Wang J, Li N, Liu Y, Chai H, Yang Y, Liu J, Wang L, Hou Y. De Novo Generation and Identification of Novel Compounds with Drug Efficacy Based on Machine Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307245. [PMID: 38204214 PMCID: PMC10962488 DOI: 10.1002/advs.202307245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Indexed: 01/12/2024]
Abstract
One of the main challenges in small molecule drug discovery is finding novel chemical compounds with desirable activity. Traditional drug development typically begins with target selection, but the correlation between targets and disease remains to be further investigated, and drugs designed based on targets may not always have the desired drug efficacy. The emergence of machine learning provides a powerful tool to overcome the challenge. Herein, a machine learning-based strategy is developed for de novo generation of novel compounds with drug efficacy termed DTLS (Deep Transfer Learning-based Strategy) by using dataset of disease-direct-related activity as input. DTLS is applied in two kinds of disease: colorectal cancer (CRC) and Alzheimer's disease (AD). In each case, novel compound is discovered and identified in in vitro and in vivo disease models. Their mechanism of actionis further explored. The experimental results reveal that DTLS can not only realize the generation and identification of novel compounds with drug efficacy but also has the advantage of identifying compounds by focusing on protein targets to facilitate the mechanism study. This work highlights the significant impact of machine learning on the design of novel compounds with drug efficacy, which provides a powerful new approach to drug discovery.
Collapse
Affiliation(s)
- Dakuo He
- College of Information Science and EngineeringState Key Laboratory of Synthetical Automation for Process IndustriesNortheastern UniversityShenyang110819China
| | - Qing Liu
- College of Information Science and EngineeringState Key Laboratory of Synthetical Automation for Process IndustriesNortheastern UniversityShenyang110819China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning ProvinceCollege of Life and Health SciencesNational Frontiers Science Center for Industrial Intelligence and Systems OptimizationNortheastern UniversityShenyang110169China
- Key Laboratory of Data Analytics and Optimization for Smart IndustryMinistry of EducationNortheastern UniversityShenyang110169China
| | - Qingqi Meng
- Key Laboratory of Bioresource Research and Development of Liaoning ProvinceCollege of Life and Health SciencesNational Frontiers Science Center for Industrial Intelligence and Systems OptimizationNortheastern UniversityShenyang110169China
- Key Laboratory of Data Analytics and Optimization for Smart IndustryMinistry of EducationNortheastern UniversityShenyang110169China
| | - Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning ProvinceCollege of Life and Health SciencesNational Frontiers Science Center for Industrial Intelligence and Systems OptimizationNortheastern UniversityShenyang110169China
- Key Laboratory of Data Analytics and Optimization for Smart IndustryMinistry of EducationNortheastern UniversityShenyang110169China
| | - Chunyu Hou
- College of Information Science and EngineeringState Key Laboratory of Synthetical Automation for Process IndustriesNortheastern UniversityShenyang110819China
| | - Jinpeng Wang
- College of Information Science and EngineeringState Key Laboratory of Synthetical Automation for Process IndustriesNortheastern UniversityShenyang110819China
| | - Ning Li
- School of Traditional Chinese Materia MedicaKey Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang CityShenyang Pharmaceutical UniversityShenyang110016China
| | - Yang Liu
- Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of EducationShenyang Pharmaceutical UniversityShenyang110016China
| | - Huifang Chai
- School of PharmacyGuizhou University of Traditional Chinese MedicineGuiyang550025China
| | - Yanqiu Yang
- Key Laboratory of Bioresource Research and Development of Liaoning ProvinceCollege of Life and Health SciencesNational Frontiers Science Center for Industrial Intelligence and Systems OptimizationNortheastern UniversityShenyang110169China
- Key Laboratory of Data Analytics and Optimization for Smart IndustryMinistry of EducationNortheastern UniversityShenyang110169China
| | - Jingyu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning ProvinceCollege of Life and Health SciencesNational Frontiers Science Center for Industrial Intelligence and Systems OptimizationNortheastern UniversityShenyang110169China
- Key Laboratory of Data Analytics and Optimization for Smart IndustryMinistry of EducationNortheastern UniversityShenyang110169China
| | - Lihui Wang
- Department of PharmacologyShenyang Pharmaceutical UniversityShenyang110016China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning ProvinceCollege of Life and Health SciencesNational Frontiers Science Center for Industrial Intelligence and Systems OptimizationNortheastern UniversityShenyang110169China
- Key Laboratory of Data Analytics and Optimization for Smart IndustryMinistry of EducationNortheastern UniversityShenyang110169China
| |
Collapse
|
30
|
Loeffler HH, He J, Tibo A, Janet JP, Voronov A, Mervin LH, Engkvist O. Reinvent 4: Modern AI-driven generative molecule design. J Cheminform 2024; 16:20. [PMID: 38383444 PMCID: PMC10882833 DOI: 10.1186/s13321-024-00812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
REINVENT 4 is a modern open-source generative AI framework for the design of small molecules. The software utilizes recurrent neural networks and transformer architectures to drive molecule generation. These generators are seamlessly embedded within the general machine learning optimization algorithms, transfer learning, reinforcement learning and curriculum learning. REINVENT 4 enables and facilitates de novo design, R-group replacement, library design, linker design, scaffold hopping and molecule optimization. This contribution gives an overview of the software and describes its design. Algorithms and their applications are discussed in detail. REINVENT 4 is a command line tool which reads a user configuration in either TOML or JSON format. The aim of this release is to provide reference implementations for some of the most common algorithms in AI based molecule generation. An additional goal with the release is to create a framework for education and future innovation in AI based molecular design. The software is available from https://github.com/MolecularAI/REINVENT4 and released under the permissive Apache 2.0 license. Scientific contribution. The software provides an open-source reference implementation for generative molecular design where the software is also being used in production to support in-house drug discovery projects. The publication of the most common machine learning algorithms in one code and full documentation thereof will increase transparency of AI and foster innovation, collaboration and education.
Collapse
Affiliation(s)
- Hannes H Loeffler
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Jiazhen He
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Alessandro Tibo
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jon Paul Janet
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Alexey Voronov
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Lewis H Mervin
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ola Engkvist
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
31
|
Nigam A, Pollice R, Friederich P, Aspuru-Guzik A. Artificial design of organic emitters via a genetic algorithm enhanced by a deep neural network. Chem Sci 2024; 15:2618-2639. [PMID: 38362419 PMCID: PMC10866360 DOI: 10.1039/d3sc05306g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
The design of molecules requires multi-objective optimizations in high-dimensional chemical space with often conflicting target properties. To navigate this space, classical workflows rely on the domain knowledge and creativity of human experts, which can be the bottleneck in high-throughput approaches. Herein, we present an artificial molecular design workflow relying on a genetic algorithm and a deep neural network to find a new family of organic emitters with inverted singlet-triplet gaps and appreciable fluorescence rates. We combine high-throughput virtual screening and inverse design infused with domain knowledge and artificial intelligence to accelerate molecular generation significantly. This enabled us to explore more than 800 000 potential emitter molecules and find more than 10 000 candidates estimated to have inverted singlet-triplet gaps (INVEST) and appreciable fluorescence rates, many of which likely emit blue light. This class of molecules has the potential to realize a new generation of organic light-emitting diodes.
Collapse
Affiliation(s)
- AkshatKumar Nigam
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George St Toronto Ontario M5S 2E4 Canada
| | - Robert Pollice
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George St Toronto Ontario M5S 2E4 Canada
| | - Pascal Friederich
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George St Toronto Ontario M5S 2E4 Canada
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology Am Fasanengarten 5 76131 Karlsruhe Germany
| | - Alán Aspuru-Guzik
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George St Toronto Ontario M5S 2E4 Canada
- Vector Institute for Artificial Intelligence 661 University Ave Suite 710 Toronto Ontario M5G 1M1 Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto 200 College St. Ontario M5S 3E5 Canada
- Department of Materials Science & Engineering, University of Toronto, 184 College St. Ontario M5S 3E4 Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR) 661 University Ave Toronto Ontario M5G Canada
- Acceleration Consortium Toronto Ontario M5G 3H6 Canada
| |
Collapse
|
32
|
Gangwal A, Ansari A, Ahmad I, Azad AK, Kumarasamy V, Subramaniyan V, Wong LS. Generative artificial intelligence in drug discovery: basic framework, recent advances, challenges, and opportunities. Front Pharmacol 2024; 15:1331062. [PMID: 38384298 PMCID: PMC10879372 DOI: 10.3389/fphar.2024.1331062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
There are two main ways to discover or design small drug molecules. The first involves fine-tuning existing molecules or commercially successful drugs through quantitative structure-activity relationships and virtual screening. The second approach involves generating new molecules through de novo drug design or inverse quantitative structure-activity relationship. Both methods aim to get a drug molecule with the best pharmacokinetic and pharmacodynamic profiles. However, bringing a new drug to market is an expensive and time-consuming endeavor, with the average cost being estimated at around $2.5 billion. One of the biggest challenges is screening the vast number of potential drug candidates to find one that is both safe and effective. The development of artificial intelligence in recent years has been phenomenal, ushering in a revolution in many fields. The field of pharmaceutical sciences has also significantly benefited from multiple applications of artificial intelligence, especially drug discovery projects. Artificial intelligence models are finding use in molecular property prediction, molecule generation, virtual screening, synthesis planning, repurposing, among others. Lately, generative artificial intelligence has gained popularity across domains for its ability to generate entirely new data, such as images, sentences, audios, videos, novel chemical molecules, etc. Generative artificial intelligence has also delivered promising results in drug discovery and development. This review article delves into the fundamentals and framework of various generative artificial intelligence models in the context of drug discovery via de novo drug design approach. Various basic and advanced models have been discussed, along with their recent applications. The review also explores recent examples and advances in the generative artificial intelligence approach, as well as the challenges and ongoing efforts to fully harness the potential of generative artificial intelligence in generating novel drug molecules in a faster and more affordable manner. Some clinical-level assets generated form generative artificial intelligence have also been discussed in this review to show the ever-increasing application of artificial intelligence in drug discovery through commercial partnerships.
Collapse
Affiliation(s)
- Amit Gangwal
- Department of Natural Product Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, Maharashtra, India
| | - Azim Ansari
- Computer Aided Drug Design Center Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, Maharashtra, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, India
| | - Abul Kalam Azad
- Faculty of Pharmacy, University College of MAIWP International, Batu Caves, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| |
Collapse
|
33
|
Ang D, Rakovski C, Atamian HS. De Novo Drug Design Using Transformer-Based Machine Translation and Reinforcement Learning of an Adaptive Monte Carlo Tree Search. Pharmaceuticals (Basel) 2024; 17:161. [PMID: 38399376 PMCID: PMC10892138 DOI: 10.3390/ph17020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The discovery of novel therapeutic compounds through de novo drug design represents a critical challenge in the field of pharmaceutical research. Traditional drug discovery approaches are often resource intensive and time consuming, leading researchers to explore innovative methods that harness the power of deep learning and reinforcement learning techniques. Here, we introduce a novel drug design approach called drugAI that leverages the Encoder-Decoder Transformer architecture in tandem with Reinforcement Learning via a Monte Carlo Tree Search (RL-MCTS) to expedite the process of drug discovery while ensuring the production of valid small molecules with drug-like characteristics and strong binding affinities towards their targets. We successfully integrated the Encoder-Decoder Transformer architecture, which generates molecular structures (drugs) from scratch with the RL-MCTS, serving as a reinforcement learning framework. The RL-MCTS combines the exploitation and exploration capabilities of a Monte Carlo Tree Search with the machine translation of a transformer-based Encoder-Decoder model. This dynamic approach allows the model to iteratively refine its drug candidate generation process, ensuring that the generated molecules adhere to essential physicochemical and biological constraints and effectively bind to their targets. The results from drugAI showcase the effectiveness of the proposed approach across various benchmark datasets, demonstrating a significant improvement in both the validity and drug-likeness of the generated compounds, compared to two existing benchmark methods. Moreover, drugAI ensures that the generated molecules exhibit strong binding affinities to their respective targets. In summary, this research highlights the real-world applications of drugAI in drug discovery pipelines, potentially accelerating the identification of promising drug candidates for a wide range of diseases.
Collapse
Affiliation(s)
- Dony Ang
- Computational and Data Sciences Program, Chapman University, Orange, CA 92866, USA; (D.A.); (C.R.)
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Cyril Rakovski
- Computational and Data Sciences Program, Chapman University, Orange, CA 92866, USA; (D.A.); (C.R.)
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Hagop S. Atamian
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Biological Sciences Program, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
34
|
Sunildutt N, Ahmed F, Chethikkattuveli Salih AR, Lim JH, Choi KH. Integrating Transcriptomic and Structural Insights: Revealing Drug Repurposing Opportunities for Sporadic ALS. ACS OMEGA 2024; 9:3793-3806. [PMID: 38284068 PMCID: PMC10809234 DOI: 10.1021/acsomega.3c07296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and devastating neurodegenerative disorder characterized by the loss of upper and lower motor neurons, resulting in debilitating muscle weakness and atrophy. Currently, there are no effective treatments available for ALS, posing significant challenges in managing the disease that affects approximately two individuals per 100,000 people annually. To address the urgent need for effective ALS treatments, we conducted a drug repurposing study using a combination of bioinformatics tools and molecular docking techniques. We analyzed sporadic ALS-related genes from the GEO database and identified key signaling pathways involved in sporadic ALS pathogenesis through pathway analysis using DAVID. Subsequently, we utilized the Clue Connectivity Map to identify potential drug candidates and performed molecular docking using AutoDock Vina to evaluate the binding affinity of short-listed drugs to key sporadic ALS-related genes. Our study identified Cefaclor, Diphenidol, Flubendazole, Fluticasone, Lestaurtinib, Nadolol, Phenamil, Temozolomide, and Tolterodine as potential drug candidates for repurposing in sporadic ALS treatment. Notably, Lestaurtinib demonstrated high binding affinity toward multiple proteins, suggesting its potential as a broad-spectrum therapeutic agent for sporadic ALS. Additionally, docking analysis revealed NOS3 as the gene that interacts with all the short-listed drugs, suggesting its possible involvement in the mechanisms underlying the therapeutic potential of these drugs in sporadic ALS. Overall, our study provides a systematic framework for identifying potential drug candidates for sporadic ALS therapy and highlights the potential of drug repurposing as a promising strategy for discovering new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
| | - Faheem Ahmed
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
| | - Abdul Rahim Chethikkattuveli Salih
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
- Terasaki
Institute for Biomedical InnovationLos Angeles21100, United States
| | - Jong Hwan Lim
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
| | - Kyung Hyun Choi
- Department
of Mechatronics Engineering, Jeju National
University, Jeju63243, Republic
of Korea
| |
Collapse
|
35
|
Lin S, Chen W, Alqahtani MS, Elkamchouchi DH, Ge Y, Lu Y, Zhang G, Wang M. Exploring the therapeutic potential of layered double hydroxides and transition metal dichalcogenides through the convergence of rheumatology and nanotechnology using generative adversarial network. ENVIRONMENTAL RESEARCH 2024; 241:117262. [PMID: 37839531 DOI: 10.1016/j.envres.2023.117262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Two-dimensional Layered double hydroxides (LDHs) are highly used in the biomedical domain due to their biocompatibility, biodegradability, controlled drug loading and release capabilities, and improved cellular permeability. The interaction of LDHs with biological systems could facilitate targeted drug delivery and make them an attractive option for various biomedical applications. Rheumatoid Arthritis (RA) requires targeted drug delivery for optimum therapeutic outcomes. In this study, stacked double hydroxide nanocomposites with dextran sulphate modification (LDH-DS) were developed while exhibiting both targeting and pH-sensitivity for rheumatological conditions. This research examines the loading, release kinetics, and efficiency of the therapeutics of interest in the LDH-based drug delivery system. The mean size of LDH-DS particles (300.1 ± 8.12 nm) is -12.11 ± 0.4 mV. The encapsulation efficiency was 48.52%, and the loading efficacy was 16.81%. In vitro release tests indicate that the drug's discharge is modified more rapidly in PBS at pH 5.4 compared to pH 5.6, which later reached 7.3, showing the case sensitivity to pH. A generative adversarial network (GAN) is used to analyze the drug delivery system in rheumatology. The GAN model achieved high accuracy and classification rates of 99.3% and 99.0%, respectively, and a validity of 99.5%. The second and third administrations resulted in a significant change with p-values of 0.001 and 0.05, respectively. This investigation unequivocally demonstrated that LDH functions as a biocompatible drug delivery matrix, significantly improving delivery effectiveness.
Collapse
Affiliation(s)
- Suxian Lin
- Department of Rheumatology, Wenzhou People's Hospital, Wenzhou, 325000, China
| | - Weiwei Chen
- Department of Rheumatology, Wenzhou People's Hospital, Wenzhou, 325000, China
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, U.K
| | - Dalia H Elkamchouchi
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Yisu Ge
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325100, China
| | - Yanjie Lu
- Department of Digital Media Technology, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Guodao Zhang
- Department of Digital Media Technology, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Mudan Wang
- Department of Nephrology, Wenzhou People's Hospital, Wenzhou, 325000, China.
| |
Collapse
|
36
|
Luo D, Liang Y, Yang Y, Wang X. Hybrid parameters for fluid identification using an enhanced quantum neural network in a tight reservoir. Sci Rep 2024; 14:1064. [PMID: 38212380 PMCID: PMC10784518 DOI: 10.1038/s41598-023-50455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024] Open
Abstract
This paper proposes a fluid classifier for a tight reservoir using a quantum neural network (QNN). It is difficult to identify the fluid in tight reservoirs, and the manual interpretation of logging data, which is an important means to identify the fluid properties, has the disadvantages of a low recognition rate and non-intelligence, and an intelligent algorithm can better identify the fluid. For tight reservoirs, the logging response characteristics of different fluid properties and the sensitivity and relevance of well log parameter and rock physics parameters to fluid identification are analyzed, and different sets of input parameters for fluid identification are constructed. On the basis of quantum neural networks, a new method for combining sample quantum state descriptions, sensitivity analysis of input parameters, and wavelet activation functions for optimization is proposed. The results of identifying the dry layer, gas layer, and gas-water co-layer in the tight reservoir in the Sichuan Basin of China show that different input parameters and activation functions affect recognition performance. The proposed quantum neural network based on hybrid parameters and a wavelet activation function has higher fluid identification accuracy than the original quantum neural network model, indicating that this method is effective and warrants promotion and application.
Collapse
Affiliation(s)
- Dejiang Luo
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu, 610059, China.
- Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yuan Liang
- Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, 610059, China
| | - Yuanjun Yang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu, 610059, China
| | - Xingyue Wang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|
37
|
Arora P, Behera M, Saraf SA, Shukla R. Leveraging Artificial Intelligence for Synergies in Drug Discovery: From Computers to Clinics. Curr Pharm Des 2024; 30:2187-2205. [PMID: 38874046 DOI: 10.2174/0113816128308066240529121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 06/15/2024]
Abstract
Over the period of the preceding decade, artificial intelligence (AI) has proved an outstanding performance in entire dimensions of science including pharmaceutical sciences. AI uses the concept of machine learning (ML), deep learning (DL), and neural networks (NNs) approaches for novel algorithm and hypothesis development by training the machines in multiple ways. AI-based drug development from molecule identification to clinical approval tremendously reduces the cost of development and the time over conventional methods. The COVID-19 vaccine development and approval by regulatory agencies within 1-2 years is the finest example of drug development. Hence, AI is fast becoming a boon for scientific researchers to streamline their advanced discoveries. AI-based FDA-approved nanomedicines perform well as target selective, synergistic therapies, recolonize the theragnostic pharmaceutical stream, and significantly improve drug research outcomes. This comprehensive review delves into the fundamental aspects of AI along with its applications in the realm of pharmaceutical life sciences. It explores AI's role in crucial areas such as drug designing, drug discovery and development, traditional Chinese medicine, integration of multi-omics data, as well as investigations into drug repurposing and polypharmacology studies.
Collapse
Affiliation(s)
- Priyanka Arora
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| | - Manaswini Behera
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Near CRPF Base Camp, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow (UP)-226002, India
| |
Collapse
|
38
|
Singh K, Bhushan B, Singh B. Advances in Drug Discovery and Design using Computer-aided Molecular Modeling. Curr Comput Aided Drug Des 2024; 20:697-710. [PMID: 37711101 DOI: 10.2174/1573409920666230914123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
Computer-aided molecular modeling is a rapidly emerging technology that is being used to accelerate the discovery and design of new drug therapies. It involves the use of computer algorithms and 3D structures of molecules to predict interactions between molecules and their behavior in the body. This has drastically improved the speed and accuracy of drug discovery and design. Additionally, computer-aided molecular modeling has the potential to reduce costs, increase the quality of data, and identify promising targets for drug development. Through the use of sophisticated methods, such as virtual screening, molecular docking, pharmacophore modeling, and quantitative structure-activity relationships, scientists can achieve higher levels of efficacy and safety for new drugs. Moreover, it can be used to understand the activity of known drugs and simplify the process of formulating, optimizing, and predicting the pharmacokinetics of new and existing drugs. In conclusion, computer-aided molecular modeling is an effective tool to rapidly progress drug discovery and design by predicting the interactions between molecules and anticipating the behavior of new drugs in the body.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura Uttar Pradesh, India
| | - Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Bhoopendra Singh
- Department of Pharmacy, B.S.A. College of Engineering & Technology, Mathura Uttar Pradesh India
| |
Collapse
|
39
|
Olmedo DA, Durant-Archibold AA, López-Pérez JL, Medina-Franco JL. Design and Diversity Analysis of Chemical Libraries in Drug Discovery. Comb Chem High Throughput Screen 2024; 27:502-515. [PMID: 37409545 DOI: 10.2174/1386207326666230705150110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Chemical libraries and compound data sets are among the main inputs to start the drug discovery process at universities, research institutes, and the pharmaceutical industry. The approach used in the design of compound libraries, the chemical information they possess, and the representation of structures, play a fundamental role in the development of studies: chemoinformatics, food informatics, in silico pharmacokinetics, computational toxicology, bioinformatics, and molecular modeling to generate computational hits that will continue the optimization process of drug candidates. The prospects for growth in drug discovery and development processes in chemical, biotechnological, and pharmaceutical companies began a few years ago by integrating computational tools with artificial intelligence methodologies. It is anticipated that it will increase the number of drugs approved by regulatory agencies shortly.
Collapse
Affiliation(s)
- Dionisio A Olmedo
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá, Ciudad de Panamá, Apartado, 0824-00178, Panamá
- Sistema Nacional de Investigación (SNI), Secretaria Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad del Saber, Clayton, Panamá
| | - Armando A Durant-Archibold
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Apartado, 0843-01103, Panamá
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Ciudad de Panamá, Panamá
| | - José Luis López-Pérez
- CESIFAR, Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Ciudad de Panamá, Panamá
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Avda. Campo Charro s/n, 37071 Salamanca, España
| | - José Luis Medina-Franco
- DIFACQUIM Grupo de Investigación, Departamento de Farmacia, Escuela de Química, Universidad Nacional Autónoma de México, Ciudad de México, Apartado, 04510, México
| |
Collapse
|
40
|
Talevi A. Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects. Methods Mol Biol 2024; 2714:1-20. [PMID: 37676590 DOI: 10.1007/978-1-0716-3441-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Computer-aided drug discovery and design involve the use of information technologies to identify and develop, on a rational ground, chemical compounds that align a set of desired physicochemical and biological properties. In its most common form, it involves the identification and/or modification of an active scaffold (or the combination of known active scaffolds), although de novo drug design from scratch is also possible. Traditionally, the drug discovery and design processes have focused on the molecular determinants of the interactions between drug candidates and their known or intended pharmacological target(s). Nevertheless, in modern times, drug discovery and design are conceived as a particularly complex multiparameter optimization task, due to the complicated, often conflicting, property requirements.This chapter provides an updated overview of in silico approaches for identifying active scaffolds and guiding the subsequent optimization process. Recent groundbreaking advances in the field have also analyzed the integration of state-of-the-art machine learning approaches in every step of the drug discovery process (from prediction of target structure to customized molecular docking scoring functions), integration of multilevel omics data, and the use of a diversity of computational approaches to assist target validation and assess plausible binding pockets.
Collapse
Affiliation(s)
- Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata, Argentina.
- Argentinean National Council of Scientific and Technical Research (CONICET), La Plata, Argentina.
| |
Collapse
|
41
|
Tang Y, Zhao W, Zhu G, Tan Z, Huang L, Zhang P, Gao L, Rui Y. Nano-Pesticides and Fertilizers: Solutions for Global Food Security. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:90. [PMID: 38202545 PMCID: PMC10780761 DOI: 10.3390/nano14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Nanotechnology emerges as an important way to safeguard global food security amid the escalating challenges posed by the expansion of the global population and the impacts of climate change. The perfect fusion of this breakthrough technology with traditional agriculture promises to revolutionize the way agriculture is traditionally practiced and provide effective solutions to the myriad of challenges in agriculture. Particularly noteworthy are the applications of nano-fertilizers and pesticides in agriculture, which have become milestones in sustainable agriculture and offer lasting alternatives to traditional methods. This review meticulously explores the key role of nano-fertilizers and pesticides in advancing sustainable agriculture. By focusing on the dynamic development of nanotechnology in the field of sustainable agriculture and its ability to address the overarching issue of global food security, this review aims to shed light on the transformative potential of nanotechnology to pave the way for a more resilient and sustainable future for agriculture.
Collapse
Affiliation(s)
- Yuying Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.T.); (G.Z.)
| | - Weichen Zhao
- State Key Laboratory for Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Z.); (Z.T.)
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.T.); (G.Z.)
| | - Zhiqiang Tan
- State Key Laboratory for Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Z.); (Z.T.)
| | - Lili Huang
- Jiaer Chen Academician Workstation, Jinan Huaxin Automation Engineering Co., Ltd., Xincheng Road, Shanghe County, Jinan 251616, China;
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.T.); (G.Z.)
| |
Collapse
|
42
|
Angelo JS, Guedes IA, Barbosa HJC, Dardenne LE. Multi-and many-objective optimization: present and future in de novo drug design. Front Chem 2023; 11:1288626. [PMID: 38192501 PMCID: PMC10773868 DOI: 10.3389/fchem.2023.1288626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
de novo Drug Design (dnDD) aims to create new molecules that satisfy multiple conflicting objectives. Since several desired properties can be considered in the optimization process, dnDD is naturally categorized as a many-objective optimization problem (ManyOOP), where more than three objectives must be simultaneously optimized. However, a large number of objectives typically pose several challenges that affect the choice and the design of optimization methodologies. Herein, we cover the application of multi- and many-objective optimization methods, particularly those based on Evolutionary Computation and Machine Learning techniques, to enlighten their potential application in dnDD. Additionally, we comprehensively analyze how molecular properties used in the optimization process are applied as either objectives or constraints to the problem. Finally, we discuss future research in many-objective optimization for dnDD, highlighting two important possible impacts: i) its integration with the development of multi-target approaches to accelerate the discovery of innovative and more efficacious drug therapies and ii) its role as a catalyst for new developments in more fundamental and general methodological frameworks in the field.
Collapse
Affiliation(s)
| | | | | | - Laurent E. Dardenne
- Coordenação de Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| |
Collapse
|
43
|
Mwangi J, Kamau PM, Thuku RC, Lai R. Design methods for antimicrobial peptides with improved performance. Zool Res 2023; 44:1095-1114. [PMID: 37914524 PMCID: PMC10802102 DOI: 10.24272/j.issn.2095-8137.2023.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
The recalcitrance of pathogens to traditional antibiotics has made treating and eradicating bacterial infections more difficult. In this regard, developing new antimicrobial agents to combat antibiotic-resistant strains has become a top priority. Antimicrobial peptides (AMPs), a ubiquitous class of naturally occurring compounds with broad-spectrum antipathogenic activity, hold significant promise as an effective solution to the current antimicrobial resistance (AMR) crisis. Several AMPs have been identified and evaluated for their therapeutic application, with many already in the drug development pipeline. Their distinct properties, such as high target specificity, potency, and ability to bypass microbial resistance mechanisms, make AMPs a promising alternative to traditional antibiotics. Nonetheless, several challenges, such as high toxicity, lability to proteolytic degradation, low stability, poor pharmacokinetics, and high production costs, continue to hamper their clinical applicability. Therefore, recent research has focused on optimizing the properties of AMPs to improve their performance. By understanding the physicochemical properties of AMPs that correspond to their activity, such as amphipathicity, hydrophobicity, structural conformation, amino acid distribution, and composition, researchers can design AMPs with desired and improved performance. In this review, we highlight some of the key strategies used to optimize the performance of AMPs, including rational design and de novo synthesis. We also discuss the growing role of predictive computational tools, utilizing artificial intelligence and machine learning, in the design and synthesis of highly efficacious lead drug candidates.
Collapse
Affiliation(s)
- James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Peter Muiruri Kamau
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rebecca Caroline Thuku
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Peptides of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Centre for Non-Human Primates, Kunming Primate Research Centre, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Centre, New Cornerstone Science Institute, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Centre for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China. E-mail:
| |
Collapse
|
44
|
Shiammala PN, Duraimutharasan NKB, Vaseeharan B, Alothaim AS, Al-Malki ES, Snekaa B, Safi SZ, Singh SK, Velmurugan D, Selvaraj C. Exploring the artificial intelligence and machine learning models in the context of drug design difficulties and future potential for the pharmaceutical sectors. Methods 2023; 219:82-94. [PMID: 37778659 DOI: 10.1016/j.ymeth.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
Artificial intelligence (AI), particularly deep learning as a subcategory of AI, provides opportunities to accelerate and improve the process of discovering and developing new drugs. The use of AI in drug discovery is still in its early stages, but it has the potential to revolutionize the way new drugs are discovered and developed. As AI technology continues to evolve, it is likely that AI will play an even greater role in the future of drug discovery. AI is used to identify new drug targets, design new molecules, and predict the efficacy and safety of potential drugs. The inclusion of AI in drug discovery can screen millions of compounds in a matter of hours, identifying potential drug candidates that would have taken years to find using traditional methods. AI is highly utilized in the pharmaceutical industry by optimizing processes, reducing waste, and ensuring quality control. This review covers much-needed topics, including the different types of machine-learning techniques, their applications in drug discovery, and the challenges and limitations of using machine learning in this field. The state-of-the-art of AI-assisted pharmaceutical discovery is described, covering applications in structure and ligand-based virtual screening, de novo drug creation, prediction of physicochemical and pharmacokinetic properties, drug repurposing, and related topics. Finally, many obstacles and limits of present approaches are outlined, with an eye on potential future avenues for AI-assisted drug discovery and design.
Collapse
Affiliation(s)
| | | | - Baskaralingam Vaseeharan
- Department of Animal Health and Management, Science Block, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Esam S Al-Malki
- Department of Biology, College of Science in Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Babu Snekaa
- Laboratory for Artificial Intelligence and Molecular Modelling, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| | - Devadasan Velmurugan
- Department of Biotechnology, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Chandrabose Selvaraj
- Laboratory for Artificial Intelligence and Molecular Modelling, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600077, India; Laboratory for Artificial Intelligence and Molecular Modelling, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, Tamil Nadu 602105, India.
| |
Collapse
|
45
|
da Fonseca AM, Cabongo SQ, Caluaco BJ, Colares RP, Fernandes CFC, Dos Santos HS, de Lima-Neto P, Marinho ES. The search for new efficient inhibitors of SARS-COV-2 through the De novo drug design developed by artificial intelligence. J Biomol Struct Dyn 2023; 41:9890-9906. [PMID: 36420665 DOI: 10.1080/07391102.2022.2148128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
Abstract
The pandemic caused by Sars-CoV-2 is a viral infection that has generated one of the most significant health problems worldwide. Previous studies report the main protease (Mpro) as a potential target for this virus, as it is considered a crucial enzyme in mediating replication and viral transcription. This work presented the construction of new bioactive compounds for possible inhibition. The De novo molecular design of drugs method in the incremental construction of a ligant model within a receptor model was used, producing new structures with the help of artificial intelligence. The research algorithm and the scoring function responsible for predicting orientation and affinity in the molecular target at the time of coupling showed, as a result of the simulation, the compound with the highest bioaffinity value, Hit 998, with the energy of -17.62 kcal/mol, and synthetic viability close to 50%. While hit 1103 presented better synthetic viability (80%), its affinity energy of -10.28 kcal/mol. Both were compared with the reference linker N3, with a binding affinity of -7.5 kcal/mol. ADMET tests demonstrated that simulated compounds have a low risk of metabolic activation and do not exert effective distribution in the CNS, suggesting a pharmacokinetic mechanism based on local action, even with high topological polarity, which resulted in low oral bioavailability. In conclusion, MMGBSA, H-bonds, RMSD, SASA, and RMSF values were also obtained through molecular dynamics to verify the stability of the receptor-ligant complex within the active protein site to seek new therapeutic propositions in the fight against the pandemic.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aluísio Marques da Fonseca
- Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis - MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Sadrack Queque Cabongo
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Bernardino Joaquim Caluaco
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Regilany Paulo Colares
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | | | | | - Pedro de Lima-Neto
- Department of Analytical Chemistry and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Emmanuel Silva Marinho
- Grupo de química Teorica e Eletroquimica-GQTE, Universidade Estadual do Ceará, Limoeiro do Norte, CE, Brazil
| |
Collapse
|
46
|
Liu N, Jin H, Zhang L, Liu Z. Plug-in Models: A Promising Direction for Molecular Generation. HEALTH DATA SCIENCE 2023; 3:0092. [PMID: 38487202 PMCID: PMC10880158 DOI: 10.34133/hds.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 03/17/2024]
Affiliation(s)
- Ningfeng Liu
- State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Sciences, Peking University, 100191 Beijing, P. R. China
| |
Collapse
|
47
|
Haroon S, C A H, A S J. Generative Pre-trained Transformer (GPT) based model with relative attention for de novo drug design. Comput Biol Chem 2023; 106:107911. [PMID: 37450999 DOI: 10.1016/j.compbiolchem.2023.107911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
De novo drug design refers to the process of designing new drug molecules from scratch using computational methods. In contrast to other computational methods that primarily focus on modifying existing molecules, designing from scratch enables the exploration of new chemical space and the potential discovery of novel molecules with enhanced properties. In this research, we proposed a model that utilizes Generative Pre-trained Transformer (GPT) architecture and relative attention for de novo drug design. GPT is a language model that utilizes transformer architecture to predict the next word or token in a given sequence. Representation of molecules using SMILES notation has enabled the use of next-token prediction techniques in de novo drug design. GPT uses attention mechanisms to capture the dependencies and relationships between different tokens in a sequence and allows the model to focus on the most important information when processing the input. Relative attention is a variant of the attention mechanism, which allows the model to capture the relative distances and relationships between tokens in the input sequence. In the standard attention mechanism, positional information is typically encoded using fixed-position embeddings. In relative attention, positional information is supplied dynamically during attention calculation by incorporating relative positional encodings, enabling the model to quickly learn the syntax of new unseen tokens. Relative attention enables the GPT model to better understand the relative positions of tokens in the sequence, which can be particularly useful when dealing with limited dataset sizes or generating target-specific drugs. The proposed model was trained on benchmark datasets, and performance was compared with other generative models. We show that relative attention and transfer learning could enable the GPT model to generate molecules with improved validity, uniqueness, and novelty in the context of de novo drug design. To illustrate the effectiveness of relative attention, the model was trained using transfer learning on three target-specific datasets, and the performance was compared with standard attention.
Collapse
Affiliation(s)
- Suhail Haroon
- Bioinformatics Lab, Department of Computer Science, Cochin University of Science and Technology, Kerala 682022, India.
| | - Hafsath C A
- Bioinformatics Lab, Department of Computer Science, Cochin University of Science and Technology, Kerala 682022, India
| | - Jereesh A S
- Bioinformatics Lab, Department of Computer Science, Cochin University of Science and Technology, Kerala 682022, India.
| |
Collapse
|
48
|
Matos GDR, Pak S, Rizzo RC. Descriptor-Driven de Novo Design Algorithms for DOCK6 Using RDKit. J Chem Inf Model 2023; 63:5803-5822. [PMID: 37698425 PMCID: PMC10694857 DOI: 10.1021/acs.jcim.3c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Structure-based methods that employ principles of de novo design can be used to construct small organic molecules from scratch using pre-existing fragment libraries to sample chemical space and are an important class of computational algorithms for drug-lead discovery. Here, we present a powerful new design method for DOCK6 that employs a Descriptor-Driven De Novo strategy (termed D3N) in which user-defined cheminformatics descriptors (and their target ranges) are calculated at each layer of growth using the open-source toolkit RDKit. The objective is to tailor ligand growth toward desirable regions of chemical space. The approach was extensively validated through: (1) comparison of cheminformatics descriptors computed using the new DOCK6/RDKit interface versus the standard Python/RDKit installation, (2) examination of descriptor distributions generated using D3N growth under different conditions (target ranges and environments), and (3) construction of ligands with very tight (pinpoint) descriptor ranges using clinically relevant compounds as a reference. Our testing confirms that the new DOCK6/RDKit integration is robust, showcases how the new D3N routines can be used to direct sampling around user-defined chemical spaces, and highlights the utility of on-the-fly descriptor calculations for ligand design to important drug targets.
Collapse
Affiliation(s)
- Guilherme Duarte Ramos Matos
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York 11794, USA
- Instituto de Química, Universidade de Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Steven Pak
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Robert C. Rizzo
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York 11794, USA
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794, USA
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
49
|
Han R, Yoon H, Kim G, Lee H, Lee Y. Revolutionizing Medicinal Chemistry: The Application of Artificial Intelligence (AI) in Early Drug Discovery. Pharmaceuticals (Basel) 2023; 16:1259. [PMID: 37765069 PMCID: PMC10537003 DOI: 10.3390/ph16091259] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Artificial intelligence (AI) has permeated various sectors, including the pharmaceutical industry and research, where it has been utilized to efficiently identify new chemical entities with desirable properties. The application of AI algorithms to drug discovery presents both remarkable opportunities and challenges. This review article focuses on the transformative role of AI in medicinal chemistry. We delve into the applications of machine learning and deep learning techniques in drug screening and design, discussing their potential to expedite the early drug discovery process. In particular, we provide a comprehensive overview of the use of AI algorithms in predicting protein structures, drug-target interactions, and molecular properties such as drug toxicity. While AI has accelerated the drug discovery process, data quality issues and technological constraints remain challenges. Nonetheless, new relationships and methods have been unveiled, demonstrating AI's expanding potential in predicting and understanding drug interactions and properties. For its full potential to be realized, interdisciplinary collaboration is essential. This review underscores AI's growing influence on the future trajectory of medicinal chemistry and stresses the importance of ongoing synergies between computational and domain experts.
Collapse
Affiliation(s)
| | | | | | | | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
50
|
Niazi SK. The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives. Drug Des Devel Ther 2023; 17:2691-2725. [PMID: 37701048 PMCID: PMC10493153 DOI: 10.2147/dddt.s424991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
Artificial intelligence (AI) and machine learning (ML) represent significant advancements in computing, building on technologies that humanity has developed over millions of years-from the abacus to quantum computers. These tools have reached a pivotal moment in their development. In 2021 alone, the U.S. Food and Drug Administration (FDA) received over 100 product registration submissions that heavily relied on AI/ML for applications such as monitoring and improving human performance in compiling dossiers. To ensure the safe and effective use of AI/ML in drug discovery and manufacturing, the FDA and numerous other U.S. federal agencies have issued continuously updated, stringent guidelines. Intriguingly, these guidelines are often generated or updated with the aid of AI/ML tools themselves. The overarching goal is to expedite drug discovery, enhance the safety profiles of existing drugs, introduce novel treatment modalities, and improve manufacturing compliance and robustness. Recent FDA publications offer an encouraging outlook on the potential of these tools, emphasizing the need for their careful deployment. This has expanded market opportunities for retraining personnel handling these technologies and enabled innovative applications in emerging therapies such as gene editing, CRISPR-Cas9, CAR-T cells, mRNA-based treatments, and personalized medicine. In summary, the maturation of AI/ML technologies is a testament to human ingenuity. Far from being autonomous entities, these are tools created by and for humans designed to solve complex problems now and in the future. This paper aims to present the status of these technologies, along with examples of their present and future applications.
Collapse
|