1
|
Pragati, Sarkar S. Targeted downregulation of insulin signaling restricts human tau pathogenesis by reinstating the aberrant heterochromatin loss and mTOR/4EBP/S6K pathway in Drosophila. Brain Res 2025; 1849:149347. [PMID: 39579954 DOI: 10.1016/j.brainres.2024.149347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the accumulation of paired helical filaments (PHFs)/or neurofibrillary tangles (NFTs) in neuronal/glial cells. Besides hyperphosphorylation of tau protein, aberrant heterochromatin loss and translation dysfunction have emerged as other important aspects contributing to the disease pathogenesis. We have recently reported that tissue-specific downregulation of insulin signaling or its growth-promoting downstream sub-branch effectively reinstates the tau-mediated overactivated insulin pathway, and restricts pathogenic tau hyperphosphorylation and aggregate formation. We next investigated if the downregulation of the insulin pathway or its growth-promoting downstream sub-branch makes any impact on tau-mediated aberrant heterochromatin loss and translation dysfunction. For the first time, we demonstrate that tissue-specific downregulation of insulin signaling or its growth-promoting branch effectively restricts the pathogenic tau-induced heterochromatin loss. We further report that expression of human tau in Drosophila causes induction of the mTOR/4EBP/S6K pathway and energy disbalance which gets effectively balanced upon downregulation of insulin signaling. Our findings establish an imperative role of insulin signaling in effectively mitigating various aspects of tau etiology in Drosophila ranging from hyperphosphorylation, chromatin relaxation, and translational upsurge. Our findings could be beneficial in establishing novel therapeutic options against tauopathies.
Collapse
Affiliation(s)
- Pragati
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|
2
|
Da Costa RT, Nichenko A, Perez MM, Tokarska-Schlattner M, Kavehmoghaddam S, Hambardikar V, Scoma ER, Seifert EL, Schlattner U, Drake JC, Solesio ME. Mammalian mitochondrial inorganic polyphosphate (polyP) and cell signaling: Crosstalk between polyP and the activity of AMPK. Mol Metab 2025; 91:102077. [PMID: 39617267 PMCID: PMC11696858 DOI: 10.1016/j.molmet.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
Inorganic polyphosphate (polyP) is an evolutionary and ancient polymer composed by orthophosphate units linked by phosphoanhydride bonds. In mammalian cells, polyP shows a high localization in mammalian mitochondria, and its regulatory role in various aspects of bioenergetics has already been demonstrated, via molecular mechanism(s) yet to be fully elucidated. In recent years, a role for polyP in signal transduction, from brain physiology to the bloodstream, has also emerged. OBJECTIVE In this manuscript, we explored the intriguing possibility that the effects of polyP on signal transduction could be mechanistically linked to those exerted on bioenergetics. METHODS To conduct our studies, we used a combination of cellular and animal models. RESULTS Our findings demonstrate for the first time the intimate crosstalk between the levels of polyP and the activation status of the AMPK signaling pathway, via a mechanism involving free phosphate homeostasis. AMPK is a key player in mammalian cell signaling, and a crucial regulator of cellular and mitochondrial homeostasis. Our results show that the depletion of mitochondrial polyP in mammalian cells downregulates the activity of AMPK. Moreover, increased levels of polyP activate AMPK. Accordingly, the genetic downregulation of AMPKF0611 impairs polyP levels in both SH-SY5Y cells and in the brains of female mice. CONCLUSIONS This manuscript sheds new light on the regulation of AMPK and positions polyP as a potent regulator of mammalian cell physiology beyond mere bioenergetics, paving the road for using its metabolism as an innovative pharmacological target in pathologies characterized by dysregulated bioenergetics.
Collapse
Affiliation(s)
- Renata T Da Costa
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Anna Nichenko
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matheus M Perez
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | | | - Sheida Kavehmoghaddam
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Vedangi Hambardikar
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Ernest R Scoma
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Erin L Seifert
- MitoCare and Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Uwe Schlattner
- University Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Maria E Solesio
- Department of Biology, and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA.
| |
Collapse
|
3
|
Aydin S, Tekinalp SG, Tuzcu B, Cam F, Sevik MO, Tatar E, Kalaskar D, Cam ME. The role of AMP-activated protein kinase activators on energy balance and cellular metabolism in type 2 diabetes mellitus. OBESITY MEDICINE 2025; 53:100577. [DOI: 10.1016/j.obmed.2024.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 PMCID: PMC11550616 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
5
|
Russo C, Surdo S, Valle MS, Malaguarnera L. The Gut Microbiota Involvement in the Panorama of Muscular Dystrophy Pathogenesis. Int J Mol Sci 2024; 25:11310. [PMID: 39457092 PMCID: PMC11508360 DOI: 10.3390/ijms252011310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Muscular dystrophies (MDs) are genetically heterogeneous diseases characterized by primary skeletal muscle atrophy. The collapse of muscle structure and irreversible degeneration of tissues promote the occurrence of comorbidities, including cardiomyopathy and respiratory failure. Mitochondrial dysfunction leads to inflammation, fibrosis, and adipogenic cellular infiltrates that exacerbate the symptomatology of MD patients. Gastrointestinal disorders and metabolic anomalies are common in MD patients and may be determined by the interaction between the intestine and its microbiota. Therefore, the gut-muscle axis is one of the actors involved in the spread of inflammatory signals to all muscles. In this review, we aim to examine in depth how intestinal dysbiosis can modulate the metabolic state, the immune response, and mitochondrial biogenesis in the course and progression of the most investigated MDs such as Duchenne Muscular Dystrophy (DMD) and Myotonic Dystrophy (MD1), to better identify gut microbiota metabolites working as therapeutic adjuvants to improve symptoms of MD.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
6
|
Yuan R, Adlimoghaddam A, Zhu Y, Han X, Bartke A. Early Life Interventions: Impact on Aging and Longevity. Aging Dis 2024:AD.202.0516. [PMID: 39325935 DOI: 10.14336/ad.202.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/05/2024] [Indexed: 09/28/2024] Open
Abstract
Across mammals, lifespans vary remarkably, spanning over a hundredfold difference. Comparative studies consistently reveal a strong inverse relationship between developmental pace and lifespan, hinting at the potential for early-life interventions (ELIs) to influence aging and lifespan trajectories. Focusing on postnatal interventions in mice, this review explores how ELIs influence development, lifespan, and the underlying mechanisms. Previous ELI studies have employed a diverse array of approaches, including dietary modifications, manipulations of the somatotropic axis, and various chemical treatments. Notably, these interventions have demonstrated significant impacts on aging and lifespan in mice. The underlying mechanisms likely involve pathways related to mitochondrial function, mTOR and AMPK signaling, cellular senescence, and epigenetic alterations. Interestingly, ELI studies may serve as valuable models for investigating the complex regulatory mechanisms of development and aging, particularly regarding the interplay among somatic growth, sexual maturation, and lifespan. In addition, prior research has highlighted the intricacies of experimental design and data interpretation. Factors such as timing, sex-specific effects, administration methods, and animal husbandry practices must be carefully considered to ensure the reliability and reproducibility of results, as well as rigorous interpretation. Addressing these factors is essential for advancing our understanding of how development, aging, and lifespan are regulated, potentially opening avenues for interventions that promote healthy aging.
Collapse
Affiliation(s)
- Rong Yuan
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Aida Adlimoghaddam
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Neurology, Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Yun Zhu
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Xiuqi Han
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
7
|
Ashraf N, Van Nostrand JL. Fine-tuning AMPK in physiology and disease using point-mutant mouse models. Dis Model Mech 2024; 17:dmm050798. [PMID: 39136185 PMCID: PMC11340815 DOI: 10.1242/dmm.050798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that monitors the cellular energy status to adapt it to the fluctuating nutritional and environmental conditions in an organism. AMPK plays an integral part in a wide array of physiological processes, such as cell growth, autophagy and mitochondrial function, and is implicated in diverse diseases, including cancer, metabolic disorders, cardiovascular diseases and neurodegenerative diseases. AMPK orchestrates many different physiological outcomes by phosphorylating a broad range of downstream substrates. However, the importance of AMPK-mediated regulation of these substrates in vivo remains an ongoing area of investigation to better understand its precise role in cellular and metabolic homeostasis. Here, we provide a comprehensive overview of our understanding of the kinase function of AMPK in vivo, as uncovered from mouse models that harbor phosphorylation mutations in AMPK substrates. We discuss some of the inherent limitations of these mouse models, highlight the broader implications of these studies for understanding human health and disease, and explore the valuable insights gained that could inform future therapeutic strategies for the treatment of metabolic and non-metabolic disorders.
Collapse
Affiliation(s)
- Naghmana Ashraf
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeanine L. Van Nostrand
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Wang M, Han Z, Fan B, Qu K, Zhang W, Li W, Li J, Li L, Li J, Li H, Wu S, Wang D, Zhu H. Discovery of Oral AMP-Activated Protein Kinase Activators for Treating Hyperlipidemia. J Med Chem 2024; 67:7870-7890. [PMID: 38739840 DOI: 10.1021/acs.jmedchem.3c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Activation of AMP-activated protein kinase (AMPK) is proposed to alleviate hyperlipidemia. With cordycepin and N6-(2-hydroxyethyl) adenosine (HEA) as lead compounds, a series of adenosine-based derivatives were designed, synthesized, and evaluated on activation of AMPK. Finally, compound V1 was identified as a potent AMPK activator with the lipid-lowering effect. Molecular docking and circular dichroism indicated that V1 exerted its activity by binding to the γ subunit of AMPK. V1 markedly decreased the serum low-density lipoprotein cholesterol levels in C57BL/6 mice, golden hamsters, and rhesus monkeys. V1 was selected as the clinical compound and concluded Phase 1 clinical trials. A single dose of V1 (2000 mg) increased AMPK activation in human erythrocytes after 5 and 12 h of treatment. RNA sequencing data suggested that V1 downregulated expression of genes involved in regulation of apoptotic process, lipid metabolism, endoplasmic reticulum stress, and inflammatory response in liver by activating AMPK.
Collapse
Affiliation(s)
- Mingchao Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Zunsheng Han
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Baoyan Fan
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Kai Qu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Wenxuan Zhang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Wei Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Jingya Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Li Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Jin Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Hui Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Song Wu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Dongmei Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| |
Collapse
|
9
|
Alzahrani NA, Bahaidrah KA, Mansouri RA, Aldhahri RS, Abd El-Aziz GS, Alghamdi BS. Possible Prophylactic Effects of Sulforaphane on LPS-Induced Recognition Memory Impairment Mediated by Regulating Oxidative Stress and Neuroinflammatory Proteins in the Prefrontal Cortex Region of the Brain. Biomedicines 2024; 12:1107. [PMID: 38791068 PMCID: PMC11118062 DOI: 10.3390/biomedicines12051107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant global health concern, characterized by neurodegeneration and cognitive decline. Neuroinflammation is a crucial factor in AD development and progression, yet effective pharmacotherapy remains elusive. Sulforaphane (SFN), derived from cruciferous vegetables and mainly from broccoli, has shown a promising effect via in vitro and in vivo studies as a potential treatment for AD. This study aims to investigate the possible prophylactic mechanisms of SFN against prefrontal cortex (PFC)-related recognition memory impairment induced by lipopolysaccharide (LPS) administration. METHODOLOGY Thirty-six Swiss (SWR/J) mice weighing 18-25 g were divided into three groups (n = 12 per group): a control group (vehicle), an LPS group (0.75 mg/kg of LPS), and an LPS + SFN group (25 mg/kg of SFN). The total duration of the study was 3 weeks, during which mice underwent treatments for the initial 2 weeks, with daily monitoring of body weight and temperature. Behavioral assessments via novel object recognition (NOR) and temporal order recognition (TOR) tasks were conducted in the final week of the study. Inflammatory markers (IL-6 and TNF), antioxidant enzymes (SOD, GSH, and CAT), and pro-oxidant (MDA) level, in addition to acetylcholine esterase (AChE) activity and active (caspase-3) and phosphorylated (AMPK) levels, were evaluated. Further, PFC neuronal degeneration, Aβ content, and microglial activation were also examined using H&E, Congo red staining, and Iba1 immunohistochemistry, respectively. RESULTS SFN pretreatment significantly improved recognition memory performance during the NOR and TOR tests. Moreover, SFN was protected from neuroinflammation and oxidative stress as well as neurodegeneration, Aβ accumulation, and microglial hyperactivity. CONCLUSION The obtained results suggested that SFN has a potential protective property to mitigate the behavioral and biochemical impairments induced by chronic LPS administration and suggested to be via an AMPK/caspase-3-dependent manner.
Collapse
Affiliation(s)
- Noor Ahmed Alzahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Khulud Abdullah Bahaidrah
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
| | - Rahaf Saeed Aldhahri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23218, Saudi Arabia; (K.A.B.); (R.A.M.); (R.S.A.)
- Department of Biochemistry, Faculty of Sciences, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Gamal S. Abd El-Aziz
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Reisman EG, Hawley JA, Hoffman NJ. Exercise-Regulated Mitochondrial and Nuclear Signalling Networks in Skeletal Muscle. Sports Med 2024; 54:1097-1119. [PMID: 38528308 PMCID: PMC11127882 DOI: 10.1007/s40279-024-02007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/27/2024]
Abstract
Exercise perturbs energy homeostasis in skeletal muscle and engages integrated cellular signalling networks to help meet the contraction-induced increases in skeletal muscle energy and oxygen demand. Investigating exercise-associated perturbations in skeletal muscle signalling networks has uncovered novel mechanisms by which exercise stimulates skeletal muscle mitochondrial biogenesis and promotes whole-body health and fitness. While acute exercise regulates a complex network of protein post-translational modifications (e.g. phosphorylation) in skeletal muscle, previous investigations of exercise signalling in human and rodent skeletal muscle have primarily focused on a select group of exercise-regulated protein kinases [i.e. 5' adenosine monophosphate-activated protein kinase (AMPK), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase (CaMK) and mitogen-activated protein kinase (MAPK)] and only a small subset of their respective protein substrates. Recently, global mass spectrometry-based phosphoproteomic approaches have helped unravel the extensive complexity and interconnection of exercise signalling pathways and kinases beyond this select group and phosphorylation and/or translocation of exercise-regulated mitochondrial and nuclear protein substrates. This review provides an overview of recent advances in our understanding of the molecular events associated with acute endurance exercise-regulated signalling pathways and kinases in skeletal muscle with a focus on phosphorylation. We critically appraise recent evidence highlighting the involvement of mitochondrial and nuclear protein phosphorylation and/or translocation in skeletal muscle adaptive responses to an acute bout of endurance exercise that ultimately stimulate mitochondrial biogenesis and contribute to exercise's wider health and fitness benefits.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
11
|
Rawat SS, Laxmi A. Sugar signals pedal the cell cycle! FRONTIERS IN PLANT SCIENCE 2024; 15:1354561. [PMID: 38562561 PMCID: PMC10982403 DOI: 10.3389/fpls.2024.1354561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.
Collapse
Affiliation(s)
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
12
|
Zhu C, Bai Y, Qiu J, Chen G, Guo X, Xu R. CYP2J2-derived epoxyeicosatrienoic acids protect against doxorubicin-induced cardiotoxicity by reducing oxidative stress and apoptosis via activation of the AMPK pathway. Heliyon 2024; 10:e23526. [PMID: 38173517 PMCID: PMC10761578 DOI: 10.1016/j.heliyon.2023.e23526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Objective Despite the widespread use of doxorubicin (DOX) in chemotherapy, it can cause cardiotoxicity, which severely limits its potential clinical use. CYP2J2-derived epoxyeicosatrienoic acids (EETs) exert cardioprotective effects by maintaining cardiac homeostasis. The roles and latent mechanisms of EETs in DOX cardiotoxicity remain uncertain. We investigated these aspects using mouse tissue and cell culture models. Methods C57BL/6J mice were injected with rAAV9-CYP2J2 or a control vector via the caudal vein. A five-week intraperitoneal course of DOX (5 mg/kg per week) was administered. After pretreatment with 14,15-EET, H9C2 cells were treated for 24-h with DOX, to use as a cell model to verify the role of EETs in cardiotoxicity in vitro. Results CYP2J2 overexpression mitigated DOX-induced cardiotoxicity, as shown by the diminished cardiac injury marker levels, improved heart function, reduced oxidative stress, and inhibition of myocardial apoptosis in vivo. These protective roles are associated with the enhancement of antioxidant and anti-apoptotic abilities and the activation of the AMPK pathway. 14,15-EET suppresses DOX-induced oxidative stress, mitochondrial dysfunction, and apoptosis in H9C2 cells. AMPK knockdown partially abolished the cardioprotective effects of 14,15-EET against oxidative damage and apoptosis in DOX-treated cells, suggesting that AMPK is responsible for EET-mediated protection against cardiotoxicity. Conclusion CYP2J2-derived EETs confer myocardial protection against DOX-induced toxicity by activating the AMPK pathway, which reduces oxidative stress, mitochondrial dysfunction, and apoptosis.
Collapse
Affiliation(s)
- Chuanmeng Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Bai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Qiu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangzhi Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomei Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Renfan Xu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
13
|
Braverman EL, McQuaid MA, Schuler H, Qin M, Hani S, Hippen K, Monlish DA, Dobbs AK, Ramsey MJ, Kemp F, Wittmann C, Ramgopal A, Brown H, Blazar B, Byersdorfer CA. Overexpression of AMPKγ2 increases AMPK signaling to augment human T cell metabolism and function. J Biol Chem 2024; 300:105488. [PMID: 38000657 PMCID: PMC10825059 DOI: 10.1016/j.jbc.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cellular therapies are currently employed to treat a variety of disease processes. For T cell-based therapies, success often relies on the metabolic fitness of the T cell product, where cells with enhanced metabolic capacity demonstrate improved in vivo efficacy. AMP-activated protein kinase (AMPK) is a cellular energy sensor which combines environmental signals with cellular energy status to enforce efficient and flexible metabolic programming. We hypothesized that increasing AMPK activity in human T cells would augment their oxidative capacity, creating an ideal product for adoptive cellular therapies. Lentiviral transduction of the regulatory AMPKγ2 subunit stably enhanced intrinsic AMPK signaling and promoted mitochondrial respiration with increased basal oxygen consumption rates, higher maximal oxygen consumption rate, and augmented spare respiratory capacity. These changes were accompanied by increased proliferation and inflammatory cytokine production, particularly within restricted glucose environments. Introduction of AMPKγ2 into bulk CD4 T cells decreased RNA expression of canonical Th2 genes, including the cytokines interleukin (IL)-4 and IL-5, while introduction of AMPKγ2 into individual Th subsets universally favored proinflammatory cytokine production and a downregulation of IL-4 production in Th2 cells. When AMPKγ2 was overexpressed in regulatory T cells, both in vitro proliferation and suppressive capacity increased. Together, these data suggest that augmenting intrinsic AMPK signaling via overexpression of AMPKγ2 can improve the expansion and functional potential of human T cells for use in a variety of adoptive cellular therapies.
Collapse
Affiliation(s)
- Erica L Braverman
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Margaret A McQuaid
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Herbert Schuler
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mengtao Qin
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; School of Medicine, Tsinghua University, Beijing, China
| | - Sophia Hani
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keli Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Darlene A Monlish
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrea K Dobbs
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Manda J Ramsey
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Felicia Kemp
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher Wittmann
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Archana Ramgopal
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Harrison Brown
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bruce Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Gopar-Cuevas Y, Saucedo-Cardenas O, Loera-Arias MJ, Montes-de-Oca-Luna R, Rodriguez-Rocha H, Garcia-Garcia A. Metformin and Trehalose-Modulated Autophagy Exerts a Neurotherapeutic Effect on Parkinson's Disease. Mol Neurobiol 2023; 60:7253-7273. [PMID: 37542649 DOI: 10.1007/s12035-023-03530-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Since the number of aged people will increase in the next years, neurodegenerative diseases, including Parkinson's Disease (PD), will also rise. Recently, we demonstrated that autophagy stimulation with rapamycin decreases dopaminergic neuronal death mediated by oxidative stress in the paraquat (PQ)-induced PD model. Assessing the neurotherapeutic efficacy of autophagy-inducing molecules is critical for preventing or delaying neurodegeneration. Therefore, we evaluated the autophagy inducers metformin and trehalose effect in a PD model. Autophagy induced by both molecules was confirmed in the SH-SY5Y dopaminergic cells by detecting increased LC3-II marker and autophagosome number compared to the control by western blot and transmission electron microscopy. Both autophagy inducers showed an antioxidant effect, improved mitochondrial activity, and decreased dopaminergic cell death induced by PQ. Next, we evaluated the effect of both inducers in vivo. C57BL6 mice were pretreated with metformin or trehalose before PQ administration. Cognitive and motor deteriorated functions in the PD model were evaluated through the nest building and the gait tests and were prevented by metformin and trehalose. Both autophagy inducers significantly reduced the dopaminergic neuronal loss, astrocytosis, and microgliosis induced by PQ. Also, cell death mediated by PQ was prevented by metformin and trehalose, assessed by TUNEL assay. Metformin and trehalose induced autophagy through AMPK phosphorylation and decreased α-synuclein accumulation. Therefore, metformin and trehalose are promising neurotherapeutic autophagy inducers with great potential for treating neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Yareth Gopar-Cuevas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Maria J Loera-Arias
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Humberto Rodriguez-Rocha
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico.
| | - Aracely Garcia-Garcia
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
15
|
Aruldas R, Orenstein LB, Spencer S. Metformin Prevents Cocaine Sensitization: Involvement of Adenosine Monophosphate-Activated Protein Kinase Trafficking between Subcellular Compartments in the Corticostriatal Reward Circuit. Int J Mol Sci 2023; 24:16859. [PMID: 38069180 PMCID: PMC10706784 DOI: 10.3390/ijms242316859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Repeated cocaine exposure produces an enhanced locomotor response (sensitization) paralleled by biological adaptations in the brain. Previous studies demonstrated region-specific responsivity of adenosine monophosphate-activated protein kinase (AMPK) to repeated cocaine exposure. AMPK maintains cellular energy homeostasis at the organismal and cellular levels. Here, our objective was to quantify changes in phosphorylated (active) and total AMPK in the cytosol and synaptosome of the medial prefrontal cortex, nucleus accumbens, and dorsal striatum following acute or sensitizing cocaine injections. Brain region and cellular compartment selective changes in AMPK and pAMPK were found with some differences associated with acute withdrawal versus ongoing cocaine treatment. Our additional goal was to determine the behavioral and molecular effects of pretreatment with the indirect AMPK activator metformin. Metformin potentiated the locomotor activating effects of acute cocaine but blocked the development of sensitization. Sex differences largely obscured any protein-level treatment group effects, although pAMPK in the NAc shell cytosol was surprisingly reduced by metformin in rats receiving repeated cocaine. The rationale for these studies was to inform our understanding of AMPK activation dynamics in subcellular compartments and provide additional support for repurposing metformin for treating cocaine use disorder.
Collapse
Affiliation(s)
- Rachel Aruldas
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Sade Spencer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Sun H, Kemper JK. MicroRNA regulation of AMPK in nonalcoholic fatty liver disease. Exp Mol Med 2023; 55:1974-1981. [PMID: 37653034 PMCID: PMC10545736 DOI: 10.1038/s12276-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 09/02/2023] Open
Abstract
Obesity-associated nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is the leading cause of liver failure and death. The function of AMP-activated protein kinase (AMPK), a master energy sensor, is aberrantly reduced in NAFLD, but the underlying mechanisms are not fully understood. Increasing evidence indicates that aberrantly expressed microRNAs (miRs) are associated with impaired AMPK function in obesity and NAFLD. In this review, we discuss the emerging evidence that miRs have a role in reducing AMPK activity in NAFLD and nonalcoholic steatohepatitis (NASH), a severe form of NAFLD. We also discuss the underlying mechanisms of the aberrant expression of miRs that can negatively impact AMPK, as well as the therapeutic potential of targeting the miR-AMPK pathway for NAFLD/NASH.
Collapse
Affiliation(s)
- Hao Sun
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
17
|
Jang HJ, Lee YH, Dao T, Jo Y, Khim KW, Eom HJ, Lee JE, Song YJ, Choi SS, Park K, Ji H, Chae YC, Myung K, Kim H, Ryu D, Park NH, Park SH, Choi JH. Thrap3 promotes nonalcoholic fatty liver disease by suppressing AMPK-mediated autophagy. Exp Mol Med 2023; 55:1720-1733. [PMID: 37524868 PMCID: PMC10474030 DOI: 10.1038/s12276-023-01047-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/14/2023] [Accepted: 04/30/2023] [Indexed: 08/02/2023] Open
Abstract
Autophagy functions in cellular quality control and metabolic regulation. Dysregulation of autophagy is one of the major pathogenic factors contributing to the progression of nonalcoholic fatty liver disease (NAFLD). Autophagy is involved in the breakdown of intracellular lipids and the maintenance of healthy mitochondria in NAFLD. However, the mechanisms underlying autophagy dysregulation in NAFLD remain unclear. Here, we demonstrate that the hepatic expression level of Thrap3 was significantly increased in NAFLD conditions. Liver-specific Thrap3 knockout improved lipid accumulation and metabolic properties in a high-fat diet (HFD)-induced NAFLD model. Furthermore, Thrap3 deficiency enhanced autophagy and mitochondrial function. Interestingly, Thrap3 knockout increased the cytosolic translocation of AMPK from the nucleus and enhanced its activation through physical interaction. The translocation of AMPK was regulated by direct binding with AMPK and the C-terminal domain of Thrap3. Our results indicate a role for Thrap3 in NAFLD progression and suggest that Thrap3 is a potential target for NAFLD treatment.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
| | - Yo Han Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tam Dao
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, 16419, Republic of Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, 16419, Republic of Korea
| | - Keon Woo Khim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hye-Jin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ju Eun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yi Jin Song
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sun Sil Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kieun Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Haneul Ji
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Hongtae Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, 16419, Republic of Korea
| | - Neung Hwa Park
- Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, 44033, Republic of Korea.
| | - Sung Ho Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Jang Hyun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
18
|
Gurd BJ, Menezes ES, Arhen BB, Islam H. Impacts of altered exercise volume, intensity, and duration on the activation of AMPK and CaMKII and increases in PGC-1α mRNA. Semin Cell Dev Biol 2023; 143:17-27. [PMID: 35680515 DOI: 10.1016/j.semcdb.2022.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
The purpose of this review is to explore and discuss the impacts of augmented training volume, intensity, and duration on the phosphorylation/activation of key signaling protein - AMPK, CaMKII and PGC-1α - involved in the initiation of mitochondrial biogenesis. Specifically, we explore the impacts of augmented exercise protocols on AMP/ADP and Ca2+ signaling and changes in post exercise PGC - 1α gene expression. Although AMP/ADP concentrations appear to increase with increasing intensity and during extended durations of higher intensity exercise AMPK activation results are varied with some results supporting and intensity/duration effect and others not. Similarly, CaMKII activation and signaling results following exercise of different intensities and durations are inconsistent. The PGC-1α literature is equally inconsistent with only some studies demonstrating an effect of intensity on post exercise mRNA expression. We present a novel meta-analysis that suggests that the inconsistency in the PGC-1α literature may be due to sample size and statistical power limitations owing to the effect of intensity on PGC-1α expression being small. There is little data available regarding the impact of exercise duration on PGC-1α expression. We highlight the need for future well designed, adequately statistically powered, studies to clarify our understanding of the effects of volume, intensity, and duration on the induction of mitochondrial biogenesis by exercise.
Collapse
Affiliation(s)
- Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.
| | | | - Benjamin B Arhen
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
19
|
Gonzalez-Alcocer A, Gopar-Cuevas Y, Soto-Dominguez A, Castillo-Velazquez U, de Jesus Loera-Arias M, Saucedo-Cardenas O, de Oca-Luna RM, Garcia-Garcia A, Rodriguez-Rocha H. Combined chronic copper exposure and aging lead to neurotoxicity in vivo. Neurotoxicology 2023; 95:181-192. [PMID: 36775208 DOI: 10.1016/j.neuro.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The environment, containing pollutants, toxins, and transition metals (copper, iron, manganese, and zinc), plays a critical role in neurodegenerative disease development. Copper occupational exposure increases Parkinson's disease (PD) risk. Previously, we determined the mechanisms by which copper induces dopaminergic cell death in vitro. The copper transporter protein 1 (Ctr1) overexpression led to intracellular glutathione depletion potentiating caspase-3 mediated cell death; oxidative stress was primarily cytosolic, and Nrf2 was upregulated mediating an antioxidant response; and protein ubiquitination, AMPK-Ulk1 signaling, p62, and Atg5-dependent autophagy were increased as a protective mechanism. However, the effect of chronic copper exposure on the neurodegenerative process has not been explored in vivo. We aimed to elucidate whether prolonged copper treatment reproduces PD features and mechanisms during aging. Throughout 40 weeks, C57BL/6J male mice were treated with copper at 0, 100, 250, and 500 ppm in the drinking water. Chronic copper exposure altered motor function and induced dopaminergic neuronal loss, astrocytosis, and microgliosis in a dose-dependent manner. α-Synuclein accumulation and aggregation were increased in response to copper, and the proteasome and autophagy alterations, previously observed in vitro, were confirmed in vivo, where protein ubiquitination, AMPK phosphorylation, and the autophagy marker LC3-II were also increased by copper exposure. Finally, nitrosative stress was induced by copper in a concentration-dependent fashion, as evidenced by increased protein nitration. To our knowledge, this is the first study combining chronic copper exposure and aging, which may represent an in vivo model of non-genetic PD and help to assess potential prophylactic and therapeutic approaches. DATA AVAILABILITY: The data underlying this article are available in the article.
Collapse
Affiliation(s)
- Alfredo Gonzalez-Alcocer
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Yareth Gopar-Cuevas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Adolfo Soto-Dominguez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Uziel Castillo-Velazquez
- Departamento de Inmunología Veterinaria, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo, Nuevo León 66050, Mexico
| | - Maria de Jesus Loera-Arias
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Aracely Garcia-Garcia
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico.
| | - Humberto Rodriguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico.
| |
Collapse
|
20
|
Rapid metabolic reprogramming mediated by the AMP-activated protein kinase during the lytic cycle of Toxoplasma gondii. Nat Commun 2023; 14:422. [PMID: 36702847 PMCID: PMC9880002 DOI: 10.1038/s41467-023-36084-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquitous pathogen Toxoplasma gondii has a complex lifestyle with different metabolic activities at different stages that are intimately linked to the parasitic environments. Here we identified the eukaryotic regulator of cellular homeostasis AMP-activated protein kinase (AMPK) in Toxoplasma and discovered its role in metabolic programming during parasite's lytic cycle. The catalytic subunit AMPKα is quickly phosphorylated after the release of intracellular parasites to extracellular environments, driving energy-producing catabolism to power parasite motility and invasion into host cells. Once inside host cells, AMPKα phosphorylation is reduced to basal level to promote a balance between energy production and biomass synthesis, allowing robust parasite replication. AMPKγ depletion abolishes AMPKα phosphorylation and suppresses parasite growth, which can be partially rescued by overexpressing wildtype AMPKα but not the phosphorylation mutants. Thus, through the cyclic reprogramming by AMPK, the parasites' metabolic needs at each stage are satisfied and the lytic cycle progresses robustly.
Collapse
|
21
|
Chen W, Zhao Z, Cen S, Lv D, Wu J, Zhou X, Yang T, Zhao T, Hou L, Mao X. Exposure to elevated temperature affects the expression of PIWI-interacting RNAs and associated transcripts in mouse testes. Andrology 2023; 11:724-737. [PMID: 36603597 DOI: 10.1111/andr.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND Exposure to heat waves could result in adverse effects on human health, especially in male testicles. PIWI-interacting RNA (piRNA) is a novel type of small non-coding RNA, which can notably impact mRNA turnover and preserve germline maintenance in germline cells. However, piRNA's expression status when adapting to testicular heat stress remains largely unclear. OBJECTIVES To investigate the function and mechanisms of relevant piRNAs during testicular heat stress. MATERIALS AND METHODS In this study, a mouse testicular heat stress model was constructed, and the testes were removed for piRNA-sequencing. Bioinformatics analysis was used to discover the differential expressed piRNAs, piRNA clusters, and enriched pathways. A cell heat stress model was constructed to validate the top five upregulated piRNAs. Proliferation and apoptosis assays were utilized to validate the function of selected piRNA. Bioinformatics prediction, western blotting, and immunohistochemistry were used to illustrate the downstream mechanisms. RESULTS Through the bioinformatics analysis, we identified the differential expression profile and enriched pathways of piRNAs and piRNA clusters during testicular hyperthermia. Besides, piR-020492 was proved to be upregulated in heat stress mouse testes and a germ cell model. A series of in vitro assays illustrated that an overexpression of piR-020492 could restrain the proliferation and promote the apoptosis of mouse germ cells. Kyoto Encyclopedia of Genes and Genomes analysis of piRNA-generating genes in the testicular heat stress model and piR-020492 targeting genes showed that the overlap pathways are adenosine monophosphate-activated protein kinase (AMPK) and insulin pathways. Validation experiments demonstrated that the key genes of AMPK and insulin pathway exhibit differential expression after an overexpression of piR-020492 or testicular heat stress. DISCUSSION AND CONCLUSION In conclusion, our findings revealed the expression profile of piRNAs in testicular heat stress and illustrated the function and mechanisms of piR-020492 in germ cells, which could provide novel insights into the mechanism of hyperthermia-induced testicular injury.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhang Zhao
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shengren Cen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Daojun Lv
- Department of Urology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jun Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xumin Zhou
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianxin Zhao
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Longlong Hou
- Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Wan L, Wang L, Cheng R, Cheng L, Hu T. Metabolic shift and the effect of mitochondrial respiration on the osteogenic differentiation of dental pulp stem cells. PeerJ 2023; 11:e15164. [PMID: 37101792 PMCID: PMC10124543 DOI: 10.7717/peerj.15164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/13/2023] [Indexed: 04/28/2023] Open
Abstract
Background Metabolism shifts from glycolysis to mitochondrial oxidative phosphorylation are vital during the differentiation of stem cells. Mitochondria have a direct function in differentiation. However, the metabolic shift and the effect of mitochondria in regulating the osteogenic differentiation of human dental pulp stem cells (hDPSCs) remain unclear. Methods Human dental pulp stem cells were collected from five healthy donors. Osteogenic differentiation was induced by osteogenic induction medium. The activities of alkaline phosphatase, hexokinase, pyruvate kinase, and lactate dehydrogenase were analyzed by enzymatic activity kits. The extracellular acidification rate and the mitochondrial oxygen consumption rate were measured. The mRNA levels of COL-1, ALP, TFAM, and NRF1 were analyzed. The protein levels of p-AMPK and AMPK were detected by western blotting. Results Glycolysis decreased after a slight increase, while mitochondrial oxidative phosphorylation continued to increase when cells grew in osteogenic induction medium. Therefore, the metabolism of differentiating cells switched to mitochondrial respiration. Next, inhibiting mitochondrial respiration with carbonyl cyanide-chlorophenylhydrazone, a mitochondrial uncoupler inhibited hDPSCs differentiation with less ALP activity and decreased ALP and COL-1 mRNA expression. Furthermore, mitochondrial uncoupling led to AMPK activation. 5-Aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, simulated the effect of mitochondrial uncoupling by inhibiting osteogenic differentiation, mitochondrial biogenesis, and mitochondrial morphology. Mitochondrial uncoupling and activation of AMPK depressed mitochondrial oxidative phosphorylation and inhibited differentiation, suggesting that they may serve as regulators to halt osteogenic differentiation from impaired mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Lingyun Wan
- State Key Laboratory of Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linyan Wang
- Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Cheng
- State Key Laboratory of Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Metformin Attenuates Slow-to-Fast Fiber Shift and Proteolysis Markers Increase in Rat Soleus after 7 Days of Rat Hindlimb Unloading. Int J Mol Sci 2022; 24:ijms24010503. [PMID: 36613942 PMCID: PMC9820761 DOI: 10.3390/ijms24010503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Muscle unloading leads to signaling alterations that cause muscle atrophy and weakness. The cellular energy sensor AMPK can regulate myofiber-type shift, calcium-dependent signaling and ubiquitin-proteasome system markers. We hypothesized that the prevention of p-AMPK downregulation during the first week of muscle unloading would impede atrophy development and the slow-to-fast shift of soleus muscle fibers, and the aim of the study was to test this hypothesis. Thirty-two male Wistar rats were randomly assigned to four groups: placebo control (C), control rats treated with metformin (C + M), 7 days of hindlimb suspension (HS) + placebo (7HS), and 7 days of HS + metformin administration (7HS + M). In the soleus of the 7HS rats, we detected a slow-to-fast fiber-type shift as well as a significant downregulation of MEF-2D and p300 in the nuclei. In the 7HS group, we also found decreases in p-ACC (AMPK target) protein level and in the expression of E3 ubiquitin ligases and p-CaMK II protein level vs. the C group. The 7-day metformin treatment for soleus muscle unloading (1) prevented slow-to-fast fiber-type shift; (2) counteracted changes in the p-ACC protein level; (3) hindered changes in the nuclear protein level of the slow myosin expression activators MEF-2D and p300, but did not affect NFATc1 signaling; and (4) attenuated the unloading-induced upregulation of MuRF-1, atrogin-1, ubiquitin and myostatin mRNA expression, but did not prevent soleus muscle atrophy. Thus, metformin treatment during muscle disuse could be useful to prevent the decrease in the percentage of slow-type fatigue-resistant muscle fibers.
Collapse
|