1
|
Hardy L, Kannan B, Rigon M, Benton-Hawthorn G, Previdelli RL, Reichler IM, Guscetti F, Kowalewski MP, Campanella M. Canine Mammary Tumours (CMTs) exploit mitochondrial cholesterol for aggressive reprogramming. Biochim Biophys Acta Mol Basis Dis 2024:167546. [PMID: 39486658 DOI: 10.1016/j.bbadis.2024.167546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
In human breast cancer the mitochondrial translocator protein (TSPO) aids pro-survival cellular response by facilitating the formation of mitochondrial contact sites with the nucleus termed Nucleus Associated Mitochondria (NAM). Here, we show that TSPO positively associates with the aggressiveness of tissues and cells isolated from Canine Mammary Tumours (CMTs). TSPO is also readily upregulated in reprogrammed mammary tumour cells following long-term deprivation of oestrogen or exposure to the endocrine chemotherapeutic (ET) agent Tamoxifen. The latter triggers mitochondrial handling of cholesterol which is facilitated by TSPO whose upregulation reduces susceptibility to Tamoxifen. TSPO binding ligands boost, on the other hand, the efficacy of Tamoxifen and Chemotherapy agents. In aggressive canine mammary tumour cells, TSPO repression impairs the NF-kB pattern thus confirming the pro-survival role of the NAM uncovered in the human counterpart. Mitochondrial cholesterol handling via TSPO emerges therefore as a signature in the aggressive reprogramming of CMTs thus advancing our understanding of the molecular mechanisms underpinning this pathology. A novel target mechanism to improve bio-marking and therapeutic protocols is here proposed.
Collapse
Affiliation(s)
- Liana Hardy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW01 TU, United Kingdom
| | - Brindha Kannan
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, United Kingdom
| | - Manuel Rigon
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, United Kingdom
| | - Genevieve Benton-Hawthorn
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW01 TU, United Kingdom
| | - Renato L Previdelli
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW01 TU, United Kingdom
| | - Iris M Reichler
- Clinic for Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, 8057 Zurich, Switzerland
| | - Franco Guscetti
- Institute of Veterinary Pathology, University of Zurich, Zurich, 8057 Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, 8057 Zurich, Switzerland
| | - Michelangelo Campanella
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, United Kingdom; Department of Biomedical Science, University of Padua, 35131, Italy; Institute Gustave Roussy, 94805, France.
| |
Collapse
|
2
|
Khalil EM, Rady MI, Darwish SF, Abd-Allah ER. Nano Spirulina platensis countered cisplatin-induced repro-toxicity by reversing the expression of altered steroid hormones and downregulation of the StAR gene. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03483-z. [PMID: 39414699 DOI: 10.1007/s00210-024-03483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024]
Abstract
Cisplatin is a commonly utilized chemotherapy medication for treating different sarcomas and carcinomas. Its ability interferes with cancer cells' DNA repair pathways and postpones unfavorable outcomes in cancer patients. The current investigation's goal was to ascertain if nano Spirulina platensis (NSP) might shield rat testicles from cisplatin damage by assessing the expression of the StAR and SOD genes, sex hormones, 17ß-hydroxysteroid dehydrogenase(17ß-HSD), sperm profile picture, oxidative condition of testes, testicular histology, and DNA damage. Four equal and random groups of 28 adult male Wistar rats were created; the control group was given saline for 8 weeks. An extraction of NSP at a concentration of 2500 mg/kg body weight was administered orally for 8 weeks to the NSP group. For the first 4 weeks, the cisplatin group was intraperitoneally injected with 2 mg/kg/body weight of cisplatin, and for the next 4 weeks, they were given a dosage of 4 mg/kg/body weight. The cisplatin + NSP group was given both NSP and cisplatin. The results of the experiment showed that intake of NSP and cisplatin improved sperm profile; re-established the balance of oxidizing agents and antioxidant state; enhanced testicular histology; promoted the histometric parameters of seminiferous tubules including epithelial height, their diameter, and Johnsen's score, decreasing DNA breakage in testicular tissue; increased testosterone level; decreased 17ß-HSD concentration; and upregulated both the StAR and SOD gene expression in testicles compared to rats exposed to cisplatin alone. These results demonstrate that NSP is a promising agent for improving cisplatin-induced testicular injury and infertility.
Collapse
Affiliation(s)
- Eman M Khalil
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Egypt
| | - Mohamed I Rady
- Department of Zoology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Samah F Darwish
- Biotechnology Research Unit, Animal Reproduction Research Institute, Giza, Egypt
| | - Entsar R Abd-Allah
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Nasr City, Egypt.
| |
Collapse
|
3
|
Manna PR, Molehin D, Ahmed AU, Yang S, Reddy PH. Acetylation of Steroidogenic Acute Regulatory Protein Sensitizes 17β-Estradiol Regulation in Hormone-Sensitive Breast Cancer Cells. Int J Mol Sci 2024; 25:8732. [PMID: 39201419 PMCID: PMC11354777 DOI: 10.3390/ijms25168732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
An imbalance in estrogen signaling is a critical event in breast tumorigenesis. The majority of breast cancers (BCs) are hormone-sensitive; they majorly express the estrogen receptor (ER+) and are activated by 17β-estradiol (E2). The steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in steroid biosynthesis. The dysregulation of the epigenetic machinery, modulating E2 levels, is a primary occurrence for promoting breast tumorigenesis. StAR expression, concomitant with E2 synthesis, was reported to be aberrantly high in human and mouse hormone-dependent BC cells compared with their non-cancerous counterparts. However, the mechanism of action of StAR remains poorly understood. We discovered StAR as an acetylated protein and have identified a number of lysine (K) residues that are putatively acetylated in malignant and non-malignant breast cells, using LC-MS/MS (liquid chromatography-tandem mass spectrometry), suggesting they differently influence E2 synthesis in mammary tissue. The treatment of hormone-sensitive MCF7 cells with a variety of histone deacetylase inhibitors (HDACIs), at therapeutically and clinically relevant doses, identified a few additional StAR acetylated lysine residues. Among a total of fourteen StAR acetylomes undergoing acetylation and deacetylation, K111 and K253 were frequently recognized either endogenously or in response to HDACIs. Site-directed mutagenesis studies of these two StAR acetylomes, pertaining to K111Q and K253Q acetylation mimetic states, resulted in increases in E2 levels in ER+ MCF7 and triple negative MB-231 BC cells, compared with their values seen with human StAR. Conversely, these cells carrying K111R and K253R deacetylation mutants diminished E2 biosynthesis. These findings provide novel and mechanistic insights into intra-tumoral E2 regulation by elucidating the functional importance of this uncovered StAR post-translational modification (PTM), involving acetylation and deacetylation events, underscoring the potential of StAR as a therapeutic target for hormone-sensitive BC.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Deborah Molehin
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Ahsen U. Ahmed
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA;
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - P. Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
4
|
Shen H, Fu L, Cai Y, Zhu K, Chen X. Hexafluoropropylene oxide trimer acid (HFPO-TA) exerts cytotoxic effects on leydig cells via the ER stress/JNK/β-trcp/mcl-1 axis. Food Chem Toxicol 2024; 188:114678. [PMID: 38643823 DOI: 10.1016/j.fct.2024.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA) is an alternative to perfluorooctanoic acid (PFOA) and is widely used in various industries. The effects of HFPO-TA on the male reproductive system and the underlying mechanisms are still not fully understood. In this study, TM3 mouse Leydig cells were used as the main model to evaluate the cytotoxicity of HFPO-TA in vitro. HFPO-TA inhibited the viability and expression of multiple biomarkers of Leydig cells. HFPO-TA also induced Leydig cell apoptosis in a caspase-dependent manner. Moreover, HFPO-TA induced the ubiquitination and degradation of Mcl-1 in a β-TrCP-dependent manner. Further investigations showed that HFPO-TA treatment led to the upregulation of ROS, which activated the ER stress/JNK/β-TrCP axis in Leydig cells. Overall, our study provides novel insights into the cytotoxic effects of HFPO-TA on the male reproductive system.
Collapse
Affiliation(s)
- Hongping Shen
- Department of Traditonal Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Lingling Fu
- Jinhua Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang Province, China
| | - Yili Cai
- Department of Acupuncture, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Keqi Zhu
- Department of Traditonal Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Xueqin Chen
- Department of Traditonal Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China.
| |
Collapse
|
5
|
Bréhat J, Leick S, Musman J, Su JB, Eychenne N, Giton F, Rivard M, Barel LA, Tropeano C, Vitarelli F, Caccia C, Leoni V, Ghaleh B, Pons S, Morin D. Identification of a mechanism promoting mitochondrial sterol accumulation during myocardial ischemia-reperfusion: role of TSPO and STAR. Basic Res Cardiol 2024; 119:481-503. [PMID: 38517482 DOI: 10.1007/s00395-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/24/2024]
Abstract
Hypercholesterolemia is a major risk factor for coronary artery diseases and cardiac ischemic events. Cholesterol per se could also have negative effects on the myocardium, independently from hypercholesterolemia. Previously, we reported that myocardial ischemia-reperfusion induces a deleterious build-up of mitochondrial cholesterol and oxysterols, which is potentiated by hypercholesterolemia and prevented by translocator protein (TSPO) ligands. Here, we studied the mechanism by which sterols accumulate in cardiac mitochondria and promote mitochondrial dysfunction. We performed myocardial ischemia-reperfusion in rats to evaluate mitochondrial function, TSPO, and steroidogenic acute regulatory protein (STAR) levels and the related mitochondrial concentrations of sterols. Rats were treated with the cholesterol synthesis inhibitor pravastatin or the TSPO ligand 4'-chlorodiazepam. We used Tspo deleted rats, which were phenotypically characterized. Inhibition of cholesterol synthesis reduced mitochondrial sterol accumulation and protected mitochondria during myocardial ischemia-reperfusion. We found that cardiac mitochondrial sterol accumulation is the consequence of enhanced influx of cholesterol and not of the inhibition of its mitochondrial metabolism during ischemia-reperfusion. Mitochondrial cholesterol accumulation at reperfusion was related to an increase in mitochondrial STAR but not to changes in TSPO levels. 4'-Chlorodiazepam inhibited this mechanism and prevented mitochondrial sterol accumulation and mitochondrial ischemia-reperfusion injury, underlying the close cooperation between STAR and TSPO. Conversely, Tspo deletion, which did not alter cardiac phenotype, abolished the effects of 4'-chlorodiazepam. This study reveals a novel mitochondrial interaction between TSPO and STAR to promote cholesterol and deleterious sterol mitochondrial accumulation during myocardial ischemia-reperfusion. This interaction regulates mitochondrial homeostasis and plays a key role during mitochondrial injury.
Collapse
Affiliation(s)
- Juliette Bréhat
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France
| | - Shirin Leick
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France
| | - Julien Musman
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France
| | - Jin Bo Su
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France
| | | | - Frank Giton
- Pôle Biologie-Pathologie, IMRB U955, Hôpital Henri Mondor, Créteil, France
| | | | | | - Chiara Tropeano
- Laboratory of Clinical Chemistry, ASST-Brianza Department of Medicine and Surgery, Hospital Pio XI Desio, University of Milano Bicocca, Monza, Italy
| | - Frederica Vitarelli
- Laboratory of Clinical Chemistry, ASST-Brianza Department of Medicine and Surgery, Hospital Pio XI Desio, University of Milano Bicocca, Monza, Italy
| | - Claudio Caccia
- Unit of Medical Genetics and Neurogenetics, Istituto Neurologico Carlo Besta, Fondazione IRCCS, Milan, Italy
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, ASST-Brianza Department of Medicine and Surgery, Hospital Pio XI Desio, University of Milano Bicocca, Monza, Italy
| | - Bijan Ghaleh
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France
| | - Sandrine Pons
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France
| | - Didier Morin
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Faculté de Santé, 8 rue du général Sarrail, 94000, Créteil, France.
| |
Collapse
|
6
|
Afzal A, Zhang Y, Afzal H, Saddozai UAK, Zhang L, Ji XY, Khawar MB. Functional role of autophagy in testicular and ovarian steroidogenesis. Front Cell Dev Biol 2024; 12:1384047. [PMID: 38827527 PMCID: PMC11140113 DOI: 10.3389/fcell.2024.1384047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Autophagy is an evolutionarily conserved cellular recycling process that maintains cellular homeostasis. Despite extensive research in endocrine contexts, the role of autophagy in ovarian and testicular steroidogenesis remains elusive. The significant role of autophagy in testosterone production suggests potential treatments for conditions like oligospermia and azoospermia. Further, influence of autophagy in folliculogenesis, ovulation, and luteal development emphasizes its importance for improved fertility and reproductive health. Thus, investigating autophagy in gonadal cells is clinically significant. Understanding these processes could transform treatments for endocrine disorders, enhancing reproductive health and longevity. Herein, we provide the functional role of autophagy in testicular and ovarian steroidogenesis to date, highlighting its modulation in testicular steroidogenesis and its impact on hormone synthesis, follicle development, and fertility therapies.
Collapse
Affiliation(s)
- Ali Afzal
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Yue Zhang
- Department of Obstetrics and Gynecology, 988 Hospital of People's Liberation Army, Zhengzhou, Henan, China
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Umair Ali Khan Saddozai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lei Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
- Department of Medicine, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| |
Collapse
|
7
|
Xie Q, Cao H, Liu H, Xia K, Gao Y, Deng C. Prenatal DEHP exposure induces lifelong testicular toxicity by continuously interfering with steroidogenic gene expression. Transl Androl Urol 2024; 13:369-382. [PMID: 38590960 PMCID: PMC10999017 DOI: 10.21037/tau-23-503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
Background Epidemiologic studies suggested the association between prenatal di-(2-ethylhexyl) phthalate (DEHP) exposure and disorders of sex development (DSD), adult male disorders, and reproductive aging. Inhibiting testosterone synthesis by interfering with steroidogenic gene expression induces testicular toxicity, however, whether prenatal DEHP exposure induces testicular toxicity through this mechanism remains uncertain. Methods C57BL/6JGpt male mice underwent different doses (0, 100, 500, 1,000 mg/kg) of prenatal DEHP exposure during gestational day 10 to delivery day, the testicular toxicity (genital development, testosterone, semen quality, and morphology of testis tissue) in the neonatal, post-puberal and middle-aged stages was observed, and the steroidogenic gene (Lhcgr, Star, Cyp11a1, Cyp17a1, Hsd17b3, and Hsd3b2) expression was analyzed by quantitative polymerase chain reaction (qPCR) and Western blot (WB). The interference of steroidogenic gene expression in TM3 cells after mono-(2-ethylhexyl) phthalate (MEHP) exposure was also explored for verification. Results Prenatal DEHP exposure induced immediate testicular injury in the neonatal stage [reduced anogenital distance (AGD) and intratesticular testosterone], DSD in the post-puberal stage (poor genital development), and reproductive aging in the middle-aged stage (obesity, reduced testosterone and semen quality, and atrophic seminiferous tubules), especially in the high dose. Prenatal DEHP exposure continuously interfered with steroidogenic gene expression (Hsd3b2, Hsd17b3) in RNA and protein levels. MEHP inhibited testosterone synthesis of TM3 cells by interfering with steroidogenic gene expression (Hsd3b2, Hsd17b3) in RNA and protein levels. Conclusions Prenatal DEHP exposure induces lifelong testicular toxicity by continuously interfering with steroidogenic gene expression, thus indicating the association between prenatal exposure and DSD, adult male disorders, and reproductive aging.
Collapse
Affiliation(s)
- Qigen Xie
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Andrology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiming Cao
- Department of Andrology, Reproductive Center of the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hanchao Liu
- Department of Andrology, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Xia
- Department of Andrology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Andrology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Li Z, Hales BF, Robaire B. Impact of Exposure to a Mixture of Organophosphate Esters on Adrenal Cell Phenotype, Lipidome, and Function. Endocrinology 2024; 165:bqae024. [PMID: 38376928 PMCID: PMC10914377 DOI: 10.1210/endocr/bqae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Organophosphate esters (OPEs) are used primarily as flame retardants and plasticizers. Previously, we reported that adrenal cells are important targets of individual OPEs. However, real-life exposures are to complex mixtures of these chemicals. To address this, we exposed H295R human adrenal cells to varying dilutions (1/1000K to 1/3K) of a Canadian household dust-based OPE mixture for 48 hours and evaluated effects on phenotypic, lipidomic, and functional parameters. Using a high-content screening approach, we assessed phenotypic markers at mixture concentrations at which there was greater than 70% cell survival; the most striking effect of the OPE mixture was a 2.5-fold increase in the total area of lipid droplets. We then determined the response of specific lipid species to OPE exposures with novel, nontargeted lipidomic analysis of isolated lipid droplets. These data revealed that house dust OPEs induced concentration-dependent alterations in the composition of lipid droplets, particularly affecting the triglyceride, diglyceride, phosphatidylcholine, and cholesterol ester subclasses. The steroid-producing function of adrenal cells in the presence or absence of a steroidogenic stimulus, forskolin, was determined. While the production of 17β-estradiol remained unaffected, a slight decrease in testosterone production was observed after stimulation. Conversely, a 2-fold increase in both basal and stimulated cortisol and aldosterone production was observed. Thus, exposure to a house dust-based mixture of OPEs exerts endocrine-disrupting effects on adrenal cells, highlighting the importance of assessing the effects of environmentally relevant mixtures.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
9
|
Xing D, Jin Y, Jin B. A narrative review on inflammaging and late-onset hypogonadism. Front Endocrinol (Lausanne) 2024; 15:1291389. [PMID: 38298378 PMCID: PMC10827931 DOI: 10.3389/fendo.2024.1291389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
The increasing life expectancy observed in recent years has resulted in a higher prevalence of late-onset hypogonadism (LOH) in older men. LOH is characterized by the decline in testosterone levels and can have significant impacts on physical and mental health. While the underlying causes of LOH are not fully understood, there is a growing interest in exploring the role of inflammaging in its development. Inflammaging is a concept that describes the chronic, low-grade, systemic inflammation that occurs as a result of aging. This inflammatory state has been implicated in the development of various age-related diseases. Several cellular and molecular mechanisms have been identified as contributors to inflammaging, including immune senescence, cellular senescence, autophagy defects, and mitochondrial dysfunction. Despite the extensive research on inflammaging, its relationship with LOH has not yet been thoroughly reviewed in the literature. To address this gap, we aim to review the latest findings related to inflammaging and its impact on the development of LOH. Additionally, we will explore interventions that target inflammaging as potential treatments for LOH.
Collapse
Affiliation(s)
- Dong Xing
- Medical College of Southeast University, Nanjing, Jiangsu, China
| | - Yihan Jin
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Ijaz MU, Rafi Z, Hamza A, Sayed AA, Albadrani GM, Al-Ghadi MQ, Abdel-Daim MM. Mitigative potential of kaempferide against polyethylene microplastics induced testicular damage by activating Nrf-2/Keap-1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115746. [PMID: 38035520 DOI: 10.1016/j.ecoenv.2023.115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Polyethylene microplastics (PE-MPs) are one of the environmental contaminants that instigate oxidative stress (OS) in various organs of the body, including testes. Kaempferide (KFD) is a plant-derived natural flavonol with potential neuroprotective, hepatoprotective, anti-cancer, anti-oxidant and anti-inflammatory properties. Therefore, the present study was designed to evaluate the alleviative effects of KFD against PE-MPs-prompted testicular toxicity in rats. Fourty eight adult male albino rats were randomly distributed into 4 groups: control, PE-MPs-administered (1.5 mgkg-1), PE-MPs (1.5 mgkg-1) + KFD (20 mgkg-1) co-treated and KFD (20 mgkg-1) only treated group. PE-MPs intoxication significantly (P < 0.05) lowered the expression of Nrf-2 and anti-oxidant enzymes, while increasing the expression of Keap-1. The activities of anti-oxidants i.e., catalase (CAT), glutathione reductase (GSR), superoxide dismutase (SOD), hemeoxygene-1 (HO-1) and glutathione peroxidase (GPx) were reduced, besides malondialdehyde (MDA) and reactive oxygen species (ROS) contents were increased significantly (P < 0.05) following the PE-MPs exposure. Moreover, PE-MPs exposure significantly (P < 0.05) reduced the sperm motility, viability and count, whereas considerably (P < 0.05) increased the dead sperm number and sperm structural anomalies. Furthermore, PE-MPs remarkably (P < 0.05) decreased steroidogenic enzymes and Bcl-2 expression, while increasing the expression of Caspase-3 and Bax. PE-MPs exposure significantly (P < 0.05) reduced the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone, whereas inflammatory indices were increased. PE-MPs exposure also induced significant histopathological damages in the testes. Nevertheless, KFD supplementation significantly (P < 0.05) abrogated all the damages induced by PE-MPs. The findings of our study demonstrated that KFD could significantly attenuate PE-MPs-instigated OS and testicular toxicity, due to its anti-oxidant, anti-inflammatory, androgenic and anti-apoptotic potential.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Zainab Rafi
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amany A Sayed
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
11
|
Kong Z, Zhu L, Liu Y, Liu Y, Chen G, Jiang T, Wang H. Effects of azithromycin exposure during pregnancy at different stages, doses and courses on testicular development in fetal mice. Biomed Pharmacother 2024; 170:116063. [PMID: 38154271 DOI: 10.1016/j.biopha.2023.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Azithromycin is a commonly used antibiotic during pregnancy, but some studies have suggested its potential developmental toxicity. Currently, the effects and mechanisms of prenatal azithromycin exposure (PAzE) on fetal testicular development are still unclear. The effects of prenatal exposure to the same drug on fetal testicular development could vary depending on different stages, doses, and courses. Hence, in this study, based on clinical medication characteristics, Kunming mice was administered intragastrically with azithromycin at different stages (mid-/late-pregnancy), doses (50, 100, 200 mg/kg·d), and courses (single-/multi-course). Fetal blood and testicular samples were collected on GD18 for relevant assessments. The results indicated that PAzE led to changes in fetal testicular morphology, reduced cell proliferation, increased apoptosis, and decreased expression of markers related to Leydig cells (Star), Sertoli cells (Wt1), and spermatogonia (Plzf). Further investigation revealed that the effects of PAzE on fetal testicular development were characterized by mid-pregnancy, high dose (clinical dose), and single course having more pronounced effects. Additionally, the TGFβ/Smad and Nrf2 signaling pathways may be involved in the changes in fetal testicular development induced by PAzE. In summary, this study confirmed that PAzE influences fetal testicular morphological development and multicellular function. It provided theoretical and experimental evidence for guiding the rational use of azithromycin during pregnancy and further exploring the mechanisms underlying its developmental toxicity on fetal testicles.
Collapse
Affiliation(s)
- Ziyu Kong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi Liu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guanghui Chen
- Wuhan University People's Hospital, Wuhan 430071, China
| | - Tao Jiang
- Suizhou Emergency Medical Center, Suizhou 441300, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
12
|
Xie J, Wang J, Shao J, Fang H, Liu Y, Xiao X, Wen X, Guan X, Su Z, Duan P, Chen H, Chen C. Transcriptomic characterization of interactions between sodium selenite and coenzyme Q10 on preventing cadmium-induced testicular defects. Food Chem Toxicol 2023; 182:114180. [PMID: 37967787 DOI: 10.1016/j.fct.2023.114180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
The effect of heavy metal cadmium (Cd) on testicular function is recognized. However, the mechanism involved is not well-established. In the present study, we analyzed the testicular transcriptomic changes induced by acute Cd exposure of adult rats with and without supplementation of antioxidants selenium (Se) and/or coenzyme Q10 (CoQ). Cd significantly decreased serum testosterone and two steroidogenic proteins SCARB1 and STAR. RNA-Seq analyses of testicular RNAs revealed specific activation of oxidative stress-, inflammation-, MAPK- and NF-κB-related signaling molecules. In addition, Cd treatment down-regulated gene for I, III and IV complexes of mitochondrial electron transport chain and up-regulated genes for NADPH-oxidase, major cascade in ROS production. The decrease in steroidogenesis and increase in inflammation may result from oxidative stress since supplementation of Se and CoQ, but not with either alone, almost completely prevented these changes, including overall alterations in transcriptome. Cd exposure induced total of 1192 differentially expressed genes (DEGs), which was reduced to 29 without considering confounding factors associated with Se/CoQ, a 97.6% protection rate. In conclusion, Cd exposure inhibited Leydig cell steroidogenesis by down-regulating SCARB1 and STAR through increasing oxidative stress and inflammation, but Se plus CoQ synergistically prevented all the changes induced by the Cd exposure.
Collapse
Affiliation(s)
- Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiexia Wang
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Shao
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hangping Fang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijia Liu
- Zhejiang Provincial Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Xiao
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhijian Su
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haolin Chen
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital andYuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Congde Chen
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
13
|
Zhang Q, Xu W, Kong Z, Wu Y, Liu Y. Cadmium exposure-induced rat testicular dysfunction and its mechanism of chronic stress. Food Chem Toxicol 2023; 182:114181. [PMID: 37972751 DOI: 10.1016/j.fct.2023.114181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Cadmium is a common environmental pollutant in daily life, the toxic mechanisms of chronic cadmium exposure on the testes have not been fully elucidated. This study aimed to explore the effects of cadmium exposure on male reproductive health and its mechanism. The results showed that cadmium exposure led widened interstitial spaces, abnormal seminiferous tubule morphology, and decreased Leydig cell numbers. Moreover, sperm quality was significantly reduced, along with a decrease in fertility rate. And cadmium exposure could activate the hypothalamic-pituitary-adrenal (HPA) axis, elevate blood glucocorticoid levels, subsequently increase glucocorticoid receptor (GR) expression and activation in testicular Leydig cells. Then GR act on the glucocorticoid receptor element (GRE) in the DNA methyltransferase 3 A (DNMT3A) promoter region and upregulate DNMT3A expression. Consequently, this led to an increase in DNA methylation levels in the angiotensin II receptor 2 (AT2R) promoter region, resulting in reduced AT2R expression and inhibiting testicular steroidogenesis. This study systematically elucidated that cadmium exposure could lead to testicular steroidogenesis suppression and decreased fertility through the GR/DNMT3A/AT2R signaling pathway. This research further provides theoretical and experimental evidence for confirming the threat of cadmium exposure to human reproduction, and contributes to the guidance and protection of male reproductive health.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - Wei Xu
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - ZiYu Kong
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - YuJiao Wu
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China.
| | - Yi Liu
- China Tobacco HuBei Industrial LLC, Wuhan, 430071, China.
| |
Collapse
|
14
|
Dong M, Tang M, Li W, Li S, Yi M, Liu W. Morphological and transcriptional analysis of sexual differentiation and gonadal development in a burrowing fish, the four-eyed sleeper (Bostrychus sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101148. [PMID: 37865042 DOI: 10.1016/j.cbd.2023.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Four-eyed sleeper (Bostrychus sinensis) is a commercially important sea water fish, and the male individuals exhibit significant advantages in somatic growth and stress resistance, so developing sex control strategy to create all-male progeny will produce higher economic value. However, little is known about the genetic background associated with sex differentiation in this species. In this study, we investigated gonadal development and uncovered critical window stages of sexual differentiation (about 2 mph), transition from proliferation to differentiation in female germ stem cells (GSCs) (2-3 mph) and male GSCs (3-4 mph). De novo transcriptome analysis revealed candidate genes and signaling pathways associated with sexual differentiation and gonadal development in four-eyed sleeper. The results showed that sox9 and zglp1 were the earliest sex-biased transcription factors during sex differentiation. Down-regulation of chemokine, cytokines-cytokine receptors and up-regulation of cellular senescence pathway might be involved in GSC differentiation. Weighted gene correlation network analysis showed that metabolic pathway and occludin were the hub signaling and gene in ovarian development, meanwhile the MAPK signaling pathways, cellular senescence pathway and ash1l (histone H3-lysine4 N-trimethyltransferase) were the hub pathways and gene in testicular development. The present work elucidated the developmental processes of sexual differentiation and gonadal development and revealed their associated revealed genes and signaling pathways in four-eyed sleeper, providing theoretical basis for developing sex-control techniques.
Collapse
Affiliation(s)
- Mengdan Dong
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Mingyue Tang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wenjing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China.
| |
Collapse
|
15
|
Ding K, Liu C, Li L, Yang M, Jiang N, Luo S, Sun L. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism. Chin Med J (Engl) 2023; 136:2521-2537. [PMID: 37442770 PMCID: PMC10617883 DOI: 10.1097/cm9.0000000000002533] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Long-chain acyl-coenzyme A (CoA) synthase 4 (ACSL4) is an enzyme that esterifies CoA into specific polyunsaturated fatty acids, such as arachidonic acid and adrenic acid. Based on accumulated evidence, the ACSL4-catalyzed biosynthesis of arachidonoyl-CoA contributes to the execution of ferroptosis by triggering phospholipid peroxidation. Ferroptosis is a type of programmed cell death caused by iron-dependent peroxidation of lipids; ACSL4 and glutathione peroxidase 4 positively and negatively regulate ferroptosis, respectively. In addition, ACSL4 is an essential regulator of fatty acid (FA) metabolism. ACSL4 remodels the phospholipid composition of cell membranes, regulates steroidogenesis, and balances eicosanoid biosynthesis. In addition, ACSL4-mediated metabolic reprogramming and antitumor immunity have attracted much attention in cancer biology. Because it facilitates the cross-talk between ferroptosis and FA metabolism, ACSL4 is also a research hotspot in metabolic diseases and ischemia/reperfusion injuries. In this review, we focus on the structure, biological function, and unique role of ASCL4 in various human diseases. Finally, we propose that ACSL4 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Kaiyue Ding
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| |
Collapse
|
16
|
Wang Y, Liang Y, Yuan Z, Mai W, Leng Y, Zhang R, Chen J, Lai C, Chen H, Wu X, Sheng C, Zhang Q. Cadmium facilitates the formation of large lipid droplets via PLCβ2-DAG-DGKε-PA signal pathway in Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115610. [PMID: 37866036 DOI: 10.1016/j.ecoenv.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Cadmium (Cd) exposure damages the reproductive system. Lipid droplets (LDs) play an important role in steroid-producing cells to provide raw material for steroid hormone. We have found that the LDs of Leydig cells exposed to Cd are bigger than those of normal cells, but the effects on steroidogenesis and its underlying mechanism remains unclear. Using Isobaric tag for relative and absolute quantitation (iTARQ) proteomics, phosphodiesterase beta-2 (PLCβ2) was identified as the most significantly up-regulated protein in immature Leydig cells (ILCs) and adult Leydig cells (ALCs) derived from male rats exposed to maternal Cd. Consistent with high expression of PLCβ2, the size of LDs was increased in Leydig cells exposed to Cd, accompanied by reduction in cholesterol and progesterone (P4) levels. However, the high PLCβ2 did not result in high diacylglycerol (DAG) level, because Cd exposure up-regulated diacylglycerol kinases ε (DGKε) to promote the conversion from DAG to phosphatidic acid (PA). Exogenous PA, which was consistent with the intracellular PA concentration induced by Cd, facilitated the formation of large LDs in R2C cells, followed by reduced P4 level in the culture medium. When PLCβ2 expression was knocked down, the increased DGKε caused by Cd was reversed, and then the PA level was decreased to normal. As results, large LDs returned to normal size, and the level of total cholesterol was improved to restore steroidogenesis. The accumulation of PA regulated by PLCβ2-DAG-DGKε signal pathway is responsible for the formation of large LDs and insufficient steroid hormone synthesis in Leydig cells exposed to Cd. These data highlight that LD is an important target organelle for Cd-induced steroid hormone deficiency in males.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yuqing Liang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Zansheng Yuan
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Wanwen Mai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yang Leng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Runze Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Jiayan Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Caiyong Lai
- Department of Urology, The sixth affiliated hospital of Jinan University, Dongguan 523570, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co., Ltd, Guangzhou 510632, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China.
| | - Chao Sheng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co., Ltd, Guangzhou 510632, China.
| |
Collapse
|
17
|
Quan H, Wang Y, Li H, Zhu Q, Chen X, Ge RS, Li X. Ciliary neurotrophic factor stimulates stem/progenitor Leydig cell proliferation but inhibits differentiation into its lineage in rats. Andrology 2023; 11:1495-1513. [PMID: 37029531 DOI: 10.1111/andr.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Ciliary neurotrophic factor is a member of the interleukin-6 family of cytokines. Ciliary neurotrophic factor drives many cells for their development. However, its effects on Leydig cell development remain unclear. METHODS In the current study, we used three-dimensional seminiferous tubule culture system to induce the proliferation and differentiation of tubule-associated stem Leydig cells and primary progenitor Leydig cells culture to address the effects of ciliary neurotrophic factor. RESULTS We found that ciliary neurotrophic factor stimulated the proliferation of stem Leydig cells but inhibited their development into the Leydig cell lineage. The ciliary neurotrophic factor-mediated effects can be reversed by signal transducer and activator 3 inhibitor S3I-201 and phosphatidylinositol 3-kinase inhibitor wortmannin, indicating that ciliary neurotrophic factor acts via signal transducer and activator 3-phosphatidylinositol 3-kinase signaling pathways to increase stem/progenitor Leydig cell proliferation. Ciliary neurotrophic factor at 1 and 10 ng/mL significantly decreased androgen production by progenitor Leydig cells. Microarray analysis of ciliary neurotrophic factor-treated progenitor Leydig cells showed that ciliary neurotrophic factor blocked steroidogenic pathways by downregulating Scarb1, Star, and Hsd3b1, possibly by downregulating the transcription factor Nr5a1 expression. CONCLUSION Ciliary neurotrophic factor stimulates proliferation but blocks the differentiation of stem/progenitor Leydig cells.
Collapse
Affiliation(s)
- Hehua Quan
- Department of Anesthesiology and Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology and Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology and Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology and Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofang Chen
- Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology and Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
de Mattos K, Dumas FO, Campolina-Silva GH, Belleannée C, Viger RS, Tremblay JJ. ERK5 Cooperates With MEF2C to Regulate Nr4a1 Transcription in MA-10 and MLTC-1 Leydig Cells. Endocrinology 2023; 164:bqad120. [PMID: 37539861 PMCID: PMC10435423 DOI: 10.1210/endocr/bqad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Leydig cells produce hormones required for the development and maintenance of sex characteristics and fertility in males. MEF2 transcription factors are important regulators of Leydig cell gene expression and steroidogenesis. ERK5 is an atypical member of the MAP kinase family that modulates transcription factor activity, either by direct phosphorylation or by acting as a transcriptional coactivator. While MEF2 and ERK5 are known to cooperate transcriptionally, the presence and role of ERK5 in Leydig cells remained unknown. Our goal was to determine whether ERK5 is present in Leydig cells and whether it cooperates with MEF2 to regulate gene expression. We found that ERK5 is present in Leydig cells in testicular tissue and immortalized cell lines. ERK5 knockdown in human chorionic gonadotrophin-treated MA-10 Leydig cells reduced steroidogenesis and decreased Star and Nr4a1 expression. Luciferase assays using a synthetic reporter plasmid containing 3 MEF2 elements revealed that ERK5 enhances MEF2-dependent promoter activation. Although ERK5 did not cooperate with MEF2 on the Star promoter in Leydig cell lines, we found that ERK5 and MEF2C do cooperate on the Nr4a1 promoter, which contains 2 adjacent MEF2 elements. Mutation of each MEF2 element in a short version of the Nr4a1 promoter significantly decreased the ERK5/MEF2C cooperation, indicating that both MEF2 elements need to be intact. The ERK5/MEF2C cooperation did not require phosphorylation of MEF2C on Ser387. Taken together, our data identify ERK5 as a new regulator of MEF2 activity in Leydig cells and provide potential new insights into mechanisms that regulate Leydig cell gene expression and function.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Félix-Olivier Dumas
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Gabriel Henrique Campolina-Silva
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Clémence Belleannée
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
19
|
Wang L, Meng Q, Wang H, Huang X, Yu C, Yin G, Wang D, Jiang H, Huang Z. Luman regulates the activity of the LHCGR promoter. Res Vet Sci 2023; 161:132-137. [PMID: 37384971 DOI: 10.1016/j.rvsc.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Testosterone in male mammals is mainly secreted by testicular Leydig cells, and its secretion process is regulated by the hypothalamic-pituitary-gonadal axis. After receiving the luteinizing hormone (LH) stimulus signal, the lutropin/choriogonadotropin receptor (LHCGR) on the Leydig cell membrane transfers the signal into the cell and finally increases the secretion of testosterone by upregulating the expression of steroid hormone synthase. In previous experiments, we found that interfering with the expression of the Luman protein can significantly increase testosterone secretion in MLTC-1 cells. In this experiment, we found that knockdown of Luman in MLTC-1 cells significantly increased the concentration of cAMP and upregulated the expression of AC and LHCGR. Moreover, an analysis of the activity of the LHCGR promoter by a dual luciferase reporter system showed that knockdown of Luman increased the activity of the LHCGR promoter. Therefore, we believe that knockdown of Luman increased the activity of the LHCGR promoter and upregulated the expression of LHCGR, thereby increasing the concentration of intracellular cAMP and ultimately leading to an increase of testosterone secretion by MLTC-1 cells.
Collapse
Affiliation(s)
- Lei Wang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China.
| | - Qingrui Meng
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Hailun Wang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Xiaoyu Huang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Chunchen Yu
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Dengfeng Wang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Heji Jiang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Zhijian Huang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China.
| |
Collapse
|
20
|
Fraga T, de Sousa MJ, Magalhães J, Basto R, Paulo J, Bonito N, Magalhães JP, Figueiredo P, Sousa GM. HER2 Status in RAS and BRAF Wild-Type Metastatic Colorectal Cancer: A Portuguese Study. Cureus 2023; 15:e42536. [PMID: 37637599 PMCID: PMC10460123 DOI: 10.7759/cureus.42536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second-most deadly cancer worldwide. However, there remains a scarcity of precision treatments available for this type of cancer. Amplification or overexpression of human epidermal growth factor receptor 2 (HER2+) is a well-established therapeutic target in gastric and breast cancer. HER2 is positive in approximately 5% of CRC cases and has been implicated in resistance to therapy with anti-epidermal growth factor receptor antibodies. The aim of this study was to evaluate HER2 status in RAS and BRAF wild-type metastatic CRC (mCRC) and its correlation with survival outcomes. MATERIALS AND METHODS A single-center retrospective analysis of RAS and BRAF wild-type mCRC patients undergoing systemic treatment was conducted from July 2014 to September 2020. Tissue HER2 status was determined by immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH) and/or chromogenic in situ hybridization (CISH). HER2+ was defined as IHC3 (+) or IHC2 (+) through FISH or CISH (+). RESULTS Fifty-nine patients were included. The median age of all the included patients was 64 years (33-82). Four patients had HER2+ tumors (7%). Four patients had HER2+ tumors (7%). The majority of HER2+ mCRC cases were males (n=3) and left-sided CRC (n=3). All patients received FOLFIRI plus cetuximab as first-line treatment. At the median follow-up of 24.0 months, patients with HER2-negative mCRC presented with a median overall survival (mOS) of 39.4 months (95% confidence interval (CI) 32.7-46.0) and the four patients with HER2+ mCRC had a mOS of 20.4 months (95% CI; 9.5-31.3; p=0.07). In HER2-negative patients, the median PFS (mPFS) was 11.3 months (95% CI; 9.2-13.4) vsHER2-positive patients with a mPFS of 10.9 months (95% CI; 1.3-20.4; p=0.47). CONCLUSIONS To our knowledge, this is the first study reporting HER2+ in mCRC patients in a Portuguese population and the HER2+ rate was consistent with previous studies. Our study suggests that HER2+ may potentially be a marker that is able to predict poor prognosis in RAS and BRAF wild-type mCRC.
Collapse
Affiliation(s)
- Teresa Fraga
- Medical Oncology, Instituto Português de Oncologia de Coimbra Francisco Gentil, Coimbra, PRT
| | | | - Joana Magalhães
- Medical Oncology, Instituto Português de Oncologia de Coimbra Francisco Gentil, Coimbra, PRT
| | - Raquel Basto
- Medical Oncology, Centro Hospitalar Vila Nova de Gaia/Espinho, Gaia, PRT
| | - Judy Paulo
- Medical Oncology, Instituto Português de Oncologia de Coimbra Francisco Gentil, Coimbra, PRT
| | - Nuno Bonito
- Medical Oncology, Instituto Português de Oncologia de Coimbra Francisco Gentil, Coimbra, PRT
| | - José Paulo Magalhães
- Pathology, Instituto Português de Oncologia de Coimbra Francisco Gentil, Coimbra, PRT
| | - Paulo Figueiredo
- Pathology, Instituto Português de Oncologia de Coimbra Francisco Gentil, Coimbra, PRT
| | - Gabriela M Sousa
- Medical Oncology, Instituto Português de Oncologia de Coimbra Francisco Gentil, Coimbra, PRT
| |
Collapse
|
21
|
Wang M, Zheng L, Lin R, Ma S, Li J, Yang S. A comprehensive overview of exosome lncRNAs: emerging biomarkers and potential therapeutics in endometriosis. Front Endocrinol (Lausanne) 2023; 14:1199569. [PMID: 37455911 PMCID: PMC10338222 DOI: 10.3389/fendo.2023.1199569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Endometriosis is a gynecological condition that significantly impacting women's daily lives. In recent years, the incidence of endometriosis has been rising yearly and is now an essential contributor to female infertility. Exosomes are extracellular vesicles (EVs) that carry long noncoding RNA (lncRNA) and shield lncRNA from the outside environment thanks to their vesicle-like structure. The role of exosome-derived lncRNAs in endometriosis is also receiving more study as high-throughput sequencing technology develops. Several lncRNAs with variable expression may be crucial to the emergence and growth of endometriosis. The early diagnosis of endometriosis will be considerably improved by further high specificity and sensitivity Exosome lncRNA screening. Exosomes assist lncRNAs in carrying out their roles, offering a new target for creating endometriosis-specific medications. In order to serve as a reference for clinical research on the pathogenesis, diagnosis, and treatment options of endometriosis, this paper covers the role of exosome lncRNAs in endometriosis and related molecular mechanisms.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ruixin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Jiahui Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuli Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Lin Y, Xu W, Yang L, Chen Z, Zhai J, Zhu Q, Guo Z, Wang N, Zhang C, Deng H, Wang S, Yang G. Mechanism of testicular injury induced by Di-ethylhexyl phthalate and its protective agents. Chem Biol Interact 2023; 381:110575. [PMID: 37257576 DOI: 10.1016/j.cbi.2023.110575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Di-ethylhexyl phthalate (DEHP) is used as an important plasticizer in a wide range of products such as paints, food packaging, medical devices and children's toys. In recent years, there has been increasing interest in the toxic effects of DEHP on the male reproductive organs, the testicles. Here, we reviewed the basic pathways of testicular damage caused by DEHP. The mechanism involves oxidative stress, ferroptosis, interfering with hypothalamic-pituitary-gonadal axis (HPGA) and testosterone level. We summarized the protective agents that have been shown to be effective in repairing this type of testicular damage in recent years. This provides a new perspective and direction for future research into the health effects and molecular mechanisms of DEHP.
Collapse
Affiliation(s)
- Yuxuan Lin
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Wenqi Xu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Ling Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Zhengguo Chen
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Jianan Zhai
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Qi Zhu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Zhifang Guo
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
23
|
Kumar GG, Kilari EK, Nelli G, Salleh N. Oral administration of Turnera diffusa willd. ex Schult. extract ameliorates steroidogenesis and spermatogenesis impairment in the testes of rats with type-2 diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116638. [PMID: 37187362 DOI: 10.1016/j.jep.2023.116638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Turnera diffusa Willd. ex Schult. (T. diffusa) has traditionally been used to treat male reproductive dysfunction and have aphrodisiac properties. AIMS OF THE STUDY This study aims to investigate the ability of T. diffusa to ameliorate the impairment in testicular steroidogenesis and spermatogenesis in DM that might help to improve testicular function, and subsequently restore male fertility. MATERIALS AND METHODS DM-induced adult male rats were given 100 mg/kg/day and 200 mg/kg/day T. diffusa leaf extract orally for 28 consecutive days. Rats were then sacrificed; sperm and testes were harvested and sperm parameter analysis were performed. Histo-morphological changes in the testes were observed. Biochemical assays were performed to measure testosterone and testicular oxidative stress levels. Immunohistochemistry and double immunofluorescence were used to monitor oxidative stress and inflammation levels in testes as well as Sertoli and steroidogenic marker proteins' expression. RESULTS Treatment with T. diffusa restores sperm count, motility, and viability near normal and reduces sperm morphological abnormalities and sperm DNA fragmentation in diabetic rats. T. diffusa treatment also reduces testicular NOX-2 and lipid peroxidation levels, increases testicular antioxidant enzymes (SOD, CAT, and GPx) activities, ameliorates testicular inflammation via downregulating NF-ΚB, p-Ikkβ and TNF-α and upregulating IκBα expression. In diabetic rats, T. diffusa treatment increases testicular steroidogenic proteins (StAR, CYP11A1, SHBG, and ARA54, 3 and 17β-HSD) and plasma testosterone levels. Furthermore, in diabetic rats treated with T. diffusa, Sertoli cell marker proteins including Connexin 43, N-cadherin, and occludin levels in the testes were elevated. CONCLUSION T. diffusa treatment could help to ameliorate the detrimental effects of DM on the testes, thus this plant has potential to be used to restore male fertility.
Collapse
Affiliation(s)
- Gowri Gopa Kumar
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Eswar Kumar Kilari
- Pharmacology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530 003, India
| | - Giribabu Nelli
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Mipam T, Chen X, Zhao W, Zhang P, Chai Z, Yue B, Luo H, Wang J, Wang H, Wu Z, Wang J, Wang M, Wang H, Zhang M, Wang H, Jing K, Zhong J, Cai X. Single-cell transcriptome analysis and in vitro differentiation of testicular cells reveal novel insights into male sterility of the interspecific hybrid cattle-yak. BMC Genomics 2023; 24:149. [PMID: 36973659 PMCID: PMC10045231 DOI: 10.1186/s12864-023-09251-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Interspecific hybridization plays vital roles in enriching animal diversity, while male hybrid sterility (MHS) of the offspring commonly suffered from spermatogenic arrest constitutes the postzygotic reproductive isolation. Cattle-yak, the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens) can serve as an ideal MHS animal model. Although meiotic arrest was found to contribute to MHS of cattle-yak, yet the cellular characteristics and developmental potentials of male germline cell in pubertal cattle-yak remain to be systematically investigated. RESULTS Single-cell RNA-seq analysis of germline and niche cell types in pubertal testis of cattle-yak and yak indicated that dynamic gene expression of developmental germ cells was terminated at late primary spermatocyte (meiotic arrest) and abnormal components of niche cell in pubertal cattle-yak. Further in vitro proliferation and differentially expressed gene (DEG) analysis of specific type of cells revealed that undifferentiated spermatogonia of cattle-yak exhibited defects in viability and proliferation/differentiation potentials. CONCLUSION Comparative scRNA-seq and in vitro proliferation analysis of testicular cells indicated that not only meiotic arrest contributed to MHS of cattle-yak. Spermatogenic arrest of cattle-yak may originate from the differentiation stage of undifferentiated spermatogonia and niche cells of cattle-yak may provide an adverse microenvironment for spermatogenesis.
Collapse
Affiliation(s)
- TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hongying Wang
- College of Chemistry & Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
25
|
Butterfield DA, Boyd-Kimball D, Reed TT. Cellular Stress Response (Hormesis) in Response to Bioactive Nutraceuticals with Relevance to Alzheimer Disease. Antioxid Redox Signal 2023; 38:643-669. [PMID: 36656673 PMCID: PMC10025851 DOI: 10.1089/ars.2022.0214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Significance: Alzheimer's disease (AD) is the most common form of dementia associated with aging. As the large Baby Boomer population ages, risk of developing AD increases significantly, and this portion of the population will increase significantly over the next several decades. Recent Advances: Research suggests that a delay in the age of onset by 5 years can dramatically decrease both the incidence and cost of AD. In this review, the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in AD is examined in the context of heme oxygenase-1 (HO-1) and biliverdin reductase-A (BVR-A) and the beneficial potential of selected bioactive nutraceuticals. Critical Issues: Nrf2, a transcription factor that binds to enhancer sequences in antioxidant response elements (ARE) of DNA, is significantly decreased in AD brain. Downstream targets of Nrf2 include, among other proteins, HO-1. BVR-A is activated when biliverdin is produced. Both HO-1 and BVR-A also are oxidatively or nitrosatively modified in AD brain and in its earlier stage, amnestic mild cognitive impairment (MCI), contributing to the oxidative stress, altered insulin signaling, and cellular damage observed in the pathogenesis and progression of AD. Bioactive nutraceuticals exhibit anti-inflammatory, antioxidant, and neuroprotective properties and are potential topics of future clinical research. Specifically, ferulic acid ethyl ester, sulforaphane, epigallocatechin-3-gallate, and resveratrol target Nrf2 and have shown potential to delay the progression of AD in animal models and in some studies involving MCI patients. Future Directions: Understanding the regulation of Nrf2 and its downstream targets can potentially elucidate therapeutic options for delaying the progression of AD. Antioxid. Redox Signal. 38, 643-669.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Debra Boyd-Kimball
- Department of Biochemistry, Chemistry, and Physics, University of Mount Union, Alliance, Ohio, USA
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, Kentucky, USA
| |
Collapse
|
26
|
Meena R, Bharti S. Effect of anti-estrogen and anti-progesterone on spermatogenesis, testosterone production and expression of steroidogenic enzyme genes in adult male rats. Reprod Biol 2023; 23:100749. [PMID: 36867990 DOI: 10.1016/j.repbio.2023.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 03/05/2023]
Abstract
The present study was planned to investigate the anti-spermatogenic and anti-steroidogenic effects of Clomiphene Citrate (CC) an anti-estrogen and Mifepristone (MT) an anti-progesterone in the testis of male rats. Following the oral administration of 1.0 mg and 5.0 mg/kg b.w/day of each for the duration of 30 and 60 days, quantitation of spermatogenesis, RIA for serum and intra-testicular testosterone levels, western blotting and RT-PCR for expression of StAR, 3β-HSD and P450arom enzymes in the testis was done. Clomiphene Citrate at 5.0 mg/kg b.w/day for 60 days significantly reduced testosterone (T) levels however the effect was not significant with the lower doses. Reproductive parameters in animals treated by Mifepristone remained mostly unaffected, however, a significant decline in testosterone levels and altered expression of selected genes was observed in 5.0 mg for the 30d treatment group. Clomiphene Citrate at higher doses affected the weights of the testis and secondary sex organs. Seminiferous tubules revealed hypo-spermatogenesis with a significant decrease in the number of maturing germ cells and a reduction in tubular diameter. Attenuation in serum testosterone was associated with the downregulation of expression in StAR, 3β-HSD, and P450arom mRNA and protein levels in the testis even after 30 d of CC administration. The results indicate that the anti-estrogen (Clomiphene Citrate) but not anti-progesterone (Mifepristone) induces hypo-spermatogenesis in rats which are associated with a downregulation of expression of two of the steroidogenic enzymes, 3β-HSD and P450arom mRNA and StAR protein.
Collapse
Affiliation(s)
- Rekha Meena
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Baba Gang Nath Marg, Munirka, New Delhi 110067, India.
| | - Shilpa Bharti
- Maitreyi College, University of Delhi, New Delhi, India
| |
Collapse
|
27
|
Abd-Allah ER, El-Rahman HAA. Ameliorative effects of nano Moringa on fluoride-induced testicular damage via down regulation of the StAR gene and altered steroid hormones. Reprod Biol 2023; 23:100724. [PMID: 36563520 DOI: 10.1016/j.repbio.2022.100724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Fluoride is a common environmental contaminant that has harmful effects on human health when it is present in high concentrations. Fluoride enters the bloodstream after being absorbed by the gastrointestinal system when fluoride-contaminated groundwater is consumed by people. The aim of the present study was to determine whether polyphenol-rich nano Moringa oleifera (NMO) could protect rat testicles from sodium fluoride (NaF) damage by evaluating sperm quality, sex hormones, testicular oxidative status, histopathology, and StAR gene expression. Twenty-eight adult Wistar rats were divided equally and randomly into four groups: group one received distilled water; group two received NMO at a dosage of 250 mg/kg/body weight; group three received NaF at a dosage of 10 mg/kg/body weight; and group four received NaF and NMO. The rats were orally administrated daily for a duration of eight weeks. The study's findings demonstrated that, in comparison to rats exposed to NaF alone, co-administration of NMO and NaF enhanced sperm motility and viability, decreased sperm morphological changes, restored the balance between oxidant and antioxidant status, improved testosterone and dehydroepiandrosterone, improved testicular histology, raised the Johnson score, and upregulated the StAR gene in testicular tissue. These findings show that NMO is promise as a prophylactic medication against sodium fluoride-induced testicular damage because administration of NMO had no adverse effects and enhanced reproductive health.
Collapse
Affiliation(s)
- Entsar R Abd-Allah
- Department of Zoology, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | | |
Collapse
|
28
|
So I, Meusel LAC, Sharma B, Monette GA, Colella B, Wheeler AL, Rabin JS, Mikulis DJ, Green REA. Longitudinal Patterns of Functional Connectivity in Moderate-to-Severe Traumatic Brain Injury. J Neurotrauma 2023; 40:665-682. [PMID: 36367163 DOI: 10.1089/neu.2022.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Longitudinal neuroimaging studies aid our understanding of recovery mechanisms in moderate-to-severe traumatic brain injury (TBI); however, there is a dearth of longitudinal functional connectivity research. Our aim was to characterize longitudinal functional connectivity patterns in two clinically important brain networks, the frontoparietal network (FPN) and the default mode network (DMN), in moderate-to-severe TBI. This inception cohort study of prospectively collected longitudinal data used resting-state functional magnetic resonance imaging (fMRI) to characterize functional connectivity patterns in the FPN and DMN. Forty adults with moderate-to-severe TBI (mean ± standard deviation [SD]; age = 39.53 ± 16.49 years, education = 13.92 ± 3.20 years, lowest Glasgow Coma Scale score = 6.63 ± 3.24, sex = 70% male) were scanned at approximately 0.5, 1-1.5, and 3+ years post-injury. Seventeen healthy, uninjured participants (mean ± SD; age = 38.91 ± 15.57 years, education = 15.11 ± 2.71 years, sex = 29% male) were scanned at baseline and approximately 11 months afterwards. Group independent component analyses and linear mixed-effects modeling with linear splines that contained a knot at 1.5 years post-injury were employed to investigate longitudinal network changes, and associations with covariates, including age, sex, and injury severity. In patients with TBI, functional connectivity in the right FPN increased from approximately 0.5 to 1.5 years post-injury (unstandardized estimate = 0.19, standard error [SE] = 0.07, p = 0.009), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.21, SE = 0.11, p = 0.009), and marginally declined afterwards (estimate = -0.10, SE = 0.06, p = 0.079). Functional connectivity in the DMN increased from approximately 0.5 to 1.5 years (estimate = 0.15, SE = 0.05, p = 0.006), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.19, SE = 0.08, p = 0.021), and was estimated to decline from 1.5 to 3+ years (estimate = -0.04, SE = 0.04, p = 0.303). Similarly, the left FPN increased in functional connectivity from approximately 0.5 to 1.5 years post-injury (estimate = 0.15, SE = 0.05, p = 0.002), contained a slope change in the opposite direction, from positive to negative at 1.5 years post-injury (estimate = -0.18, SE = 0.07, p = 0.008), and was estimated to decline thereafter (estimate = -0.04, SE = 0.03, p = 0.254). At approximately 0.5 years post-injury, patients showed hypoconnectivity compared with healthy, uninjured participants at baseline. Covariates were not significantly associated in any of the models. Findings of early improvement but a tapering and possible decline in connectivity thereafter suggest that compensatory effects are time-limited. These later reductions in connectivity mirror growing evidence of behavioral and structural decline in chronic moderate-to-severe TBI. Targeting such declines represents a novel avenue of research and offers potential for improving clinical outcomes.
Collapse
Affiliation(s)
- Isis So
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Liesel-Ann C Meusel
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Bhanu Sharma
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Georges A Monette
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Brenda Colella
- KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Imaging, Toronto Western Hospital-University Health Network, Toronto, Ontario, Canada
| | - Robin E A Green
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,KITE Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Liu M, Fang X, Wang H, Ji R, Guo Q, Chen Z, Ren Q, Wang Y, Zhou Y. Characterization of lipid droplet metabolism patterns identified prognosis and tumor microenvironment infiltration in gastric cancer. Front Oncol 2023; 12:1038932. [PMID: 36713557 PMCID: PMC9875057 DOI: 10.3389/fonc.2022.1038932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Background Gastric cancer is one of the common malignant tumors of the digestive system worldwide, posing a serious threat to human health. A growing number of studies have demonstrated the important role that lipid droplets play in promoting cancer progression. However, few studies have systematically evaluated the role of lipid droplet metabolism-related genes (LDMRGs) in patients with gastric cancer. Methods We identified two distinct molecular subtypes in the TCGA-STAD cohort based on LDMRGs expression. We then constructed risk prediction scoring models in the TCGA-STAD cohort by lasso regression analysis and validated the model with the GSE15459 and GSE66229 cohorts. Moreover, we constructed a nomogram prediction model by cox regression analysis and evaluated the predictive efficacy of the model by various methods in STAD. Finally, we identified the key gene in LDMRGs, ABCA1, and performed a systematic multi-omics analysis in gastric cancer. Results Two molecular subtypes were identified based on LDMRGs expression with different survival prognosis and immune infiltration levels. lasso regression models were effective in predicting overall survival (OS) of gastric cancer patients at 1, 3 and 5 years and were validated in the GEO database with consistent results. The nomogram prediction model incorporated additional clinical factors and prognostic molecules to improve the prognostic predictive value of the current TNM staging system. ABCA1 was identified as a key gene in LDMRGs and multi-omics analysis showed a strong correlation between ABCA1 and the prognosis and immune status of patients with gastric cancer. Conclusion This study reveals the characteristics and possible underlying mechanisms of LDMRGs in gastric cancer, contributing to the identification of new prognostic biomarkers and providing a basis for future research.
Collapse
Affiliation(s)
- Mengxiao Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xidong Fang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Haoying Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xinan, China
| | - Rui Ji
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhaofeng Chen
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qian Ren
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
30
|
Zhang P, Wang M, Chen X, Jing K, Li Y, Liu X, Ran H, Qin J, Zhong J, Cai X. Dysregulated genes in undifferentiated spermatogonia and Sertoli cells are associated with the spermatogenic arrest in cattleyak. Mol Reprod Dev 2022; 89:632-645. [PMID: 36409004 DOI: 10.1002/mrd.23653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Hybrid male sterility (HMS) is a reproductive isolation mechanism limiting the formation of fertile offspring through interspecific fertilization. Cattleyak is the interspecific hybrid presenting significant heterosis in several economic traits, but HMS restricted its wide reproduction in cettleyak breeding. In this study, we detected the specifically expressed genes of a variety of cells (undifferentiated spermatogonia, primary spermatocytes, secondary spermatocytes, haploid spermatids, sperm, Sertoli cells, Leydig cells, and macrophages) in the testis of yak and cattleyak, and found that the spermatogenesis of cattleyak might be blocked at meiosis I, and the expression of niche factors (NR5A1, GATA4, STAR, CYP11A1, CD68, TNF, and CX3CR1) in undifferentiated spermatogonia niche was abnormal. Then we isolated the undifferentiated spermatogonia and Sertoli cells from yak and cattleyak by enzyme digestion, and detected the specific genes in the two bovid testicular cells as well as the proliferation capacity of the undifferentiated spermatogonia. These results indicated that weak proliferation ability and scarce number of undifferentiated spermatogonia and abnormal gene expressions in Sertoli cells may contribute to male sterility of cattleyak.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuqian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xinrui Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hongbiao Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jie Qin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Role of STAR and SCP2/SCPx in the Transport of Cholesterol and Other Lipids. Int J Mol Sci 2022; 23:ijms232012115. [PMID: 36292972 PMCID: PMC9602805 DOI: 10.3390/ijms232012115] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cholesterol is a lipid molecule essential for several key cellular processes including steroidogenesis. As such, the trafficking and distribution of cholesterol is tightly regulated by various pathways that include vesicular and non-vesicular mechanisms. One non-vesicular mechanism is the binding of cholesterol to cholesterol transport proteins, which facilitate the movement of cholesterol between cellular membranes. Classic examples of cholesterol transport proteins are the steroidogenic acute regulatory protein (STAR; STARD1), which facilitates cholesterol transport for acute steroidogenesis in mitochondria, and sterol carrier protein 2/sterol carrier protein-x (SCP2/SCPx), which are non-specific lipid transfer proteins involved in the transport and metabolism of many lipids including cholesterol between several cellular compartments. This review discusses the roles of STAR and SCP2/SCPx in cholesterol transport as model cholesterol transport proteins, as well as more recent findings that support the role of these proteins in the transport and/or metabolism of other lipids.
Collapse
|
32
|
Cortez J, Leiva B, Torres CG, Parraguez VH, De los Reyes M, Carrasco A, Peralta OA. Generation and Characterization of Bovine Testicular Organoids Derived from Primary Somatic Cell Populations. Animals (Basel) 2022; 12:ani12172283. [PMID: 36078004 PMCID: PMC9455065 DOI: 10.3390/ani12172283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Organoids are 3D-culture systems composed of tissue-specific primary cells that self-organize and self-renew, creating structures similar to those of their tissue of origin. Testicular organoids (TOs) may recreate conditions of the testicular niche in domestic and wild cattle; however, no previous TO studies have been reported in the bovine species. Thus, in the present study, we sought to generate and characterize bovine TOs derived from primary testicular cell populations including Leydig, Sertoli and peritubular myoid cells. Testicular cells were isolated from bovine testes and cultured in ultra-low attachment (ULA) plates and Matrigel. TOs were cultured in media supplemented from day 3 with 100 ng/mL of BMP4 and 10 ng/mL of FGF2 and from day 7 with 15 ng/mL of GDNF. Testicular cells were able to generate TOs after 3 days of culture. The cells positive for STAR (Leydig) and COL1A (peritubular myoid) decreased (p < 0.05), whereas cells positive for WT1 (Sertoli) increased (p < 0.05) in TOs during a 28-day culture period. The levels of testosterone in media increased (p < 0.05) at day 28 of culture. Thus, testicular cells isolated from bovine testes were able to generate TOs under in vitro conditions. These bovine TOs have steroidogenic activity characterized by the production of testosterone.
Collapse
Affiliation(s)
- Jahaira Cortez
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, Santiago 8820808, Chile
| | - Barbara Leiva
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
| | - Cristian G. Torres
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
| | - Víctor H. Parraguez
- Department of Biological Sciences, Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
| | - Mónica De los Reyes
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
| | - Albert Carrasco
- Laboratory of Animal Physiology and Endocrinology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán 3780000, Chile
| | - Oscar A. Peralta
- Department of Animal Production Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808, Chile
- Correspondence:
| |
Collapse
|
33
|
Galano M, Ezzat S, Papadopoulos V. SCP2 variant is associated with alterations in lipid metabolism, brainstem neurodegeneration, and testicular defects. Hum Genomics 2022; 16:32. [PMID: 35996156 PMCID: PMC9396802 DOI: 10.1186/s40246-022-00408-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The detoxification of very long-chain and branched-chain fatty acids and the metabolism of cholesterol to form bile acids occur largely through a process called peroxisomal β-oxidation. Mutations in several peroxisomal proteins involved in β-oxidation have been reported, resulting in diseases characterized by neurological defects. The final step of the peroxisomal β-oxidation pathway is catalyzed by sterol carrier protein-x (SCPx), which is encoded by the SCP2 gene. Previously, there have been two reports of SCPx deficiency, which resulted from a homozygous or compound heterozygous SCP2 mutation. We report herein the first patient with a heterozygous SCP2 mutation leading to SCPx deficiency. RESULTS Clinical presentations of the patient included progressive brainstem neurodegeneration, cardiac dysrhythmia, muscle wasting, and azoospermia. Plasma fatty acid analysis revealed abnormal values of medium-, long-, and very long-chain fatty acids. Protein expression of SCPx and other enzymes involved in β-oxidation were altered between patient and normal fibroblasts. RNA sequencing and lipidomic analyses identified metabolic pathways that were altered between patient and normal fibroblasts including PPAR signaling, serotonergic signaling, steroid biosynthesis, and fatty acid degradation. Treatment with fenofibrate or 4-hydroxytamoxifen increased SCPx levels, and certain fatty acid levels in patient fibroblasts. CONCLUSIONS These findings suggest that the patient's SCP2 mutation resulted in decreased protein levels of SCPx, which may be associated with many metabolic pathways. Increasing SCPx levels through pharmacological interventions may reverse some effects of SCPx deficiency. Collectively, this work provides insight into many of the clinical consequences of SCPx deficiency and provides evidence for potential treatment strategies.
Collapse
Affiliation(s)
- Melanie Galano
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA
| | - Shereen Ezzat
- Department of Medicine, University of Toronto and Princess Margaret Cancer Center, Toronto, ON, M5G 2C1, Canada
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA.
| |
Collapse
|
34
|
Galano M, Papadopoulos V. Role of Constitutive STAR in Mitochondrial Structure and Function in MA-10 Leydig Cells. Endocrinology 2022; 163:6608928. [PMID: 35704520 DOI: 10.1210/endocr/bqac091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 11/19/2022]
Abstract
The steroidogenic acute regulatory protein (STAR; STARD1) is critical for the transport of cholesterol into the mitochondria for hormone-induced steroidogenesis. Steroidogenic cells express STAR under control conditions (constitutive STAR). On hormonal stimulation, STAR localizes to the outer mitochondrial membrane (OMM) where it facilitates cholesterol transport and where it is processed to its mature form. Here, we show that knockout of Star in MA-10 mouse tumor Leydig cells (STARKO1) causes defects in mitochondrial structure and function under basal conditions. We also show that overexpression of Star in STARKO1 cells exacerbates, rather than recovers, mitochondrial structure and function, which further disrupts the processing of STAR at the OMM. Our findings suggest that constitutive STAR is necessary for proper mitochondrial structure and function and that mitochondrial dysfunction leads to defective STAR processing at the OMM.
Collapse
Affiliation(s)
- Melanie Galano
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
35
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
36
|
Prins K, Huisman M, McLuskey A, Mies R, Karels B, Delhanty PJD, Visser JA. Ghrelin deficiency sex-dependently affects food intake, locomotor activity, and adipose and hepatic gene expression in a binge-eating mouse model. Am J Physiol Endocrinol Metab 2022; 322:E494-E507. [PMID: 35403437 DOI: 10.1152/ajpendo.00432.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Binge-eating disorder is the most prevalent eating disorder diagnosed, affecting three times more women than men. Ghrelin stimulates appetite and reward signaling, and loss of its receptor reduces binge-eating behavior in male mice. Here, we examined the influence of ghrelin itself on binge-eating behavior in both male and female mice. Five-wk-old wild-type (WT) and ghrelin-deficient (Ghrl-/-) mice were housed individually in indirect calorimetry cages for 9 wks. Binge-like eating was induced by giving mice ad libitum chow, but time-restricted access to a Western-style diet (WD; 2 h access, 3 days/wk) in the light phase (BE); control groups received ad libitum chow (CO), or ad libitum access to both diets (CW). All groups of BE mice showed binge-eating behavior, eating up to 60% of their 24-h intake during the WD access period. Subsequent dark phase chow intake was decreased in Ghrl-/- mice and remained decreased in Ghrl-/- females on nonbinge days. Also, nonbinge day locomotor activity was lower in Ghrl-/- than in WT BE females. Upon euthanasia, Ghrl-/- BE mice weighed less and had a lower lean body mass percentage than WT BE mice. In BE and CW groups, ghrelin and sex altered the expression of genes involved in lipid processing, thermogenesis, and aging in white adipose tissue and livers. We conclude that, although ghrelin deficiency does not hamper the development of binge-like eating, it sex-dependently alters food intake timing, locomotor activity, and metabolism. These results add to the growing body of evidence that ghrelin signaling is sexually dimorphic.NEW & NOTEWORTHY Ghrelin, a peptide hormone secreted from the gut, is involved in hunger and reward signaling, which are altered in binge-eating disorder. Although sex differences have been described in both binge-eating and ghrelin signaling, this interaction has not been fully elucidated. Here, we show that ghrelin deficiency affects the behavior and metabolism of mice in a binge-like eating paradigm, and that the sex of the mice impacts the magnitude and direction of these effects.
Collapse
Affiliation(s)
- Karina Prins
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martin Huisman
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Anke McLuskey
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rosinda Mies
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bas Karels
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Patric J D Delhanty
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Knowledge Gap in Understanding the Steroidogenic Acute Regulatory Protein Regulation in Steroidogenesis Following Exposure to Bisphenol A and Its Analogues. Biomedicines 2022; 10:biomedicines10061281. [PMID: 35740303 PMCID: PMC9219931 DOI: 10.3390/biomedicines10061281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
The use of bisphenols has become extremely common in our daily lives. Due to the extensive toxic effects of Bisphenol A (BPA), the industry has replaced this endocrine-disrupting chemical (EDC) with its analogues, which have been proven to decrease testosterone levels via several mechanisms, including targeting the steroidogenic acute regulatory (StAR) protein. However, when exposed to BPA and its analogues, the specific mechanism that emerges to target StAR protein regulations remains uncertain. Hence, this review discusses the effects of BPA and its analogues in StAR protein regulation by targeting cAMP-PKA, PLC-PKC, EGFR-MAPK/ERK and Ca2+-Nur77. BPA and its analogues mainly lead to decreased LH in blood and increased ERK expression and Ca2+ influx, with no relationship with the StAR protein regulation in testicular steroidogenesis. Furthermore, the involvement of the cAMP-PKA, PLC-PKC, and Nur77 molecules in StAR regulation in Leydig cells exposed to BPA and its analogues remains questionable. In conclusion, although BPA and its analogues have been found to disrupt the StAR protein, the evidence in connecting the signaling pathways with the StAR regulations in testicular steroidogenesis is still lacking, and more research is needed to draw a solid conclusion.
Collapse
|
38
|
Chen J, Rodriguez M, Miao J, Liao J, Jain PP, Zhao M, Zhao T, Babicheva A, Wang Z, Parmisano S, Powers R, Matti M, Paquin C, Soroureddin Z, Shyy JYJ, Thistlethwaite PA, Makino A, Wang J, Yuan JXJ. Mechanosensitive channel Piezo1 is required for pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 2022; 322:L737-L760. [PMID: 35318857 PMCID: PMC9076422 DOI: 10.1152/ajplung.00447.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/10/2023] Open
Abstract
Concentric pulmonary vascular wall thickening due partially to increased pulmonary artery (PA) smooth muscle cell (PASMC) proliferation contributes to elevating pulmonary vascular resistance (PVR) in patients with pulmonary hypertension (PH). Although pulmonary vasoconstriction may be an early contributor to increasing PVR, the transition of contractile PASMCs to proliferative PASMCs may play an important role in the development and progression of pulmonary vascular remodeling in PH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) is a trigger for PASMC contraction and proliferation. Here, we report that upregulation of Piezo1, a mechanosensitive cation channel, is involved in the contractile-to-proliferative phenotypic transition of PASMCs and potential development of pulmonary vascular remodeling. By comparing freshly isolated PA (contractile PASMCs) and primary cultured PASMCs (from the same rat) in a growth medium (proliferative PASMCs), we found that Piezo1, Notch2/3, and CaSR protein levels were significantly higher in proliferative PASMCs than in contractile PASMCs. Upregulated Piezo1 was associated with an increase in expression of PCNA, a marker for cell proliferation, whereas downregulation (with siRNA) or inhibition (with GsMTx4) of Piezo1 attenuated PASMC proliferation. Furthermore, Piezo1 in the remodeled PA from rats with experimental PH was upregulated compared with PA from control rats. These data indicate that PASMC contractile-to-proliferative phenotypic transition is associated with the transition or adaptation of membrane channels and receptors. Upregulated Piezo1 may play a critical role in PASMC phenotypic transition and PASMC proliferation. Upregulation of Piezo1 in proliferative PASMCs may likely be required to provide sufficient Ca2+ to assure nuclear/cell division and PASMC proliferation, contributing to the development and progression of pulmonary vascular remodeling in PH.
Collapse
Affiliation(s)
- Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jinrui Miao
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pritesh P Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Manjia Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ziyi Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sophia Parmisano
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ryan Powers
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Moreen Matti
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Cole Paquin
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Zahra Soroureddin
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - John Y-J Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
39
|
Bakhtyukov AA, Derkach KV, Sorokoumov VN, Stepochkina AM, Romanova IV, Morina IY, Zakharova IO, Bayunova LV, Shpakov AO. The Effects of Separate and Combined Treatment of Male Rats with Type 2 Diabetes with Metformin and Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor on Steroidogenesis and Spermatogenesis. Int J Mol Sci 2021; 23:198. [PMID: 35008624 PMCID: PMC8745465 DOI: 10.3390/ijms23010198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
In men with type 2 diabetes mellitus (T2DM), steroidogenesis and spermatogenesis are impaired. Metformin and the agonists of luteinizing hormone/human chorionic gonadotropin(hCG)-receptor (LH/hCG-R) (hCG, low-molecular-weight allosteric LH/hCG-R-agonists) can be used to restore them. The aim was to study effectiveness of separate and combined administration of metformin, hCG and 5-amino-N-tert-butyl-2-(methylsulfanyl)-4-(3-(nicotinamido)phenyl)thieno[2,3-d]pyrimidine-6-carboxamide (TP3) on steroidogenesis and spermatogenesis in male rats with T2DM. hCG (15 IU/rat/day) and TP3 (15 mg/kg/day) were injected in the last five days of five-week metformin treatment (120 mg/kg/day). Metformin improved testicular steroidogenesis and spermatogenesis and restored LH/hCG-R-expression. Compared to control, in T2DM, hCG stimulated steroidogenesis and StAR-gene expression less effectively and, after five-day administration, reduced LH/hCG-R-expression, while TP3 effects changed weaker. In co-administration of metformin and LH/hCG-R-agonists, on the first day, stimulating effects of LH/hCG-R-agonists on testosterone levels and hCG-stimulated expression of StAR- and CYP17A1-genes were increased, but on the 3-5th day, they disappeared. This was due to reduced LH/hCG-R-gene expression and increased aromatase-catalyzed estradiol production. With co-administration, LH/hCG-R-agonists did not contribute to improving spermatogenesis, induced by metformin. Thus, in T2DM, metformin and LH/hCG-R-agonists restore steroidogenesis and spermatogenesis, with metformin being more effective in restoring spermatogenesis, and their co-administration improves LH/hCG-R-agonist-stimulating testicular steroidogenesis in acute but not chronic administration.
Collapse
Affiliation(s)
- Andrey A. Bakhtyukov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Kira V. Derkach
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Viktor N. Sorokoumov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
- Institute of Chemistry, Saint Petersburg State University, 198504 St. Petersburg, Russia
| | - Anna M. Stepochkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Irina Yu. Morina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Irina O. Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Liubov V. Bayunova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| |
Collapse
|
40
|
Ran X, Hu F, Mao N, Ruan Y, Yi F, Niu X, Huang S, Li S, You L, Zhang F, Tang L, Wang J, Liu J. Differences in gene expression and variable splicing events of ovaries between large and small litter size in Chinese Xiang pigs. Porcine Health Manag 2021; 7:52. [PMID: 34470660 PMCID: PMC8411529 DOI: 10.1186/s40813-021-00226-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although lots of quantitative trait loci (QTLs) and genes present roles in litter size of some breeds, the information might not make it clear for the huge diversity of reproductive capability in pig breeds. To elucidate the inherent mechanisms of heterogeneity of reproductive capability in litter size of Xiang pig, we performed transcriptome analysis for the expression profile in ovaries using RNA-seq method. RESULTS We identified 1,419 up-regulated and 1,376 down-regulated genes in Xiang pigs with large litter size. Among them, 1,010 differentially expressed genes (DEGs) were differently spliced between two groups with large or small litter sizes. Based on GO and KEGG analysis, numerous members of genes were gathered in ovarian steroidogenesis, steroid biosynthesis, oocyte maturation and reproduction processes. CONCLUSIONS Combined with gene biological function, twelve genes were found out that might be related with the reproductive capability of Xiang pig, of which, eleven genes were recognized as hub genes. These genes may play a role in promoting litter size by elevating steroid and peptide hormones supply through the ovary and facilitating the processes of ovulation and in vivo fertilization.
Collapse
Affiliation(s)
- Xueqin Ran
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Fengbin Hu
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Ning Mao
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Yiqi Ruan
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Fanli Yi
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Xi Niu
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Shihui Huang
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Sheng Li
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Longjiang You
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Fuping Zhang
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Liangting Tang
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China
| | - Jiafu Wang
- College of Animal Science, Institute of Agro-Bioengineering and Key Laboratory of Plant Resource Conservative and Germplam Innovation in Mountainous Region (Ministry of Education), Guizhou University, 550025, Guiyang, China.
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
41
|
Kothandapani A, Larsen MC, Lee J, Jorgensen JS, Jefcoate CR. Distinctive functioning of STARD1 in the fetal Leydig cells compared to adult Leydig and adrenal cells. Impact of Hedgehog signaling via the primary cilium. Mol Cell Endocrinol 2021; 531:111265. [PMID: 33864885 DOI: 10.1016/j.mce.2021.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
STARD1 stimulates cholesterol transfer to mitochondrial CYP11A1 for conversion to pregnenolone. A cholesterol-binding START domain is guided by an N-terminal domain in a cell selective manner. Fetal and adult Leydig cells (FLC, ALC) show distinct Stard1 regulation. sm- FISH microscopy, which resolves individual molecules of Stard1 mRNA, shows uniformly high basal expression in each FLC. In ALC, in vivo, and cultured MA-10 cells, basal Stard1 expression is minimal. PKA activates loci asynchronously, with delayed splicing/export of 3.5 kb mRNA to mitochondria. After 60 min, ALC transition to an integrated mRNA delivery to mitochondria that is seen in FLC. Sertoli cells cooperate in Stard1 stimulation in FLC by delivering DHH to the primary cilium. There PTCH, SMO and cholesterol cooperate to release GLI3 to activate the Stard1 locus, probably by directing histone changes. ALC lack cilia. PKA then primes locus activation. FLC and ALC share similar SIK/CRTC/CREB regulation characterized for adrenal cells.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|