1
|
Song X, Huang X, Li J, Lu L, Qin R, Xu M, Su L, Gu L. Association between particulate matter exposure and acute ischemic stroke admissions in less-polluted areas: a time-series study using a distributed lag nonlinear model. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2025; 23:1. [PMID: 39574976 PMCID: PMC11576701 DOI: 10.1007/s40201-024-00926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/04/2024] [Indexed: 11/24/2024]
Abstract
Purpose China has experienced a heavy public health burden due to the increasing incidence of ischemic stroke (IS). Few studies have evaluated the relationship between particulate matter (PM) exposure and acute ischemic stroke (AIS) in relatively less-polluted areas, and the results have been inconsistent. As a result, this study aimed to investigate and evaluate the association between PM exposure and hospitalizations for AIS in an area with less air pollution. Methods Through collecting daily AIS hospitalizations, air pollution data and meteorological data from July 1, 2017 to June 30, 2020 in Nanning, this paper explored the association between short-term exposure to PM (PM2.5, PM10 and PMc) and daily hospital admissions for AIS using a distributed lag non-linear model based on time-series. To further identify the susceptible populations, stratified analyses were performed by age and gender. Results During the study period, a total of 2382 patients were admitted to hospital with AIS, with the ratio of male to female reached 2.03: 1. No statistical association was found between PM exposure and AIS admissions in the total population. Subgroup analysis showed that PM2.5, PM10 and PMc exposures were significantly associated with AIS admissions in male at lag29-lag30, lag27-lag30 and lag25-lag27, respectively. In addition, PMc exposure was also relevant to admissions for AIS with aged < 65 years at lag18-lag23. Conclusions Short-term exposure to ambient PM was not associated with hospital admissions for AIS in the general population, but males and young adults (aged < 65 years) were more susceptible to PM exposure. Even in areas with relatively low air pollution, appropriate measures should be adopted to intervene in the adverse effects of air pollution on vulnerable populations. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00926-w.
Collapse
Affiliation(s)
- Xiaoxiao Song
- Guangxi University of Chinese Medicine, Nanning, Guangxi China
| | - Xiaolan Huang
- School of Public Health, Guangxi Medical University, Nanning, Guangxi China
| | - Jinling Li
- Guangxi University of Chinese Medicine, Nanning, Guangxi China
| | - Liming Lu
- Guangxi University of Chinese Medicine, Nanning, Guangxi China
| | - Rui Qin
- Guangxi University of Chinese Medicine, Nanning, Guangxi China
| | - Miaomiao Xu
- Guangxi University of Chinese Medicine, Nanning, Guangxi China
| | - Li Su
- School of Public Health, Guangxi Medical University, Nanning, Guangxi China
| | - Lian Gu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi China
| |
Collapse
|
2
|
Li S, Sun W. Establishment of a mouse model of allergic asthma sensitized and triggered with PM2.5. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-12. [PMID: 39829037 DOI: 10.1080/09603123.2025.2453054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
To establish a mouse model of asthma sensitized and challenged with PM2.5 extract, 48 female BALB/c mice were included in this analysis. They were divided into six groups: normal control, ovalbumin (OVA) control, three PM2.5 dose groups, and a PM2.5+OVA combined group. Mice received intraperitoneal injections of PBS, OVA, PM2.5, or OVA+PM2.5 every 7 days for three weeks, followed by a one-week intranasal challenge. Airway responsiveness to acetylcholine was measured 24 hours post-challenge. Lung and nasal tissues were analyzed for histopathology, and bronchoalveolar lavage fluid (BALF) was assessed for inflammatory cells and cytokines. Compared to controls, PM2.5 and PM2.5+OVA groups showed increased airway hyperresponsiveness, pathological changes, elevated serum IgE, and altered cytokine levels (higher IL-4, IL-13; lower IFN-γ). In conclusion, PM2.5 extract can successfully establish a mouse model of allergic asthma.
Collapse
Affiliation(s)
- Shaohua Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wuzhuang Sun
- Department of Respiratory and Critical Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
He Y, Chen Y, Xu S, Luo Y, Qin F, Hu W. Pathogenesis and Key Cells in Allergic Rhinitis. Int Arch Allergy Immunol 2024:1-12. [PMID: 39561729 DOI: 10.1159/000541666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Allergic rhinitis (AR) is one of the most common chronic diseases worldwide, with prevalence rates as high as 50% in high-income countries. Patients with AR often have symptoms such as runny nose, itchy nose, nasal congestion, sneezing, and signs of edema and pallor of the nasal mucosa, and these pathologies have a major impact on the patient's learning, sleep, and quality of life, often resulting in significant pain and a huge economic burden for the patient. SUMMARY Among the current treatments for AR, immunotherapy is able to achieve satisfactory clinical outcomes. This shows the importance of immune cells in AR. However, current therapies do not provide a complete cure for AR. The reason for this is that current research on AR focuses on the mechanism of Th1 and Th2 immune cells in AR, ignoring the role of other key cells in AR. KEY MESSAGES Group 2 innate lymphoid cells, B cells, T cells, and macrophages can play a role in the pathogenesis of AR by producing appropriate cytokines and mediating the inflammatory response. M2 macrophages can promote Th2 cells and eosinophils in AR to enhance the type 2 inflammatory response and further promote AR.
Collapse
Affiliation(s)
- Yuzhu He
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China,
| | - Yuxiang Chen
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Shuang Xu
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yang Luo
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Fengfeng Qin
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Wenjian Hu
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Lim EY, Kim GD. Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. Antioxidants (Basel) 2024; 13:1256. [PMID: 39456509 PMCID: PMC11505051 DOI: 10.3390/antiox13101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.
Collapse
Affiliation(s)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea;
| |
Collapse
|
5
|
Yang Y, Li S, Xu H. BPIFA1 alleviates allergic rhinitis by regulating the NF-κB signaling pathway and Treg/Th17 balance. Int J Rheum Dis 2024; 27:e15372. [PMID: 39450979 DOI: 10.1111/1756-185x.15372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
AIM Allergic rhinitis (AR) is an allergic condition characterized by inflammation of the nasal mucosa. Bacterial permeability-increasing family member A1 (BPIFA1) exhibits anti-inflammatory properties; however, its impact on AR remains unclear. Aim of this study is to investigate the expression and function of BPIFA1 in AR and its influence on inflammation and immune regulation in a mouse model of AR induced by ovalbumin (OVA). METHODS The expression of BPIFA1 was analyzed using quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Morphological assessments of nasal mucosal tissues were conducted. Levels of inflammatory mediators in nasal lavage fluid (NALF) and serum were quantified using enzyme-linked immunosorbent assay (ELISA) kits. Protein expressions of BPIFA1, phosphorylated and total p65 (p-p65/p65), and IκBα were evaluated through Western blot analysis. The total cell counts, including epithelial cells, eosinophils, and lymphocytes in NALF, were determined using a hemocytometer. A mouse model of AR was established by OVA management. RESULTS BPIFA1 expression was found to be reduced in the nasal mucosa tissues of patients with AR, suggesting a potential role in the disease's progression. We successfully developed a mouse model of AR, where BPIFA1 was similarly downregulated, indicating its possible involvement in modulating the NF-κB signaling pathway. Overexpression of BPIFA1 in this model attenuated inflammation and allergic responses by inhibiting the NF-κB pathway. Additionally, overexpression of BPIFA1 promoted the differentiation of regulatory T cells (Treg) and inhibited the differentiation of T helper 17 cells (Th17) in the NALF of AR mice, further demonstrating its regulatory impact on immune responses. The study confirmed that BPIFA1 upregulation reduced the levels of inflammatory cytokines TNF-α and IL-6, decreased infiltration of inflammatory cells, and modulated antigen-specific immunoglobulin levels and histamine in serum. CONCLUSION BPIFA1 mitigated both inflammatory and allergic responses in AR mice induced by OVA through the modulation of the NF-κB signaling pathway and the balance between regulatory T cells (Treg) and T helper 17 cells (Th17). These findings suggest that BPIFA1 could serve as a novel biomarker and therapeutic target for AR, offering potential for the development of targeted treatments to improve patient outcomes.
Collapse
Affiliation(s)
- Ying Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xian City, 710000, China
| | - Shidong Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xian City, 710000, China
| | - Hongyan Xu
- Department of Stomatology, Shaanxi Provincial People's Hospital, Xian City, China
| |
Collapse
|
6
|
Jiang S, Zhang B, Wen S, Cheng S, Shen Y, Xie S, Xie Z, Jiang W. NOX2 mediates NLRP3/ROS facilitating nasal mucosal epithelial inflammation in chronic rhinosinusitis with nasal polyps. Heliyon 2024; 10:e38029. [PMID: 39328569 PMCID: PMC11425172 DOI: 10.1016/j.heliyon.2024.e38029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Background Previous investigations have provided limited insight into the role of oxidative stress in nasal mucosa inflammation. The aim of this study was to investigate the mechanism of oxidative stress in the epithelial cells of chronic rhinosinusitis with nasal polyps CRSwNP utilizing single-cell RNA sequencing data. Methods Single-cell RNA sequencing data from HRA000772 were used to assess oxidative stress, inflammasome activation, and nicotinamide adenine dinucleotide phosphate oxidases (NOXs) expression in epithelial cells via integrative rank-based gene set enrichment analysis. The localization of reactive oxygen species (ROS) and NOX2 in nasal mucosa and cell models was visualized using fluorescent probes and immunohistochemistry, respectively. Functional studies on NOX2 involved siRNA and plasmid transfections in vitro, while Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activity was examined using the inducer TMAO and the inhibitor MCC950. Results Single-cell RNA sequencing data suggested an increase of oxidative stress score and NLRP3 inflammasome score in CRSwNP epithelial cells. Vitro experiments demonstrated that lipopolysaccharide could induce ROS accumulation, NLRP3 inflammasome activation and epithelial alarmin expression. MCC950 inhibited the expression of epithelia alarmin in vitro. Elevated NOX2 in CRSwNP epithelial cells was associated with increased ROS, NLRP3 inflammasome activation, and epithelial alarmin expression. NOX2-targeted siRNA inhibited these effects in vitro. Moreover, TMAO reversed the downregulation of epithelial alarmins without impacting ROS levels. Conclusion This study highlights the crucial role of NOX2 as a key regulator of ROS accumulation and NLRP3 inflammasome activation in CRSwNP, underscoring its potential as a valuable therapeutic target for CRSwNP.
Collapse
Affiliation(s)
- Sijie Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Benjian Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Sihui Wen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Shenghao Cheng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Yingchun Shen
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Shaobing Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Zhihai Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Wang Y, Zhang L, Shi B, Luo J. Trends and research foci in immunoregulatory mechanisms of allergic rhinitis: a bibliometric analysis (2014-2024). Front Immunol 2024; 15:1443954. [PMID: 39380999 PMCID: PMC11458462 DOI: 10.3389/fimmu.2024.1443954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Background This study aims to provide a comprehensive bibliometric analysis of research trends, hotspots, and future directions in the immunoregulatory mechanisms of allergic rhinitis (AR) from 2014 to 2024. Methods Data were sourced from the Web of Science Core Collection (WoSCC), covering articles and reviews published between April 1, 2014, and March 31, 2024. The search terms included "Allergic Rhinitis," "AR," and related terms along with specific keywords related to immune cells and inflammatory mediators. Bibliometric tools such as CiteSpace, VOSviewer, and SCImago Graphica were used to analyze institutional cooperation networks, keyword co-occurrence, citation bursts, and research topic evolution. Microsoft Excel 2019 was employed to display annual publication trends. Results A total of 2200 papers met the inclusion and exclusion criteria. The number of publications showed an upward trend over the past decade, with a significant peak in 2021. China (583 papers) and the United States (454 papers) were the major contributing countries. Imperial College London emerged as the leading institution. Key research frontiers identified include the roles of NF kappa B and air pollution in AR. Keyword burst analysis revealed emerging topics such as respiratory allergy and personalized treatment strategies. Notable limitations include the exclusive use of the WoSCC database and the restriction to English-language publications. Conclusion The field of immunoregulatory mechanisms in allergic rhinitis has seen significant growth, with China and the United States leading the research. Future research should focus on developing personalized treatment plans and understanding the comprehensive impact of environmental factors. Continued interdisciplinary collaboration and international cooperation will be essential for advancing therapeutic strategies in AR.
Collapse
Affiliation(s)
- Yandan Wang
- Department of Otolaryngology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Liangran Zhang
- Department of Otolaryngology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Baoyuan Shi
- Department of Otolaryngology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Junpeng Luo
- Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Han H, Peng X, Huang M, Zhao W, Yang S, Lan Z, Cai S, Zhao H. PM2.5 Exposure Aggravates Inflammatory Response and Mucus Production in 16HBE Cells through Inducing Oxidative Stress and RAGE Expression. Cell Biochem Biophys 2024:10.1007/s12013-024-01526-z. [PMID: 39294419 DOI: 10.1007/s12013-024-01526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
Particulate matter 2.5 (PM2.5)-induced oxidative stress has been extensively proposed as a pivotal event in lung diseases. Receptor for advanced glycation end-products (RAGE) is a receptor of pro-inflammatory ligands that has been supported to be implied in the progression of multiple lung diseases. This study attempts to delineate the specific effects of PM2.5 on human bronchial epithelial 16HBE cells in vitro and figure out whether PM2.5 functions via mediating oxidative stress and RAGE. In PM2.5-challenged 16HBE cells, MTT assay detected cell viability. ELISA estimated inflammatory levels. Flow cytometry analysis measured ROS activity and related assay kits examined oxidative stress levels. Western blot tested nuclear factor E2-related factor 2 (Nrf2), RAGE, β-catenin, and mucin 5AC (MUC5AC) expression. Immunofluorescence staining evaluated nuclear translocation of β-catenin. It was noticed that PM2.5 exposure exacerbated inflammatory response, oxidative stress, and mucus production. Additionally, PM2.5 elevated RAGE expression while declined Nrf2 expression as well as stimulated the nuclear translocation of β-catenin. Furthermore, RAGE inhibition or nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor VAS2870 mitigated inflammatory response, oxidative stress, and mucus generation in PM2.5-exposed 16HBE cells. In addition, RAGE inhibition or VAS2870 raised Nrf2 expression, reduced RAGE expression, and hampered β-catenin nuclear translocation. Briefly, PM2.5 might act as a leading driver of inflammatory response and mucus production in lung injury, the mechanism of which might be related to the activation of oxidative stress and the up-regulation of RAGE.
Collapse
Affiliation(s)
- Huishan Han
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of General Practice, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xianru Peng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minyu Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuluan Yang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihan Lan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Sun W, Ding C, Jiang Z, Zheng X, Jiang J, Xu H. The Impact of Ambient Air Pollution on Allergic Rhinitis Symptoms: A Prospective Follow-Up Study. TOXICS 2024; 12:663. [PMID: 39330591 PMCID: PMC11436010 DOI: 10.3390/toxics12090663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Air pollution has become a serious public health problem and there is evidence that air pollution affects the incidence of allergic rhinitis. To further investigate the effect of ambient air pollutants on the severity of allergic rhinitis symptoms, a prospective follow-up study in patients with allergic rhinitis was conducted. A total of 167 allergic rhinitis patients with a mean age of 35.4 years, who were visiting the hospital, were enrolled. The daily symptom severity of allergic rhinitis and the concentrations of six air pollutants, including PM2.5, PM10, SO2, CO, O3 and NO2, were collected through follow-up investigations. The impact of ambient air pollutants on symptom severity was assessed via multi-pollutant models. Among several typical ambient air pollutants, we observed correlations of allergic rhinitis symptoms with PM2.5, PM10, CO, SO2 and NO2, whereas O3 showed no such correlation. Specifically, PM2.5 and PM10 were significantly associated with sneezing and nasal blockage. NO2 was significantly correlated with symptoms of rhinorrhea, itchy nose and itchy eyes. CO was significantly linked to sneezing and nasal blockage symptoms. These air pollutants not only had a direct impact on allergic rhinitis symptoms but also exhibited a lagging effect. This study indicates that short-term exposure to air pollutants is associated with exacerbation of nasal symptoms in patients with allergic rhinitis, leading to a decline in their quality of life.
Collapse
Affiliation(s)
- Wen Sun
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (W.S.); (C.D.); (Z.J.); (X.Z.)
| | - Chan Ding
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (W.S.); (C.D.); (Z.J.); (X.Z.)
| | - Zhuoying Jiang
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (W.S.); (C.D.); (Z.J.); (X.Z.)
| | - Xinliang Zheng
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (W.S.); (C.D.); (Z.J.); (X.Z.)
| | - Jinlan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Huadong Xu
- School of Public Health, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (W.S.); (C.D.); (Z.J.); (X.Z.)
| |
Collapse
|
10
|
Gao S, Zheng K, Lou J, Wu Y, Yu F, Weng Q, Wu Y, Li M, Zhu C, Qin Z, Jia R, Ying S, Shen H, Chen Z, Li W. Macrophage Extracellular Traps Suppress Particulate Matter-Induced Airway Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1622-1635. [PMID: 38897538 DOI: 10.1016/j.ajpath.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Accumulating evidence has substantiated the potential of ambient particulate matter (PM) to elicit detrimental health consequences in the respiratory system, notably airway inflammation. Macrophages, a pivotal component of the innate immune system, assume a crucial function in responding to exogenous agents. However, the roles and detailed mechanisms in regulating PM-induced airway inflammation remain unclear. The current study revealed that PM had the ability to stimulate the formation of macrophage extracellular traps (METs) both in vitro and in vivo. This effect was dependent on peptidylarginine deiminase type 4 (PAD4)-mediated histone citrullination. Additionally, reactive oxygen species were involved in the formation of PM-induced METs, in parallel with PAD4. Genetic deletion of PAD4 in macrophages resulted in an up-regulation of inflammatory cytokine expression. Moreover, mice with PAD4-specific knockout in myeloid cells exhibited exacerbated PM-induced airway inflammation. Mechanistically, inhibition of METs suppressed the phagocytic ability in macrophages, leading to airway epithelial injuries and an aggravated PM-induced airway inflammation. The present study demonstrates that METs play a crucial role in promoting the phagocytosis and clearance of PM by macrophages, thereby suppressing airway inflammation. Furthermore, it suggests that activation of METs may represent a novel therapeutic strategy for PM-related airway disorders.
Collapse
Affiliation(s)
- Shenwei Gao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kua Zheng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiafei Lou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Fangyi Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingyu Weng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongnan Qin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruixin Jia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; State Key Lab of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Zheng S, Jiang J, Shu Z, Qiu C, Jiang L, Zhao N, Lin X, Qian Y, Liang B, Qiu L. Fine particulate matter (PM 2.5) induces testosterone disruption by triggering ferroptosis through SIRT1/HIF-1α signaling pathway in male mice. Free Radic Biol Med 2024; 221:40-51. [PMID: 38759901 DOI: 10.1016/j.freeradbiomed.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Fine particulate matter (PM2.5), a significant component of air pollution particulate matter, is inevitable and closely associated with increasing male reproductive disorder. However, the testicular targets of PM2.5 and its toxicity related molecular mechanisms are still not fully understood. In this study, the conditional knockout (cKO) mice and primary Leydig cells were used to explore the testicular targets of PM2.5 and the related underlying mechanisms. First, apparent the structure impairment of seminiferous tubules, Leydig cells vacuolization, decline of serum testosterone and sperm quality reduction were found in male wild-type (WT) and Sirt1 knockout mice after exposure to PM2.5. Enrichment analyses revealed that differentially expressed genes (DEGs) were enriched in steroid hormone biosynthesis, ferroptosis, and HIF-1 signaling pathway in the mice testes after exposure to PM2.5, which were subsequently verified by the molecular biological analyses. Notably, similar enrichment analyses results were also observed in primary Leydig cells after treatment with PM2.5. In addition, Knockdown of Sirt1 significantly increased PM2.5-induced expression and activation of HIF-1α, which was in parallel to the changes of cellular iron levels, oxidative stress indicators and the ferroptosis markers. In conclusion, this highlights that PM2.5 triggers ferroptosis via SIRT1/HIF-1α signaling pathway to inhibit testosterone synthesis in males. These findings provide a novel research support for the study that PM2.5 causes male reproductive injury.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Jinchen Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Zhenhao Shu
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Chong Qiu
- Medical School, Nantong University, 19 Qixiu Rd, Nantong, 226001, PR China
| | - Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Nannan Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Xiaojun Lin
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Yingyun Qian
- Graduate School, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China
| | - Bo Liang
- Department of Ultrasound, Affiliated Hospital 2 of Nantong University, 6 Hai'er Lane North Rd, Nantong, 226019, PR China.
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, PR China.
| |
Collapse
|
12
|
Cui W, Jin Z, Lin H, Wang B, Chen G, Cheng Y. Astragalus polysaccharide alleviates IL-13-induced oxidative stress injury in nasal epithelial cells by inhibiting WTAP-mediated FBXW7 m 6A modification. Toxicol Res (Camb) 2024; 13:tfae099. [PMID: 38957784 PMCID: PMC11215160 DOI: 10.1093/toxres/tfae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
Background Allergic rhinitis (AR) a common and complicated upper airway disease mediated by specific IgE antibodies. Our study aims to explore the pharmacological effects of astragalus polysaccharide (APS) on AR and elucidate the mechanisms involved. Methods RT-qPCR and Western blotting were used to analyze mRNA and protein expression. Interleukin (IL)-13-treated human nasal epithelial cells (hNECs) was employed as the AR cell model. Cell apoptosis and viability were evaluated by TUNEL staining and MTT assay, respectively. ROS level was examined by the DCFH-DA probe. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) levels were measured by the corresponding kits. FBXW7 m6A modification level was assessed by MeRIP assay. Methods Our results showed that APS treatment reduced cell apoptosis, ROS, and MDA levels while increasing SOD, CAT, and GSH-Px levels in IL-13-treated hNECs by activating the Nrf2/HO-1 pathway. Moreover, APS alleviated IL-13-induced oxidative stress injury in hNECs by downregulating WTAP. In addition, WTAP knockdown increased FBXW7 mRNA stability by regulating FBXW7 mRNA m6A modification. It also turned out that APS alleviated IL-13-induced oxidative stress injury in hNECs through the WTAP/FBXW7 axis. Conclusions Taken together, APS inhibited WTAP-mediated FBXW7 m6A modification to alleviate IL-13-induced oxidative stress injury in hNECs.
Collapse
Affiliation(s)
- Wei Cui
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Baiyun District, Guangzhou 510405, People's Republic of China
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| | - Zhenglong Jin
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| | - Hanyu Lin
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| | - Bin Wang
- Shenzhen Bao’an Authentic TCM Therapy Hospital, Preventive Treatment Department. No. 99 Lai'an Road Xixiang Street, Bao'an District, Shenzhen City, Guangdong Province 518000, P.R. China
| | - Guojian Chen
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| | - Yongming Cheng
- Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Preventive Treatment Department. No. 30 Huayuan East Road, Pengjiang District, Jiangmen City, Guangdong Province, China
| |
Collapse
|
13
|
Deng Y, Steenland K, Sinharoy SS, Peel JL, Ye W, Pillarisetti A, Eick SM, Chang HH, Wang J, Chen Y, Young BN, Clark ML, Barr DB, Clasen On Behalf Of The Hapin Investigators TF. Association of household air pollution exposure and anemia among pregnant women: Analysis of baseline data from 'Household Air Pollution Intervention Network (HAPIN)' trial. ENVIRONMENT INTERNATIONAL 2024; 190:108815. [PMID: 38889623 PMCID: PMC11365361 DOI: 10.1016/j.envint.2024.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Anemia is common in low- and middle-income countries (LMICs), causing significant health issues and social burdens. Exposure to household air pollution from using biomass fuels for cooking and heating has been associated with anemia, but the exposure-response association has not been studied. OBJECTIVES We evaluated the associations between personal exposure to air pollution and both hemoglobin levels and anemia prevalence among pregnant women in a multi-country randomized controlled trial. METHODS We studied 3,163 pregnant women aged 18-35 years with 9-20 weeks of gestation, recruited as part of the Household Air Pollution Intervention Network (HAPIN) randomized controlled trial in Guatemala, India, Peru, and Rwanda. We assessed 24-hour personal exposures to fine particulate matter (PM2.5), black carbon (BC), and carbon monoxide (CO), and measured hemoglobin levels at baseline (15 ± 3 weeks gestation). Linear and logistic regression models were used to examine the associations of measured pollutants with hemoglobin levels and anemia prevalence, adjusting for confounding. RESULTS Single-pollutant models showed associations of CO with higher hemoglobin levels and lower anemia prevalence. Bipollutant models involving CO and PM2.5 also revealed that an interquartile range (IQR) increase in CO concentrations (2.26 ppm) was associated with higher hemoglobin levels [β = 0.04; 95 % confidence interval (CI): 0.01, 0.07], and a lower odds of anemia prevalence [odds ratios (OR) = 0.90; 95 % CI: 0.83, 0.98]. PM2.5 was inversely related to hemoglobin and positively associated with anemia, but results were not statistically significant at the 0.05 alpha level. County-specific results showed that 3 of 4 countries showed a similar association between CO and hemoglobin. We found no association of BC levels with hemoglobin levels or with anemia prevalence. CONCLUSION Our findings suggest that exposure to CO is associated with higher hemoglobin and lower anemia prevalence among pregnant women, whereas PM2.5 showed the opposite associations.
Collapse
Affiliation(s)
- Yanling Deng
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sheela S Sinharoy
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Wenlu Ye
- Division of Environmental Health Sciences, University of California at Berkeley, Berkeley, CA, USA
| | - Ajay Pillarisetti
- Division of Environmental Health Sciences, University of California at Berkeley, Berkeley, CA, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jiantong Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yunyun Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Bonnie N Young
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
14
|
Wang R, Liang J, Wang Q, Zhang Y, Lu Y, Zhan X, Wang S, Gu Q. m6A mRNA methylation-mediated MAPK signaling modulates the nasal mucosa inflammatory response in allergic rhinitis. Front Immunol 2024; 15:1344995. [PMID: 39011034 PMCID: PMC11246857 DOI: 10.3389/fimmu.2024.1344995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
Background Allergic rhinitis (AR) is a complex disease in which gene-environment interactions contribute to its pathogenesis. Epigenetic modifications, such as N6-methyladenosine (m6A) modification of mRNA, play important roles in regulating gene expression in multiple physiological and pathological processes. However, the function of m6A modification in AR and the inflammatory response is poorly understood. Methods We used the ovalbumin (OVA) and aluminum hydroxide to induce an AR mouse model. Nasal symptoms, histopathology, and serum cytokines were examined. We performed combined m6A and RNA sequencing to analyze changes in m6A modification profiles. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and methylated RNA immunoprecipitation sequencing qPCR (MeRIP-qPCR) were used to verify differential methylation of mRNAs and the m6A methylation level. Knockdown or inhibition of Alkbh5 in nasal mucosa of mice was mediated by lentiviral infection or IOX1 treatment. Results We showed that m6A was enriched in a group of genes involved in MAPK signaling pathway. Moreover, we identified a MAPK pathway involving Map3k8, Erk2, and Nfκb1 that may play a role in the disrupted inflammatory response associated with nasal inflammation. The m6A eraser, Alkbh5, was highly expressed in the nasal mucosa of AR model mice. Furthermore, knockdown of Alkbh5 expression by lentiviral infection resulted in high MAPK pathway activity and a significant nasal mucosa inflammatory response. Our findings indicate that ALKBH5-mediated m6A dysregulation likely contributes to a nasal inflammatory response via the MAPK pathway. Conclusion Together, our data show that m6A dysregulation mediated by ALKBH5, is likely to contribute to inflammation of the nasal mucosa via the MAPK signaling pathway, suggesting that ALKBH5 is a potential biomarker for AR treatment.
Collapse
Affiliation(s)
- Ruikun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing, China
| | - Jieqiong Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Qian Wang
- Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, Beijing, China
| | - Yiming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yingxia Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Xiaojun Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Qinglong Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
15
|
Liu S, Hu X, Zhang J, Lv L, He Y, Jiang L, Qin G. Bibliometric analysis of T cells in allergic rhinitis. Heliyon 2024; 10:e32756. [PMID: 38975117 PMCID: PMC11226833 DOI: 10.1016/j.heliyon.2024.e32756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
By reviewing the relevant literature in the field of T cell and allergic rhinitis, we determined the development status, study hotspots, and research frontiers viewpoints of this field to provide a reference for researchers and clinical workers. METHODS Web of Science Core Collection (WoSCC) was applied to obtain the studies related to T cells and allergic rhinitis (AR) from 2003 to 2023, and the information extracted from these studies was analyzed using CiteSpace 6.1. R6 and VOSviewer 1.6.18. RESULTS In total, 1585 articles were collected from WoSCC, with the time set between 2003 and 2023. Overall, a growing number of articles are being published annually. The countries and institutions with the maximum publications volume are China (370, 23.34 %) and Sun Yat-sen University (34, 2.15 %). The biggest contributor to the field was Durham, Stephen R. from the UK (22, 1.39 %). The Journal of Allergy and Clinical Immunology published the most related papers in the field (88, 5.54 %). Immunotherapy, Th cells, and inflammation were found to be the research hotspots in this area of T cells and allergic rhinitis in recent years. Pathway, model, Regulatory T cells (Treg cells), regulatory B cells, immunoglobulin E,and innate lymphoid cells were the current research hotspots in this field. CONCLUSION The field of T cell and allergic rhinitis is developing rapidly, and many countries significantly contributed to this field. Most researchers in this field mainly focused on immunotherapy, Th cell, and inflammation. Pathway, model, Treg cell, regulatory B cell, immunoglobulin E,and innate lymphoid cells were the main subject of current research, and future development is expected to occur in this field.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital of Deyang City, Sichuan, Deyang, 618000, People's Republic of China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Xiaoyan Hu
- Department of Pathogen Biology, School of Basic Medicine, Southwest Medical University, Luzhou, 646000, People's Republic of China
- Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Jing Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Liangge Lv
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yuxiao He
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Liang Jiang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| |
Collapse
|
16
|
Li J, Wu H, Xing W, Li X, Han Z, Ji R, Deng Z, Jung M, Sun S, Chung BI, Cardenas A, Langston ME. Air pollution mixture associated with oxidative stress exacerbation and symptoms deterioration in allergic rhinitis patients: Evidence from a panel study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172688. [PMID: 38663627 DOI: 10.1016/j.scitotenv.2024.172688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
With allergic rhinitis (AR) on the rise globally, there has been a growing focus on the role of environmental pollutants in the onset of AR. However, the potential mechanisms by how and which these pollutants exacerbate AR conditions remain unknown. This panel study of 49 patients diagnosed with AR over one year aimed to assess the individual and combined effects of short-term exposure to multiple ambient pollutants on oxidative stress, symptoms, and quality of life among patients with AR. All participants underwent four repeated assessments of health conditions and personal environmental exposures (PM2.5, O3, SO2, and NO2) over warm and cold seasons during 2017-2018. We evaluated two oxidative stress biomarkers (malondialdehyde [MDA], and superoxide dismutase [SOD]) via nasal lavage. We collected information on self-reported symptoms and quality of life using the Rhinitis Symptom Scale (SRS), the Visual Analog Scale (VAS), and the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) through in-person interviews. Bayesian kernel machine regression (BKMR) was used to evaluate the joint effects of pollutant mixture and identify key contributors. The results revealed a significant association of the pollutant mixture when all four pollutants were at or above their median levels, with increased oxidative stress. This was evidenced by elevated MDA and reduced SOD. We found a joint detrimental effect of the pollutant mixture on AR symptoms with a strong association with increased SRS scores, but a non-significant positive association with VAS and RQLQ scores. PM2.5, O3, and SO2 presented as the potentially primary contributors to the adverse health effects associated with the pollutant mixture in Taiyuan city. Patients with AR exposed to short-term air pollutant mixture are more likely to have greater nasal symptoms and worse quality of life from increased oxidative stress and reduced antioxidant capacity. Further research is warranted to better elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA.
| | - Haisheng Wu
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xin Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Zheshen Han
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Renyue Ji
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhengyi Deng
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
| | - Minji Jung
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
| | - Shengzhi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Benjamin I Chung
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
| | - Andres Cardenas
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Marvin E Langston
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
17
|
Guan X, Meng X, Zhong G, Zhang Z, Wang C, Xiao Y, Fu M, Zhao H, Zhou Y, Hong S, Xu X, Bai Y, Kan H, Chen R, Wu T, Guo H. Particulate matter pollution, polygenic risk score and mosaic loss of chromosome Y in middle-aged and older men from the Dongfeng-Tongji cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134315. [PMID: 38678703 DOI: 10.1016/j.jhazmat.2024.134315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
Mosaic loss of chromosome Y (mLOY) is the most common somatic alteration as men aging and may reflect genome instability. PM exposure is a major health concern worldwide, but its effects with genetic factors on mLOY has never been investigated. Here we explored the associations of PM2.5 and PM10 exposure with mLOY of 10,158 males measured via signal intensity of 2186 probes in male-specific chromosome-Y region from Illumina array data. The interactive and joint effects of PM2.5 and PM10 with genetic factors and smoking on mLOY were further evaluated. Compared with the lowest tertiles of PM2.5 levels in each exposure window, the highest tertiles in the same day, 7-, 14-, 21-, and 28-day showed a 0.005, 0.006, 0.007, 0.007, and 0.006 decrease in mLRR-Y, respectively (all P < 0.05), with adjustment for age, BMI, smoking pack-years, alcohol drinking status, physical activity, education levels, season of blood draw, and experimental batch. Such adverse effects were also observed in PM10-mLOY associations. Moreover, the unweighted and weighted PRS presented significant negative associations with mLRR-Y (both P < 0.001). Participants with high PRS and high PM2.5 or PM10 exposure in the 28-day separately showed a 0.018 or 0.019 lower mLRR-Y level [β (95 %CI) = -0.018 (-0.023, -0.012) and - 0.019 (-0.025, -0.014), respectively, both P < 0.001], when compared to those with low PRS and low PM2.5 or PM10 exposure. We also observed joint effects of PM with smoking on exacerbated mLOY. This large study is the first to elucidate the impacts of PM2.5 exposure on mLOY, and provides key evidence regarding the interactive and joint effects of PM with genetic factors on mLOY, which may promote understanding of mLOY development, further modifying and increasing healthy aging in males.
Collapse
Affiliation(s)
- Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xia Meng
- Department of Environment Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Zirui Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Hui Zhao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xuedan Xu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yansen Bai
- Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Haidong Kan
- Department of Environment Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- Department of Environment Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China.
| |
Collapse
|
18
|
Colín-Val Z, Flores-Navarro G, Rocha-Zavaleta L, Robledo-Cadena DX, Quintana-Belmares RO, López-Marure R. Fine particulate matter (PM 2.5) promotes chemoresistance and aggressive phenotype of A549 lung cancer cells. Toxicol Appl Pharmacol 2024; 487:116955. [PMID: 38710373 DOI: 10.1016/j.taap.2024.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Lung cancer is one of the most aggressive malignancies with a high mortality rate. In large cities, particulate matter (PM) is a common air pollutant. High PM levels with aerodynamic size ≤2.5 μm (PM2.5) associates with lung cancer incidence and mortality. In this work, we explored PM2.5 effects on the behavior of lung cancer cells. To this, we chronically exposed A549 cells to increasing PM2.5 concentrations collected in México City, then evaluating cell proliferation, chemoresponse, migration, invasion, spheroid formation, and P-glycoprotein and N-cadherin expression. Chronic PM2.5 exposure from 1 μg/cm2 stimulated A549 cell proliferation, migration, and chemoresistance and upregulated P-glycoprotein and N-cadherin expression. PM2.5 also induced larger multicellular tumor spheroids (MCTS) and less disintegration compared with control cells. Therefore, these results indicate lung cancer patients exposed to airborne PM2.5 as urban pollutant could develop more aggressive tumor phenotypes, with increased cell proliferation, migration, and chemoresistance.
Collapse
Affiliation(s)
- Zaira Colín-Val
- CIBIMEC, Departamento de Ciencias Básicas para la Salud, Centro Universitario del Sur (CUSur), Universidad de Guadalajara, Ciudad Guzmán, Jalisco, Mexico
| | - Guillermo Flores-Navarro
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | | | - Raúl Omar Quintana-Belmares
- Laboratorio de Salud Ambiental, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| |
Collapse
|
19
|
Liu X, Ma K, Liu S, Song P, Yang L, Liu Z, Zhou J, Wang L, Yan X, Yu Y, Dong Q. Household air pollution and urinary incontinence symptoms among older adults in LASI: a large-scale population-based study. BMC Public Health 2024; 24:1462. [PMID: 38822317 PMCID: PMC11143701 DOI: 10.1186/s12889-024-18834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND The effects of household air pollution on urinary incontinence (UI) symptoms and stress urinary incontinence (SUI) symptoms have not been studied. This study seeks to investigate the correlation between household air pollution and UI/SUI symptoms among middle-aged and elderly adults in India. METHODS We employed data derived from individuals aged 45 years and older who participated in the inaugural wave (2017-2018) of the Longitudinal Aging Study in India (LASI). The assessment of household air pollution exposure and the occurrence of UI/SUI symptoms relied on self-reported data. The analytical approach adopted was cross-sectional in nature and encompassed a cohort of 64,398 participants. To explore relationships, we utilized multivariate logistic regression analysis, incorporating subgroup analysis and interaction tests. RESULTS 1,671 (2.59%) participants reported UI symptoms and 4,862 (7.55%) participants reported SUI symptoms. Also, the prevalence of UI/SUI symptoms is much higher among middle-aged and elderly adults who use solid polluting fuels (UI: 51.23% vs. 48.77%; SUI: 54.50% vs. 45.50%). The results revealed a noteworthy correlation between household air pollution and the probability of experiencing UI/SUI symptoms, persisting even after adjusting for all conceivable confounding variables (UI: OR = 1.552, 95% CI: 1.377-1.749, p < 0.00001; SUI: OR: 1.459, 95% CI: 1.357-1.568, p < 0.00001). Moreover, significant interaction effects were discerned for age, education level, tobacco consumption, alcohol consumption, and physical activity (p for interaction < 0.05). CONCLUSIONS The results of our study indicate that the utilization of solid fuels in the home increases the likelihood of developing urinary incontinence and stress urinary incontinence. As a result, we argue that there is an immediate need to reform the composition of cooking fuel and raise public awareness about the adverse effects of air pollution in the home.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Ma
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Shengzhuo Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pan Song
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Luchen Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenghuan Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Linchun Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Yan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunfei Yu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Bhujel B, Oh S, Hur W, Lee S, Chung HS, Lee H, Park JH, Kim JY. Effect of Exposure to Particulate Matter on the Ocular Surface in an Experimental Allergic Eye Disease Mouse Model. Bioengineering (Basel) 2024; 11:498. [PMID: 38790364 PMCID: PMC11118833 DOI: 10.3390/bioengineering11050498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In response to the escalating concern over the effect of environmental factors on ocular health, this study aimed to investigate the impact of air pollution-associated particulate matter (PM) on ocular allergy and inflammation. C57BL/6 mice were sensitized with ovalbumin (OVA) topically and aluminum hydroxide via intraperitoneal injection. Two weeks later, the mice were challenged with OVA and exposed to PM. Three groups-naive, OVA, and OVA-sensitized with PM exposure (OVA + PM) groups-were induced to an Allergic Eye disease (AED) model. Parameters including clinical signs, histological changes, inflammatory cell infiltration, serum OVA-specific immunoglobulins E (IgE) levels, mast cells degranulation, cellular apoptosis and T-cell cytokines were studied. The results demonstrate that exposure with PM significantly exacerbates ocular allergy, evidenced by increased eye-lid edema, mast cell degranulation, inflammatory cytokines (IL-4, IL-5 and TNF-α), cell proliferation (Ki67), and serum IgE, polymorphonuclear leukocytes (PMN), and apoptosis and reduced goblet cells. These findings elucidate the detrimental impact of PM exposure on exacerbating the severity of AED. Noticeably, diminished goblet cells highlight disruptions in ocular surface integrity, while increased PMN infiltration with an elevated production of IgE signifies a systemic allergic response with inflammation. In conclusion, this study not only scientifically substantiates the association between air pollution, specifically PM, and ocular health, but also underscores the urgency for further exploration and targeted interventions to mitigate the detrimental effects of environmental pollutants on ocular surfaces.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
- Department of Medical Science, University of Ulsan Graduate School, Seoul 05505, Republic of Korea
| | - Seheon Oh
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
- Department of Medical Science, University of Ulsan Graduate School, Seoul 05505, Republic of Korea
| | - Woojune Hur
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
- Department of Medical Science, University of Ulsan Graduate School, Seoul 05505, Republic of Korea
| | - Seorin Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
- Department of Medical Science, University of Ulsan Graduate School, Seoul 05505, Republic of Korea
| | - Ho Seok Chung
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
| | | | - Jae Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (B.B.); (S.O.); (W.H.); (S.L.); (H.S.C.); (H.L.)
| |
Collapse
|
21
|
Jin X, Chen Y, Xu B, Tian H. Exercise-Mediated Protection against Air Pollution-Induced Immune Damage: Mechanisms, Challenges, and Future Directions. BIOLOGY 2024; 13:247. [PMID: 38666859 PMCID: PMC11047937 DOI: 10.3390/biology13040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Air pollution, a serious risk factor for human health, can lead to immune damage and various diseases. Long-term exposure to air pollutants can trigger oxidative stress and inflammatory responses (the main sources of immune impairment) in the body. Exercise has been shown to modulate anti-inflammatory and antioxidant statuses, enhance immune cell activity, as well as protect against immune damage caused by air pollution. However, the underlying mechanisms involved in the protective effects of exercise on pollutant-induced damage and the safe threshold for exercise in polluted environments remain elusive. In contrast to the extensive research on the pathogenesis of air pollution and the preventive role of exercise in enhancing fitness, investigations into exercise resistance to injury caused by air pollution are still in their infancy. In this review, we analyze evidence from humans, animals, and cell experiments on the combined effects of exercise and air pollution on immune health outcomes, with an emphasis on oxidative stress, inflammatory responses, and immune cells. We also propose possible mechanisms and directions for future research on exercise resistance to pollutant-induced damage in the body. Furthermore, we suggest strengthening epidemiological studies at different population levels and investigations on immune cells to guide how to determine the safety thresholds for exercise in polluted environments.
Collapse
Affiliation(s)
| | | | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.J.); (Y.C.)
| |
Collapse
|
22
|
Zaręba Ł, Piszczatowska K, Dżaman K, Soroczynska K, Motamedi P, Szczepański MJ, Ludwig N. The Relationship between Fine Particle Matter (PM2.5) Exposure and Upper Respiratory Tract Diseases. J Pers Med 2024; 14:98. [PMID: 38248800 PMCID: PMC10817350 DOI: 10.3390/jpm14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/13/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
PM2.5 is one of the most harmful components of airborne pollution and includes particles with diameters of less than 2.5 μm. Almost 90% of the world's population lives in areas with poor air quality exceeding the norms established by the WHO. PM2.5 exposure affects various organs and systems of the human body including the upper respiratory tract which is one of the most prone to its adverse effects. PM2.5 can disrupt nasal epithelial cell metabolism, decrease the integrity of the epithelial barrier, affect mucociliary clearance, and alter the inflammatory process in the nasal mucosa. Those effects may increase the chance of developing upper respiratory tract diseases in areas with high PM2.5 pollution. PM2.5's contribution to allergic rhinitis (AR) and rhinosinusitis was recently thoroughly investigated. Numerous studies demonstrated various mechanisms that occur when subjects with AR or rhinosinusitis are exposed to PM2.5. Various immunological changes and alterations in the nasal and sinonasal epithelia were reported. These changes may contribute to the observations that exposure to higher PM2.5 concentrations may increase AR and rhinosinusitis symptoms in patients and the number of clinical visits. Thus, studying novel strategies against PM2.5 has recently become the focus of researchers' attention. In this review, we summarize the current knowledge on the effects of PM2.5 on healthy upper respiratory tract mucosa and PM2.5's contribution to AR and rhinosinusitis. Finally, we summarize the current advances in developing strategies against PM2.5 particles' effects on the upper respiratory tract.
Collapse
Affiliation(s)
- Łukasz Zaręba
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Katarzyna Piszczatowska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 03-242 Warsaw, Poland;
| | - Karolina Soroczynska
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Parham Motamedi
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (K.P.); (K.S.); (P.M.)
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
23
|
Ding S, Jiang J, Li Y. Quercetin alleviates PM 2.5-induced chronic lung injury in mice by targeting ferroptosis. PeerJ 2024; 12:e16703. [PMID: 38188138 PMCID: PMC10768656 DOI: 10.7717/peerj.16703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Background PM2.5 is a well-known harmful air pollutant that can lead to acute exacerbation and aggravation of respiratory diseases. Although ferroptosis is involves in the pathological process of pulmonary disease, the potential mechanism of ferroptosis in PM2.5-caused lung inflammation and fibrosis need to be further clarified. Quercetin is a phenolic compound that can inhibit ferroptosis in various diseases. Hence, this study explores the role of ferroptosis in lung injury induced by PM2.5 in order to further elucidate the beneficial effect of quercetin and its underlying mechanism. Methods C57BL/6J mice were treated with either saline or PM2.5 by intratracheal instillation 20 times (once every two days). Additionally, PM2.5-treated mice were supplemented with two doses of quercetin. Lung injury, lipid peroxidation, iron content and ferroptosis marker protein expression and the Nrf2 signaling pathway were evaluated. In vitro, cell experiments were applied to verify the mechanisms underlying the links between Nrf2 signaling pathway activation and ferroptosis as well as between ferroptosis and inflammation. Results In vivo, PM2.5 increased lung inflammation and caused lung fibrosis and increased lipid peroxidation contents, iron contents and ferroptosis markers in lung tissues; these effects were significantly reversed by quercetin. Additionally, quercetin upregulated the nuclear Nrf2 expression and downregulated Keap1 expression in lung tissues of PM2.5-exposed mice. Quercetin decreased lipid peroxidation products, iron contents and ferroptosis levels and increased the nuclear translocation of Nrf2 and the degradation of Keap1 in PM2.5-exposed BEAS-2B cells. Moreover, we found that quercetin and dimethyl fumarate markedly decreased lipid peroxidation production and ferroptosis by activating the Nrf2-Keap1 pathway in PM2.5-exposed cells. Furthermore, quercetin reduced inflammatory cytokines and TGF-β1 in PM2.5-exposed cells. Conclusion Our data suggested that Nrf2 is involved in ferroptosis in PM2.5-induced lung injury, and quercetin can alleviate these adverse effects via activating Nrf2-Keap1 signaling pathway.
Collapse
Affiliation(s)
- Shibin Ding
- Public Health and Management, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Jinjin Jiang
- Public Health and Management, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Yang Li
- Public Health and Management, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| |
Collapse
|
24
|
Pan L, Gong C, Chen Y, Jiang Y, Sun Y, He B, Duan X, Han Y, Wang Y. Yanghe Pingchuan granules mitigates oxidative stress and inflammation in a bronchial asthma rat model: role of the IKK/IκB/NF-κB signalling pathway. Ann Med Surg (Lond) 2024; 86:212-218. [PMID: 38222706 PMCID: PMC10783385 DOI: 10.1097/ms9.0000000000001553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/18/2023] [Indexed: 01/16/2024] Open
Abstract
Background Bronchial asthma (BA) is a chronic inflammatory airway disease. Previous research has shown that Yanghe Pingchuan granules (YPG), among the granules formulated by the First Affiliated Hospital of the Anhui University of Chinese Medicine, exerts a precise therapeutic effect on BA. We previously showed that YPG improves airway inflammation in BA rats. Other studies have shown that the inhibitor of kappa-B kinase (IKK)/inhibitor of NF-κB (IκB)/nuclear factor kappa-B (NF-κB) signalling pathway plays a key role in inflammation mediation. Therefore, this study explored whether YPG could intervene in BA through the IKK/IκB/NF-κB signalling pathway. Methods Ovalbumin-induced method was used to established BA rat model. After successful modelling, the authors used YPG to intervene the rats in BA rats. Hematoxylin-eosin (HE) staining was used to detect the bronchial pathological changes in BA rats, enzyme-linked immunosorbent assay (ELISA) was used to detect the changes of inflammatory factors (IL-1β and IL-6) and oxidative stress indexes malondialdehyde (MDA), superoxide dismutase (SOD) and nitrogen monoxide (NO), Quantitative real-time polymerase chain reactionCR and western blot were used to detect the expression of IKK/IκB/NF-κB signalling pathway. Results In BA model rats, YPG significantly improved the inflammatory response in bronchial tissues, reduced inflammatory factors IL-1β and IL-6, alleviated oxidative stress, reduced MDA and NO, and increased SOD. Quantitative real-time polymerase chain reaction and western blot results showed that YPG could block the IKK/IκB/NF-κB signalling pathway. Conclusion These findings showed that YPG had a definite therapeutic effect on BA, which may be related to blocking the IKK/IκB/NF-κB signalling pathway and improving inflammation and oxidative stress.
Collapse
Affiliation(s)
- Lingyu Pan
- The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Chunxia Gong
- Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Yan Chen
- Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Yeke Jiang
- Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Yehong Sun
- Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Bangfu He
- Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Xianchun Duan
- The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Yanquan Han
- The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Yongzhong Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine
| |
Collapse
|
25
|
Liu F, Wang B, Mao C. Changes in peripheral blood IL-9, Th9, and BAFF levels in patients with allergic rhinitis and their clinical implications. Technol Health Care 2024; 32:4571-4580. [PMID: 39093090 DOI: 10.3233/thc-240756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND Allergic Rhinitis (AR), a prevalent condition in otorhinolaryngology, is mediated by Type 1 hypersensitivity through IgE, characterized by Type 2 inflammatory response and eosinophil infiltration in the nasal mucosa. Since AR disease exhibits significant heterogeneity in symptom severity, an objective assessment of AR severity may facilitate better individualized treatment. OBJECTIVE To explore the changes in peripheral blood IL-9, Th9, and BAFF levels of allergic rhinitis (AR) in patients and the clinical significance associated with it. METHODS A retrospective study selected 80 AR patients admitted from January 2022 to October 2022 as the case group, dividing them into mild and moderate-to-severe groups based on symptom scores. Concurrently, 50 patients without AR, who were treated for nasal bone fractures or underwent septoplasty, were selected as the group for comparison. Alterations in the expression levels of peripheral blood IL-9, Th9, and BAFF were analyzed and compared among the different groups. The diagnostic value of serum BAFF for the severity of AR was analyzed using the receiver operating characteristic (ROC) curve. RESULTS Noticeable variations were observed in clinical variables among the three groups such as, total IgE levels, peripheral blood eosinophil count and proportion, TNSS, and VAS (P< 0.05), while no statistically significant differences were observed in other variables (P> 0.05). The comparison of IL-9, Th9, and BAFF among the three groups revealed statistically significant differences (P< 0.05). Analysis using multivariate logistic regression revealed that IL-9 (OR = 2.365), Th9 (OR = 2.186), BAFF (OR = 2.307) were influencing factors of moderate-to-severe AR (P< 0.05). The ROC curve indicated that the AUC for the diagnosis of moderate-to-severe AR by IL-9, Th9, BAFF were 0.770, 0.734, 0.761, respectively, and the combined detection AUC was 0.888, an area under the curve higher than individual testing. CONCLUSION Changes in peripheral blood IL-9, Th9, and BAFF levels in AR patients may function as indicators to assess the level of severity in diagnostic procedures.
Collapse
|
26
|
Craig NA, Scruggs AM, Berens JP, Deng F, Chen Y, Dvonch JT, Huang SK. Promotion of myofibroblast differentiation through repeated treatment of fibroblasts to low concentrations of PM 2.5. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104329. [PMID: 38036232 PMCID: PMC11010492 DOI: 10.1016/j.etap.2023.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Exposure to particulate matter ≤ 2.5 µm (PM2.5) is a risk factor for many lung diseases. Although the toxicologic effects of PM2.5 on airway epithelium are well-described, the effects of PM2.5 on fibroblasts in the lung are less studied. Here, we sought to examine the effects of PM2.5 on the differentiation of fibroblasts into myofibroblasts. Although a single treatment of fibroblasts did not result in a change in collagen or the myofibroblast marker α-SMA, exposing fibroblasts to sequential treatments with PM2.5 at low concentrations caused a robust increase in these proteins. Treatment of fibroblasts with IMD0354, an inhibitor to nuclear factor κB, but not with an antagonist to aryl hydrocarbon receptor, abolished the ability of PM2.5 to induce myofibroblast differentiation. These data demonstrate that potential impact of PM2.5 to fibroblast activation and fibrosis and support the importance of utilizing low concentrations and varying exposure protocols to toxicologic studies.
Collapse
Affiliation(s)
- Nathan A Craig
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jack P Berens
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Yahong Chen
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China
| | - J Timothy Dvonch
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Li X, Wu H, Xing W, Xia W, Jia P, Yuan K, Guo F, Ran J, Wang X, Ren Y, Dong L, Sun S, Xu D, Li J. Short-term association of fine particulate matter and its constituents with oxidative stress, symptoms and quality of life in patients with allergic rhinitis: A panel study. ENVIRONMENT INTERNATIONAL 2023; 182:108319. [PMID: 37980881 DOI: 10.1016/j.envint.2023.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/10/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Short-term exposure to fine particulate matter (PM2.5) and its specific constituents might exacerbate allergic rhinitis (AR) conditions. However, the evidence is still inconclusive. METHOD We conducted a panel study of 49 patients diagnosed with AR > 1 year prior to the study in Taiyuan, China, to investigate associations of individual exposure to PM2.5 and its constituents with oxidative parameters, symptoms, and quality of life among AR patients. All participants underwent repeated assessments of health and PM exposure at 4 time points in both the heating and nonheating seasons from June 2017 to January 2018. AR patients' oxidative parameters were assessed using nasal lavage, and their subjective symptoms and quality of life were determined through in-person interviews using a structured questionnaire. Short-term personal exposure to PM2.5 and its constituents was estimated using the time-microenvironment-activity pattern and data from the nearest air sampler, respectively. We applied mixed-effects regression models to estimate the short-term effects of PM2.5 and its constituents. RESULTS The results showed that exposure to PM2.5 and its constituents, including BaP, PAHs, SO42-, NH4+, V, Cr, Cu, As, Se, Cd, and Pb, was significantly associated with increased oxidative stress, as indicated by an increase in the malondialdehyde (MDA) index. Exposure to PM2.5 and its components (V, Mn, Fe, Zn, As, and Se) was associated with decreased antioxidant activity, as indicated by a decrease in the superoxide dismutase (SOD) index. Additionally, increased visual analog scale (VAS) and rhinoconjunctivitis quality of life questionnaire (RQLQ) scores indicated that exposure to PM2.5 and its constituents exacerbated inflammatory symptoms and affected quality of life in AR patients. CONCLUSION Exposure to PM2.5 and specific constituents, could exacerbate AR patients' inflammatory symptoms and adversely affect their quality of life in the heavily industrialized city of Taiyuan, China. These findings may have potential biological and policy implications.
Collapse
Affiliation(s)
- Xin Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Haisheng Wu
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenrong Xia
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Pingping Jia
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kun Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Fang Guo
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Wang
- Clinical Laboratory, Shanxi Academy of Traditional Chinese Medicine, Taiyuan, China
| | - Yanxin Ren
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lina Dong
- Core Laboratory, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Shengzhi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
28
|
Barbier E, Carpentier J, Simonin O, Gosset P, Platel A, Happillon M, Alleman LY, Perdrix E, Riffault V, Chassat T, Lo Guidice JM, Anthérieu S, Garçon G. Oxidative stress and inflammation induced by air pollution-derived PM 2.5 persist in the lungs of mice after cessation of their sub-chronic exposure. ENVIRONMENT INTERNATIONAL 2023; 181:108248. [PMID: 37857188 DOI: 10.1016/j.envint.2023.108248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
More than 7 million early deaths/year are attributable to air pollution. Current health concerns are especially focused on air pollution-derived particulate matter (PM). Although oxidative stress-induced airway inflammation is one of the main adverse outcome pathways triggered by air pollution-derived PM, the persistence of both these underlying mechanisms, even after exposure cessation, remained poorly studied. In this study, A/JOlaHsd mice were also exposed acutely (24 h) or sub-chronically (4 weeks), with or without a recovery period (12 weeks), to two urban PM2.5 samples collected during contrasting seasons (i.e., autumn/winter, AW or spring/summer, SS). The distinct intrinsic oxidative potentials (OPs) of AW and SS PM2.5, as evaluated in acellular conditions, were closely related to their respective physicochemical characteristics and their respective ability to really generate ROS over-production in the mouse lungs. Despite the early activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) cell signaling pathway by AW and, in a lesser degree, SS PM2.5, in the murine lungs after acute and sub-chronic exposures, the critical redox homeostasis was not restored, even after the exposure cessation. Accordingly, an inflammatory response was reported through the activation of the nuclear factor-kappa B (NF-κB) cell signaling pathway activation, the secretion of cytokines, and the recruitment of inflammatory cells, in the murine lungs after the acute and sub-chronic exposures to AW and, in a lesser extent, to SS PM2.5, which persisted after the recovery period. Taken together, these original results provided, for the first time, new relevant insights that air pollution-derived PM2.5, with relatively high intrinsic OPs, induced oxidative stress and inflammation, which persisted admittedly at a lower level in the lungs after the exposure cessation, thereby contributing to the occurrence of molecular and cellular adverse events leading to the development and/or exacerbation of future chronic inflammatory lung diseases and even cancers.
Collapse
Affiliation(s)
- Emeline Barbier
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Jessica Carpentier
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Ophélie Simonin
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Pierre Gosset
- Service d'Anatomo-pathologie, Hôpital Saint Vincent de Paul, Lille, France
| | - Anne Platel
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Mélanie Happillon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Laurent Y Alleman
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Esperanza Perdrix
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Thierry Chassat
- Institut Pasteur de Lille, Plateforme d'Expérimentation et de Haute Technologie Animale, Lille, France
| | | | | | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France.
| |
Collapse
|
29
|
Wang X, Ran S, Xia H, Shi H, Wu G, Zhang Z, Wang C, Cai M, Zhang J, Lin H. Ambient air pollution associated with incident asthma, subsequent cardiovascular disease and death: A trajectory analysis of a national cohort. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132372. [PMID: 37633014 DOI: 10.1016/j.jhazmat.2023.132372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
No previous study has examined the impact of air pollution on the cardiovascular disease (CVD) trajectory, especially among asthmatic subjects. Based on the UK Biobank cohort, we retrieved 292,227 adults free of asthma and CVD aged 37-73 years at recruitment (2006-2010). Annual mean concentrations of particulate matter (PM10 and PM2.5) and nitrogen oxides (NO2 and NOx) were assessed at each individual's addresses. We used multi-state models to estimate the associations of air pollution with the trajectory from healthy to incident asthma, subsequent CVD, and death. During a median follow-up of 11.7 years, a total of 6338 (2.2%) participants developed asthma, among which, 638 (10.1%) subsequently proceeded to CVD. We observed significant impacts of various air pollutants on the CVD dynamic transitions, with a more substantial effect of particulate matter pollutants than gaseous air pollutants. For example, the hazard ratios (95% confidence intervals) for per interquartile range increase in PM2.5 and PM10 were 1.28 (1.13, 1.44) and 1.27 (1.13, 1.43) for transitions from incident asthma to subsequent CVD. In conclusion, long-term air pollution exposure could affect the CVD trajectory. Distinguishing the effect of air pollutants on CVD transition stages has great significance for CVD health management and clinical prevention, especially among asthma patients.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Ran
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hui Xia
- Center for Health Care, Longhua District, Shenzhen, China
| | - Hui Shi
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Gan Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Jiang Y, Nguyen TV, Jin J, Yu ZN, Song CH, Chai OH. Bergapten ameliorates combined allergic rhinitis and asthma syndrome after PM2.5 exposure by balancing Treg/Th17 expression and suppressing STAT3 and MAPK activation in a mouse model. Biomed Pharmacother 2023; 164:114959. [PMID: 37267637 DOI: 10.1016/j.biopha.2023.114959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023] Open
Abstract
Combined allergic rhinitis and asthma syndrome (CARAS) causes chronic respiratory inflammation in allergic individuals. Long-term exposure to particulate matter 2.5 (PM2.5; particles 2.5 µm or less in diameter) can aggravate respiratory damage. Bergapten (5-methoxysporalen) is a furocoumarin mostly found in bergamot essential oil and has significant antioxidant, anticancer, and anti-inflammatory activity. This study created a model in which CARAS was exacerbated by PM2.5 exposure, in BALB/c mice and explored the potential of bergapten as a therapeutic agent. The bergapten medication increased ovalbumin (OVA)-specific immunoglobulin (Ig) G2a level in serum and decreased OVA-specific IgE and IgG1 expression. Clinical nasal symptoms diminished significantly, with weakened inflammatory reaction in both the nasal mucosa and lungs. Furthermore, bergapten controlled the T helper (Th)1 to Th2 ratio by increasing cytokines associated with Th1-like interleukin (IL)-12 and interferon gamma and decreasing the Th2 cytokines IL-4, IL-5, and IL-13. Factors closely related to the balance between regulatory T cells and Th17 (such as IL-10, IL-17, Forkhead box protein P3, and retinoic-related orphan receptor gamma) were also regulated. Notably, pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor-alpha were reduced by bergapten, which suppressed the activation of both the signal transducer and activator of transcription 3 signaling pathway and the mitogen-activated protein kinase signaling pathway. Therefore, bergapten might have potential as a therapeutic agent for CARAS.
Collapse
Affiliation(s)
- Yuna Jiang
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Juan Jin
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, the Republic of Korea.
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, the Republic of Korea; Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54896, Jeonbuk, the Republic of Korea.
| |
Collapse
|
31
|
Lee KS, Min WK, Choi YJ, Jin S, Park KH, Kim S. The Effect of Maternal Exposure to Air Pollutants and Heavy Metals during Pregnancy on the Risk of Neurological Disorders Using the National Health Insurance Claims Data of South Korea. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050951. [PMID: 37241184 DOI: 10.3390/medicina59050951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The objective of this study was to evaluate the effects of high levels of maternal exposure to ambient air pollution and heavy metals on risks of autism spectrum disorder (ASD) and epilepsy using the National Health Insurance claims data of South Korea. The data of mothers and their newborns from 2016 to 2018 provided by the National Health Insurance Service were used (n = 843,134). Data on exposure to ambient air pollutants (PM2.5, CO, SO2, NO2, and O3) and heavy metals (Pb, Cd, Cr, Cu, Mn, Fe, Ni, and As) during pregnancy were matched based on the mother's National Health Insurance registration area. SO2 (OR: 2.723, 95% CI: 1.971-3.761) and Pb (OR: 1.063, 95% CI: 1.019-1.11) were more closely associated with the incidence of ASD when infants were exposed to them in the third trimester of pregnancy. Pb (OR: 1.109, 95% CI: 1.043-1.179) in the first trimester of pregnancy and Cd (OR: 2.193, 95% CI: 1.074-4.477) in the third trimester of pregnancy were associated with the incidence of epilepsy. Thus, exposure to SO2, NO2, and Pb during pregnancy could affect the development of a neurologic disorder based on the timing of exposure, suggesting a relationship with fetal development. However, further research is needed.
Collapse
Affiliation(s)
- Kuen Su Lee
- Department of Anesthesiology and Pain Medicine, Eulji University Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu 11759, Republic of Korea
| | - Won Kee Min
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Yoon Ji Choi
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Sejong Jin
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyu Hee Park
- Department of Pediatrics, Korea University Ansan Hospital, Ansan 15355, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
32
|
Jiang Y, Hu W, Cai Z, Lin C, Ye S. Peripheral Multiple Cytokine Profiles Identified CD39 as a Novel Biomarker for Diagnosis and Reflecting Disease Severity in Allergic Rhinitis Patients. Mediators Inflamm 2023; 2023:3217261. [PMID: 37207043 PMCID: PMC10191753 DOI: 10.1155/2023/3217261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/21/2022] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Background Allergic rhinitis (AR) is a common clinical problem, and immune cells and cytokines were proven to be pivotal in its pathogenesis. Our aim is to measure the peripheral concentrations of multiple cytokines in AR patients and identify novel biomarkers for diagnosis and disease severity. Methods Peripheral blood samples were collected from 50 AR patients, including 25 mild AR (MAR) patients and 25 moderate-severe AR patients (MSAR), and 22 healthy controls (HCs), and multiple cytokine profiling was outlined by Luminex assay. Cytokine levels were compared among the three groups, and their correlations with disease severity were evaluated. The candidate cytokines were further verified by enzyme-linked immunosorbent assay (ELISA) in a validation cohort. Results Multiple cytokine profiling revealed that CD39 and interferon (IFN)-γ levels were reduced, and interleukin (IL)-13, IL-5, IL-33, and thymic stromal lymphopoietin (TSLP) levels were elevated in the AR group than the HC group (P < 0.05). Receiver operating characteristic (ROC) curves presented that serum CD39 and IL-33 exhibited strong diagnostic abilities, and serum CD39 and IL-10 presented capacities in distinguishing disease severity (AUC > 0.8, P < 0.05). Moreover, CD39 concentrations were decreased, and IL-10, IL-5, and TSLP concentrations were enhanced in the MSAR group more than in the MAR group. Correlation analysis results showed that serum CD39, IL-5, and TSLP levels were associated with total nasal symptom score (TNSS) and visual analogue score (VAS) (P < 0.05). Further data in the validation cohort suggested that serum CD39 levels were reduced, and IL-5 and TSLP levels were increased in AR patients, especially in MSAR patients (P < 0.05). ROC results revealed potential values of serum CD39 in diagnosis and disease severity evaluation in AR patients (P < 0.05). Conclusion This study highlighted that peripheral multiple cytokine profiles were significantly varied in AR patients and associated with disease severity. The results in discover-validation cohorts implied that serum CD39 might serve as a novel biomarker for diagnosing AR and reflecting its disease severity.
Collapse
Affiliation(s)
- Yuanwei Jiang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, China
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Weiqun Hu
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Zhifu Cai
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Chaofan Lin
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Shengnan Ye
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, China
| |
Collapse
|
33
|
Piao CH, Fan Y, Nguyen TV, Song CH, Kim HT, Chai OH. PM2.5 exposure regulates Th1/Th2/Th17 cytokine production through NF-κB signaling in combined allergic rhinitis and asthma syndrome. Int Immunopharmacol 2023; 119:110254. [PMID: 37163921 DOI: 10.1016/j.intimp.2023.110254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Particulate matter (PM) is a major component of air pollution from emissions from anthropogenic and natural sources and is a serious problem worldwide due to its adverse effects on human health. Increased particulate air pollution increases respiratory disease-related mortality and morbidity. However, the impact of PM with an aerodynamic diameter of ≤ 2.5 μm (PM2.5) on combined allergic rhinitis and asthma syndrome (CARAS) remains to be elucidated. Accordingly, in the present study, we investigated the effect of PM2.5 in an ovalbumin (OVA)-induced CARAS mouse model with a focus on NF-κB signaling. METHODOLOGY We established an OVA-induced mouse model of CARAS to determine the effects of exposure to PM2.5. BALB/c mice were randomly divided into four groups: (1) naive, (2) PM2.5, (3) CARAS, and (4) CARAS/PM2.5. Mice were systemically sensitized with OVA and challenged with inhalation of ultrasonically nebulized 5% OVA three times by intranasal instillation of OVA in each nostril for 7 consecutive days. Mice in the PM2.5 and CARAS/PM2.5 groups were then exposed to PM2.5 by intranasal instillation of PM2.5 for several days. We then examined the impacts of PM2.5 exposure on histopathology and NF-κB signaling in our OVA-induced CARAS mouse model. RESULTS PM2.5 increased infiltration of eosinophils in bronchoalveolar lavage fluid (BALF) samples and inflammatory cells in lung tissue. It also increased production of GATA3, RORγ, IL-4, IL-5, IL-13, and IL-17 in nasal lavage fluid (NALF) and BALF samples in the CARAS mouse model, but secretion of IL-12 and IFN-γ was suppressed. Exposure to PM2.5 increased OVA-specific IgE and IgG1 levels in serum, inflammatory cell infiltration in the airways, and fibrosis in lung tissue. It also activated the NF-κB signaling pathway, increasing Th2/Th17 cytokine levels while decreasing Th1 cytokine expression, thereby inducing an inflammatory response and promoting inflammatory cell infiltration in nasal and lung tissue. CONCLUSION Our results demonstrate that PM2.5 can aggravate OVA-induced CARAS.
Collapse
Affiliation(s)
- Chun Hua Piao
- Department of Pulmonary and Critical Care Medicine, The affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, PR China; Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Yanjing Fan
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea; School of Medicine, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea; Institute for Medical Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Hyoung Tae Kim
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea; Institute for Medical Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
34
|
Li JM, Yang HY, Wu SH, Dharmage SC, Jalaludin B, Knibbs LD, Bloom MS, Guo Y, Morawska L, Heinrich J, Steve Hung Lam Y, Lin LZ, Zeng XW, Yang BY, Chen GB, Liu RQ, Dong GH, Hu LW. The associations of particulate matter short-term exposure and serum lipids are modified by vitamin D status: A panel study of young healthy adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120686. [PMID: 36400145 DOI: 10.1016/j.envpol.2022.120686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Particulate matter (PM) exposure is associated to the adverse change in blood lipids. Vitamin D is beneficial to lipid metabolism, but whether vitamin D levels modifies the impact of air pollutants on lipids is unclear. The purpose of the study was to investigate if vitamin D modifies the associations of PM and serum lipids in young healthy people. From December 2017 to January 2018, a panel study with five once weekly follow-ups was conducted on 88 healthy adults aged 21.09 (1.08) (mean (SD)) years on average in Guangzhou, China. We measured serum lipids, serum 25-hydroxyvitamin D (25(OH)D) concentrations (440 blood samples in total), mass concentrations of particulate matter with diameters ≤2.5 μm (PM2.5), ≤1.0 μm (PM1.0), and ≤0.5 μm (PM0.5), and number concentrations of particulate matter with diameters ≤0.2 μm (PN0.2) and ≤0.1 μm (PN0.1) at each follow-up. Linear mixed-effect models were applied to assess the interaction of vitamin D and size-fractionated PM short-term exposure on four lipid metrics. We found the interactions between 25(OH)D and size-fractionated PM exposure on blood lipids in different lags (lag 3 days and 4 days). An interquartile range increase in PM2.5, PM1.0, PM0.5 were significantly associated with increments of 12.30%, 12.99%, and 13.66% in triglycerides (TGs) at lag 4 days at vitamin D levels <15 ng/mL group, respectively. Similar results were found for PN0.2, PN0.1 and low-density lipoprotein cholesterol (LDL-C). All the associations between size-fractionated PM and blood lipids were found null statistically significant in vitamin D levels ≥15 ng/mL group.
Collapse
Affiliation(s)
- Jia-Min Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Han-Yu Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Si-Han Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, School of Population & Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Bin Jalaludin
- Centre for Research, Evidence Management and Surveillance, South Western Sydney Local Health District, Liverpool, NSW, 2037, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia; School of Public Health and Community Medicine Sydney, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Sydney, NSW, 2006, Australia
| | - Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA, 22030, USA
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Lidia Morawska
- Queensland University of Technology, International Laboratory for Air Quality & Health, Brisbane, QLD, Australia; Queensland University of Technology, Science and Engineering Faculty, Brisbane, QLD, Australia
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstraße 1, 80336, Munich, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Ziemssenstraße 1, 80336, Munich, Germany
| | - Yim Steve Hung Lam
- Asian School of the Environment, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Earth Observatory of Singapore, Nanyang Technological University, Singapore
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gong-Bo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
35
|
Liu X, Chen H, Chen X, Wu P, Zhang J. Identification of Potential Targets and Mechanisms of Sinomenine in Allergic Rhinitis Treatment Based on Network Pharmacology and Molecular Docking. Crit Rev Immunol 2023; 43:1-10. [PMID: 37830189 DOI: 10.1615/critrevimmunol.2023049479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
This study aimed to investigate the potential targets and molecular mechanism of sinomenine in treating allergic rhinitis (AR) using network pharmacology and molecular docking. Relevant targets of sinomenine and AR were obtained from public databases, and differentially expressed genes (DEGs) for AR were identified in the Gene Expression Omnibus database. Using VennDiagram, we identified 22 potential targets of sinomenine against AR by crossing disease targets, drug targets, and DEGs. Functional analysis revealed that sinomenine may act via its anti-inflammatory and immunosuppressive effects, and its action pathways may include the MAPK, HIF-1, and JAK-STAT pathways. Furthermore, hub targets were identified using EPC, MCC, and MNC algorithms, and six hub targets (STAT3, EGFR, NFKB1, HIF1A, PTGS2, and JAK1) were selected by integrating the top 10 hub genes and 22 potential targets. Molecular docking analysis indicated that STAT3, EGFR, PTGS2, and JAK1 may be key targets of sinomenine against AR. Overall, our results suggest that sinomenine has potential therapeutic effects against AR, and its mechanism of action may involve the regulation of key targets and pathways related to inflammation and immunity.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hong Chen
- Department of Rehabilitation, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaobo Chen
- Department of Rehabilitation, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Peng Wu
- Department of Internal Medicine, Ganzhou Hospital of TCM, Ganzhou, 341000, China
| | - Jianhua Zhang
- Academic Affairs Office, The First Affiliated Hospital of Gannan Medical University, No. 23 Qingnian Road, Ganzhou, 341000, China
| |
Collapse
|
36
|
Jin Y, Zhou X, Deng L, Xiong X, Li Y, Wei Q, Dong B, Qiu S. Association between the domestic use of solid cooking fuel and increased prevalence of depression and cognitive impairment in a big developing country: A large-scale population-based study. Front Public Health 2022; 10:1038573. [PMID: 36504928 PMCID: PMC9731231 DOI: 10.3389/fpubh.2022.1038573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Previous studies have suggested that air pollution affects physiological and psychological health. Using solid fuel at home is a significant source of indoor air pollution. The associations between solid fuel use and depressive symptoms and cognitive health were unclear among older adults from low- and middle-income countries (LMICs). Methods To evaluate the association of solid fuel use with depressive symptoms and cognitive health among older adults, we obtained data from the Longitudinal Aging Study in India (LASI) and excluded subjects younger than 60 years and without critical data (solid fuel use, depressive symptoms, and cognitive health). The 10-item Center for Epidemiologic Studies Depression Scale (CES-D-10) was used to assess depressive symptoms, with more than ten indicative of depression. Cognitive health was assessed using measures from the Health and Retirement Study (HRS), and subjects with the lowest 10th percentile were considered to have cognitive impairment. The participants' responses defined solid fuel use. Multivariable logistic regression, linear regression, subgroup analysis, and interaction tests were performed to appraise the relationship between solid fuel use and depression and cognitive impairment. Results A total of 29,789 participants over 60 years old were involved in this study. Almost half of the participants (47.5%) reported using solid fuel for home cooking. Compared with clean fuel use, solid fuel use was related to an increased prevalence of depression [odds ratio (OR) 1.09, 95% CI 1.03-1.16] and higher CES-D-10 scores (β 0.23, 95% CI 0.12-0.35) after fully adjusted covariables. Using solid fuel was also related to a higher risk of cognitive impairment (OR 1.21, 95% CI 1.11-1.32) and a lower cognitive score (β -0.63, 95% CI -0.79 to -0.47) compared with those who used clean fuel. In the subgroup analysis, the prevalence of depression increased in females and non-smokers. The association of solid fuel use with depression and cognitive impairment exists in subgroups of BMI, economic status, caste, living area, education, and drinking. Conclusions The use of solid fuel at home was associated with an increased prevalence of depression and cognitive impairment among older adults in India.
Collapse
Affiliation(s)
- Yuming Jin
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghong Zhou
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Deng
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyu Xiong
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yifan Li
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Birong Dong
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China,Birong Dong
| | - Shi Qiu
- Department of Urology, National Clinical Research Center for Geriatrics, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China,Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland,*Correspondence: Shi Qiu
| |
Collapse
|
37
|
Wang Q, Shi Q, Liu L, Qian Y, Dong N. FGF10 mediates protective anti-oxidative effects in particulate matter-induced lung injury through Nrf2 and NF-κB signaling. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1203. [PMID: 36544647 PMCID: PMC9761170 DOI: 10.21037/atm-22-4389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Background Particulate matter (PM), a well-known environmental pollutant, is an independent risk factor associated with the morbidity of various respiratory diseases. Oxidative stress is an important pathophysiological mechanism related to PM exposure, which mediates redox-sensitive inflammatory signaling, leading to lung injury. Fibroblast growth factor 10 (FGF10), a paracrine fibroblast growth factor that mediates mesenchymal to epithelial signaling, participates in epithelial repair during lung injury. However, whether FGF10-mediated repair in PM-induced lung injury is related to the regulation of oxidative stress remains to be elucidated. Methods In vivo, the C57BL/6 mice were randomly divided, with intratracheal instillation of 5 mg/kg FGF10 1 h before 4 mg/kg PM for 2 consecutive days. In vitro, the BEAS-2B cells were pretreated with 10 ng/mL FGF10 before exposed to 200 µg/mL PM. Besides, the specific Nrf2 inhibitor ML385 was adopted in vitro. The harvested lung tissues were pathologic grading scored. The state of oxidative stress was assessed with dihydroethidium (DHE) staining, malondialdehyde (MDA) activity, hydrogen peroxide (H2O2) assays and reactive oxygen species (ROS). The contents of IL-6 and IL-8 in bronchoalveolar lavage (BAL) as well as culture supernatant were quantified by ELISA. The protein levels of nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling from lung tissue as well as cell lysate were determined by Western blot. Results In this study, recombinant FGF10 administration relieved the degree of lung injury, which is characterized by bronchitis, in a mouse model of PM exposure. In addition, reduced ROS levels, which are indicative of restrained oxidative stress, were also observed. Moreover, two redox-sensitive signaling pathways, Nrf2 and NF-κB, were found to be differentially regulated by FGF10. Using a cellular model of PM exposure, we found that the anti-inflammatory effect of FGF10 on NF-κB signaling was mediated through the regulation of oxidative stress. The anti-oxidative effect relied on the stimulation of Nrf2 signaling. Blockade of Nrf2 signaling with ML385 significantly compromised the anti-inflammatory effect of FGF10. Conclusions These results underscore that the protective anti-oxidative effects of FGF10 in lung injury are mediated by the stimulation of Nrf2 signaling and inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua, China;,Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiangqiang Shi
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;,Department of Respiratory Medicine, Affiliated Dongyang Hospital of Wenzhou Medical University, Jinhua, China
| | - Li Liu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Qian
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nian Dong
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
El Tabaa MM, Habib EI, Zahran A, Anis A. SERCA2a directs the cardioprotective role of nano-emulsion curcumin against PM2.5-induced cardiac injury in rats by prohibiting PERK-eIF2α pathway. Life Sci 2022; 311:121160. [DOI: 10.1016/j.lfs.2022.121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/15/2022]
|
39
|
Wan J, Liu D, Pan S, Zhou S, Liu Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front Pharmacol 2022; 13:998574. [PMID: 36304156 PMCID: PMC9593054 DOI: 10.3389/fphar.2022.998574] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease (ESRD), which is characterized by a series of abnormal changes such as glomerulosclerosis, podocyte loss, renal tubular atrophy and excessive deposition of extracellular matrix. Simultaneously, the occurrence of inflammatory reaction can promote the aggravation of DN-induced kidney injury. The most important processes in the canonical inflammasome pathway are inflammasome activation and membrane pore formation mediated by gasdermin family. Converging studies shows that pyroptosis can occur in renal intrinsic cells and participate in the development of DN, and its activation mechanism involves a variety of signaling pathways. Meanwhile, the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome can not only lead to the occurrence of inflammatory response, but also induce pyroptosis. In addition, a number of drugs targeting pyroptosis-associated proteins have been shown to have potential for treating DN. Consequently, the pathogenesis of pyroptosis and several possible activation pathways of NLRP3 inflammasome were reviewed, and the potential drugs used to treat pyroptosis in DN were summarized in this review. Although relevant studies are still not thorough and comprehensive, these findings still have certain reference value for the understanding, treatment and prognosis of DN.
Collapse
Affiliation(s)
- Jiayi Wan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Sijie Zhou, ; Zhangsuo Liu,
| |
Collapse
|
40
|
Tanaka KI, Nakaguchi S, Shiota S, Nakada Y, Oyama K, Sakakibara O, Shimoda M, Sugimoto A, Ichitani M, Takihara T, Kinugasa H, Kawahara M. Preventive Effect of Epigallocatechin Gallate, the Main Component of Green Tea, on Acute Lung Injury Caused by Air Pollutants. Biomolecules 2022; 12:biom12091196. [PMID: 36139034 PMCID: PMC9496336 DOI: 10.3390/biom12091196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Reducing the health hazards caused by air pollution is a global challenge and is included in the Sustainable Development Goals. Air pollutants, such as PM2.5, induce respiratory and cardiovascular disorders by causing various inflammatory responses via oxidative stress. Catechins and polyphenols, which are components of green tea, have various protective effects, owing to their antioxidant ability. The main catechin in green tea, epigallocatechin gallate (EGCG), is potentially effective against respiratory diseases, such as idiopathic pulmonary fibrosis and asthma, but its effectiveness against air-pollution-dependent lung injury has not yet been investigated. In this study, we examined the effect of EGCG on urban aerosol-induced acute lung injury in mice. Urban aerosol treatment caused increases in inflammatory cell counts, protein levels, and inflammatory cytokine expression in the lungs of ICR mice, but pretreatment with EGCG markedly suppressed these responses. Analyses of oxidative stress revealed that urban aerosol exposure enhanced reactive oxygen species (ROS) production and the formation of ROS-activated neutrophil extracellular traps (NETs) in the lungs of mice. However, ROS production and NETs formation were markedly suppressed by pretreating the mice with EGCG. Gallocatechin gallate (GCG), a heat-epimerized form of EGCG, also markedly suppressed urban aerosol-dependent inflammatory responses and ROS production in vivo and in vitro. These findings suggest that EGCG and GCG prevent acute lung injury caused by urban aerosols through their inhibitory effects on ROS production. Thus, we believe that foods and medications containing EGCG or GCG may be candidates to prevent the onset and progression of acute lung injury caused by air pollutants.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
- Correspondence: ; Tel./Fax: +81-42-468-9335
| | - Shunsuke Nakaguchi
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Sachie Shiota
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Yuka Nakada
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Kaho Oyama
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Okina Sakakibara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| | - Akio Sugimoto
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara 421-0516, Japan
| | - Masaki Ichitani
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara 421-0516, Japan
| | - Takanobu Takihara
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara 421-0516, Japan
| | - Hitoshi Kinugasa
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara 421-0516, Japan
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo 202-8585, Japan
| |
Collapse
|
41
|
Yang YS, Cao MD, Wang A, Liu QM, Zhu DX, Zou Y, Ma LL, Luo M, Shao Y, Xu DD, Wei JF, Sun JL. Nano-silica particles synergistically IgE-mediated mast cell activation exacerbating allergic inflammation in mice. Front Immunol 2022; 13:911300. [PMID: 35936002 PMCID: PMC9355306 DOI: 10.3389/fimmu.2022.911300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
Background Allergic respiratory diseases have increased dramatically due to air pollution over the past few decades. However, studies are limited on the effects of inorganic components and particulate matter with different particle sizes in smog on allergic diseases, and the possible molecular mechanism of inducing allergies has not been thoroughly studied. Methods Four common mineral elements with different particle sizes in smog particles were selected, including Al2O3, TiO2, Fe2O3, and SiO2. We studied the relationship and molecular mechanism of smog particle composition, particle size, and allergic reactions using mast cells, immunoglobulin E (IgE)-mediated passive cutaneous anaphylaxis (PCA) model, and an ovalbumin (OVA)-induced asthmatic mouse model in vitro and in vivo, combined with transmission electron microscopy, scanning transmission X-ray microscopy analysis, and transcriptome sequencing. Results Only 20 nm SiO2 particles significantly increased β-hexosaminidase release, based on dinitrophenol (DNP)-human serum albumin (HSA) stimulation, from IgE-sensitized mast cells, while other particles did not. Meanwhile, the PCA model showed that Evan’s blue extravasation in mice was increased after treatment with nano-SiO2 particles. Nano-SiO2 particles exposure in the asthmatic mouse model caused an enhancement of allergic airway inflammation as manifested by OVA-specific serum IgE, airway hyperresponsiveness, lung inflammation injury, mucous cell metaplasia, cytokine expression, mast cell activation, and histamine secretion, which were significantly increased. Nano-SiO2 particles exposure did not affect the expression of FcϵRI or the ability of mast cells to bind IgE but synergistically activated mast cells by enhancing the mitogen-activated protein kinase (MAPK) signaling pathway, especially the phosphorylation levels of the extracellular signal-regulated kinase (ERK)1/2. The ERK inhibitors showed a significant inhibitory effect in reducing β-hexosaminidase release. Conclusion Our results indicated that nano-SiO2 particles stimulation might synergistically activate IgE-sensitized mast cells by enhancing the MAPK signaling pathway and that nano-SiO2 particles exposure could exacerbate allergic inflammation. Our experimental results provide useful information for preventing and treating allergic diseases.
Collapse
Affiliation(s)
- Yong-Shi Yang
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meng-Da Cao
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - An Wang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Qing-Mei Liu
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dan-Xuan Zhu
- Women and Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Zou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Ma
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Min Luo
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yang Shao
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Dian-Dou Xu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jin-Lyu Sun, ; Ji-Fu Wei, ; Dian-Dou Xu,
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jin-Lyu Sun, ; Ji-Fu Wei, ; Dian-Dou Xu,
| | - Jin-Lyu Sun
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Jin-Lyu Sun, ; Ji-Fu Wei, ; Dian-Dou Xu,
| |
Collapse
|
42
|
Fructus Amomi extract attenuates nasal inflammation by restoring Th1/Th2 balance and downregulation of NF-kBphosphorylation in OVA-induced allergic rhinitis. Biosci Rep 2022; 42:231000. [PMID: 35274678 PMCID: PMC8935377 DOI: 10.1042/bsr20212681] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Fructus Amomi Cardamomi (FA) is the mature fruit of Amomum villosum Lour (family Zingiberaceae) and is commonly used in Chinese traditional medicine to treat various gastrointestinal disorders. FA’s possible benefits as an allergic rhinitis (AR) treatment, however, have not been examined. We used an ovalbumin (OVA)-induced AR mouse model to identify any anti-allergic effects associated with the administration of 200 mg/kg FA or dexamethasone (Dex) 2.5 mg/kg by oral administration. The results of our testing confirm that FA ameliorated nasal symptoms and alleviated nasal epithelium swelling, reduced the goblet cell hyperplasia and eosinophil cell infiltration in the nasal epithelium, and inhibited lung tissue inflammation and Dex as well. Significantly decreased Th2 cytokine (interleukin (IL)-1β, IL-4, and IL-5) expression, and a correspondingly significant increase in Th1 cytokine (IL-12, interferon (IFN)-γ) production, was observed in nasal lavage fluid (NALF) taken from mice that received FA or Dex treatment. FA also reduced the presence of OVA-specific immunoglobulin (Ig) E, OVA-specific IgG1, and histamine levels in serum, and inhibited mast cell degranulation in vitro. In addition, these effects were involved with the reduction in NF-κB phosphorylation. These results suggest that FA restores Th1/Th2 balance and inhibits NF-κB phosphorylation and mast cell degranulation, thereby achieving a notable anti-inflammatory effect. Accordingly, it has the potential to be used as an efficacious therapeutic treatment for AR.
Collapse
|
43
|
Li J, Zhang Y, Zhang L, An Z, Song J, Wang C, Ma Y, Gu Q, Luo Q, Yang W, Du Y, Wu W. Fine particulate matter exposure exacerbated nasal mucosal damage in allergic rhinitis mice via NLRP3 mediated pyroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112998. [PMID: 34798361 DOI: 10.1016/j.ecoenv.2021.112998] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The incidence of nasal allergy/allergic rhinitis (AR) is rising worldwide, which has become a serious public health problem. Epidemiological studies point that exposure to environmental PM2.5 is closely linked to AR aggravation, however, the exactly mechanism is not clear. This study was performed to reveal molecular mechanisms of PM2.5 -induced AR deterioration. METHODS Morphology and element analysis of PM2.5 was examined by scanning electron microscopy (SEM) and Energy Dispersive Spectrometer (EDS). A total of 24 female C57BL/6 mice were divided into three groups (control group, AR group, and PM2.5 + AR group, each group contains 8 mice). Mice from AR group and PM2.5 + AR group were intraperitoneally injected with OVA suspension (0.004% OVA+3% aluminum hydroxide) on days 1, 7, and 14. 0.2 mL /kg B.W. for sensitization; then the same mice were intranasal instilled with 5% OVA solution daily for 7 days to established AR mice model (each nostril for 10 μl, day 15-21). The mice were intranasal instilled PBS (control group and AR group, each nostril for 10 μl) or PM2.5 (AR + PM2.5 group, 4.0 mg/kg b.w., each nostril for 10 μl) at the same way from day 23-29. The nasal symptoms were evaluated after the last instillation of PM2.5. Pathological changes and ultrastructure of nasal mucosa were observed by HE staining and SEM. Goblet cells hyperplasia was performed by Periodic acid-Schiff (PAS) staining. NLRP3, Caspase-1, GSDMD and IL-1β protein expression were assessed by immunohistochemical (IHC) staining. RESULTS Exposure to PM2.5 aggravated rhinitis symptom, promoted the secretion of serum IgE level and destroyed ultrastructural of nasal mucosa. Interestingly, NLRP3, Caspase-1 GSDMD and IL-1β protein expression were obviously elevated. NLRP3 /Capase-1/ GSDMD meditated cell pyroptosis participated in the process of AR exacerbation. However, macrophage is not the main effector cell. CONCLUSION PM2.5 exposure induces aggravation of allergic rhinitis, which is related to NLRP3 inflammasome meditated caspase-1 activation and cell pyroptosis in nasal mucosal.
Collapse
Affiliation(s)
- Juan Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Ying Zhang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Shandong Province 250001, China
| | - Zhen An
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Chunzhi Wang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yanmei Ma
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Qi Gu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Qizhan Luo
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weiling Yang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yue Du
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
44
|
Ullah HMA, Kwon TH, Park S, Kim SD, Rhee MH. Isoleucilactucin Ameliorates Coal Fly Ash-Induced Inflammation through the NF-κB and MAPK Pathways in MH-S Cells. Int J Mol Sci 2021; 22:ijms22179506. [PMID: 34502415 PMCID: PMC8430556 DOI: 10.3390/ijms22179506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023] Open
Abstract
We investigated whether isoleucilactucin, an active constituent of Ixeridium dentatum, reduces inflammation caused by coal fly ash (CFA) in alveolar macrophages (MH-S). The anti-inflammatory effects of isoleucilactucin were assessed by measuring the concentration of nitric oxide (NO) and the expression of pro-inflammatory mediators in MH-S cells exposed to CFA-induced inflammation. We found that isoleucilactucin reduced CFA-induced NO generation dose-dependently in MH-S cells. Moreover, isoleucilactucin suppressed CFA-activated proinflammatory mediators, including cyclooxygenase-2 (COX2) and inducible NO synthase (iNOS), and the proinflammatory cytokines such as interleukin-(IL)-1β, IL-6, and tumor necrosis factor (TNF-α). The inhibiting properties of isoleucilactucin on the nuclear translocation of phosphorylated nuclear factor-kappa B (p-NF-κB) were observed. The effects of isoleucilactucin on the NF-κB and mitogen-activated protein kinase (MAPK) pathways were also measured in CFA-stimulated MH-S cells. These results indicate that isoleucilactucin suppressed CFA-stimulated inflammation in MH-S cells by inhibiting the NF-κB and MAPK pathways, which suggest it might exert anti-inflammatory properties in the lung.
Collapse
Affiliation(s)
- H. M. Arif Ullah
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (H.M.A.U.); (S.D.K.)
| | - Tae-Hyung Kwon
- Department of Research and Development, Chuncheon Bio-Industry Foundation (CBF), Chuncheon 24232, Korea
- Correspondence: (T.-H.K.); (M.H.R.); Tel.: +82-33-258-6993 (T.-H.K.); +82-53-950-5967 (M.H.R.)
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - Sung Dae Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (H.M.A.U.); (S.D.K.)
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (H.M.A.U.); (S.D.K.)
- Correspondence: (T.-H.K.); (M.H.R.); Tel.: +82-33-258-6993 (T.-H.K.); +82-53-950-5967 (M.H.R.)
| |
Collapse
|