1
|
Eoh G, Kim C, Bae J, Park J. Evaluation of Sodium Chloride Concentrations on Growth and Phytochemical Production of Mesembryanthemum crystallinum L. in a Hydroponic System. HORTICULTURAE 2024; 10:1304. [DOI: 10.3390/horticulturae10121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Mesembryanthemum crystallinum L., commonly known as the ice plant, is a halophyte recognized for its exceptional salinity tolerance. This study aimed to determine the optimal NaCl concentration for promoting plant growth, D-pinitol, and other phytochemicals in M. crystallinum cultivated in a hydroponics system. Seedlings of M. crystallinum were transplanted into a hydroponic system and subjected to different NaCl concentrations (0, 100, 200, 300, 400, and 500 mM) in the nutrient solution. To evaluate the plant’s response to salinity stress, measurements were conducted on growth parameters, chlorophyll and carotenoid levels, total flavonoid and polyphenol contents, and DPPH scavenging activity. The optimal NaCl concentration for growth was found to be 200 mM, at which the shoot fresh and dry weights were highest. Additionally, total chlorophyll and carotenoid contents were maximized at 200 mM NaCl, with a subsequent decrease at higher concentrations. The highest DPPH scavenging activity was observed in the 200 mM NaCl treatment, which correlated with increased levels of total flavonoids and polyphenols. These results indicated that optimizing NaCl concentration can enhance the antioxidant activity of Mesembryanthemum crystallinum L. The D-pinitol content also peaked at 200 mM NaCl treatment, further supporting its role osmotic adjustment under salinity stress. M. crystallinum exhibited enhanced antioxidant production and cellular protective functions at 200 mM NaCl, which optimized its biochemical defense mechanisms and helped maintain physiological functions under salinity stress. These findings provide valuable insights for agricultural and biological applications, particularly in cultivating M. crystallinum for its bioactive compounds.
Collapse
Affiliation(s)
- Giju Eoh
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chulhyun Kim
- GCL Farm Co., Ltd., Research Center, Hwaseong-si 18517, Republic of Korea
| | - Jiwon Bae
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jongseok Park
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Narayanan K, Chellappan RK. Exploring the growth and phytoremediation efficacy of Suaeda fruticosa in agricultural soil contaminated by shrimp aquaculture. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-11. [PMID: 39520281 DOI: 10.1080/15226514.2024.2426177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Plants face numerous environmental challenges from biotic and abiotic stressors, with soil salinization emerging as a significant global concern. The coastal regions of Tamil Nadu, face severe environmental challenges due to discharge of saline water from shrimp farms exacerbates this issue, compromising the viability of paddy and other crops in the vicinity. This study explores the phytoremediation potential of Suaeda fruticosa in addressing soil salinity resulting from shrimp farming activities under field conditions over a 120-day period to restore soil health in salt affected soil. This research demonstrates Suaeda fruticosa's exceptional salt tolerance and bioaccumulation potential in facilitating soil restoration. Significant enhancements were observed in various growth parameters, including 466% increase in plant height, 338% in fresh weight and 387% in dry weight. Biochemical parameters also showed substantial enhancements with total chlorophyll, protein, proline, phenol, and glycinebetaine levels increasing by 655%, 588%, 690%, 153%, and 531%, respectively. Enzymatic activities exhibited notable elevations as well, with catalase, peroxidase, and polyphenol oxidase activities escalating by 258%, 587%, and 121% respectively, indicating robust adaptation to saline environments. Moreover, Suaeda fruticosa exhibited remarkable bioaccumulation capabilities, accumulating 461 kg NaCl ha-1. This led to substantial improvements in soil characteristics, including a reduction in pH from 8.8 to 6.49, electrical conductivity from 5.7 to 1.53 dSm-1, and sodium adsorption ratio from 16.1 to 4.4 mmol L-1. The successive cultivation of Suaeda fruticosa in this study, has proven to be a viable strategy for reclaiming salt-affected lands, thereby alleviating a significant constraint on crop productivity.
Collapse
Affiliation(s)
- Killivalavan Narayanan
- Phytoremediation Lab, Department of Botany, Faculty of Science, Annamalai University, Chidambaram, India
| | | |
Collapse
|
3
|
Gula E, Dziurka M, Hordyńska N, Libik-Konieczny M. Regulatory effect of pipecolic acid (Pip) on the antioxidant system activity of Mesembryanthemum crystallinum plants exposed to bacterial treatment. PHYSIOLOGIA PLANTARUM 2024; 176:e14583. [PMID: 39469748 DOI: 10.1111/ppl.14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/14/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
The presented study aims to elucidate the regulatory role of Pipecolic acid (Pip) in modulating the antioxidant system activity of Mesembryanthemum crystallinum plants exposed to Pseudomonas syringae infestation. M. crystallinum, known for its semi-halophytic nature, can transition its metabolism from C3 to CAM under salt stress conditions. The research encompasses the antioxidant system of the plants, covering both enzymatic and low molecular weight components. The findings indicate that Pip supplementation confers a beneficial effect on certain elements of the antioxidant system when the plants are subjected to stress induced by bacteria. Notably, during critical periods, particularly in the initial days post-bacterial treatment, M. crystallinum plants supplemented with Pip and exhibiting C3 metabolism display heightened total antioxidant capacity. This enhancement includes increased superoxide dismutase activity and elevated levels of glutathione and proline. However, in plants with salinity-induced CAM, where these parameters are naturally higher, the supplementation of Pip does not yield significant effects. These results validate the hypothesis that the regulatory influence of Pip on defence mechanisms against biotic stress is contingent upon the metabolic state of the plant. Furthermore, this regulatory effect is more pronounced in C3 plants of M. crystallinum than those undergoing CAM metabolism induced by salinity stress.
Collapse
Affiliation(s)
- Emilia Gula
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Natalia Hordyńska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Marta Libik-Konieczny
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| |
Collapse
|
4
|
Talarico E, Zambelli A, Araniti F, Greco E, Chiappetta A, Bruno L. Unravelling the Epigenetic Code: DNA Methylation in Plants and Its Role in Stress Response. EPIGENOMES 2024; 8:30. [PMID: 39189256 PMCID: PMC11348131 DOI: 10.3390/epigenomes8030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Environmental stress significantly affects plant growth, development, and survival. Plants respond to stressors such as temperature fluctuations, water scarcity, nutrient deficiencies, and pathogen attacks through intricate molecular and physiological adaptations. Epigenetic mechanisms are crucial in regulating gene expression in response to environmental stress. This review explores the current understanding of epigenetic modifications, including DNA methylation, and their roles in modulating gene expression patterns under environmental stress conditions. The dynamic nature of epigenetic modifications, their crosstalk with stress-responsive pathways, and their potential implications for plant adaptation and crop improvement are highlighted in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Emanuela Talarico
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Alice Zambelli
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy; (A.Z.); (F.A.)
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy; (A.Z.); (F.A.)
| | - Eleonora Greco
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Adriana Chiappetta
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| |
Collapse
|
5
|
Saeedi R, Seyedi A, Esmaeilizadeh M, Seyedi N, Morteza Zahedi S, Malekzadeh MR. Improving the performance of the photosynthetic apparatus of Citrus sinensis with the use of chitosan-selenium nanocomposite (CS + Se NPs) under salinity stress. BMC PLANT BIOLOGY 2024; 24:745. [PMID: 39098917 PMCID: PMC11299350 DOI: 10.1186/s12870-024-05462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Abiotic stress, such as salinity, affects the photosynthetic apparatus of plants. It is reported that the use of selenium nanoparticles (Se NPs), and biochemical compounds such as chitosan (CS) increase the tolerance of plants to stress conditions. Therefore, this study aimed to elucidate the potential of Se NPs, CS, and their composite (CS + Se NPs) in improving the photosynthetic apparatus of C. sinensis under salt stress in greenhouse conditions. The grafted seedlings of C. sinensis cv. Valencia after adapting to the greenhouse condition, were imposed with 0, 50, and 100 mM NaCl. After two weeks, the plants were foliar sprayed with distilled water (control), CS (0.1% w/v), Se NPs (20 mg L- 1), and CS + Se NPs (10 and 20 mg L- 1). Three months after treatment, the levels of photosynthetic pigments, leaf gas exchange, and chlorophyll fluorescence in the treated plants were evaluated. RESULTS Under salinity stress, total chlorophyll, carotenoid, and SPAD values decreased by 31%, 48%, and 28% respectively, and Fv/Fm also decreased compared to the control, while the ratio of absorption flux (ABS), dissipated energy flux (DI0) and maximal trapping rate of PSII (TR0) to RC (a measure of PSII apparent antenna size) were increased. Under moderate (50 mM NaCl) and intense (100 mM NaCl) salinity stress, the application of CS + Se NPs significantly increased the levels of photosynthetic pigments and the Fv/Fm value compared to plants treated with distilled water. CONCLUSIONS It may be inferred that foliar treatment with CS + Se NPs can sustain the photosynthetic ability of C. sinensis under salinity stress and minimize its deleterious effects on photosynthesis.
Collapse
Affiliation(s)
- Reza Saeedi
- Department of Horticultural Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Azam Seyedi
- Department of Horticultural Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
| | - Majid Esmaeilizadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, Iran
| | - Neda Seyedi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Mohammad Reza Malekzadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Kerman, Iran
| |
Collapse
|
6
|
Rahman MM, Keya SS, Sahu A, Gupta A, Dhingra A, Tran LSP, Mostofa MG. Acetic acid: a cheap but chief metabolic regulator for abiotic stress tolerance in plants. STRESS BIOLOGY 2024; 4:34. [PMID: 39073476 PMCID: PMC11286891 DOI: 10.1007/s44154-024-00167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/05/2024] [Indexed: 07/30/2024]
Abstract
As sessile organisms, plants constantly face a variety of abiotic stresses, such as drought, salinity, and metal/metalloid toxicity, all of which possess significant threats to plant growth and yield potential. Improving plant resilience to such abiotic stresses bears paramount importance in practicing sustainable agriculture worldwide. Acetic acid/acetate has been recognized as an important metabolite with multifaceted roles in regulating plant adaptation to diverse abiotic stresses. Recent studies have elucidated that acetic acid can potentiate plants' inherent mechanisms to withstand the adverse effects of abiotic stresses through the regulation of lipid metabolism, hormone signaling, epigenetic changes, and physiological defense mechanisms. Numerous studies also underpin the potential use of acetic acid in boosting crop production under unfavorable environmental conditions. This review provides a comprehensive update on the understanding of how acetic acid regulates plant photosynthesis, acts as an antitranspirant, detoxifies reactive oxygen species to alleviate oxidative stress, interacts with phytohormones to regulate physiological processes, and improves soil fertility and microbial diversity, with a specific focus on drought, salinity, and metal toxicity. We also highlight the eco-friendly and economic potential of acetic acid that may attract farmers from developing countries to harness the benefits of acetic acid application for boosting abiotic stress resistance in crops. Given that acetic acid is a widely accessible, inexpensive, and eco-friendly compound, the revelation of acetic acid-mediated regulatory pathways and its crosstalk with other signaling molecules will have significant importance in developing a sustainable strategy for mitigating abiotic stresses in crops.
Collapse
Affiliation(s)
- Md Mezanur Rahman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sanjida Sultana Keya
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA
| | - Abira Sahu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Aarti Gupta
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA
| | - Anuradha Dhingra
- Department of Biology, Washington University in St. Louis, St. Louis, USA
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Mohammad Golam Mostofa
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Jiang H, Ma L, Gao P, Zhang Y, Zhang B, Ma G, Qi K, Qi J. Relationships between Wheat Development, Soil Properties, and Rhizosphere Mycobiota. Microorganisms 2024; 12:1516. [PMID: 39203359 PMCID: PMC11356171 DOI: 10.3390/microorganisms12081516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Wheat is a vital global food crop, yet it faces challenges in saline-alkali soils where Fusarium crown rot significantly impacts growth. Variations in wheat growth across regions are often attributed to uneven terrain. To explore these disparities, we examined well-growing and poorly growing wheat samples and their rhizosphere soils. Measurements included wheat height, root length, fresh weight, and Fusarium crown rot severity. Well-growing wheat exhibited greater height, root length, and fresh weight, with a lower Fusarium crown rot disease index compared to poorly growing wheat. Analysis of rhizosphere soil revealed higher alkalinity; lower nutrient levels; and elevated Na, K, and Ca levels in poorly growing wheat compared to well-growing wheat. High-throughput sequencing identified a higher proportion of unique operational taxonomic units (OTUs) in poorly growing wheat, suggesting selection for distinct fungal species under stress. FUNGuild analysis indicated a higher prevalence of pathogenic microbial communities in poorly growing wheat rhizosphere soil. This study underscores how uneven terrains in saline-alkali soils affect pH, nutrient dynamics, mineral content, wheat health, and rhizosphere fungal community structure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kai Qi
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (P.G.); (Y.Z.); (B.Z.); (G.M.)
| | - Junshan Qi
- Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (P.G.); (Y.Z.); (B.Z.); (G.M.)
| |
Collapse
|
8
|
Šunić L, Ilić ZS, Stanojević L, Milenković L, Lalević D, Stanojević J, Milenković A, Cvetković D. Essential Oil Content, Composition and Free Radical Scavenging Activity from Different Plant Parts of Wild Sea Fennel ( Crithmum maritimum L.) in Montenegro. PLANTS (BASEL, SWITZERLAND) 2024; 13:2003. [PMID: 39065529 PMCID: PMC11280542 DOI: 10.3390/plants13142003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
This study was conducted to determine the sea fennel essential oil (SFEO) yield, composition, and antioxidant activity of leaves, stem, inflorescences, and umbels from seeds of wild sea fennel (SF) (Crithmum maritimum L.) from the Montenegro coast. The chemical composition of isolated essential oil was determined by GC/MS and GC/FID analyses. The antioxidant activity was determined using the DPPH assay. The maximum SFEO yield was found in umbels with seeds (4.77 mL/100 g p.m.). The leaves contained less EO (0.52 mL/100 g p.m.) than immature inflorescence (0.83 mL/100 g p.m.) The minimum EO content was found in the stem (0.08%). Twenty components were isolated from SFEO leaves, twenty-four from inflorescence, thirty-four components from the stem, and twenty-one components from umbels with seeds. Limonene (62.4-72.0%), γ-terpinene (9.5-14.0%), α-pinene (1.4-5.8%), and sabinene (1-6.5%) were found to be the main components of the SFEO from monoterpene hydrocarbons as dominant grouped components (86% to 98.1%). SF plant parts showed differences in chemical profiles, especially in specific and low-represented ingredients. (E)-anethole (4.4%), fenchone (0.5%), and trans-carveol (0.2%) were present only in umbel with seeds, while the β-longipipene (0.5%), (E)-caryophyllene (0.5%), and (2E)-decenal (0.2%) were found only in the stems. The degree of DPPH radical neutralization increased with incubation time. The SFEO isolated from the stems showed stronger antioxidant activity during the incubation times of 20 and 40 min (EC50 value of 5.30 mg/mL and 5.04 mg/mL, respectively) in comparison to the SFEO isolated from the other plant parts. The lowest antioxidant activity was obtained with the SFEO leaves (155.25 mg/mL and 58.30 mg/mL, respectively). This study indicates that SFEO possesses significant antioxidant activities and is animportant component in the food and pharmaceutical industries. It is important to preserve the existing gene pool and biodiversity with rational use SF for the extraction of high-quality essential oils.
Collapse
Affiliation(s)
- Ljubomir Šunić
- Faculty of Agriculture, University of Priština in Kosovska Mitrovica, 38219 Lešak, Serbia; (L.Š.); (L.M.); (D.L.)
| | - Zoran S. Ilić
- Faculty of Agriculture, University of Priština in Kosovska Mitrovica, 38219 Lešak, Serbia; (L.Š.); (L.M.); (D.L.)
| | - Ljiljana Stanojević
- Faculty of Technology, University of Niš, Bulevar Oslobodenja 124, 16000 Leskovac, Serbia; (L.S.); (J.S.); (A.M.); (D.C.)
| | - Lidija Milenković
- Faculty of Agriculture, University of Priština in Kosovska Mitrovica, 38219 Lešak, Serbia; (L.Š.); (L.M.); (D.L.)
| | - Dragana Lalević
- Faculty of Agriculture, University of Priština in Kosovska Mitrovica, 38219 Lešak, Serbia; (L.Š.); (L.M.); (D.L.)
| | - Jelena Stanojević
- Faculty of Technology, University of Niš, Bulevar Oslobodenja 124, 16000 Leskovac, Serbia; (L.S.); (J.S.); (A.M.); (D.C.)
| | - Aleksandra Milenković
- Faculty of Technology, University of Niš, Bulevar Oslobodenja 124, 16000 Leskovac, Serbia; (L.S.); (J.S.); (A.M.); (D.C.)
| | - Dragan Cvetković
- Faculty of Technology, University of Niš, Bulevar Oslobodenja 124, 16000 Leskovac, Serbia; (L.S.); (J.S.); (A.M.); (D.C.)
| |
Collapse
|
9
|
Sharma M, Tisarum R, Kohli RK, Batish DR, Cha-Um S, Singh HP. Inroads into saline-alkaline stress response in plants: unravelling morphological, physiological, biochemical, and molecular mechanisms. PLANTA 2024; 259:130. [PMID: 38647733 DOI: 10.1007/s00425-024-04368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
MAIN CONCLUSION This article discusses the complex network of ion transporters, genes, microRNAs, and transcription factors that regulate crop tolerance to saline-alkaline stress. The framework aids scientists produce stress-tolerant crops for smart agriculture. Salinity and alkalinity are frequently coexisting abiotic limitations that have emerged as archetypal mediators of low yield in many semi-arid and arid regions throughout the world. Saline-alkaline stress, which occurs in an environment with high concentrations of salts and a high pH, negatively impacts plant metabolism to a greater extent than either stress alone. Of late, saline stress has been the focus of the majority of investigations, and saline-alkaline mixed studies are largely lacking. Therefore, a thorough understanding and integration of how plants and crops rewire metabolic pathways to repair damage caused by saline-alkaline stress is of particular interest. This review discusses the multitude of resistance mechanisms that plants develop to cope with saline-alkaline stress, including morphological and physiological adaptations as well as molecular regulation. We examine the role of various ion transporters, transcription factors (TFs), differentially expressed genes (DEGs), microRNAs (miRNAs), or quantitative trait loci (QTLs) activated under saline-alkaline stress in achieving opportunistic modes of growth, development, and survival. The review provides a background for understanding the transport of micronutrients, specifically iron (Fe), in conditions of iron deficiency produced by high pH. Additionally, it discusses the role of calcium in enhancing stress tolerance. The review highlights that to encourage biomolecular architects to reconsider molecular responses as auxiliary for developing tolerant crops and raising crop production, it is essential to (a) close the major gaps in our understanding of saline-alkaline resistance genes, (b) identify and take into account crop-specific responses, and (c) target stress-tolerant genes to specific crops.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Department of Environmental Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Ravinder Kumar Kohli
- Department of Botany, Panjab University, Chandigarh, 160014, India
- Amity University, Mohali Campus, Sector 82A, Mohali, 140306, Punjab, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
10
|
Shafiq H, Shani MY, Ashraf MY, De Mastro F, Cocozza C, Abbas S, Ali N, Zaib-un-Nisa, Tahir A, Iqbal M, Khan Z, Gul N, Brunetti G. Copper Oxide Nanoparticles Induced Growth and Physio-Biochemical Changes in Maize ( Zea mays L.) in Saline Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:1080. [PMID: 38674489 PMCID: PMC11054864 DOI: 10.3390/plants13081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Research on nanoparticles (NPs) is gaining great attention in modulating abiotic stress tolerance and improving crop productivity. Therefore, this investigation was carried out to evaluate the effects of copper oxide nanoparticles (CuO-NPs) on growth and biochemical characteristics in two maize hybrids (YH-5427 and FH-1046) grown under normal conditions or subjected to saline stress. A pot-culture experiment was carried out in the Botanical Research Area of "the University of Lahore", Lahore, Pakistan, in a completely randomized design. At two phenological stages, both maize hybrids were irrigated with the same amount of distilled water or NaCl solution (EC = 5 dS m-1) and subjected or not to foliar treatment with a suspension of CuO-NPs. The salt stress significantly reduced the photosynthetic parameters (photosynthetic rate, transpiration, stomatal conductance), while the sodium content in the shoot and root increased. The foliar spray with CuO-NPs improved the growth and photosynthetic attributes, along with the N, P, K, Ca, and Mg content in the roots and shoots. However, the maize hybrid YH-5427 responded better than the other hybrid to the saline stress when sprayed with CuO-NPs. Overall, the findings of the current investigation demonstrated that CuO-NPs can help to reduce the adverse effects of salinity stress on maize plants by improving growth and physio-biochemical attributes.
Collapse
Affiliation(s)
- Hina Shafiq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan; (H.S.); (N.A.); (Z.-u.-N.)
| | - Muhammad Yousaf Shani
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nuclear Institute for Agriculture and Biology College (NIAB-C), Islamabad 45650, Pakistan;
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Muhammad Yasin Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan; (H.S.); (N.A.); (Z.-u.-N.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nuclear Institute for Agriculture and Biology College (NIAB-C), Islamabad 45650, Pakistan;
| | - Francesco De Mastro
- Department of Soil, Plant, and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (C.C.); (G.B.)
| | - Claudio Cocozza
- Department of Soil, Plant, and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (C.C.); (G.B.)
| | - Shahid Abbas
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan; (S.A.); (M.I.)
| | - Naila Ali
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan; (H.S.); (N.A.); (Z.-u.-N.)
| | - Zaib-un-Nisa
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan; (H.S.); (N.A.); (Z.-u.-N.)
| | - Aqsa Tahir
- Department of Agricultural Engineering, National University of Sciences and Technology, Islamabad 45650, Pakistan;
| | - Muhammad Iqbal
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan; (S.A.); (M.I.)
| | - Zafran Khan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (Z.K.); (N.G.)
| | - Nimra Gul
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (Z.K.); (N.G.)
| | - Gennaro Brunetti
- Department of Soil, Plant, and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (C.C.); (G.B.)
| |
Collapse
|
11
|
Homayouni H, Razi H, Izadi M, Alemzadeh A, Kazemeini SA, Niazi A, Vicente O. Temporal Changes in Biochemical Responses to Salt Stress in Three Salicornia Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:979. [PMID: 38611508 PMCID: PMC11013812 DOI: 10.3390/plants13070979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Halophytes adapt to salinity using different biochemical response mechanisms. Temporal measurements of biochemical parameters over a period of exposure to salinity may clarify the patterns and kinetics of stress responses in halophytes. This study aimed to evaluate short-term temporal changes in shoot biomass and several biochemical variables, including the contents of photosynthetic pigments, ions (Na+, K+, Ca2+, and Mg2+), osmolytes (proline and glycine betaine), oxidative stress markers (H2O2 and malondialdehyde), and antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) activities of three halophytic Salicornia species (S. persica, S. europaea, and S. bigelovii) in response to non-saline, moderate (300 mM NaCl), and high (500 mM NaCl) salinity treatments at three sampling times. Salicornia plants showed maximum shoot biomass under moderate salinity conditions. The results indicated that high Na+ accumulation in the shoots, coupled with the relative retention of K+ and Ca2+ under salt stress conditions, contributed significantly to ionic and osmotic balance and salinity tolerance in the tested Salicornia species. Glycine betaine accumulation, both constitutive and salt-induced, also seems to play a crucial role in osmotic adjustment in Salicornia plants subjected to salinity treatments. Salicornia species possess an efficient antioxidant enzyme system that largely relies on the ascorbate peroxidase and peroxidase activities to partly counteract salt-induced oxidative stress. The results also revealed that S. persica exhibited higher salinity tolerance than S. europaea and S. bigelovii, as shown by better plant growth under moderate and high salinity. This higher tolerance was associated with higher peroxidase activities and increased glycine betaine and proline accumulation in S. persica. Taking all the data together, this study allowed the identification of the biochemical mechanisms contributing significantly to salinity tolerance of Salicornia through the maintenance of ion and osmotic homeostasis and protection against oxidative stress.
Collapse
Affiliation(s)
- Hengameh Homayouni
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran; (H.H.); (M.I.); (A.A.); (S.A.K.)
| | - Hooman Razi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran; (H.H.); (M.I.); (A.A.); (S.A.K.)
| | - Mahmoud Izadi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran; (H.H.); (M.I.); (A.A.); (S.A.K.)
| | - Abbas Alemzadeh
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran; (H.H.); (M.I.); (A.A.); (S.A.K.)
| | - Seyed Abdolreza Kazemeini
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran; (H.H.); (M.I.); (A.A.); (S.A.K.)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz 71468-64685, Iran;
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
12
|
Kulkarni J, Sahoo SA, Herzyk P, Barvkar VT, Kumar SA, Ravichandran J, Samal A, Amtmann A, Borde M, Suprasanna P, Srivastava AK. Early-responsive molecular signatures associated with halophytic adaptation in Sesuvium portulacastrum (L.). PLANT, CELL & ENVIRONMENT 2024; 47:961-975. [PMID: 38044749 DOI: 10.1111/pce.14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/22/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023]
Abstract
Sesuvium portulacastrum (L.) is a halophyte, adapted to grow naturally under saline environments. The ability to use Na and K interchangeably indicated its facultative halophyte nature. No significant growth reduction occurs in seedlings up to 250 mM NaCl, except for curling of the youngest leaf. Within 8 h of salt treatment, seedlings accumulate proline, glycine betaine and other amino acids in both root and shoot. Despite a continued increase of tissue Na content, the number of differentially expressed genes (DEGs) decreases between 8 and 24 h of salt exposure, indicating transcriptional restoration after the initial osmotic challenge. At 8 h, upregulated genes mainly encode transporters and transcription factors, while genes in growth-related pathways such as photosynthesis and ribosome-associated biogenesis are suppressed. Overexpression of SpRAB18 (an ABA-responsive dehydrin), one of the most strongly induced DEGs, in soybean was found to increase biomass in control conditions and the growth benefit was maintained when plants were grown in 100 mM NaCl, indicating conservation of function in halophyte and glycophyte. An open-access transcriptome database "SesuviumKB" (https://cb.imsc.res.in/sesuviumkb/) was developed to involve the scientific community in wide-scale functional studies of S. portulacastrum genes, that could pave the way to engineer salt tolerance in crops.
Collapse
Affiliation(s)
- Jayant Kulkarni
- Department of Botany, Savitribai Phule Pune University, Pune, India
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sripati A Sahoo
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Pawel Herzyk
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Sanjukta A Kumar
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Janani Ravichandran
- The Institute of Mathematical Sciences (IMSc), Chennai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Anna Amtmann
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mahesh Borde
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
13
|
Kalleku JN, Ihsan S, Al-Azzawi TNI, Khan M, Hussain A, Chebitok F, Das AK, Moon YS, Mun BG, Lee IJ, Ali S, Yun BW. Halotolerant Pseudomonas koreensis S4T10 mitigate salt and drought stress in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2024; 176:e14258. [PMID: 38522952 DOI: 10.1111/ppl.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 03/26/2024]
Abstract
Salt and drought are documented among the most detrimental and persistent abiotic stresses for crop production. Here, we investigated the impact of Pseudomonas koreensis strain S4T10 on plant performance under salt and drought stress. Arabidopsis thaliana Col-0 wild type and atnced3 mutant plants were inoculated with P. koreensis or tap water and exposed to NaCl (100 mM) for five days and drought stress by withholding water for seven days. P. koreensis significantly enhanced plant biomass and photosynthetic pigments under salt and drought stress conditions. Moreover, P. koreensis activated the antioxidant defence by modulating glutathione (GSH), superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activities to scavenge the reactive oxygen species produced due to the stress. In addition, the application of P. koreensis upregulated the expression of genes associated with antioxidant responses, such as AtCAT1, AtCAT3, and AtSOD. Similarly, genes linked to salt stress, such as AtSOS1, AtSOS2, AtSOS3, AtNHX1, and AtHKT1, were also upregulated, affirming the positive role of P. koreensis S4T10 in streamlining the cellular influx and efflux transport systems during salt stress. Likewise, the PGPB inoculation was observed to regulate the expression of drought-responsive genes AtDREB2A, AtDREB2B, and ABA-responsive genes AtAO3, AtABA3 indicating that S4T10 enhanced drought tolerance via modulation of the ABA pathway. The results of this study affirm that P. koreensis S4T10 could be further developed as a biofertilizer to mitigate salt and drought stress at the same time.
Collapse
Affiliation(s)
- Justine Nathanael Kalleku
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
| | - Samsoor Ihsan
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
| | - Tiba Nazar Ibrahim Al-Azzawi
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Murtaza Khan
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Felistus Chebitok
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Ashim Kumar Das
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| | - Byung-Wook Yun
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| |
Collapse
|
14
|
Koźmińska A, Kamińska I, Hanus-Fajerska E. Sulfur-Oxidizing Bacteria Alleviate Salt and Cadmium Stress in Halophyte Tripolium pannonicum (Jacq.) Dobrocz. Int J Mol Sci 2024; 25:2455. [PMID: 38473702 DOI: 10.3390/ijms25052455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to investigate how introducing halophilic sulfur-oxidizing bacteria (SOB) Halothiobacillus halophilus to the growth substrate affects the physiological and biochemical responses of the halophyte Tripolium pannonicum (also known as sea aster or seashore aster) under salt and cadmium stress conditions. This study assessed the plant's response to these stressors and bacterial inoculation by analyzing various factors including the accumulation of elements such as sodium (Na), chloride (Cl), cadmium (Cd) and sulfur (S); growth parameters; levels of photosynthetic pigments, proline and phenolic compounds; the formation of malondialdehyde (MDA); and the plant's potential to scavenge 2,2-Diphenyl-1-picrylhydrazyl (DPPH). The results revealed that bacterial inoculation was effective in mitigating the deleterious effect of cadmium stress on some growth criteria. For instance, stem length was 2-hold higher, the growth tolerance index was 3-fold higher and there was a 20% increase in the content of photosynthetic pigments compared to non-inoculated plants. Furthermore, the SOB contributed to enhancing cadmium tolerance in Tripolium pannonicum by increasing the availability of sulfur in the plant's leaves, which led to the maintenance of an appropriate, about 2-fold-higher level of phenolic compounds (phenylpropanoids and flavonols), as well as chloride ions. The level of MDA decreased after bacterial application in all experimental variants except when both salt and cadmium stress were present. These findings provide novel insights into how halophytes respond to abiotic stress following inoculation of the growth medium with sulfur-oxidizing bacteria. The data suggest that inoculating the substrate with SOB has a beneficial effect on T. pannonicum's tolerance to cadmium stress.
Collapse
Affiliation(s)
- Aleksandra Koźmińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| | - Iwona Kamińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| | - Ewa Hanus-Fajerska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| |
Collapse
|
15
|
Gao G, Yan L, Tong K, Yu H, Lu M, Wang L, Niu Y. The potential and prospects of modified biochar for comprehensive management of salt-affected soils and plants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169618. [PMID: 38157902 DOI: 10.1016/j.scitotenv.2023.169618] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Soil salinization has become a global problem that threatens farmland health and restricts crop production. Salt-affected soils seriously restrict the development of agricultural, mainly because of sodium ion (Na+) toxicity, nutrient deficiency, and structural changes in the soil. Biochar is a carbon (C)-based substance produced by heating typical biomass waste at high temperatures in anaerobic circumstances. It has high cation exchange capacity (CEC), adsorption capacity, and C content, which is often used as a soil amendment. Biochar generally reduces the concentration of Na+ in soil colloids through its strong adsorption, or uses the calcium (Ca) or magnesium (Mg) rich on its surface to exchange sodium ions (Ex-Na) from soil colloids through cation exchange to accelerate salt leaching during irrigation. Nowadays, biochar is widely used for acidic soils improvement due to its alkaline properties. Although the fact that biochar has gained increasing attention for its significant role in saline alkali soil remediation, there is currently a lack of systematic research on biochar improvers and their potential mechanisms for identifying physical, chemical, and biological indicators of soil eco-environment assessment and plant growth conditions affected by salt stress. This paper reviews the preparation, modification, and activation of biochar, the effects of biochar and its combination with beneficial salt-tolerant strains on salt-affected soils and plant growth. Finally, the limitations, benefits, and future needs of biochar-based soil health assessment technology in salt-affected soils and plant were discussed. This article elaborates on the future opportunities and challenges of biochar in the treatment of saline land, and a green method was provided for the integrate control to salt-affected soils.
Collapse
Affiliation(s)
- Guang Gao
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Kaiqing Tong
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Hualong Yu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Mu Lu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lu Wang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; School of Tourism and Geography Science, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
16
|
Ma P, Li J, Sun G, Zhu J. Comparative transcriptome analysis reveals the adaptive mechanisms of halophyte Suaeda dendroides encountering high saline environment. FRONTIERS IN PLANT SCIENCE 2024; 15:1283912. [PMID: 38419781 PMCID: PMC10899697 DOI: 10.3389/fpls.2024.1283912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Suaeda dendroides, a succulent euhalophyte of the Chenopodiaceae family, intermittently spread around northern Xinjiang, China, has the ability to grow and develop in saline and alkali environments. The objective of this study was therefore to investigate the underlying molecular mechanisms of S. dendroides response to high salt conditions. 27 sequencing libraries prepared from low salt (200 mM NaCl) and high salt (800 mM NaCl) treated plants at 5 different stages were sequenced using Illumina Hiseq 2000. A total of 133,107 unigenes were obtained, of which 4,758 were DEGs. The number of DEGs in the high salt group (3,189) was more than the low salt treatment group (733) compared with the control. GO and KEGG analysis of the DEGs at different time points of the high salt treatment group showed that the genes related to cell wall biosynthesis and modification, plant hormone signal transduction, ion homeostasis, organic osmolyte accumulation, and reactive oxygen species (ROS) detoxification were significantly expressed, which indicated that these could be the main mechanisms of S. dendroides acclimate to high salt stress. The study provides a new perspective for understanding the molecular mechanisms of halophytes adapting to high salinity. It also provides a basis for future investigations of key salt-responsive genes in S. dendroides.
Collapse
Affiliation(s)
- Panpan Ma
- College of Life Sciences, Shihezi University, Shihezi, China
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jilian Li
- Key Laboratory of Cotton Biology and Genetic Breeding in Northwest Inland Region of the Ministry of Agriculture (Xinjiang), Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
17
|
Mu Y, Shi L, Tian H, Tian H, Zhang J, Zhao F, Zhang Q, Zhang S, Geng G. Characterization and transformation of TtMYB1 transcription factor from Tritipyrum to improve salt tolerance in wheat. BMC Genomics 2024; 25:163. [PMID: 38336658 PMCID: PMC10854188 DOI: 10.1186/s12864-024-10051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Common wheat (Triticum aestivum L.) is a worldwide cereal crop, which is an integral part of the diets of many countries. In addition, the MYB gene of wheat plays a role in the response to salt stress. RESULTS "Y1805" is a Tritipyrum variety that is relatively tolerant to salt. We used transcriptome analysis to show that the "Y1805" MYB gene was both highly expressed and sensitive to salt stress. Compared with control roots, the level of MYB expression during salt stress was higher, which rapidly decreased to control levels during the recovery process. MYB gene relative expression showed the highest levels in "Y1805" roots during salt stress, with the stems and then leaves being the next highest stressed tissues. The novel MYB gene (TtMYB1) was successfully cloned from "Y1805". It showed a coding sequence length of 783 bp with 95.79% homology with Tel2E01G633100 from Thinopyrum elongatum. TtMYB1 and MYB from Th. elongatum were clustered in the same branch using phylogenetic analysis, which indicated high similarities. The TtMYB1 gene is located in the nucleus. The coleoptile method was employed when a TtMYB1 overexpression vector was used during transformation into "1718" (common wheat). Under high salt stress, TtMYB1 leaves of overexpression lines had decreased wilting, when compared with wild-type (WT) plants. During normal conditions, salt stress, and recovery, the lengths of the roots and the heights of seedlings from the overexpression lines were found to be significantly greater than roots and seedlings of WT plants. In addition, during high salt stress, the overexpression lines showed that proline and soluble sugar levels were higher than that of WT plants, but with lower malondialdehyde levels. Forty-three proteins that interacted with TtMYB1 were identified using the yeast two-hybrid assay. Protein-protein interaction analyses indicated that most were SANT domain-containing and Wd repeat region domain-containing proteins. Among these proteins, ribosomal proteins were the main node. Abiotic stress-related terms (such as "carbonate dehydratase activity", "protein targeting peroxisomes", and "glutathione peroxidase activity") were enriched in GO analysis. In KEGG analysis, "carbohydrate metabolism", "environmental information processing", "genetic information processing", "signaling and cell precursors", and "energy metabolism" pathways were enriched. CONCLUSION The TtMYB1 gene might enhance salt tolerance by increasing proline and soluble sugar content and antioxidase activity in transgenic wheat. It therefore has the potential to enhance high salt tolerance in plants.
Collapse
Affiliation(s)
- Yuanhang Mu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Luxi Shi
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Huan Tian
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Huaizhi Tian
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Zunyi Acadamy of Agricultural Sciences, Zunyi, Guizhou, China
| | - Jv Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Fusheng Zhao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Qingqin Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Suqin Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
- Guizhou Subcenter of National Wheat Improvement Center, Guiyang, Guizhou, China.
| | - Guangdong Geng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
18
|
Mo Q, Liu Y, Wei H, Jiang L, Wu E, Lin L, Yang Q, Yu X, Yan L, Li Y. Salt Tolerance in Machilus faberi: Elucidating Growth and Physiological Adaptations to Saline Environments. BIOLOGY 2024; 13:75. [PMID: 38392294 PMCID: PMC10886294 DOI: 10.3390/biology13020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Adversity stress is the main environmental factor limiting plant growth and development, including salt and other stress factors. This study delves into the adaptability and salt tolerance mechanisms of Machilus faberi Hemsl, a species with potential for cultivation in salinized areas. We subjected the plants to various salt concentrations to observe their growth responses and to assess key physiological and biochemical indicators. The results revealed that under high salt concentrations (500 and 700 mmol-1/L), symptoms such as leaf yellowing, wilting, and eventual death were observed. Notably, plant height and shoot growth ceased on the 14th day of exposure. Chlorophyll content (a, b, total a + b, and the a/b ratio) initially increased but subsequently decreased under varying levels of salt stress. Similarly, the net photosynthetic rate, stomatal conductance, leaf water content, and root activity significantly declined under these conditions. Moreover, we observed an increase in malondialdehyde levels and relative conductivity, indicative of cellular damage and stress. The activity of superoxide dismutase and ascorbate peroxidase initially increased and then diminished with prolonged stress, whereas peroxidase activity consistently increased. Levels of proline and soluble protein exhibited an upward trend, contrasting with the fluctuating pattern of soluble sugars, which decreased initially but increased subsequently. In conclusion, M. faberi exhibits a degree of tolerance to salt stress, albeit with growth limitations when concentrations exceed 300 mmol-1/L. These results shed light on the plant's mechanisms of responding to salt stress and provide a theoretical foundation for its cultivation and application in salt-affected regions.
Collapse
Affiliation(s)
- Qiong Mo
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Botanical Garden, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Yang Liu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Haohui Wei
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | | | - En Wu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Ling Lin
- School of Economics, Hunan Agricultural University, Changsha 410128, China
| | - Qihong Yang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Xiaoying Yu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
| | - Lihong Yan
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Botanical Garden, Changsha 410128, China
| | - Yanlin Li
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Mid-Subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, Changsha 410005, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
19
|
Hao C, Du P, Ren J, Hu L, Zhang Z. Halophyte Elymus dahuricus colonization regulates microbial community succession by mediating saline-alkaline and biogenic organic matter in bauxite residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167140. [PMID: 37722424 DOI: 10.1016/j.scitotenv.2023.167140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Alkalinity regulation and nutrient accumulation are critical factors in the construction of plant and microbial communities and soil formation in bauxite residue, and are extremely important for sustainable vegetation restoration in bauxite residue disposal areas. However, the establishment and succession of microbial communities driven by plant colonization-mediated improvements in the physicochemical properties of bauxite residues remain poorly understood. Thus, in this study, we determined the saline-alkali properties and dissolved organic matter (DOM) components under plant growth conditions and explored the microbial community diversity and structure using Illumina high-throughput sequencing. The planting of Elymus dahuricus (E. dahuricus) in the bauxite residue resulted in a significant decrease in total alkalinity (TA), exchangeable Na, and electrical conductivity (EC) as well as the release of more tryptophan-like protein compounds and low-molecular-weight humic substances associated with biological activities into the bauxite residue substrate. Taxonomical analysis revealed an initial-stage bacterial and fungal community dominated by alkaline-tolerant Actinobacteriota, Firmicutes, and Ascomycota, and an increase in the relative abundances of the phyla Bacteroidota, Cyanobacteria, Chloroflexi, and Gemmatimonadota. The biological activities of phylum Actinobacteriota, Bacteroidota, and Gemmatimonadota were significantly associated with protein-like and UVA-like humic substances. As eutrophic bacteria, Proteobacteria participate in the transformation of humic substances and can not only utilize small molecules of organic matter and convert them into humic substances but also promote the gradual conversion of humic acids into simple molecular compounds. Our results suggest that plant roots secrete organic matter and microbial metabolites as the main biogenic organic matter that participates in the establishment and succession of the microbial community in bauxite residues. Root length affects bacterial and fungal diversity by mediating the production of protein-like substances.
Collapse
Affiliation(s)
- Chongkai Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ping Du
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Jie Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Lijuan Hu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zongpeng Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
20
|
Busoms S, Fischer S, Yant L. Chasing the mechanisms of ecologically adaptive salinity tolerance. PLANT COMMUNICATIONS 2023; 4:100571. [PMID: 36883005 PMCID: PMC10721451 DOI: 10.1016/j.xplc.2023.100571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/12/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Plants adapted to challenging environments offer fascinating models of evolutionary change. Importantly, they also give information to meet our pressing need to develop resilient, low-input crops. With mounting environmental fluctuation-including temperature, rainfall, and soil salinity and degradation-this is more urgent than ever. Happily, solutions are hiding in plain sight: the adaptive mechanisms from natural adapted populations, once understood, can then be leveraged. Much recent insight has come from the study of salinity, a widespread factor limiting productivity, with estimates of 20% of all cultivated lands affected. This is an expanding problem, given increasing climate volatility, rising sea levels, and poor irrigation practices. We therefore highlight recent benchmark studies of ecologically adaptive salt tolerance in plants, assessing macro- and microevolutionary mechanisms, and the recently recognized role of ploidy and the microbiome on salinity adaptation. We synthesize insight specifically on naturally evolved adaptive salt-tolerance mechanisms, as these works move substantially beyond traditional mutant or knockout studies, to show how evolution can nimbly "tweak" plant physiology to optimize function. We then point to future directions to advance this field that intersect evolutionary biology, abiotic-stress tolerance, breeding, and molecular plant physiology.
Collapse
Affiliation(s)
- Silvia Busoms
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Sina Fischer
- Future Food Beacon of Excellence, University of Nottingham, Nottingham NG7 2RD, UK; School of Biosciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Levi Yant
- Future Food Beacon of Excellence, University of Nottingham, Nottingham NG7 2RD, UK; School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
21
|
Tong R, Ma C, Lou C, Yuan W, Zhu N, Wang GG, Wu T. Leaf nitrogen and phosphorus stoichiometry of the halophytes across China. FRONTIERS IN PLANT SCIENCE 2023; 14:1276699. [PMID: 37860242 PMCID: PMC10582939 DOI: 10.3389/fpls.2023.1276699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
Halophytes play a crucial role in the ecological restoration of saline and alkaline land and hold promising benefits to food security in China. Although a variety of aspects of halophytes have been extensively addressed, there is still a lack of overall understanding of the leaf nitrogen (N) and phosphorus (P) stoichiometric characteristics, especially at a national scale. We compiled a national dataset of 311 observations from 113 sampling sites across China to explore the changing trends and influencing factors on leaf N and P concentrations, and N:P ratio of halophytes. The results showed that leaf N concentration decreased significantly with increasing latitude (LAT), which was mainly driven by the mean annual temperature (MAT) and mean annual precipitation (MAP). The leaf P concentration increased remarkably with increasing longitude (LON), which was induced by the variation in soil total P (TP) content. The leaf N:P ratio increased as LAT increased and LON decreased, which was potentially regulated by the MAT, MAP, and soil TP content. The scaling exponents of the N-P relationship differed significantly among halophyte types and were 0.40, 0.87, and 1.39 for euhalophyte, pseudohalophyte, and recretohalophyte, respectively. The leaf N concentration exhibited significant differences among ecosystem types and halophyte types, whereas the leaf P concentration and N:P ratio remained relatively stable. In summary, the leaf N concentration and N-P scaling exponent might be the classification criteria for halophyte types from the perspective of plant nutrient resource allocation. Moreover, this study characterized the spatial distribution and allocation strategy of leaf N and P stoichiometry in halophytes by data integration analysis, providing the basic information for nutrient management in the processes of the future domestication and introduction of halophytes.
Collapse
Affiliation(s)
- Ran Tong
- East China Coastal Forest Ecosystem Long-term Research Station, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Cong Ma
- East China Coastal Forest Ecosystem Long-term Research Station, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Chenyang Lou
- East China Coastal Forest Ecosystem Long-term Research Station, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Wenwen Yuan
- East China Coastal Forest Ecosystem Long-term Research Station, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Nianfu Zhu
- East China Coastal Forest Ecosystem Long-term Research Station, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - G. Geoff Wang
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, United States
| | - Tonggui Wu
- East China Coastal Forest Ecosystem Long-term Research Station, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
22
|
Vaziriyeganeh M, Khan S, Zwiazek JJ. Analysis of aquaporins in northern grasses reveal functional importance of Puccinellia nuttalliana PIP2;2 in salt tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:2159-2173. [PMID: 37051679 DOI: 10.1111/pce.14589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 06/08/2023]
Abstract
To better understand the roles of aquaporins in salt tolerance, we cloned PIP2;1, PIP2;2, PIP2;3, PIP1;1, PIP1;3, and TIP1;1 aquaporins from three northern grasses varying is salt tolerance including the halophytic grass Puccinellia nuttalliana, moderately salt tolerant Poa juncifolia, and relatively salt sensitive Poa pratensis. We analysed aquaporin expression in roots by exposing the plants to 0 and 150 mM for 6 days in hydroponic culture. NaCl treatment upregulated several PIP transcripts in P. nuttalliana while decreasing PnuTIP1;1. The PnuPIP2;2 transcripts increased by about six-fold in P. nuttalliana, two-fold in Poa juncifolia, and did not change in Poa pratensis. The NaCl treatment enhanced the rate of water transport in yeast expressing PnuPIP2;2 by 56% compared with control. PnuPIP2,2 expression also resulted in a higher Na+ uptake in yeast cells compared with an empty vector suggesting that PnuPIP2;2 may have both water and ion transporting functions. Structural analysis revealed that the transport properties of PnuPIP2;2 could be affected by its unique pore characteristics, which include a combination of hourglass, cylindrical, and increasing diameter conical entrance shape with pore hydropathy of -0.22.
Collapse
Affiliation(s)
| | - Shanjida Khan
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Yang L, Wang X, Zhao F, Zhang X, Li W, Huang J, Pei X, Ren X, Liu Y, He K, Zhang F, Ma X, Yang D. Roles of S-Adenosylmethionine and Its Derivatives in Salt Tolerance of Cotton. Int J Mol Sci 2023; 24:ijms24119517. [PMID: 37298464 DOI: 10.3390/ijms24119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Salinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses. This review focused on the biosynthesis and signal transduction pathways of ET and PAs. The current progress of ET and PAs in regulating plant growth and development under salt stress has been summarized. Moreover, we verified the function of a cotton SAM transporter and suggested that it can regulate salt stress response in cotton. At last, an improved regulatory pathway of ET and PAs under salt stress in cotton is proposed for the breeding of salt-tolerant varieties.
Collapse
Affiliation(s)
- Li Yang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Fuyong Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junsen Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
24
|
Mann A, Lata C, Kumar N, Kumar A, Kumar A, Sheoran P. Halophytes as new model plant species for salt tolerance strategies. FRONTIERS IN PLANT SCIENCE 2023; 14:1137211. [PMID: 37251767 PMCID: PMC10211249 DOI: 10.3389/fpls.2023.1137211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Soil salinity is becoming a growing issue nowadays, severely affecting the world's most productive agricultural landscapes. With intersecting and competitive challenges of shrinking agricultural lands and increasing demand for food, there is an emerging need to build resilience for adaptation to anticipated climate change and land degradation. This necessitates the deep decoding of a gene pool of crop plant wild relatives which can be accomplished through salt-tolerant species, such as halophytes, in order to reveal the underlying regulatory mechanisms. Halophytes are generally defined as plants able to survive and complete their life cycle in highly saline environments of at least 200-500 mM of salt solution. The primary criterion for identifying salt-tolerant grasses (STGs) includes the presence of salt glands on the leaf surface and the Na+ exclusion mechanism since the interaction and replacement of Na+ and K+ greatly determines the survivability of STGs in saline environments. During the last decades or so, various salt-tolerant grasses/halophytes have been explored for the mining of salt-tolerant genes and testing their efficacy to improve the limit of salt tolerance in crop plants. Still, the utility of halophytes is limited due to the non-availability of any model halophytic plant system as well as the lack of complete genomic information. To date, although Arabidopsis (Arabidopsis thaliana) and salt cress (Thellungiella halophila) are being used as model plants in most salt tolerance studies, these plants are short-lived and can tolerate salinity for a shorter duration only. Thus, identifying the unique genes for salt tolerance pathways in halophytes and their introgression in a related cereal genome for better tolerance to salinity is the need of the hour. Modern technologies including RNA sequencing and genome-wide mapping along with advanced bioinformatics programs have advanced the decoding of the whole genetic information of plants and the development of probable algorithms to correlate stress tolerance limit and yield potential. Hence, this article has been compiled to explore the naturally occurring halophytes as potential model plant species for abiotic stress tolerance and to further breed crop plants to enhance salt tolerance through genomic and molecular tools.
Collapse
Affiliation(s)
- Anita Mann
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Charu Lata
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pardesh, India
| | - Naresh Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- Department of Biochemistry, Eternal University, Baru Sahib, Himachal Pardesh, Ludhiana, India
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Parvender Sheoran
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Agriculture Technology Application Research Center, Ludhiana, India
| |
Collapse
|
25
|
Honfi P, Eisa EA, Tilly-Mándy A, Kohut I, Ecseri K, Mosonyi ID. Salt Tolerance of Limonium gmelinii subsp. hungaricum as a Potential Ornamental Plant for Secondary Salinized Soils. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091807. [PMID: 37176868 PMCID: PMC10181086 DOI: 10.3390/plants12091807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Secondary salinization caused by climate change is a growing global problem. Searching for plants that can survive in areas with high salt content and even have decorative value was the focus of our research. Thirty plants of Limonium gmelinii subsp. hungaricum were planted in clear river sand; another thirty plants were planted in Pindstrup, a growing substrate enriched with 40% clay. With the latter, we modeled the natural soil. In addition to the control tap-water treatment, plants received 50, 125, 250, 375, and 500 mM NaCl solution irrigation twice a week. The leaf sizes of plants planted in sand decreased proportionally with the increasing NaCl concentration, and their dry matter content increased. In the clay-containing medium, leaf sizes increased, even at a concentration of 375 mM, although the dry matter content increased only at high concentrations. Carotene content in both media became higher, due to the higher NaCl concentrations, while proline content in the plants grown in sandy media increased, even with the 125 mM concentration. With our present experiment we proved the salt tolerance of the taxon, and even the soil's great importance in supporting the plant's salt tolerance.
Collapse
Affiliation(s)
- Péter Honfi
- Department of Floriculture and Dendrology, The Hungarian University of Agriculture and Life Science (MATE), 1118 Budapest, Hungary
| | - Eman Abdelhakim Eisa
- Department of Floriculture and Dendrology, The Hungarian University of Agriculture and Life Science (MATE), 1118 Budapest, Hungary
| | - Andrea Tilly-Mándy
- Department of Floriculture and Dendrology, The Hungarian University of Agriculture and Life Science (MATE), 1118 Budapest, Hungary
| | - Ildikó Kohut
- Department of Floriculture and Dendrology, The Hungarian University of Agriculture and Life Science (MATE), 1118 Budapest, Hungary
| | - Károly Ecseri
- Faculty of Horticulture and Rural Development, Department of Horticulture, John von Neumann University of Kecskemét, 6000 Kecskemét, Hungary
| | - István Dániel Mosonyi
- Department of Floriculture and Dendrology, The Hungarian University of Agriculture and Life Science (MATE), 1118 Budapest, Hungary
| |
Collapse
|
26
|
Gheraissa N, Chemsa AE, Cherrada N, Erol E, Elsharkawy ER, Ghemam-Amara D, Zeghoud S, Rebiai A, Messaoudi M, Sawicka B, Atanassova M, Abdel-Kader MS. Biochemical Profile and In Vitro Therapeutic Properties of Two Euhalophytes, Halocnemum strobilaceum Pall. and Suaeda fruticosa (L.) Forske., Grown in the Sabkha Ecosystem in the Algerian Sahara. Molecules 2023; 28:molecules28083580. [PMID: 37110814 PMCID: PMC10141351 DOI: 10.3390/molecules28083580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
This study reports the biochemical profile and in vitro biological activities of the aerial part of two shrubs: Halocnemum strobilaceum and Suaeda fruticosa, a halophytes species native to saline habitats. The biomass was evaluated by determining its physiological properties and approximate composition. Hydro-methanolic extracts from Halocnemum strobilaceum and Suaeda fruticosa have been investigated for the inhibition of bacterial growth, the protection of proteins (albumin) from denaturation, and cytotoxicity to hepatocellular carcinomas (Huh-7 and HepG2). Their antioxidant activity was evaluated by five tests, including one that examined their ability to inhibit hydrogen peroxide (H2O2)-induced hemolysis. The profile of their phenolic compounds was also determined. These two euhalophytes had a high moisture content, high levels of photosynthetic pigments, elevated levels of ash and protein, low oxidative damage indices, MDA (Malondialdehyde) and proline, and low lipids levels. Their content was also characterized by a moderate acidity with good electrical conductivity. They contained abundant levels of phytochemicals and varied phenolic contents. Reverse phase high performance liquid chromatography (RP-HPLC) analysis revealed the presence of caffeic acid, p-coumaric acid, rutin, and quercetin in both plant extracts. On the pharmaceutical level, the two euhalophytes had anti-inflammatory, antibacterial, antioxidant, and cytotoxic properties, and therefore it was recommended to isolate and identify biologically active compounds from these plants and evaluate them in vivo.
Collapse
Affiliation(s)
- Noura Gheraissa
- Laboratory of Biodiversity and Application of Biotechnology in Agriculture, El Oued University, El Oued 39000, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued 39000, Algeria
| | - Ahmed Elkhalifa Chemsa
- Laboratory of Biodiversity and Application of Biotechnology in Agriculture, El Oued University, El Oued 39000, Algeria
- Department of Biology, Faculty of Natural Science and Life, El Oued University, El Oued 39000, Algeria
| | - Nezar Cherrada
- Laboratory of Biodiversity and Application of Biotechnology in Agriculture, El Oued University, El Oued 39000, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El Oued 39000, Algeria
| | - Ebru Erol
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, İstanbul 34093, Türkiye
| | - Eman Ramadan Elsharkawy
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 73213, Saudi Arabia
| | - Djilani Ghemam-Amara
- Department of Biology, Faculty of Natural Science and Life, El Oued University, El Oued 39000, Algeria
- Laboratory of Biology, Environment and Health, El Oued University, El Oued 39000, Algeria
| | - Soumeia Zeghoud
- Chemistry Department, Faculty of Exact Sciences, University of El Oued, El Oued 39000, Algeria
| | - Abdelkrim Rebiai
- Chemistry Department, Faculty of Exact Sciences, University of El Oued, El Oued 39000, Algeria
| | - Mohammed Messaoudi
- Chemistry Department, Faculty of Exact Sciences, University of El Oued, El Oued 39000, Algeria
- Nuclear Research Centre of Birine, Ain Oussera 17200, Algeria
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Science in Lublin, Akademicka 15 Str., 20-950 Lublin, Poland
| | - Maria Atanassova
- Nutritional Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metalurgy, 1734 Sofia, Bulgaria
| | - Maged S Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| |
Collapse
|
27
|
Chen B, Bian X, Tu M, Yu T, Jiang L, Lu Y, Chen X. Moderate Salinity Stress Increases the Seedling Biomass in Oilseed Rape ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1650. [PMID: 37111872 PMCID: PMC10144440 DOI: 10.3390/plants12081650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Oilseed rape (Brassica napus L.), an important oil crop of the world, suffers various abiotic stresses including salinity stress during the growth stage. While most of the previous studies paid attention to the adverse effects of high salinity stress on plant growth and development, as well as their underlying physiological and molecular mechanisms, less attention was paid to the effects of moderate or low salinity stress. In this study, we first tested the effects of different concentrations of NaCl solution on the seedling growth performance of two oilseed rape varieties (CH336, a semi-winter type, and Bruttor, a spring type) in pot cultures. We found that moderate salt concentrations (25 and 50 mmol L-1 NaCl) can stimulate seedling growth by a significant increase (10~20%, compared to controls) in both above- and underground biomasses, as estimated at the early flowering stage. We then performed RNA-seq analyses of shoot apical meristems (SAMs) from six-leaf-aged seedlings under control (CK), low (LS, 25 mmol L-1), and high (HS, 180 mmol L-1) salinity treatments in the two varieties. The GO and KEGG enrichment analyses of differentially expressed genes (DEGs) demonstrated that such a stimulating effect on seedling growth by low salinity stress may be caused by a more efficient capacity for photosynthesis as compensation, accompanied by a reduced energy loss for the biosynthesis of secondary metabolites and redirecting of energy to biomass formation. Our study provides a new perspective on the cultivation of oilseed rape in saline regions and new insights into the molecular mechanisms of salt tolerance in Brassica crops. The candidate genes identified in this study can serve as targets for molecular breeding selection and genetic engineering toward enhancing salt tolerance in B. napus.
Collapse
Affiliation(s)
- Beini Chen
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Xiaobo Bian
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
| | - Mengxin Tu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Tao Yu
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Yunhai Lu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou 310058, China
| | - Xiaoyang Chen
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Zhihe Road 1158, Jinhua 321017, China (T.Y.)
| |
Collapse
|
28
|
Rozentsvet OA, Bogdanova ES, Nurminsky VN, Nesterov VN, Chernyshov MY. Detergent-Resistant Membranes in Chloroplasts and Mitochondria of the Halophyte Salicornia perennans under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1265. [PMID: 36986953 PMCID: PMC10058330 DOI: 10.3390/plants12061265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Halophytes represent important models for studying the key mechanisms of salt tolerance. One approach to the development of new knowledge of salt tolerance is to study the properties of detergent-resistant membranes (DRMs). In this work, the lipid profiles of DRMs of chloroplasts and mitochondria of euhalophyte Salicornia perennans Willd, before and after their exposure to shock concentrations of NaCl, have been investigated. We found that DRMs of chloroplasts are enriched in cerebrosides (CERs) and that sterols (STs) dominate the mass of mitochondrial DRMs. Also, it has been proven that (i) the impact of salinity provokes obvious growth in the content of CERs in DRMs of chloroplasts; (ii) the content of STs in DRMs of chloroplasts does not change under the influence of NaCl; (iii) salinity also causes some elevation in the content of monounsaturated and saturated fatty acids (FAs). Considering the fact that DRMs represent integral parts of both chloroplast and mitochondrial membranes, the authors have come to the conclusion that the cells of euhalophyte S. perennans, under the impact of salinity, presumes the choice (by the cell) of some specific composition of lipids and FAs in the membrane. This may be considered as a specific protection reaction of the plant cell against salinity.
Collapse
Affiliation(s)
- Olga A. Rozentsvet
- Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS, Russian Academy of Sciences, 10, Komzin St., 445003 Togliatti, Russia
| | - Elena S. Bogdanova
- Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS, Russian Academy of Sciences, 10, Komzin St., 445003 Togliatti, Russia
| | - Vadim N. Nurminsky
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov St., 664033 Irkutsk, Russia
| | - Viktor N. Nesterov
- Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS, Russian Academy of Sciences, 10, Komzin St., 445003 Togliatti, Russia
| | - Michael Yu. Chernyshov
- Presidium of Irkutsk Scientific Center, Siberian Branch, Russian Academy of Sciences, 134, Lermontov St., 664033 Irkutsk, Russia
| |
Collapse
|
29
|
Dauphin B, Rellstab C, Wüest RO, Karger DN, Holderegger R, Gugerli F, Manel S. Re-thinking the environment in landscape genomics. Trends Ecol Evol 2023; 38:261-274. [PMID: 36402651 DOI: 10.1016/j.tree.2022.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
Detecting the extrinsic selective pressures shaping genomic variation is critical for a better understanding of adaptation and for forecasting evolutionary responses of natural populations to changing environmental conditions. With increasing availability of geo-referenced environmental data, landscape genomics provides unprecedented insights into how genomic variation and underlying gene functions affect traits potentially under selection. Yet, the robustness of genotype-environment associations used in landscape genomics remains tempered due to various limitations, including the characteristics of environmental data used, sampling designs employed, and statistical frameworks applied. Here, we argue that using complementary or new environmental data sources and well-informed sampling designs may help improve the detection of selective pressures underlying patterns of local adaptation in various organisms and environments.
Collapse
Affiliation(s)
- Benjamin Dauphin
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland.
| | | | - Rafael O Wüest
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Dirk N Karger
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Rolf Holderegger
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland; Institute of Integrative Biology (IBZ), ETH, Zurich, 8092 Zurich, Switzerland
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Stéphanie Manel
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland; CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, 34000 Montpellier, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
30
|
Ramasamy KP, Mahawar L. Coping with salt stress-interaction of halotolerant bacteria in crop plants: A mini review. Front Microbiol 2023; 14:1077561. [PMID: 36819049 PMCID: PMC9932039 DOI: 10.3389/fmicb.2023.1077561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Salinity is one of the major environmental abiotic stress factors that limit the growth and yield of crop plants worldwide. It is crucial to understand the importance of several adaptive mechanisms in plants toward salt stress so as to increase agricultural productivity. Plant resilience toward salinity stress is improved by cohabiting with diverse microorganisms, especially bacteria. In the last few decades, increasing attention of researchers has focused on bacterial communities for promoting plant growth and fitness. The biotechnological applications of salt-tolerant plant growth-promoting rhizobacteria (PGPR) gained widespread interest for their numerous metabolites. This review provides novel insights into the importance of halotolerant (HT) bacteria associated with crop plants in enhancing plant tolerance toward salinity stress. Furthermore, the present review highlights several challenges of using HT-PGPR in the agricultural field and possible solutions to overcome those challenges for sustainable agriculture development in the future.
Collapse
Affiliation(s)
- Kesava Priyan Ramasamy
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden,*Correspondence: Kesava Priyan Ramasamy ✉
| | - Lovely Mahawar
- Department of Plant Physiology, Faculty of Agrobiology and Food resources, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
31
|
Hua YP, Zhang YF, Zhang TY, Chen JF, Song HL, Wu PJ, Yue CP, Huang JY, Feng YN, Zhou T. Low iron ameliorates the salinity-induced growth cessation of seminal roots in wheat seedlings. PLANT, CELL & ENVIRONMENT 2023; 46:567-591. [PMID: 36358019 DOI: 10.1111/pce.14486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Wheat plants are ubiquitously simultaneously exposed to salinity and limited iron availability caused by soil saline-alkalisation. Through this study, we found that both low Fe and NaCl severely inhibited the growth of seminal roots in wheat seedlings; however, sufficient Fe caused greater growth cessation of seminal roots than low Fe under salt stress. Low Fe improved the root meristematic division activity, not altering the mature cell sizes compared with sufficient Fe under salt stress. Foliar Fe spray and split-root experiments showed that low Fe-alleviating the salinity-induced growth cessation of seminal roots was dependent on local low Fe signals in the roots. Ionomics combined with TEM/X-ray few differences in the root Na+ uptake and vacuolar Na+ sequestration between two Fe levels under salt stress. Phytohormone profiling and metabolomics revealed salinity-induced overaccumulation of ACC/ethylene and tryptophan/auxin in the roots under sufficient Fe than under low Fe. Differential gene expression, pharmacological inhibitor addition and the root growth performance of transgenic wheat plants revealed that the rootward auxin efflux and was responsible for the low Fe-mediated amelioration of the salinity-induced growth cessation of seminal roots. Our findings will provide novel insights into the modulation of crop root growth under salt stress.
Collapse
Affiliation(s)
- Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yi-Fan Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Hai-Li Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Wang N, Zhao Z, Zhang X, Liu S, Zhang K, Hu M. Plant growth, salt removal capacity, and forage nutritive value of the annual euhalophyte Suaeda salsa irrigated with saline water. FRONTIERS IN PLANT SCIENCE 2023; 13:1040520. [PMID: 36733586 PMCID: PMC9887187 DOI: 10.3389/fpls.2022.1040520] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Sustainable agricultural development in semiarid and arid regions is severely restricted by soil and water salinization. Cultivation of the representative halophyte Suaeda salsa, which can be irrigated with saline water and cultivated on saline soils, is considered to be a potential solution to the issues of freshwater scarcity, soil salinization, and fodder shortage. However, the salt removal capacity and differences in the forage nutritive value of S. salsa under different saline water treatments remain unknown. Using the methods of field trials and randomized blocks design, we quantified salt accumulation in the aboveground biomass, and the biochemical and nutritive value of field-cultivated S. salsa in arid northwestern China under irrigation with water of different salinities [i.e., freshwater or water containing10, 20, 30, or 40 g/L NaCl). The fresh and dry weights of S. salsa increased, then decreased, with increase in salinity. The salt content of the plant's aboveground biomass increased to a constant range and, thus, the salt extraction of S. salsa was relatively stable under different salinities of irrigation water. Under the experimental conditions, the crude protein content significantly increased to 9.45% dry weight (DW) and then decreased to 6.85% DW, with an increase in salinity (p < 0.05). The neutral detergent fiber (42.93%-50.00% DW) and acid detergent fiber (34.76%-39.70% DW) contents were suitable for forage. The contents of trace elements, such as copper and zinc, were significantly increased after irrigation with saline water (p < 0.05). The forage of S. salsa is of high nutritive value for livestock, and contains low concentrations of anti-nutrients. Therefore, S. salsa can be considered for cultivation in saline soils irrigated with saline water. In addition, it provides a viable additional source of fodder in arid regions, where the availability of freshwater and non-saline arable land is limited.
Collapse
Affiliation(s)
- Ning Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Zhenyong Zhao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xinyi Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Sihai Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Ke Zhang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Mingfang Hu
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
33
|
Prokopoviča V, Ievinsh G. Ranunculus sceleratus as a Model Species to Decrypt the Role of Ethylene in Plant Adaptation to Salinity. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020370. [PMID: 36679083 PMCID: PMC9862674 DOI: 10.3390/plants12020370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/12/2023]
Abstract
The aim of the present study was to develop an experimental system for an exploration of ethylene-dependent responses using intact growing Ranunculus sceleratus plants and to approbate the system for assessing the role of ethylene in salinity tolerance and ion accumulation. Plants were cultivated in sealed plastic containers in a modified gaseous atmosphere by introducing ethylene or 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action. High humidity inside the containers induced a fast elongation of the leaf petioles of R. sceleratus. The effect was ethylene-dependent, as 1-MCP completely blocked it, but exogenous ethylene further promoted petiole elongation. Exogenous ethylene decreased (by 48%) but 1-MCP increased (by 48%) the Na+ accumulation in leaf blades of NaCl-treated plants. The experimental system was further calibrated with ethylene and silica xerogel, and the optimum concentrations were found for inducing leaf petiole elongation (10 μL L-1 ethylene) and preventing leaf petiole elongation (200 g silica xerogel per 24 L), respectively. The second experiment involved a treatment with NaCl in the presence of 1-MCP, ethylene, or 1-MCP + ethylene, both in normal and high air humidity conditions. In high humidity conditions, NaCl inhibited petiole elongation by 25% and ethylene treatment fully reversed this inhibition and stimulated elongation by 12% in comparison to the response of the control plants. Treatment with 1-MCP fully prevented this ethylene effect. In normal humidity conditions, NaCl inhibited petiole elongation by 20%, which was reversed by ethylene without additional elongation stimulation. However, 1-MCP only partially inhibited the ethylene effect on petiole elongation. In high humidity conditions, ethylene inhibited Na+ accumulation in NaCl-treated plants by 14%, but 1-MCP reversed this effect. In conclusion, the stimulation of endogenous ethylene production in R. sceleratus plants at a high air humidity or in flooded conditions reverses the inhibitory effect of salinity on plant growth and concomitantly inhibits the accumulation of Na+ in tissues. R. sceleratus is a highly promising model species for use in studies regarding ethylene-dependent salinity responses and ion accumulation potential involving the manipulation of a gaseous environment.
Collapse
|
34
|
Chen Y, Li H, Zhang S, Du S, Zhang J, Song Z, Jiang J. Analysis of the main antioxidant enzymes in the roots of Tamarix ramosissima under NaCl stress by applying exogenous potassium (K +). FRONTIERS IN PLANT SCIENCE 2023; 14:1114266. [PMID: 37143868 PMCID: PMC10151674 DOI: 10.3389/fpls.2023.1114266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/23/2023] [Indexed: 05/06/2023]
Abstract
Introduction Salinization affects more than 25% of the world's arable land, and Tamarix ramosissima Ledeb (T. ramosissima), the representative of Tamarix plants, is widely grown in salinized soil. In contrast, less is known about the mechanism of potassium's antioxidative enzyme activity in preventing NaCl stress damage to plants. Method This study examined changes in root growth for T. ramosissima at 0h, 48h, and 168h, performed antioxidant enzyme activity assays, transcriptome sequencing, and non-targeted metabolite analysis to understand changes in their roots as well as changes in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Quantitative real-time PCR (qRT-PCR) was used to identify differentially expressed genes (DEGs) and differential metabolites associated with antioxidant enzyme activities. Result As the time increased, the results showed that compared with the 200 Mm NaCl group, the root growth of the 200 mM NaCl + 10 mM KCl group increased, the activities of SOD, POD and CAT increased the most, but the contents of hydrogen peroxide (H2O2) and Malondialdehyde (MDA) increased less. Meanwhile, 58 DEGs related to SOD, POD and CAT activities were changed during the application of exogenous K+ for 48h and 168h in T. ramosissima. Based on association analysis of transcriptomic and metabolomic data, we found coniferyl alcohol, which can act as a substrate to label catalytic POD. It is worth noting that Unigene0013825 and Unigene0014843, as POD-related genes, have positively regulated the downstream of coniferyl alcohol, and they have a significant correlation with coniferyl alcohol. Discussion In summary, 48h and 168h of exogenous K+ applied to the roots of T. ramosissima under NaCl stress can resist NaCl stress by scavenging the reactive oxygen species (ROS) generated by high salt stress by enhancing the mechanism of antioxidant enzyme activity, relieving NaCl toxicity and maintaining growth. This study provides genetic resources and a scientific theoretical basis for further breeding of salt-tolerant Tamarix plants and the molecular mechanism of K+ alleviating NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- Jiangsu Academy of Forestry, Nanjing, China
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- Faculty of science and Department of statistic, University of British Columbia, Vancouver, BC, Canada
| | - Haijia Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Shiyang Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Shanfeng Du
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Jinchi Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- *Correspondence: Jiang Jiang, ; Zhizhong Song,
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jiang Jiang, ; Zhizhong Song,
| |
Collapse
|
35
|
Liu JN, Fang H, Liang Q, Dong Y, Wang C, Yan L, Ma X, Zhou R, Lang X, Gai S, Wang L, Xu S, Yang KQ, Wu D. Genomic analyses provide insights into the evolution and salinity adaptation of halophyte Tamarix chinensis. Gigascience 2022; 12:giad053. [PMID: 37494283 PMCID: PMC10370455 DOI: 10.1093/gigascience/giad053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The woody halophyte Tamarix chinensis is a pioneer tree species in the coastal wetland ecosystem of northern China, exhibiting high resistance to salt stress. However, the genetic information underlying salt tolerance in T. chinensis remains to be seen. Here we present a genomic investigation of T. chinensis to elucidate the underlying mechanism of its high resistance to salinity. RESULTS Using a combination of PacBio and high-throughput chromosome conformation capture data, a chromosome-level T. chinensis genome was assembled with a size of 1.32 Gb and scaffold N50 of 110.03 Mb. Genome evolution analyses revealed that T. chinensis significantly expanded families of HAT and LIMYB genes. Whole-genome and tandem duplications contributed to the expansion of genes associated with the salinity adaptation of T. chinensis. Transcriptome analyses were performed on root and shoot tissues during salt stress and recovery, and several hub genes responding to salt stress were identified. WRKY33/40, MPK3/4, and XBAT31 were critical in responding to salt stress during early exposure, while WRKY40, ZAT10, AHK4, IRX9, and CESA4/8 were involved in responding to salt stress during late stress and recovery. In addition, PER7/27/57/73 encoding class III peroxidase and MCM3/4/5/7 encoding DNA replication licensing factor maintained up/downregulation during salt stress and recovery stages. CONCLUSIONS The results presented here reveal the genetic mechanisms underlying salt adaptation in T. chinensis, thus providing important genomic resources for evolutionary studies on tamarisk and plant salt tolerance genetic improvement.
Collapse
Affiliation(s)
- Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| | - Xinmei Ma
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Xinya Lang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Shasha Gai
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Lichang Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Shengyi Xu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| |
Collapse
|
36
|
Ben Hsouna A, Michalak M, Kukula-Koch W, Ben Saad R, ben Romdhane W, Zeljković SĆ, Mnif W. Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia maritima. Biomolecules 2022; 12:1583. [PMID: 36358933 PMCID: PMC9687265 DOI: 10.3390/biom12111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Halophytes are plant species widely distributed in saline habitats, such as beaches, postindustrial wastelands, irrigated lands, salt flats, and others. Excessive salt level, known to limit plant growth, is not harmful to halophytes, which have developed a variety of defense mechanisms allowing them to colonize harsh environments. Plants under stress are known to respond with several morpho-anatomical adaptations, but also to enhance the production of secondary metabolites to better cope with difficult conditions. Owing to these adaptations, halophytes are an interesting group of undemanding plants with a high potential for application in the food and pharmaceutical industries. Therefore, this review aims to present the characteristics of halophytes, describe changes in their gene expression, and discuss their synthesized metabolites of pharmacognostic and pharmacological significance. Lobularia maritima is characterized as a widely spread halophyte that has been shown to exhibit various pharmacological properties in vitro and in vivo. It is concluded that halophytes may become important sources of natural products for the treatment of various ailments and for supplementing the human diet with necessary non-nutrients and minerals. However, extensive studies are needed to deepen the knowledge of their biological potential in vivo, so that they can be introduced to the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir-Tunisia, Monastir 5000, Tunisia
| | - Monika Michalak
- Collegium Medicum, Jan Kochanowski University, IX WiekówKielc 19, 35-317 Kielce, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
| | - Walid ben Romdhane
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha 61922, Saudi Arabia
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| |
Collapse
|
37
|
Comprehensive Analysis of Transcriptome and Metabolome Elucidates the Molecular Regulatory Mechanism of Salt Resistance in Roots of Achnatherum inebrians Mediated by Epichloë gansuensis. J Fungi (Basel) 2022; 8:jof8101092. [PMID: 36294657 PMCID: PMC9605608 DOI: 10.3390/jof8101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Salinization of soil is a major environmental risk factor to plant functions, leading to a reduction of productivity of crops and forage. Epichloë gansuensis, seed-borne endophytic fungi, establishes a mutualistic symbiotic relationship with Achnatherum inebrians and confers salt tolerance in the host plants. In this study, analysis of transcriptome and metabolome was used to explore the potential molecular mechanism underlying the salt-adaptation of A. inebrians roots mediated by E. gansuensis. We found that E. gansuensis played an important role in the gene expression of the host’s roots and regulated multiple pathways involved in amino acid metabolism, carbohydrate metabolism, TCA cycle, secondary metabolism, and lipid metabolism in the roots of A. inebrians. Importantly, E. gansuensis significantly induced the biological processes, including exocytosis, glycolytic process, fructose metabolic process, and potassium ion transport in roots of host plants at transcriptional levels, and altered the pathways, including inositol phosphate metabolism, galactose metabolism, starch, and sucrose metabolism at metabolite levels under NaCl stress. These findings provided insight into the molecular mechanism of salt resistance in roots of A. inebrians mediated by E. gansuensis and could drive progress in the cultivation of new salt-resistance breeds with endophytes.
Collapse
|
38
|
Similar Responses of Relatively Salt-Tolerant Plants to Na and K during Chloride Salinity: Comparison of Growth, Water Content and Ion Accumulation. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101577. [PMID: 36295012 PMCID: PMC9605674 DOI: 10.3390/life12101577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to compare changes in growth, ion accumulation and tissue water content in relatively salt-tolerant plant taxa—Beta vulgaris subsp. maritima, Beta vulgaris subsp. vulgaris var. cicla, Cochlearia officinalis, Mentha aquatica and Plantago maritima—as a result of NaCl and KCl salinity in controlled conditions. Similar growth responses to Na+ and K+ salinity in a form of chloride salts were found for all model plants, including growth stimulation at low concentrations, an increase in water content in leaves, and growth inhibition at high salinity for less salt-resistant taxa. All plant taxa were cultivated in soil except M. aquatica, which was cultivated in hydroponics. While the morphological responses of B. vulgaris subsp. vulgaris var. cicla, B. vulgaris subsp. maritima and P. maritima plants to NaCl and KCl were rather similar, C. officinalis plants tended to perform worse when treated with KCl, but the opposite was evident for M. aquatica. Plants treated with KCl accumulated higher concentrations of K+ in comparison to the accumulation of Na+ in plants treated with equimolar concentrations of NaCl. KCl-treated plants also had higher tissue levels of electrical conductivity than NaCl-treated plants. Based on the results of the present study, it seems that both positive and negative effects of Na+ and K+ on plant growth were due to unspecific ionic effects of monovalent cations or/and the specific effect of Cl−.
Collapse
|
39
|
Hu X, Hao J, Pan L, Xu T, Ren L, Chen Y, Tang M, Liao L, Wang Z. Genome-wide analysis of tandem duplicated genes and their expression under salt stress in seashore paspalum. FRONTIERS IN PLANT SCIENCE 2022; 13:971999. [PMID: 36247543 PMCID: PMC9562133 DOI: 10.3389/fpls.2022.971999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Seashore paspalum (Paspalum vaginatum) is a halophytic, warm-season grass which is closely related to various grain crops. Gene duplication plays an important role in plant evolution, conferring significant plant adaptation at the genomic level. Here, we identified 2,542 tandem duplicated genes (TDGs) in the P. vaginatum genome and estimated the divergence time of pairs of TDGs based on synonymous substitution rates (Ks). Expression of P. vaginatum TDGs resulted in enrichment in many GO terms and KEGG pathways when compared to four other closely-related species. The GO terms included: "ion transmembrane transporter activity," "anion transmembrane transporter activity" and "cation transmembrane transport," and KEGG pathways included "ABC transport." RNA-seq analysis of TDGs showed tissue-specific expression under salt stress, and we speculated that P. vaginatum leaves became adapted to salt stress in the earlier whole-genome duplication (WGD; ~83.3 million years ago; Ma), whereas the entire P. vaginatum plant acquired a large number of TDGs related to salt stress in the second WGD (~23.3 Ma). These results can be used as a reference resource to accelerate salt-resistance research in other grasses and crops.
Collapse
Affiliation(s)
- Xu Hu
- College of Tropical Crops, Hainan University, Haikou, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Jiangshan Hao
- College of Tropical Crops, Hainan University, Haikou, China
- School of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Ling Pan
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Tao Xu
- College of Tropical Crops, Hainan University, Haikou, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Longzhou Ren
- College of Tropical Crops, Hainan University, Haikou, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Li Liao
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhiyong Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
40
|
Purmale L, Jēkabsone A, Andersone-Ozola U, Ievinsh G. Salinity Tolerance, Ion Accumulation Potential and Osmotic Adjustment In Vitro and In Planta of Different Armeria maritima Accessions from a Dry Coastal Meadow. PLANTS (BASEL, SWITZERLAND) 2022; 11:2570. [PMID: 36235436 PMCID: PMC9571588 DOI: 10.3390/plants11192570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to compare tolerance to salinity and ion accumulation potential of Armeria maritima subsp. elongata. Three accessions (AM1 and AM2, both from Latvia, and AM3 from Sweden) from relatively dry sandy soil habitats in the Baltic Sea region were selected and compared using both in vitro cultivated shoot explants and long-term soil-cultivated plants at flowering stage. Growth of root non-forming explants treated with increasing concentrations of NaCl was significantly inhibited starting from 110 mmol L-1, and the rate of shoot formation was even more sensitive. Significant differences in morphology and responses to salinity were found between different accessions. For soil-grown plants, biomass accumulation in above-ground parts was relatively little affected by salinity in AM1 and AM2 in comparison to that in AM3. Differences in ion accumulation were evident between the accessions as well as in respect to cultivation system used. Maximum accumulation capacity for Na+ was up to 2.5 mol kg-1 both in shoot explant tissues and in old leaves of soil-grown plants treated with NaCl, but that for K+ reached 4.0 mol kg-1 in old leaves of soil-grown plants treated with KCl. Non-ionic component of osmotic value was relatively high in old leaves and significantly increased under NaCl treatment, especially for AM2 and AM3 plants at moderate salinity, but in AM1 only at high salinity. In contrast, it significantly decreased in old leaves of AM2 plants treated with increasing concentration of KCl. It can be concluded that a wide salinity tolerance exists within A. maritima accessions from dry sandy soil habitats, associated with the ability to accumulate surplus ions both in salt glands and old leaves.
Collapse
Affiliation(s)
- Līva Purmale
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Astra Jēkabsone
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| |
Collapse
|
41
|
Salama FM, AL-Huqail AA, Ali M, Abeed AHA. Cd Phytoextraction Potential in Halophyte Salicornia fruticosa: Salinity Impact. PLANTS 2022; 11:plants11192556. [PMID: 36235421 PMCID: PMC9570852 DOI: 10.3390/plants11192556] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/23/2022]
Abstract
The phytoextraction potential of halophytes has been broadly recognized. Nevertheless, the impact of salt on the accumulation proprieties of cadmium (Cd) in different halophytic species, likely linked to their salt tolerance, remains unclear. A hydroponic culture was used to investigate the impact of salinity on Cd tolerance as well as accumulation in the distinct halophyte Salicornia fruticosa (S. fruticosa). The plant was subjected to 0, 25, and 50 μg L−1 Cd (0-Cd, L-Cd, and H-Cd, respectively), with or without 50, 100, and 200 mM NaCl in the nutrient solution. Data demonstrated that Cd individually induced depletion in biomass accumulation. NaCl amplified the Cd tolerance induced by enhanced biomass gaining and root length, which was associated with adequate transpiration, leaf succulence, elevated levels of ascorbic acid (ASA), reduced glutathione (GSH), phytochelatins (PCs), and proline as well as antioxidant enzymatic capacity via upregulation of peroxidases (PO), glutathione peroxidase, ascorbate peroxidase, and superoxide dismutase. All Cd treatments decreased the uptake of calcium (Ca) as well as potassium (K) and transport to the shoots; however, sodium (Na) accumulation in the shoots was not influenced by Cd. Consequently, S. fruticosa retained its halophytic properties. Based on the low transfer efficiency and high enrichment coefficient at 0–50 mM NaCl, an examination of Cd accumulation characteristics revealed that phytostabilization was the selected phytoremediation strategy. At 100–200 mM NaCl, the high aboveground Cd-translocation and high absorption efficiency encourage phytoremediation via phytoextraction. The results revealed that S. fruticosa might be also potentially utilized to renovate saline soils tainted with heavy metals (HMs) because of its maximized capacity for Cd tolerance magnified by NaCl. Cd accumulation in S. fruticosa is mainly depending on the NaCl concentration. Future studies may be established for other heavy metal pollutants screening, to detect which could be extracted and/or stabilized by the S. fruticosa plant; moreover, other substrates presenting high electrical conductivity should be identified for reclamation.
Collapse
Affiliation(s)
- Fawzy Mahmoud Salama
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Arwa Abdulkreem AL-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Correspondence:
| | - Mohammed Ali
- Egyptian Deserts Gene Bank, North Sinai Research Station, Department of Genetic Resources, Desert Research Center, Cairo 11753, Egypt
| | - Amany H. A. Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
42
|
Yang Y, Wassie M, Liu NF, Deng H, Zeng YB, Xu Q, Hu LX. Genotypic-specific hormonal reprogramming and crosstalk are crucial for root growth and salt tolerance in bermudagrass ( Cynodon dactylon). FRONTIERS IN PLANT SCIENCE 2022; 13:956410. [PMID: 35991415 PMCID: PMC9386360 DOI: 10.3389/fpls.2022.956410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is one of the major abiotic factors limiting the productivity of bermudagrass (Cynodon dactylon). However, the role of hormonal reprogramming and crosstalk in regulating root growth and salt tolerance in bermudagrass was not reported. Here, we examined the physiological and hormonal responses of two contrasting bermudagrass genotypes; 'C43,' salt-tolerant 'C198' salt-sensitive. Under salt stress, 'C43' had better membrane stability and higher photosynthetic activity than the 'C198.' Salt stress promoted root growth and improved root/shoot ratio and root activity in 'C43,' but the root growth of 'C198' was inhibited by salt stress, leading to diminished root activity. The two bermudagrass genotypes also showed critical differences in hormonal responses, especially in the roots. The root contents of indole-3-acetic acid (IAA), cytokinin derivatives, such as trans-zeatin riboside (tZR) and dihydrozeatin riboside (DHZR) were increased in 'C43,' but decreased in 'C198' when exposed to salt stress. The root growth rate was positively correlated with the root IAA, tZR and DHZR, indicating their crucial role in root growth under salt stress. The expressions of TAA/YUCCA and CYP735A involved in IAA and tZR biosynthesis were induced by salt stress in 'C43,' but inhibited in 'C198,' leading to reduced hormone accumulations. Salt stress decreased the iP, tZ, and DHZ content in the roots of both genotypes, and no significant difference was observed between the two genotypes. Salt stress reduced the content of GA3 in both genotypes by inhibiting GA20ox and GA2ox genes, which could be attributed to the reduced shoot growth in both genotypes. The increased ABA level by salt stress was significantly higher in 'C198' than 'C43.' Furthermore, there were positive and negative correlations between different hormones and root growth, suggesting that root growth could be regulated by complex hormonal reprogramming and crosstalk. This study provides a foundation for understanding the underlying mechanisms of hormonal-mediated root growth and salt tolerance in bermudagrass.
Collapse
Affiliation(s)
- Yong Yang
- College of Physical Education, Changsha University, Changsha, China
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Ning-fang Liu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Hui Deng
- College of Physical Education, Changsha University, Changsha, China
| | - Yi-bing Zeng
- College of Physical Education, Changsha University, Changsha, China
| | - Qian Xu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Research Center of Hunan Province, Changsha, China
| | - Long-xing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, China
- Grassland Research Center of Hunan Province, Changsha, China
| |
Collapse
|
43
|
Sun M, Yang Z, Liu L, Duan L. DNA Methylation in Plant Responses and Adaption to Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23136910. [PMID: 35805917 PMCID: PMC9266845 DOI: 10.3390/ijms23136910] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their sessile state, plants are inevitably affected by and respond to the external environment. So far, plants have developed multiple adaptation and regulation strategies to abiotic stresses. One such system is epigenetic regulation, among which DNA methylation is one of the earliest and most studied regulatory mechanisms, which can regulate genome functioning and induce plant resistance and adaption to abiotic stresses. In this review, we outline the most recent findings on plant DNA methylation responses to drought, high temperature, cold, salt, and heavy metal stresses. In addition, we discuss stress memory regulated by DNA methylation, both in a transient way and the long-term memory that could pass to next generations. To sum up, the present review furnishes an updated account of DNA methylation in plant responses and adaptations to abiotic stresses.
Collapse
Affiliation(s)
| | | | - Li Liu
- Correspondence: (L.L.); (L.D.)
| | | |
Collapse
|
44
|
Hidri R, Mahmoud OMB, Zorrig W, Mahmoudi H, Smaoui A, Abdelly C, Azcon R, Debez A. Plant Growth-Promoting Rhizobacteria Alleviate High Salinity Impact on the Halophyte Suaeda fruticosa by Modulating Antioxidant Defense and Soil Biological Activity. FRONTIERS IN PLANT SCIENCE 2022; 13:821475. [PMID: 35720566 PMCID: PMC9199488 DOI: 10.3389/fpls.2022.821475] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/28/2022] [Indexed: 06/12/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are considered as bio-ameliorators that confer better salt resistance to host plants while improving soil biological activity. Despite their importance, data about the likely synergisms between PGPR and halophytes in their native environments are scarce. The objective of this study was to assess the effect of PGPR (Glutamicibacter sp. and Pseudomonas sp.) inoculation on biomass, nutrient uptake, and antioxidant enzymes of Suaeda fruticosa, an obligate halophyte native in salt marshes and arid areas in Tunisia. Besides, the activity of rhizospheric soil enzyme activities upon plant inoculation was determined. Plants were grown in pots filled with soil and irrigated with 600 mM NaCl for 1 month. Inoculation (either with Pseudomonas sp. or Glutamicibacter sp.) resulted in significantly higher shoot dry weight and less accumulation of Na+ and Cl- in shoots of salt-treated plants. Glutamicibacter sp. inoculation significantly reduced malondialdehyde (MDA) concentration, while increasing the activity of antioxidant enzymes (superoxide dismutase; catalase; ascorbate peroxidase; and glutathione reductase) by up to 100%. This provides strong arguments in favor of a boosting effect of this strain on S. fruticosa challenged with high salinity. Pseudomonas sp. inoculation increased shoot K+ and Ca2+ content and lowered shoot MDA concentration. Regarding the soil biological activity, Pseudomonas sp. significantly enhanced the activities of three rhizospheric soil enzymes (urease, ß-glucosidase, and dehydrogenase) as compared to their respective non-inoculated saline treatment. Hence, Pseudomonas sp. could have a great potential to be used as bio-inoculants in order to improve plant growth and soil nutrient uptake under salt stress. Indole-3-acetic acid concentration in the soil increased in both bacterial treatments under saline conditions, especially with Glutamicibacter sp. (up to +214%). As a whole, Glutamicibacter sp. and Pseudomonas sp. strains are promising candidates as part of biological solutions aiming at the phytoremediation and reclamation of saline-degraded areas.
Collapse
Affiliation(s)
- Rabaa Hidri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | | | - Walid Zorrig
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture, Academic City, United Arab Emirates
| | - Abderrazak Smaoui
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Rosario Azcon
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Ahmed Debez
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
45
|
Mir R, Romero I, González-Orenga S, Ferrer-Gallego PP, Laguna E, Boscaiu M, Oprică L, Grigore MN, Vicente O. Constitutive and Adaptive Traits of Environmental Stress Tolerance in the Threatened Halophyte Limonium angustebracteatum Erben (Plumbaginaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091137. [PMID: 35567138 PMCID: PMC9103948 DOI: 10.3390/plants11091137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/01/2023]
Abstract
Limonium angustebracteatum is a halophyte endemic to the E and SE Iberian Peninsula with interest in conservation. Salt glands represent an important adaptive trait in recretohalophytes like this and other Limonium species, as they allow the excretion of excess salts, reducing the concentration of toxic ions in foliar tissues. This study included the analysis of the salt gland structure, composed of 12 cells, 4 secretory and 8 accessory. Several anatomical, physiological and biochemical responses to stress were also analysed in adult plants subjected to one month of water stress, complete lack of irrigation, and salt stress, by watering with aqueous solutions of 200, 400, 600 and 800 mM NaCl. Plant growth was inhibited by the severe water deficit and, to a lesser extent, by high NaCl concentrations. A variation in the anatomical structure of the leaves was detected under conditions of salt and water stress; plants from the salt stress treatment showed salt glands sunken between epidermal cells, bordered by very large epidermal cells, whereas in those from the water stress treatment, the epidermal cells were heterogeneous in shape and size. In both, the palisade structure of the leaves was altered. Salt excretion is usually accompanied by the accumulation of salts in the foliar tissue. This was also found in L. angustebracteatum, in which the concentration of all ions analysed was higher in the leaves than in the roots. The increase of K+ in the roots of plants subjected to water stress was also remarkable. The multivariate analysis indicated differences in water and salt stress responses, such as the accumulation of Na and Cl, or proline, but K+ homeostasis played a relevant role in the mechanism of tolerance to both stressful conditions.
Collapse
Affiliation(s)
- Ricardo Mir
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (R.M.); (I.R.); (O.V.)
| | - Ignacio Romero
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (R.M.); (I.R.); (O.V.)
| | - Sara González-Orenga
- Mediterranean Agroforestry Institute (IAM, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (S.G.-O.); (M.B.)
| | - P. Pablo Ferrer-Gallego
- Centre for Forestry Research and Experimentation (CIEF), CIEF-Wildlife Service, Generalitat Valenciana, Avda Comarques del País Valencia, 114, 46930 Quart de Poblet, Valencia, Spain; (P.P.F.-G.); (E.L.)
| | - Emilio Laguna
- Centre for Forestry Research and Experimentation (CIEF), CIEF-Wildlife Service, Generalitat Valenciana, Avda Comarques del País Valencia, 114, 46930 Quart de Poblet, Valencia, Spain; (P.P.F.-G.); (E.L.)
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (S.G.-O.); (M.B.)
| | - Lăcrămioara Oprică
- Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I nr. 11, 700506 Iași, Romania;
| | - Marius-Nicușor Grigore
- Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, Str. Universității 13, 720229 Suceava, Romania
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (R.M.); (I.R.); (O.V.)
| |
Collapse
|
46
|
Zhang H, Liu Z, Hu A, Wu H, Zhu J, Wang F, Cao P, Yang X, Zhang H. Full-Length Transcriptome Analysis of the Halophyte Nitraria sibirica Pall. Genes (Basel) 2022; 13:genes13040661. [PMID: 35456467 PMCID: PMC9032868 DOI: 10.3390/genes13040661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Nitraria sibirica Pall. is one of the pioneer tree species in saline–alkali areas due to its extreme salt tolerance. However, the lack of information on its genome limits the further exploration of the molecular mechanisms in N. sibirica under salt stress. Methods: In this study, we used single-molecule real-time (SMRT) technology based on the PacBio Iso-Seq platform to obtain transcriptome data from N. sibirica under salt treatment for the first time, which is helpful for our in-depth analysis of the salt tolerance and molecular characteristics of N. sibirica. Results: Our results suggested that a total of 234,508 circular consensus sequences (CCSs) with a mean read length of 2121 bp were obtained from the 19.26 Gb raw data. Furthermore, based on transcript cluster analysis, 93,713 consensus isoforms were obtained, including 92,116 high-quality isoforms. After removing redundant sequences, 49,240 non-redundant transcripts were obtained from high-quality isoforms. A total of 37,261 SSRs, 1816 LncRNAs and 47,314 CDSs, of which 40,160 carried complete ORFs, were obtained. Based on our transcriptome data, we also analyzed the coding genes of H+-PPase, and the results of both bioinformatics and functional analyses indicated that the gene prediction via full-length transcripts obtained by SMRT technology is reliable and effective. In summary, our research data obtained by SMRT technology provides more reliable and accurate information for the further analysis of the regulatory network and molecular mechanism of N. sibirica under salt stress.
Collapse
Affiliation(s)
- Huilong Zhang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| | - Zhen Liu
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou 061001, China
- Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Aishuang Hu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063299, China
| | - Haiwen Wu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| | - Jianfeng Zhu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| | - Fengzhi Wang
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou 061001, China
- Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Pingping Cao
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou 061001, China
- Academy of Agriculture and Forestry Sciences, Cangzhou 061001, China
| | - Xiuyan Yang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| | - Huaxin Zhang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- The Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River Delta, Dongying 257000, China
| |
Collapse
|
47
|
Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salinity is one of the oldest and most serious environmental problems in the world. The increasingly widespread salinization of soils and water resources represents a growing threat to agriculture around the world. A strategy to cope with this problem is to cultivate salt-tolerant crops and, therefore, it is necessary to identify plant species that are naturally adapted to high-salinity conditions. In this review, we focus our attention on some plant species that can be considered among the most representative halophytes of the Mediterranean region; they can be potential resources, such as new or relatively new vegetable crops, to produce raw or minimally processed (or ready-to-eat) products, considering their nutritional properties and nutraceuticals. The main biological and agronomic characteristics of these species and the potential health risks due to mycotoxigenic fungi have been analyzed and summarized in a dedicated section. The objective of this review is to illustrate the main biological and agronomical characteristics of the most common halophytic species in the Mediterranean area, which could expand the range of leafy vegetables on the market.
Collapse
|
48
|
Das AK, Anik TR, Rahman MM, Keya SS, Islam MR, Rahman MA, Sultana S, Ghosh PK, Khan S, Ahamed T, Ghosh TK, Tran LSP, Mostofa MG. Ethanol Treatment Enhances Physiological and Biochemical Responses to Mitigate Saline Toxicity in Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030272. [PMID: 35161252 PMCID: PMC8838166 DOI: 10.3390/plants11030272] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 05/31/2023]
Abstract
Soil salinity, a major environmental concern, significantly reduces plant growth and production all around the world. Finding solutions to reduce the salinity impacts on plants is critical for global food security. In recent years, the priming of plants with organic chemicals has shown to be a viable approach for the alleviation of salinity effects in plants. The current study examined the effects of exogenous ethanol in triggering salinity acclimatization responses in soybean by investigating growth responses, and numerous physiological and biochemical features. Foliar ethanol application to saline water-treated soybean plants resulted in an enhancement of biomass, leaf area, photosynthetic pigment contents, net photosynthetic rate, shoot relative water content, water use efficiency, and K+ and Mg2+ contents, leading to improved growth performance under salinity. Salt stress significantly enhanced the contents of reactive oxygen species (ROS), malondialdehyde, and electrolyte leakage in the leaves, suggesting salt-induced oxidative stress and membrane damage in soybean plants. In contrast, ethanol treatment of salt-treated soybean plants boosted ROS-detoxification mechanisms by enhancing the activities of antioxidant enzymes, including peroxidase, ascorbate peroxidase, catalase, and glutathione S-transferase. Ethanol application also augmented the levels of proline and total free amino acids in salt-exposed plants, implying a role of ethanol in maintaining osmotic adjustment in response to salt stress. Notably, exogenous ethanol decreased Na+ uptake while increasing K+ and Mg2+ uptake and their partitioning to leaves and roots in salt-stressed plants. Overall, our findings reveal the protective roles of ethanol against salinity in soybean and suggest that the use of this cost-effective and easily accessible ethanol in salinity mitigation could be an effective approach to increase soybean production in salt-affected areas.
Collapse
Affiliation(s)
- Ashim Kumar Das
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.); (T.A.)
| | - Touhidur Rahman Anik
- Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur 1701, Bangladesh;
| | - Md. Mezanur Rahman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.); (L.S.-P.T.)
| | - Sanjida Sultana Keya
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.); (L.S.-P.T.)
| | - Md. Robyul Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.R.I.); (S.S.)
| | - Md. Abiar Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.); (T.A.)
| | - Sharmin Sultana
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.R.I.); (S.S.)
| | - Protik Kumar Ghosh
- Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Sabia Khan
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Tofayel Ahamed
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.); (T.A.)
| | - Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Lam Son-Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.); (L.S.-P.T.)
| | - Mohammad Golam Mostofa
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA; (M.M.R.); (S.S.K.); (L.S.-P.T.)
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| |
Collapse
|
49
|
Li J, Liu Y, Zhang M, Xu H, Ning K, Wang B, Chen M. Melatonin increases growth and salt tolerance of Limonium bicolor by improving photosynthetic and antioxidant capacity. BMC PLANT BIOLOGY 2022; 22:16. [PMID: 34983373 PMCID: PMC8725383 DOI: 10.1186/s12870-021-03402-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/10/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Soil salinization is becoming an increasingly serious problem worldwide, resulting in cultivated land loss and desertification, as well as having a serious impact on agriculture and the economy. The indoleamine melatonin (N-acetyl-5-methoxytryptamine) has a wide array of biological roles in plants, including acting as an auxin analog and an antioxidant. Previous studies have shown that exogenous melatonin application alleviates the salt-induced growth inhibition in non-halophyte plants; however, to our knowledge, melatonin effects have not been examined on halophytes, and it is unclear whether melatonin provides similar protection to salt-exposed halophytic plants. RESULTS We exposed the halophyte Limonium bicolor to salt stress (300 mM) and concomitantly treated the plants with 5 μM melatonin to examine the effect of melatonin on salt tolerance. Exogenous melatonin treatment promoted the growth of L. bicolor under salt stress, as reflected by increasing its fresh weight and leaf area. This increased growth was caused by an increase in net photosynthetic rate and water use efficiency. Treatment of salt-stressed L. bicolor seedlings with 5 μM melatonin also enhanced the activities of antioxidants (superoxide dismutase [SOD], peroxidase [POD], catalase [CAT], and ascorbate peroxidase [APX]), while significantly decreasing the contents of hydrogen peroxide (H2O2), superoxide anion (O2•-), and malondialdehyde (MDA). To screen for L. bicolor genes involved in the above physiological processes, high-throughput RNA sequencing was conducted. A gene ontology enrichment analysis indicated that genes related to photosynthesis, reactive oxygen species scavenging, the auxin-dependent signaling pathway and mitogen-activated protein kinase (MAPK) were highly expressed under melatonin treatment. These data indicated that melatonin improved photosynthesis, decreased reactive oxygen species (ROS) and activated MAPK-mediated antioxidant responses, triggering a downstream MAPK cascade that upregulated the expression of antioxidant-related genes. Thus, melatonin improves the salt tolerance of L. bicolor by increasing photosynthesis and improving cellular redox homeostasis under salt stress. CONCLUSIONS Our results showed that melatonin can upregulate the expression of genes related to photosynthesis, reactive oxygen species scavenging and mitogen-activated protein kinase (MAPK) of L. bicolor under salt stress, which can improve photosynthesis and antioxidant enzyme activities. Thus melatonin can promote the growth of the species and maintain the homeostasis of reactive oxygen species to alleviate salt stress.
Collapse
Affiliation(s)
- Junpeng Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Yun Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China
| | - Hualing Xu
- DongYing Academy of Agricultural Sciences, Dongying, Shandong, 257000, People's Republic of China
| | - Kai Ning
- DongYing Academy of Agricultural Sciences, Dongying, Shandong, 257000, People's Republic of China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China.
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|