1
|
Okuma H, Tsuchiya K. Tissue-specific activation of insulin signaling as a potential target for obesity-related metabolic disorders. Pharmacol Ther 2024; 262:108699. [PMID: 39111411 DOI: 10.1016/j.pharmthera.2024.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
The incidence of obesity is rapidly increasing worldwide. Obesity-associated insulin resistance has long been established as a significant risk factor for obesity-related disorders such as type 2 diabetes and atherosclerosis. Insulin plays a key role in systemic glucose metabolism, with the liver, skeletal muscle, and adipose tissue as the major acting tissues. Insulin receptors and the downstream insulin signaling-related molecules are expressed in various tissues, including vascular endothelial cells, vascular smooth muscle cells, and monocytes/macrophages. In obesity, decreased insulin action is considered a driver for associated disorders. However, whether insulin action has a positive or negative effect on obesity-related disorders depends on the tissue in which it acts. While an enhancement of insulin signaling in the liver increases hepatic fat accumulation and exacerbates dyslipidemia, enhancement of insulin signaling in adipose tissue protects against obesity-related dysfunction of various organs by increasing the capacity for fat accumulation in the adipose tissue and inhibiting ectopic fat accumulation. Thus, this "healthy adipose tissue expansion" by enhancing insulin sensitivity in adipose tissue, but not in the liver, may be an effective therapeutic strategy for obesity-related disorders. To effectively address obesity-related metabolic disorders, the mechanisms of insulin resistance in various tissues of obese patients must be understood and drugs that enhance insulin action must be developed. In this article, we review the potential of interventions that enhance insulin signaling as a therapeutic strategy for obesity-related disorders, focusing on the molecular mechanisms of insulin action in each tissue.
Collapse
Affiliation(s)
- Hideyuki Okuma
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 4093898, Japan
| | - Kyoichiro Tsuchiya
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 4093898, Japan.
| |
Collapse
|
2
|
Lee SA, Riella LV. Narrative Review of Immunomodulatory and Anti-inflammatory Effects of Sodium-Glucose Cotransporter 2 Inhibitors: Unveiling Novel Therapeutic Frontiers. Kidney Int Rep 2024; 9:1601-1613. [PMID: 38899203 PMCID: PMC11184259 DOI: 10.1016/j.ekir.2024.02.1435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 06/21/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) have evolved from their initial role as antidiabetic drugs to garner recognition for their remarkable cardio-protective and reno-protective attributes. They have become a crucial component of therapeutic guidelines for congestive heart failure and proteinuric chronic kidney disease (CKD). These benefits extend beyond glycemic control, because improvements in cardiovascular and renal outcomes occur swiftly. Recent studies have unveiled the immunomodulatory properties of SGLT2 inhibitors; thus, shedding light on their potential to influence the immune system and inflammation. This comprehensive review explores the current state of knowledge regarding the impact of SGLT2 inhibitors on the immune system and inflammation, focusing on preclinical and clinical evidence. The review delves into their antiinflammatory and immunomodulating effects, offering insights into clinical implications, and exploring emerging research areas related to their prospective immunomodulatory impact.
Collapse
Affiliation(s)
- Sul A. Lee
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Leonardo V. Riella
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine and Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Sun J, Han J, Dong J, Zhai X, Zhang R. A kidney-targeted chitosan-melanin nanoplatform for alleviating diabetic nephropathy through modulation of blood glucose and oxidative stress. Int J Biol Macromol 2024; 264:130663. [PMID: 38453104 DOI: 10.1016/j.ijbiomac.2024.130663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/12/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Diabetic nephropathy (DN) is a serious complication in patients with diabetes, whose expansion process is closely related to oxidative stress caused by hyperglycemia. Herein, we report a chitosan-targeted dagliflozin-loaded melanin nanoparticle (CSMDNPs) that can selectively accumulate in injured kidneys, reduce blood glucose, and alleviate the oxidative stress-induced damage. CSMDNPs possess good dispersion and physiological stability, responsive release at acidic pH, and strong scavenging activities for various reactive oxygen and reactive nitrogen radicals. Moreover, in vitro experiments confirm that CSMDNPs have good biocompatibility, enable targeted uptake in NRK-52E renal tubular cells, and also well alleviate high glucose-induced oxidative stress. In the STZ-induced DN model, CSMDNPs exhibit high targeting distribution and retention in the damaged kidneys of DN mice according to photoacoustic imaging. At the end of CSMDNPs treatment, DN mice show a decrease in fasting blood glucose and a return to near-normal urine and blood indices. H&E, PAS, and masson pathological staining also indicates that CSMDNPs significantly inhibit the expansion of renal interstitium, glycogen, and collagen deposition, showing excellent therapeutic effects. In addition, melanin acts as both drug carrier and antioxidant without exogenous carrier introduction, exhibiting better biosafety and translational prospects.
Collapse
Affiliation(s)
- Jinghua Sun
- First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Juanjuan Han
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie Dong
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoyan Zhai
- Department of Baisic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
4
|
Ashfaq A, Meineck M, Pautz A, Arioglu-Inan E, Weinmann-Menke J, Michel MC. A systematic review on renal effects of SGLT2 inhibitors in rodent models of diabetic nephropathy. Pharmacol Ther 2023; 249:108503. [PMID: 37495021 DOI: 10.1016/j.pharmthera.2023.108503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
We have performed a systematic review of studies reporting on the renal effects of SGLT2 inhibitors in rodent models of diabetes. In 105 studies, SGLT2 inhibitors improved not only the glycemic control but also various aspects of renal function in most cases. These nephroprotective effects were similarly reported whether treatment with the SGLT2 inhibitor started concomitant with the onset of diabetes (within 1 week), early after onset (1-4 weeks) or after nephropathy had developed (>4 weeks after onset) with the latter probably having the greatest translational value. They were observed across various animal models of type 1 and type 2 diabetes/obesity (4 and 23 models, respectively), although studies in the type 2 diabetes model of db/db mice more often had negative data than in other models. Among possibly underlying pathophysiological mechanisms of nephroprotection, treatment with SGLT2 inhibitors had beneficial effects on lipid metabolism, blood pressure, glomerulosclerosis as well as renal tubular fibrosis, apoptosis, oxidative stress, and inflammation. These pathomechanisms highly influence atherosclerosis and renal health, which are two major factors that lead to an enhanced mortality in patients with diabetes and/or chronic kidney disease. Interestingly, renal SGLT2 inhibitor effects did not always correlate with those on glucose homeostasis, particularly in a limited number of direct comparative studies with other anti-diabetic treatments, indicating that nephroprotection may at least partly occur by mechanisms other than improving glycemic control. Our analyses did not provide evidence for different nephroprotective efficacy between SGLT2 inhibitors. Importantly, only four of 105 studies reported on female animals, and none provided direct comparative data between sexes. We conclude that more data on female animals and more direct comparative studies with other anti-diabetic compounds and combinations of treatments are needed.
Collapse
Affiliation(s)
- Aqsa Ashfaq
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Myriam Meineck
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Dept. of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Julia Weinmann-Menke
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Martin C Michel
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
5
|
Zhang K, Zhang J, Kan C, Tian H, Ma Y, Huang N, Han F, Hou N, Sun X. Role of dysfunctional peri-organ adipose tissue in metabolic disease. Biochimie 2023; 212:12-20. [PMID: 37019205 DOI: 10.1016/j.biochi.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Metabolic disease is a complex disorder defined by a group with interrelated factors. There is growing evidence that obesity can lead to a variety of metabolic diseases, including diabetes and cardiovascular disease. Excessive adipose tissue (AT) deposition and ectopic accumulation can lead to increased peri-organ AT thickness. Dysregulation of peri-organ (perivascular, perirenal, and epicardial) AT is strongly associated with metabolic disease and its complications. The mechanisms include secretion of cytokines, activation of immunocytes, infiltration of inflammatory cells, involvement of stromal cells, and abnormal miRNA expression. This review discusses the associations and mechanisms by which various types of peri-organ AT affect metabolic diseases while addressing it as a potential future treatment strategy.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongzhan Tian
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Huang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
6
|
Afsar B, Afsar RE. Sodium-glucose cotransporter inhibitors and kidney fibrosis: review of the current evidence and related mechanisms. Pharmacol Rep 2023; 75:44-68. [PMID: 36534320 DOI: 10.1007/s43440-022-00442-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Sodium-glucose cotransporter inhibitors (SGLT2i) are a new class of anti-diabetic drugs that have beneficial cardiovascular and renal effects. These drugs decrease proximal tubular glucose reabsorption and decrease blood glucose levels as a main anti-diabetic action. Furthermore, SGLT2i decreases glomerular hyperfiltration by a tubuloglomerular feedback mechanism. However, the renal benefits of these agents are independent of glucose-lowering and hemodynamic factors, and SGLT2i also impacts the kidney structure including kidney fibrosis. Renal fibrosis is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), and amelioration of renal fibrosis is of utmost importance to reduce the progression of CKD. Recent studies have shown that SGLT2i impact many cellular processes including inflammation, hypoxia, oxidative stress, metabolic functions, and renin-angiotensin system (RAS) which all are related with kidney fibrosis. Indeed, most but not all studies showed that renal fibrosis was ameliorated by SGLT2i through the reduction of inflammation, hypoxia, oxidative stress, and RAS activation. In addition, less known effects on SGLT2i on klotho expression, capillary rarefaction, signal transducer and activator of transcription signaling and peptidylprolyl cis/trans isomerase (Pin1) levels may partly explain the anti-fibrotic effects of SGLT2i in kidneys. It is important to remember that some studies have not shown any beneficial effects of SGLT2i on kidney fibrosis. Given this background, in the current review, we have summarized the studies and pathophysiologic aspects of SGL2 inhibition on renal fibrosis in various CKD models and tried to explain the potential reasons for contrasting findings.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
7
|
Abstract
The sodium-glucose cotransporter 2 (SGLT2) inhibitors have become an integral part of clinical practice guidelines to slow the progression of CKD in patients with and without diabetes mellitus. Although initially developed as antihyperglycemic drugs, their effect on the kidney is multifactorial resulting from profuse glycosuria and natriuresis consequent to their primary site of action. Hemodynamic and metabolic changes ensue that mediate kidney-protective effects, including ( 1 ) decreased workload of proximal tubular cells and prevention of aberrant increases in glycolysis, contributing to a decreased risk of AKI; ( 2 ) lowering of intraglomerular pressure by activating tubular glomerular feedback and reductions in BP and tissue sodium content; ( 3 ) initiation of nutrient-sensing pathways reminiscent of starvation activating ketogenesis, increased autophagy, and restoration of carbon flow through the mitochondria without production of reactive oxygen species; ( 4 ) body weight loss without a reduction in basal metabolic rate due to increases in nonshivering thermogenesis; and ( 5 ) favorable changes in quantity and characteristics of perirenal fat leading to decreased release of adipokines, which adversely affect the glomerular capillary and signal increased sympathetic outflow. Additionally, these drugs stimulate phosphate and magnesium reabsorption and increase uric acid excretion. Familiarity with kidney-specific mechanisms of action, potential changes in kidney function, and/or alterations in electrolytes and volume status, which are induced by these widely prescribed drugs, will facilitate usage in the patients for whom they are indicated.
Collapse
Affiliation(s)
- Biff F. Palmer
- Division of Nephrology, Department of Medicine, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deborah J. Clegg
- Internal Medicine, Texas Tech Health Sciences Center, El Paso, Texas
| |
Collapse
|
8
|
SGLT2 Inhibitors in Diabetic and Non-Diabetic Chronic Kidney Disease. Biomedicines 2023; 11:biomedicines11020279. [PMID: 36830815 PMCID: PMC9953060 DOI: 10.3390/biomedicines11020279] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Results from recent randomized controlled trials on inhibitors of the sodium-glucose cotransporter 2 (SGLT2) have determined a paradigm shift in the treatment of patients with type 2 diabetes mellitus. These agents have been shown not only to ameliorate metabolic control, but also to independently protect from cardiovascular events and to reduce the progression of chronic kidney disease (CKD) in these patients. The magnitude of the nephroprotective effect observed in these studies is likely to make SGLT2 inhibitors the most impactful drug class for the treatment of diabetic patients with CKD since the discovery of renin-angiotensin system inhibitors. Even more surprisingly, SGLT2 inhibitors have also been shown to slow CKD progression in non-diabetic individuals with varying degrees of proteinuria, suggesting that activation of SGLT2 is involved in the pathogenesis of CKD independent of its etiology. As indications continue to expand, it is still unclear whether the observed benefits of SGLT2 inhibitors may extend to CKD patients at lower risk of progression and if their association with other agents may confer additional protection.
Collapse
|
9
|
Depot-specific adipose tissue modulation by SGLT2 inhibitors and GLP1 agonists mediates their cardioprotective effects in metabolic disease. Clin Sci (Lond) 2022; 136:1631-1651. [DOI: 10.1042/cs20220404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
Abstract
Sodium-glucose transporter-2 inhibitors (SGLT-2i) and glucagon-like peptide 1 (GLP-1) receptor agonists are newer antidiabetic drug classes, which were recently shown to decrease cardiovascular (CV) morbidity and mortality in diabetic patients. CV benefits of these drugs could not be directly attributed to their blood glucose lowering capacity possibly implicating a pleotropic effect as a mediator of their impact on cardiovascular disease (CVD). Particularly, preclinical and clinical studies indicate that SGLT-2i(s) and GLP-1 receptor agonists are capable of differentially modulating distinct adipose pools reducing the accumulation of fat in some depots, promoting the healthy expansion of others, and/or enhancing their browning, leading to the suppression of the metabolically induced inflammatory processes. These changes are accompanied with improvements in markers of cardiac structure and injury, coronary and vascular endothelial healing and function, vascular remodeling, as well as reduction of atherogenesis. Here, through a summary of the available evidence, we bring forth our view that the observed CV benefit in response to SGLT-2i or GLP-1 agonists therapy might be driven by their ameliorative impact on adipose tissue inflammation.
Collapse
|
10
|
Tsuchiya K. Role of insulin action in the pathogenesis of diabetic complications. Diabetol Int 2022; 13:591-598. [PMID: 36117926 PMCID: PMC9477992 DOI: 10.1007/s13340-022-00601-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Among the various pathological conditions associated with type 2 diabetes, insulin resistance has long been reported to be a potent risk factor for diabetic complications. The liver, skeletal muscle, and adipose tissue are the major organs of action of insulin in systemic glucose metabolism, but insulin receptors and their downstream insulin signaling molecules are also constitutively expressed in vascular endothelial cells, vascular smooth muscle, and monocytes/macrophages. Forkhead box class O family member proteins (FoxOs) of transcription factors are essential regulators of cellular homeostasis, including glucose and lipid metabolism, oxidative stress response and redox signaling, cell cycle progression and apoptosis. In vascular endothelial cells, FoxOs strongly promote atherosclerosis via suppressing nitric oxide production and enhancing inflammatory responses. In liver sinusoidal endothelial cells, FoxOs induces hepatic insulin resistance by inducing nitration of insulin receptor in hepatocytes. Insulin resistance in adipose tissue limits capacity of lipid accumulation in adipose tissue, which promotes ectopic lipid accumulation and organ dysfunction in liver, vascular, and kidney. Modulation of insulin sensitivity in adipose tissue to induce healthy adipose expansion is expected to be a promising strategy for diabetic complications.
Collapse
Affiliation(s)
- Kyoichiro Tsuchiya
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898 Japan
| |
Collapse
|
11
|
Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models. Int J Mol Sci 2022; 23:ijms23105634. [PMID: 35628443 PMCID: PMC9144929 DOI: 10.3390/ijms23105634] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors, also known as gliflozins, were developed as a novel class of anti-diabetic agents that promote glycosuria through the prevention of glucose reabsorption in the proximal tubule by sodium-glucose co-transporter 2. Beyond the regulation of glucose homeostasis, they resulted as being effective in different clinical trials in patients with heart failure, showing a strong cardio-renal protective effect in diabetic, but also in non-diabetic patients, which highlights the possible existence of other mechanisms through which gliflozins could be exerting their action. So far, different gliflozins have been approved for their therapeutic use in T2DM, heart failure, and diabetic kidney disease in different countries, all of them being diseases that have in common a deregulation of the inflammatory process associated with the pathology, which perpetuates and worsens the disease. This inflammatory deregulation has been observed in many other diseases, which led the scientific community to have a growing interest in the understanding of the biological processes that lead to or control inflammation deregulation in order to be able to identify potential therapeutic targets that could revert this situation and contribute to the amelioration of the disease. In this line, recent studies showed that gliflozins also act as an anti-inflammatory drug, and have been proposed as a useful strategy to treat other diseases linked to inflammation in addition to cardio-renal diseases, such as diabetes, obesity, atherosclerosis, or non-alcoholic fatty liver disease. In this work, we will review recent studies regarding the role of the main sodium-glucose co-transporter 2 inhibitors in the control of inflammation.
Collapse
|
12
|
Saliu TP, Yazawa N, Hashimoto K, Miyata K, Kudo A, Horii M, Kamesawa M, Kumrungsee T, Yanaka N. Serum Amyloid A3 Promoter-Driven Luciferase Activity Enables Visualization of Diabetic Kidney Disease. Int J Mol Sci 2022; 23:ijms23020899. [PMID: 35055081 PMCID: PMC8779903 DOI: 10.3390/ijms23020899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/10/2022] Open
Abstract
The early detection of diabetic nephropathy (DN) in mice is necessary for the development of drugs and functional foods. The purpose of this study was to identify genes that are significantly upregulated in the early stage of DN progression and develop a novel model to non-invasively monitor disease progression within living animals using in vivo imaging technology. Streptozotocin (STZ) treatment has been widely used as a DN model; however, it also exhibits direct cytotoxicity to the kidneys. As it is important to distinguish between DN-related and STZ-induced nephropathy, in this study, we compared renal responses induced by the diabetic milieu with two types of STZ models: multiple low-dose STZ injections with a high-fat diet and two moderate-dose STZ injections to induce DN. We found 221 genes whose expression was significantly altered during DN development in both models and identified serum amyloid A3 (Saa3) as a candidate gene. Next, we applied the Saa3 promoter-driven luciferase reporter (Saa3-promoter luc mice) to these two STZ models and performed in vivo bioluminescent imaging to monitor the progression of renal pathology. In this study, to further exclude the possibility that the in vivo bioluminescence signal is related to renal cytotoxicity by STZ treatment, we injected insulin into Saa3-promoter luc mice and showed that insulin treatment could downregulate renal inflammatory responses with a decreased signal intensity of in vivo bioluminescence imaging. These results strongly suggest that Saa3 promoter activity is a potent non-invasive indicator that can be used to monitor DN progression and explore therapeutic agents and functional foods.
Collapse
|
13
|
Hammoud SH, AlZaim I, Al-Dhaheri Y, Eid AH, El-Yazbi AF. Perirenal Adipose Tissue Inflammation: Novel Insights Linking Metabolic Dysfunction to Renal Diseases. Front Endocrinol (Lausanne) 2021; 12:707126. [PMID: 34408726 PMCID: PMC8366229 DOI: 10.3389/fendo.2021.707126] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
A healthy adipose tissue (AT) is indispensable to human wellbeing. Among other roles, it contributes to energy homeostasis and provides insulation for internal organs. Adipocytes were previously thought to be a passive store of excess calories, however this view evolved to include an endocrine role. Adipose tissue was shown to synthesize and secrete adipokines that are pertinent to glucose and lipid homeostasis, as well as inflammation. Importantly, the obesity-induced adipose tissue expansion stimulates a plethora of signals capable of triggering an inflammatory response. These inflammatory manifestations of obese AT have been linked to insulin resistance, metabolic syndrome, and type 2 diabetes, and proposed to evoke obesity-induced comorbidities including cardiovascular diseases (CVDs). A growing body of evidence suggests that metabolic disorders, characterized by AT inflammation and accumulation around organs may eventually induce organ dysfunction through a direct local mechanism. Interestingly, perirenal adipose tissue (PRAT), surrounding the kidney, influences renal function and metabolism. In this regard, PRAT emerged as an independent risk factor for chronic kidney disease (CKD) and is even correlated with CVD. Here, we review the available evidence on the impact of PRAT alteration in different metabolic states on the renal and cardiovascular function. We present a broad overview of novel insights linking cardiovascular derangements and CKD with a focus on metabolic disorders affecting PRAT. We also argue that the confluence among these pathways may open several perspectives for future pharmacological therapies against CKD and CVD possibly by modulating PRAT immunometabolism.
Collapse
Affiliation(s)
- Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Departmment of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yusra Al-Dhaheri
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt
- *Correspondence: Ahmed F. El-Yazbi,
| |
Collapse
|