1
|
D A G, Adhikari J, Debnath P, Ghosh S, Ghosh P, Thomas S, Ghandilyan E, Gorbatov P, Kuchukyan E, Gasparyan S, Saha P. 3D printing of bacterial cellulose for potential wound healing applications: Current trends and prospects. Int J Biol Macromol 2024; 279:135213. [PMID: 39216564 DOI: 10.1016/j.ijbiomac.2024.135213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Several advances in skin tissue engineering have been made to restore skin damage, facilitating wound healing. Bacterial cellulose (BC), a naturally occurring polymer, has gained attention as a potential material in wound healing due to its unique physical and biological properties. In recent years, with the advent of 3D bio-printing technology, new avenues have opened for fabricating customized wound dressings and scaffolds for tissue engineering purposes. The existing literature in this field mainly focuses on the ways of modifications of bacterial cellulose to make it printable. Still, the applicability of 3D printed scaffolds for wound healing needs to be explored more. This review article focuses on the current research on using 3D-printed BC for skin regeneration, including its production methods and physical and biological properties, making it a better choice than traditional dressings. Furthermore, it also highlights the limitations and future directions for using BC in wound healing and tissue engineering applications. This review provides a comprehensive and up-to-date exploration of the applications of 3D-printed BC in wound healing, drawing insights from pre-existing studies and emphasizing patient compliance, clinical outcomes, and economic viability.
Collapse
Affiliation(s)
- Gouripriya D A
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Jaideep Adhikari
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Poonam Debnath
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Shrayana Ghosh
- Department of Biotechnology, Amity University, Kolkata, India
| | - Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India
| | - Sabu Thomas
- School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and IIUCNN, Mahatma Gandhi University, Kottayam 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 Johannesburg, South Africa; TrEST Research Park, TC-4/2322, GEM Building, Opposite College of Engineering Trivandrum, Kulathoor Rd, Sreekariyam, Trivandrum, Kerala 695016, India
| | - Emmanuel Ghandilyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia; Institute of Physiology after L. Orbeli National Academy of Sciences of Republic of Armenia, 22 Orbeli Brothers Street, 0028 Yerevan, Armenia
| | - Pavel Gorbatov
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia
| | - Elza Kuchukyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia
| | - Seda Gasparyan
- Foldink, 22 Orbeli Brothers Street 0028, Yerevan, Armenia; Institute of Physiology after L. Orbeli National Academy of Sciences of Republic of Armenia, 22 Orbeli Brothers Street, 0028 Yerevan, Armenia
| | - Prosenjit Saha
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, WB-700091, India.
| |
Collapse
|
2
|
Panahi-Sarmad M, Alikarami N, Guo T, Haji M, Jiang F, Rojas OJ. Aerogels based on Bacterial Nanocellulose and their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403583. [PMID: 39073312 DOI: 10.1002/smll.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Microbial cellulose stands out for its exceptional characteristics in the form of biofilms formed by highly interlocked fibrils, namely, bacterial nanocellulose (BNC). Concurrently, bio-based aerogels are finding uses in innovative materials owing to their lightweight, high surface area, physical, mechanical, and thermal properties. In particular, bio-based aerogels based on BNC offer significant opportunities as alternatives to synthetic or mineral counterparts. BNC aerogels are proposed for diverse applications, ranging from sensors to medical devices, as well as thermal and electroactive systems. Due to the fibrous nanostructure of BNC and the micro-porosity of BNC aerogels, these materials enable the creation of tailored and specialized designs. Herein, a comprehensive review of BNC-based aerogels, their attributes, hierarchical, and multiscale features are provided. Their potential across various disciplines is highlighted, emphasizing their biocompatibility and suitability for physical and chemical modification. BNC aerogels are shown as feasible options to advance material science and foster sustainable solutions through biotechnology.
Collapse
Affiliation(s)
- Mahyar Panahi-Sarmad
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Niloofar Alikarami
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Tianyu Guo
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mehri Haji
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Orlando J Rojas
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
3
|
Liu H, Chittur PK, Kornfield JA, Tirrell DA. Cohesive Living Bacterial Films with Tunable Mechanical Properties from Cell Surface Protein Display. ACS Synth Biol 2024. [PMID: 39485734 DOI: 10.1021/acssynbio.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Engineered living materials (ELMs) constitute a novel class of functional materials that contain living organisms. The mechanical properties of many such systems are dominated by the polymeric matrices used to encapsulate the cellular components of the material, making it hard to tune the mechanical behavior through genetic manipulation. To address this issue, we have developed living materials in which mechanical properties are controlled by the cell-surface display of engineered proteins. Here, we show that engineered Esherichia coli cells outfitted with surface-displayed elastin-like proteins (ELPs, designated E6) grow into soft, cohesive bacterial films with biaxial moduli around 14 kPa. When subjected to bulge-testing, such films yielded at strains of approximately 10%. Introduction of a single cysteine residue near the exposed N-terminus of the ELP (to afford a protein designated CE6) increases the film modulus 3-fold to 44 kPa and eliminates the yielding behavior. When subjected to oscillatory stress, films prepared from E. coli strains bearing CE6 exhibit modest hysteresis and full strain recovery; in E6 films much more significant hysteresis and substantial plastic deformation are observed. CE6 films heal autonomously after damage, with the biaxial modulus fully restored after a few hours. This work establishes an approach to living materials with genetically programmable mechanical properties and a capacity for self-healing. Such materials may find application in biomanufacturing, biosensing, and bioremediation.
Collapse
Affiliation(s)
- Hanwei Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Priya K Chittur
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Julia A Kornfield
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Patil H, Naik R, Paramasivam SK. Utilization of banana crop ligno-cellulosic waste for sustainable development of biomaterials and nanocomposites. Int J Biol Macromol 2024; 282:137065. [PMID: 39481709 DOI: 10.1016/j.ijbiomac.2024.137065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Banana (Musa spp.) is a tropical fruit cultivated in over 130 countries, producing significant lignocellulosic biomass. However, much of the agro-industrial waste from banana plants is neglected, contributing to environmental pollution. Around 60 % of the plant's biomass is generated after fruit harvesting, representing an untapped resource. This review examines the potential of banana plant waste for developing biocomposite and biodegradable materials. It covers the extraction and modification of banana fibers for composites, with a focus on the fabrication of nano biocomposites using banana fibers as reinforcement and polysaccharides or proteins as matrices. The review also evaluates the biodegradability and environmental impact of these materials through Life Cycle Assessment studies. Future research directions include refining processing methods, improving fiber-matrix compatibility, and enhancing the durability of banana fiber composites for packaging applications.
Collapse
Affiliation(s)
- Hrishikesh Patil
- ICAR-Central Institute of Agricultural Engineering, Regional Station, Coimbatore, Tamil Nadu, India
| | - Ravindra Naik
- ICAR-Central Institute of Agricultural Engineering, Regional Station, Coimbatore, Tamil Nadu, India.
| | - Suresh Kumar Paramasivam
- Division of Crop Production and Postharvest Technology, ICAR - National Research Centre for Banana, Tiruchirappalli, India
| |
Collapse
|
5
|
Al-Hasabe ASH, Abdull Razis AFB, Baharum NAB, Yu CY, Mat Isa NB. Production and analysis of synthesized bacterial cellulose by Enterococcus faecalis strain AEF using Phoenix dactylifera and Musa acuminata fruit extracts. World J Microbiol Biotechnol 2024; 40:362. [PMID: 39446188 DOI: 10.1007/s11274-024-04159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Bacterial cellulose (BC) is a highly versatile biopolymer renowned for its exceptional mechanical strength, water retention, and biocompatibility. These properties make it a valuable material for various industrial and biomedical applications. In this study, Enterococcus faecalis synthesized extracellular BC, utilizing Phoenix dactylifera and Musa acuminata fruit extracts as sustainable carbon sources. LC-MS analysis identified glucose as the primary carbohydrate in these extracts, providing a suitable substrate for BC production. Scanning Electron Microscopy (SEM) revealed a network of BC nanofibers on Congo red agar plates. ATR-FTIR spectroscopy confirmed the presence of characteristic cellulose functional groups, further supporting BC synthesis. X-ray diffraction (XRD) analysis indicated a high crystallinity index of 71%, consistent with the cellulose I structure, as evidenced by peaks at 16.22°, 21.46°, 22.52°, and 34.70°. Whole-genome sequencing of E. faecalis identified vital genes involved in BC biosynthesis, including bcsA, bcsB, diguanylate cyclase (DGC), and 6-phosphofructokinase (pfkA). Antibiotic susceptibility tests revealed resistance to cefotaxime, ceftazidime, and ceftriaxone, while susceptibility to imipenem was observed. Quantitative assessment demonstrated that higher concentrations of fruit extracts (5.0-20 mg/mL) significantly enhanced BC production. Cytotoxicity testing via the MTT assay confirmed excellent biocompatibility with NIH/3T3 fibroblast cells, showing high cell viability (97-105%). Unlike commonly studied Gram-negative bacteria like Acetobacter xylinum for BC production, this research focuses on Gram-positive Enterococcus faecalis and utilizes Phoenix dactylifera and Musa acuminata fruit extracts as carbon sources. This approach offers a sustainable and promising avenue for BC production.
Collapse
Affiliation(s)
- Ashraf Sami Hassan Al-Hasabe
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Department of Biology, Faculty of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ahmad Faizal Bin Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nadiya Akmal Binti Baharum
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Choo Yee Yu
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nurulfiza Binti Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| |
Collapse
|
6
|
Pitocchi R, Pennacchio A, Zuber F, Ren Q, Notomista E, Campioni S, Nyström G, Giardina P, Piscitelli A. Antimicrobial Functionalization of Surfaces by a Chimeric Adhesive Protein. ACS APPLIED BIO MATERIALS 2024; 7:6594-6602. [PMID: 39284578 PMCID: PMC11498137 DOI: 10.1021/acsabm.4c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024]
Abstract
The main aim of this work is to account for the prevention and control of microbial growth on surfaces of interest in medical technology. Surface modification is often achieved by physiotherapy or chemical treatments that can involve time-consuming steps, hazardous reagents, and harsh conditions. One of the ways to overcome these drawbacks is the use of surface-active proteins such as hydrophobins. They can form stable protein layers on different surfaces, serving as anchoring points for other molecules of interest. The fungal hydrophobin Vmh2, already exploited for its adhesive ability, has been fused with the antimicrobial peptide GKY20, forming the chimeric protein used herein for functionalizing polystyrene (PS) and bacterial cellulose (BC). As a natural biomass, BC has multiple advantages, including biodegradability, low cost, renewability, high purity, and excellent mechanical properties. The chimeric protein has been proven to successfully adhere to both surfaces. A strong decrease in biofilm formation on PS and a good bactericidal effect of BC have been demonstrated. These findings provide evidence of an alternative strategy to obtain functional composites using a green, easy process.
Collapse
Affiliation(s)
- Rossana Pitocchi
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Napoli, Italy
| | - Anna Pennacchio
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Napoli, Italy
| | - Flavia Zuber
- Laboratories
of Biointerfaces, Empa, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratories
of Biointerfaces, Empa, 9014 St. Gallen, Switzerland
| | - Eugenio Notomista
- Department
of Biology, University of Naples Federico
II, 80126 Napoli, Italy
| | - Silvia Campioni
- Laboratory
for Cellulose and Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Gustav Nyström
- Laboratory
for Cellulose and Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Paola Giardina
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Napoli, Italy
| | - Alessandra Piscitelli
- Department
of Chemical Sciences, University of Naples
Federico II, 80126 Napoli, Italy
| |
Collapse
|
7
|
dos Santos MR, Durval IJB, de Medeiros ADM, da Silva Júnior CJG, Converti A, Costa AFDS, Sarubbo LA. Biotechnology in Food Packaging Using Bacterial Cellulose. Foods 2024; 13:3327. [PMID: 39456389 PMCID: PMC11507476 DOI: 10.3390/foods13203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Food packaging, which is typically made of paper/cardboard, glass, metal, and plastic, is essential for protecting and preserving food. However, the impact of conventional food packaging and especially the predominant use of plastics, due to their versatility and low cost, bring serious environmental and health problems such as pollution by micro and nanoplastics. In response to these challenges, biotechnology emerges as a new way for improving packaging by providing biopolymers as sustainable alternatives. In this context, bacterial cellulose (BC), a biodegradable and biocompatible material produced by bacteria, stands out for its mechanical resistance, food preservation capacity, and rapid degradation and is a promising solution for replacing plastics. However, despite its advantages, large-scale application still encounters technical and economic challenges. These include high costs compared to when conventional materials are used, difficulties in standardizing membrane production through microbial methods, and challenges in optimizing cultivation and production processes, so further studies are necessary to ensure food safety and industrial viability. Thus, this review provides an overview of the impacts of conventional packaging. It discusses the development of biodegradable packaging, highlighting BC as a promising biopolymer. Additionally, it explores biotechnological techniques for the development of innovative packaging through structural modifications of BC, as well as ways to optimize its production process. The study also emphasizes the importance of these solutions in promoting a circular economy within the food industry and reducing its environmental impact.
Collapse
Affiliation(s)
- Maryana Rogéria dos Santos
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n-Dois Irmãos, Recife 52171-900, Brazil;
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Italo José Batista Durval
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Alexandre D’Lamare Maia de Medeiros
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Cláudio José Galdino da Silva Júnior
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Attilio Converti
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa (UNIGE), Via Opera Pia, 15, 16145 Genoa, Italy
| | - Andréa Fernanda de Santana Costa
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Centro de Comunicação e Desing, Centro Acadêmico da Região Agreste, Universidade Federal de Pernambuco (UFPE), BR 104, Km 59, s/n—Nova Caruaru, Caruaru 50670-900, Brazil
| | - Leonie Asfora Sarubbo
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Escola de Tecnologia e Comunicação, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil
| |
Collapse
|
8
|
Dias-Souza MV, Alves AL, Pagnin S, Veiga AA, Haq IU, Alonazi WB, Dos Santos VL. The activity of hydrolytic enzymes and antibiotics against biofilms of bacteria isolated from industrial-scale cooling towers. Microb Cell Fact 2024; 23:282. [PMID: 39415191 PMCID: PMC11484388 DOI: 10.1186/s12934-024-02502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Cooling towers (CTs) are crucial to myriad industrial processes, supporting thermal exchange between fluids in heat exchangers using water from lakes and rivers as coolant. However, CT water can sometimes introduce microbial contaminants that adhere to and colonize various surfaces within the CT system. These microorganisms can form biofilms, significantly hindering the system's thermal exchange efficiency. Current treatment strategies employ oxidizing biocides to prevent microbial growth. However, despite their affordability, they do not eliminate biofilms effectively and can lead to corrosive damage within the system. Herein, we aim to devise an anti-biofilm strategy utilizing hydrolytic enzymes (such as α-amylase, glucoamylase, pectin-lyase, cellulase, protease, and DNase) alongside antibiotics (including meropenem, ciprofloxacin, gentamicin, erythromycin, chloramphenicol, and ceftriaxone) to combat microbial growth and biofilm formation in cooling systems. RESULTS All enzymes reduced the development of the biofilms significantly compared to controls (p < 0.05). The polysaccharidases exhibited biomass reduction of 90%, except for pectin-lyase (80%), followed by DNAse and protease at 43% and 49%, respectively. The antibiotics reduced the biofilms of 70% of isolates in concentration of > 2 mg/mL. The minimal biofilm eradication concentration (MBEC) lower than 1 mg/mL was detected for some 7-day-old sessile isolates. The enzymes and antibiotics were also used in combination against biofilms using the modified Chequerboard method. We found six synergistic combinations, with Fractional inhibitory concentrations (FIC) < 0.5, out of the ten tested. In the presence of the enzymatic mixture, MBECs presented a significant decrease (p < 0.05), at least 4-fold for antibiotics and 32-fold for enzymes. Moreover, we characterized high molecular weight (> 12 kDa) exopolysaccharides (EPS) from biofilms of ten isolates, and glycosyl composition analysis indicated a high frequency of glucose, mannose, erythrose, arabinose, and idose across isolates EPS contrasting with rhamnose, allose, and those carbohydrates, which were detected in only one isolate. CONCLUSION The synergistic approach of combining enzymes with antibiotics emerges as a highly effective and innovative strategy for anti-biofilm intervention, highlighting its potential to enhance biofilm management practices.
Collapse
Affiliation(s)
- Marcus Vinícius Dias-Souza
- Applied Microbiology Laboratory, Microbiology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, C.P. 486, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Andrea Lima Alves
- Applied Microbiology Laboratory, Microbiology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, C.P. 486, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Sérgio Pagnin
- Research and Development Center (CENPES), Petróleo Brasileiro S.A., Rio de Janeiro, Brazil
| | - Andrea Azevedo Veiga
- Research and Development Center (CENPES), Petróleo Brasileiro S.A., Rio de Janeiro, Brazil
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice, 44-100, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Wadi B Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - Vera Lúcia Dos Santos
- Applied Microbiology Laboratory, Microbiology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, C.P. 486, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
9
|
Yermagambetova A, Tazhibayeva S, Takhistov P, Tyussyupova B, Tapia-Hernández JA, Musabekov K. Microbial Polysaccharides as Functional Components of Packaging and Drug Delivery Applications. Polymers (Basel) 2024; 16:2854. [PMID: 39458682 PMCID: PMC11511474 DOI: 10.3390/polym16202854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
This review examines microbial polysaccharides' properties relevant to their use in packaging and pharmaceutical applications. Microbial polysaccharides are produced by enzymes found in the cell walls of microbes. Xanthan gum, curdlan gum, pullulan, and bacterial cellulose are high-molecular-weight substances consisting of sugar residues linked by glycoside bonds. These polysaccharides have linear or highly branched molecular structures. Packaging based on microbial polysaccharides is readily biodegradable and can be considered as a renewable energy source with the potential to reduce environmental impact. In addition, microbial polysaccharides have antioxidant and prebiotic properties. The physico-chemical properties of microbial polysaccharide-based films, including tensile strength and elongation at break, are also evaluated. These materials' potential as multifunctional packaging solutions in the food industry is demonstrated. In addition, their possible use in medicine as a drug delivery system is also considered.
Collapse
Affiliation(s)
- Aigerim Yermagambetova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Sagdat Tazhibayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Paul Takhistov
- Department of Food Science, Rutgers State University of New Jersey, New Brunswick, NJ 07102, USA;
| | - Bakyt Tyussyupova
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos (DIPA), University of Sonora, Hermosillo 83000, Sonora, Mexico;
| | - Kuanyshbek Musabekov
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| |
Collapse
|
10
|
Aziz T, Li W, Zhu J, Chen B. Developing multifunctional cellulose derivatives for environmental and biomedical applications: Insights into modification processes and advanced material properties. Int J Biol Macromol 2024; 278:134695. [PMID: 39151861 DOI: 10.1016/j.ijbiomac.2024.134695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The growing bioeconomic demand for lightweight, eco-friendly materials with functional versatility and competitive mechanical properties drives the resurgence of cellulose as a sustainable scaffold for various applications. This review comprehensively scrutinizes current progressions in cellulose functional materials (CFMs), concentrating on their structure-property connections. Significant modification methods, including cross-linking, grafting, and oxidation, are discussed together with preparation techniques categorized by cellulose sources. This review article highlights the extensive usage of modified cellulose in various industries, particularly its potential in optical and toughening applications, membrane production, and intelligent bio-based systems. Prominence is located on low-cost procedures for developing biodegradable polymers and the physical-chemical characteristics essential for biomedical applications. Furthermore, the review explores the role of cellulose derivatives in smart packaging films for food quality monitoring and deep probes into cellulose's mechanical, thermal, and structural characteristics. The multifunctional features of cellulose derivatives highlight their worth in evolving environmental and biomedical engineering applications.
Collapse
Affiliation(s)
- Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Wenlong Li
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Jianguo Zhu
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China.
| | - Beibei Chen
- School of Materials Science and Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Roque-Borda CA, Carnero Canales CS, Primo LMDG, Colturato VMM, Polinário G, Di Filippo LD, Duarte JL, Chorilli M, da Silva Barud H, Pavan FR. Cellulose from bacteria as a delivery system for improved treatment of infectious diseases: A review of updates and prospects. Int J Biol Macromol 2024; 277:133831. [PMID: 39084978 DOI: 10.1016/j.ijbiomac.2024.133831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Cellulose from bacteria is a high-purity biomaterial naturally produced by bacteria as part of their metabolic process. Although it inherently lacks antimicrobial activity, its modification with bioactive substances can significantly enhance its efficacy beyond that of the original compounds. This biomaterial features a unique ability to retain substantial quantities of liquids within its three-dimensional network, making it a prime candidate for biomedical applications. Versatile in its properties, it can be utilized across various industries. Previous research has highlighted its capacity to exhibit antimicrobial properties and to encapsulate nanostructured materials, thereby augmenting its antibacterial effectiveness. This review focuses on the use of cellulose from bacteria as a carrier for active compounds, specifically targeting antibacterial activity against drug-resistant strains. We explore its role in innovative bacterial cellulose-based systems, which present a promising solution for tackling bacterial resistance. This review aims to showcase the potential of bacterial cellulose in developing new devices and treatment strategies that address critical concerns in global health.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Universidad Católica de Santa María, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Arequipa, Peru.
| | | | | | | | - Giulia Polinário
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Hernane da Silva Barud
- University of Araraquara (UNIARA), Biopolymers and Biomaterials Laboratory (BIOPOLMAT), Araraquara, São Paulo, Brazil
| | - Fernando R Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil.
| |
Collapse
|
12
|
Walling B, Bharali P, Ramachandran D, Kanagasabai V, Dutta N, Hazarika S, Maadurshni GB, Manivannan J, Kumari S, Acharjee SA, Gogoi B, Alemtoshi, Sorhie V, Vishwakarma V. Bacterial valorization of agricultural-waste into a nano-sized cellulosic matrix for mitigating emerging pharmaceutical pollutants: An eco-benign approach. Int J Biol Macromol 2024; 277:133684. [PMID: 39084979 DOI: 10.1016/j.ijbiomac.2024.133684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
For Bacterial Nanocellulose (BNC) production, standard methods are well-established, but there is a pressing need to explore cost-effective alternatives for BNC commercialization. This study investigates the feasibility of using syrup prepared from maize stalk as a valuable nutrient and sustainable carbon source for BNC production. Our study achieved a remarkable BNC production yield of 19.457 g L-1 by utilizing Komagataeibacter saccharivorans NUWB1 in combination with components from the Hestrin-Schramm (HS) medium. Physicochemical properties revealed that the obtained BNC exhibited a crystallinity index of 60.5 %, tensile strength of 43.5 MPa along with enhanced thermostability reaching up to 360 °C. N2 adsorption-desorption isotherm of the BNC displayed characteristics of type IV, indicating the presence of a mesoporous structure. The produced BNC underwent thorough investigation, focusing on its efficacy in addressing environmental concerns, particularly in removing emerging pharmaceutical pollutants like Metformin and Paracetamol. Remarkably, the BNC exhibited strong adsorption capabilities, aligning with the Langmuir isotherm and pseudo-second-order model. Thermodynamic analysis confirmed a spontaneous and endothermic adsorption process. Furthermore, the BNC showed potential for regeneration, enabling up to five recycling cycles. Cytotoxicity and oxidative stress assays validated the biocompatibility of BNC. Lastly, the BNC films displayed an impressive 88.73 % biodegradation within 21 days.
Collapse
Affiliation(s)
- Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India.
| | - D Ramachandran
- Centre for Nanoscience & Nanotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, -600119, Tamil Nadu, India
| | - Viswanathan Kanagasabai
- Centre for Nanoscience & Nanotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, -600119, Tamil Nadu, India
| | - Nipu Dutta
- Department of Chemical Science, Tezpur University, Napaam, Tezpur, -784028, Assam, India
| | - Swapnali Hazarika
- Chemical Engineering Group, CSIR-North East Institute of Science & Technology, Jorhat, -785006, Assam, India
| | | | - Jeganathan Manivannan
- Environmental Health & Toxicology Laboratory, Department of Environmental Science, Bharathiar University, Tamil Nadu, India
| | - Sony Kumari
- Department of Applied Biology, University of Science and Technology, Meghalaya, Ri Bhoi, Baridua 793101, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto, -798627, Nagaland, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR, Delhi, India
| |
Collapse
|
13
|
Flemming HC, van Hullebusch ED, Little BJ, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. Microbial extracellular polymeric substances in the environment, technology and medicine. Nat Rev Microbiol 2024:10.1038/s41579-024-01098-y. [PMID: 39333414 DOI: 10.1038/s41579-024-01098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/29/2024]
Abstract
Microbial biofilms exhibit a self-produced matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA and lipids. EPS promote interactions of the biofilm with other cells and sorption of organics, metals and chemical pollutants, and they facilitate cell adhesion at interfaces and ensure matrix cohesion. EPS have roles in various natural environments, such as soils, sediments and marine habitats. In addition, EPS are relevant in technical environments, such as wastewater and drinking water treatment facilities, and water distribution systems, and they contribute to biofouling and microbially influenced corrosion. In medicine, EPS protect pathogens within the biofilm against the host immune system and antimicrobials, and emerging evidence suggests that EPS can represent potential virulence factors. By contrast, EPS yield a wide range of valuable products that include their role in self-repairing concrete. In this Review, we aim to explore EPS as a functional unit of biofilms in the environment, in technology and in medicine.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
- Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.
| | | | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, the Ohio State University, Columbus, OH, USA
- National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, UK
| | - Jost Wingender
- University of Duisburg-Essen, Faculty of Chemistry, Environmental Microbiology and Biotechnology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
14
|
Henry S, Dhital S, Sumer H, Butardo V. Solid-State Fermentation of Cereal Waste Improves the Bioavailability and Yield of Bacterial Cellulose Production by a Novacetimonas sp. Isolate. Foods 2024; 13:3052. [PMID: 39410086 PMCID: PMC11475563 DOI: 10.3390/foods13193052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Cereal wastes such as rice bran and cereal dust are valuable yet underutilised by-products of grain processing. This study aimed to bio-convert these wastes into bacterial cellulose (BC), an emerging sustainable and renewable biomaterial, via an inexpensive solid-state fermentation (SSF) pre-treatment using three mould isolates. Medium substitution by directly using untreated rice bran or cereal dust did not significantly increase the yield of bacterial cellulose produced by Novacetimonas sp. (NCBI accession number PP421219) compared to the standard Hestrin-Schramm (HS) medium. In contrast, rice bran fermented with Rhizopus oligosporus yielded the highest bacterial cellulose (1.55 ± 0.6 g/L dry weight) compared to the untreated control (0.45 ± 0.1 g/L dry weight), demonstrating an up to 22% increase in yield. Using the SSF process, the media production costs were reduced by up to 90% compared to the standard HS medium. Physicochemical characterisation using SEM, EDS, FTIR, XPS, XRD, and TGA was performed to gain insights into the internal structure, morphology, and chemical bonding of differently produced BC, which revealed comparable biopolymer properties between BC produced in standard and waste-based media. Hence, our findings demonstrate the effectiveness of fungal SSF for transforming abundant cereal waste into BC, providing a circular economy solution to reduce waste and convert it into by-products to enhance the sustainability of the cereal industry.
Collapse
Affiliation(s)
- Shriya Henry
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia; (S.H.); (H.S.)
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia; (S.H.); (H.S.)
| | - Vito Butardo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia; (S.H.); (H.S.)
| |
Collapse
|
15
|
Xu J, Liu X, Zhang Q. The Biosynthesis of Bacterial Cellulose Composites Accompanied by Spray Feeding of Biomasses. Polymers (Basel) 2024; 16:2541. [PMID: 39274173 PMCID: PMC11397784 DOI: 10.3390/polym16172541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Bacterial cellulose (BC) is a broadly utilized natural nanofiber produced by microbial fermentation, but its high-cost and low-yield production and limited function still hinder its application. Here, we used the spraying-assisted biosynthesis method to introduce biomass nanofibers along with the nutrient media to the fermenting BC. Biomass nanofibers could be cellulose, chitosan, and others. They entangled with BC nanofibers via intermolecular interactions, including hydrogen binding and electrostatic adsorption, to form uniform BC composites. The BC composites achieved an enhanced yield of ~140 wt% compared with pure BC and displayed similar excellent mechanical properties (Young's moduli = 0.9-1.4 MPa for wet films and =~6500 MPa for dried films). BC composites also had similar high crystallinity and thermal stability to pure BC. The functional groups of biomasses endowed BC composite additional functions such as antibacterial and dye-adsorption capabilities. Moreover, a high yield and functionalization could be realized simultaneously by feeding functional cellulose nanofibers. This method provides a facile way to produce BC composites with low cost, high yield, and multiple functions.
Collapse
Affiliation(s)
- Jiali Xu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodi Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
16
|
Tushar SI, Anik HR, Uddin MM, Mandal S, Mohakar V, Rai S, Sharma S. Nanocellulose-based porous lightweight materials with flame retardant properties: A review. Carbohydr Polym 2024; 339:122237. [PMID: 38823907 DOI: 10.1016/j.carbpol.2024.122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/03/2024]
Abstract
This review discusses the development and application of nanocellulose (NC)-aerogels, a sustainable and biodegradable biomaterial, with enhanced flame retardant (FR) properties. NC-aerogels combine the excellent physical and mechanical properties of NC with the low density and thermal conductivity of aerogels, making them promising for thermal insulation and other fields. However, the flammability of NC-aerogels limits their use in some applications, such as electromagnetic interference shielding, oil/water separation, and flame-resistant textiles. The review covers the design, fabrication, modification, and working mechanism of NC porous materials, focusing on how advanced technologies can impart FR properties into them. The review also evaluates the FR performance of NC-aerogels by employing widely recognized tests, such as the limited oxygen index, cone calorimeter, and UL-94. The review also explores the integration of innovative and eco-friendly materials, such as MXene, metal-organic frameworks, dopamine, lignin, and alginate, into NC-aerogels, to improve their FR performance and functionality. The review concludes by outlining the potential, challenges, and limitations of future research on FR NC-aerogels, identifying the obstacles and potential solutions, and understanding the current progress and gaps in the field.
Collapse
Affiliation(s)
- Shariful Islam Tushar
- Department of Design and Merchandising, Oklahoma State University, Stillwater, OK 74078, USA; Department of Apparel Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh
| | - Habibur Rahman Anik
- Department of Apparel Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh; Department of Chemistry and Chemical & Biomedical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Md Mazbah Uddin
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA.
| | - Sumit Mandal
- Department of Design and Merchandising, Oklahoma State University, Stillwater, OK 74078, USA
| | - Vijay Mohakar
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA
| | - Smriti Rai
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA
| | - Suraj Sharma
- Department of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Dr., Athens, GA 30602, USA.
| |
Collapse
|
17
|
Avcioglu NH. Enhanced bacterial cellulose production by Komagataeibacter species and Hibiscus sabdariffa herbal tea. Int J Biol Macromol 2024; 276:133904. [PMID: 39084992 DOI: 10.1016/j.ijbiomac.2024.133904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
This study proposed Hibiscus sabdariffa as a novel substrate for BC production with Komagataeibacter species and their consortia. K. intermedius is found as the most efficient producer (5.98 g/L BC, 3.56 × 10-2 g-1 h-1 productivity rate) following K. maltaceti (4.44 g/L BC, 2.64 × 10-2 g-1 h-1 productivity rate) and K. nataicola (3.67 g/L BC, 2.18 × 10-2 g-1 h-1 productivity rate). Whereas agitation increased BC production with K. nataicola (1.22-fold, 4.49 g/L BC), K. maltaceti (1.24-fold, 5.52 g/L BC) and K. intermedius (1.27-fold, 7.63 g/L BC), irregular shaped BC was obtained. This could be a novel result as Komagataeibacter consortia increased BC production by 1.17-2.01-fold compared to monocultures resulting as 8.11 g/L BC through the co-cultivation of K. maltaceti-K. intermedius. Maximum increase was found to be 1.75-fold (1.79-fold WHC), occurring with monoculture of K. maltaceti, while 1.94-fold (1.26-fold WHC) with K. maltaceti-K. intermedius consortium when H. sabdariffa-based media compared Hestrin-Schramm media. Based on these results, this could be a novel result as H. sabdariffa-based media may replace the use of HS media in BC production by means of a bioactive content-rich plant and obtaining 3-D ultrafine porous structure with high thermal resistant (∼460-500 °C) BC with mono and co-cultivation of Komagataeibacter species to be used in industrial area.
Collapse
Affiliation(s)
- Nermin Hande Avcioglu
- Hacettepe University, Faculty of Science, Biology Department, Biotechnology Section, Beytepe, Ankara, Turkey.
| |
Collapse
|
18
|
Ball P. Evolving materials. NATURE MATERIALS 2024; 23:1152. [PMID: 39215159 DOI: 10.1038/s41563-024-01983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
|
19
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
20
|
Lima NF, Maciel GM, Lima NP, Fernandes IDAA, Haminiuk CWI. Bacterial cellulose in cosmetic innovation: A review. Int J Biol Macromol 2024; 275:133396. [PMID: 38945719 DOI: 10.1016/j.ijbiomac.2024.133396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Bacterial cellulose (BC) emerges as a versatile biomaterial with a myriad of industrial applications, particularly within the cosmetics sector. The absence of hemicellulose, lignin, and pectin in its pure cellulose structure enables favorable interactions with both hydrophilic and hydrophobic biopolymers. This enhances compatibility with active ingredients commonly employed in cosmetics, such as antioxidants, vitamins, and botanical extracts. Recent progress in BC-based materials, which encompasses membranes, films, gels, nanocrystals, and nanofibers, highlights its significant potential in cosmetics. In this context, BC not only serves as a carrier for active ingredients but also plays a crucial role as a structural agent in formulations. The sustainability of BC production and processing is a central focus, highlighting the need for innovative approaches to strengthen scalability and cost-effectiveness. Future research endeavors, including the exploration of novel cultivation strategies and functionalization techniques, aim to maximize BC's therapeutic potential while broadening its scope in personalized skincare regimes. Therefore, this review emphasizes the crucial contribution of BC to the cosmetics sector, underlining its role in fostering innovation, sustainability, and ethical skincare practices. By integrating recent research findings and industry trends, this review proposes a fresh approach to advancing both skincare science and environmental responsibility in the cosmetics industry.
Collapse
Affiliation(s)
- Nicole Folmann Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| | - Nayara Pereira Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Isabela de Andrade Arruda Fernandes
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| | | |
Collapse
|
21
|
Laurent JM, Jain A, Kan A, Steinacher M, Enrriquez Casimiro N, Stavrakis S, deMello AJ, Studart AR. Directed evolution of material-producing microorganisms. Proc Natl Acad Sci U S A 2024; 121:e2403585121. [PMID: 39042685 PMCID: PMC11295069 DOI: 10.1073/pnas.2403585121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Nature is home to a variety of microorganisms that create materials under environmentally friendly conditions. While this offers an attractive approach for sustainable manufacturing, the production of materials by native microorganisms is usually slow and synthetic biology tools to engineer faster microorganisms are only available when prior knowledge of genotype-phenotype links is available. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify genetic pathways to enhance the material production capabilities of native species. Using Komagataeibacter sucrofermentans as a model cellulose-producing microorganism, we show that our droplet-based microfluidic platform enables the directed evolution of these bacteria toward a small number of cellulose overproducers from an initial pool of 40,000 random mutants. Sequencing of the evolved strains reveals an unexpected link between the cellulose-forming ability of the bacteria and a gene encoding a protease complex responsible for protein turnover in the cell. The ability to enhance the fitness of microorganisms toward a specific phenotype and to unravel genotype-phenotype links makes this high-throughput directed evolution platform a promising tool for the development of new strains for the sustainable manufacturing of materials.
Collapse
Affiliation(s)
- Julie M. Laurent
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| | - Ankit Jain
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich8093, Switzerland
| | - Anton Kan
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| | - Mathias Steinacher
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| | | | - Stavros Stavrakis
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich8093, Switzerland
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich8093, Switzerland
| | - André R. Studart
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| |
Collapse
|
22
|
Sozcu S, Frajova J, Wiener J, Venkataraman M, Tomkova B, Militky J. Effect of Drying Methods on the Thermal and Mechanical Behavior of Bacterial Cellulose Aerogel. Gels 2024; 10:474. [PMID: 39057497 PMCID: PMC11276278 DOI: 10.3390/gels10070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial cellulose (BC) presents significant promise as a biomaterial, boasting unique qualities such as exceptional cellulose purity, robust mechanical strength, heightened crystalline structure, and biodegradability. Several studies have highlighted specific effects, such as the impact of dehydration/rehydration on BC tensile strength, the influence of polymer treatment methods on mechanical properties, the correlation between microorganism type, drying method, and Young's modulus value, and the relationship between culture medium composition, pH, and crystallinity. Drying methods are crucial to the structure, performance, and application of BC films. Research findings indicate that the method used for drying can influence the mechanical properties of BC films, including parameters such as tensile strength, Young's modulus, and water absorption capacity, as well as the micromorphology, crystallinity, and thermal characteristics of the material. Their versatility makes them potential biomaterials applicable in various fields, including thermal and acoustic insulation, owing to their distinct thermal and mechanical attributes. This review delves into the thermal and mechanical behavior of bacterial cellulose aerogels, which are profoundly impacted by their drying mechanism.
Collapse
Affiliation(s)
- Sebnem Sozcu
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.F.); (J.W.); (B.T.); (J.M.)
| | | | | | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 46117 Liberec, Czech Republic; (J.F.); (J.W.); (B.T.); (J.M.)
| | | | | |
Collapse
|
23
|
Lu Y, Mehling M, Huan S, Bai L, Rojas OJ. Biofabrication with microbial cellulose: from bioadaptive designs to living materials. Chem Soc Rev 2024; 53:7363-7391. [PMID: 38864385 DOI: 10.1039/d3cs00641g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Nanocellulose is not only a renewable material but also brings functions that are opening new technological opportunities. Here we discuss a special subset of this material, in its fibrillated form, which is produced by aerobic microorganisms, namely, bacterial nanocellulose (BNC). BNC offers distinct advantages over plant-derived counterparts, including high purity and high degree of polymerization as well as crystallinity, strength, and water-holding capacity, among others. More remarkably, beyond classical fermentative protocols, it is possible to grow BNC on non-planar interfaces, opening new possibilities in the assembly of advanced bottom-up structures. In this review, we discuss the recent advances in the area of BNC-based biofabrication of three-dimensional (3D) designs by following solid- and soft-material templating. These methods are shown as suitable platforms to achieve bioadaptive constructs comprising highly interlocked biofilms that can be tailored with precise control over nanoscale morphological features. BNC-based biofabrication opens applications that are not possible by using traditional manufacturing routes, including direct ink writing of hydrogels. This review emphasizes the critical contributions of microbiology, colloid and surface science, as well as additive manufacturing in achieving bioadaptive designs from living matter. The future impact of BNC biofabrication is expected to take advantage of material and energy integration, residue utilization, circularity and social latitudes. Leveraging existing infrastructure, the scaleup of biofabrication routes will contribute to a new generation of advanced materials rooted in exciting synergies that combine biology, chemistry, engineering and material sciences.
Collapse
Affiliation(s)
- Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Marina Mehling
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Siqi Huan
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Long Bai
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Department of Wood Science, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
24
|
Yapar Ö, Piltonen P, Hadela A, Lobnik A. Sustainable All-Cellulose Biocomposites from Renewable Biomass Resources Fabricated in a Water-Based Processing System by the Vacuum-Filtration-Assisted Impregnation Method. Polymers (Basel) 2024; 16:1921. [PMID: 39000776 PMCID: PMC11243798 DOI: 10.3390/polym16131921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
The increasing awareness of global ecological concerns and the rising sustainability consciousness associated with the manufacturing of non-renewable and non-biodegradable composite materials have led to extensive research on product and process developments of more sustainable, environmentally friendly, and fully biodegradable biocomposites for higher-value end-use applications. All-cellulose composites (ACCs) are an emerging class of biocomposites, which are produced utilizing solely cellulose as a raw material that is derived from various renewable biomass resources, such as trees and plants, and are assessed as fully biodegradable. In this study, sustainable ACCs were fabricated for the first time based on the full dissolution of commercially available sulfite dissolving (D) pulps as a matrix with concentrations of 1.5 wt.% and 2.0 wt.% in an aqueous NaOH-urea solvent, and they were then impregnated on/into the pre-fabricated birch (B), abaca (A), and northern softwood (N) fiber sheets as reinforcements by the vacuum-filtration-assisted impregnation approach. This research aimed to investigate the effects of the impregnated cellulose matrix concentrations and types of the utilized cellulose fiber reinforcements (B, A, N) on the morphological, crystalline, structural, and physio-mechanical properties of the ACCs. The highest degrees of improvements were achieved for tensile strength (+532%, i.e., from 9.24 MPa to 58.04 MPa) and strain at break of the B fiber-reinforced ACC B1.5 (+446%, i.e., from 1.36% to 4.62%) fabricated with vacuum impregnation of the 1.5 wt.% cellulose matrix. Noticeably, the greatest improvements were attained in strain at break of the A and N fiber-reinforced ACCs A2.0 (+218%, i.e., from 4.44 % to 14.11%) and N2.0 (+466%, i.e., 2.59% to 14.65%), respectively, produced with vacuum impregnation of the 2.0 wt.% cellulose matrix. The study highlights the diverse properties of the all-cellulose biocomposite materials that could, expectedly, lead to further development and research for upscaled production of the ACCs.
Collapse
Affiliation(s)
- Özkan Yapar
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska Ulica 7, 2000 Maribor, Slovenia
| | - Petteri Piltonen
- Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Ajra Hadela
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska Ulica 7, 2000 Maribor, Slovenia
| | - Aleksandra Lobnik
- Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Institute for Environmental Protection and Sensors (IOS) Ltd., Beloruska Ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
25
|
Torres FG, Troncoso OP, Urtecho A, Soto P, Pachas B. Recent Progress in Polysaccharide-Based Materials for Energy Applications: A Review. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38865700 DOI: 10.1021/acsami.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In recent years, polysaccharides have emerged as a promising alternative for the development of environmentally friendly materials. Polysaccharide-based materials have been mainly studied for applications in the food, packaging, and biomedical industries. However, many investigations report processing routes and treatments that enable the modification of the inherent properties of polysaccharides, making them useful as materials for energy applications. The control of the ionic and electronic conductivities of polysaccharide-based materials allows for the development of solid electrolytes and electrodes. The incorporation of conductive and semiconductive phases can modify the permittivities of polysaccharides, increasing their capacity for charge storage, making them useful as active surfaces of energy harvesting devices such as triboelectric nanogenerators. Polysaccharides are inexpensive and abundant and could be considered as a suitable option for the development and improvement of energy devices. This review provides an overview of the main research work related to the use of both common commercially available polysaccharides and local native polysaccharides, including starch, chitosan, carrageenan, ulvan, agar, and bacterial cellulose. Solid and gel electrolytes derived from polysaccharides show a wide range of ionic conductivities from 0.0173 × 10-3 to 80.9 × 10-3 S cm-1. Electrodes made from polysaccharides show good specific capacitances ranging from 8 to 753 F g-1 and current densities from 0.05 to 5 A g-1. Active surfaces based on polysaccharides show promising results with power densities ranging from 0.15 to 16 100 mW m-2. These investigations suggest that in the future polysaccharides could become suitable materials to replace some synthetic polymers used in the fabrication of energy storage devices, including batteries, supercapacitors, and energy harvesting devices.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Adrián Urtecho
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Percy Soto
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Bruce Pachas
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| |
Collapse
|
26
|
Lisowski D, Bielecki S, Cichosz S, Masek A. Ecologically Modified Leather of Bacterial Origin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2783. [PMID: 38894045 PMCID: PMC11174029 DOI: 10.3390/ma17112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
The research presented here is an attempt to develop an innovative and environmentally friendly material based on bacterial nanocellulose (BNC), which will be able to replace both animal skins and synthetic polymer products. Bacterial nanocellulose becomes stiff and brittle when dried, so attempts have been made to plasticise this material so that BNC can be used in industry. The research presented here focuses on the ecological modification of bacterial nanocellulose with vegetable oils such as rapeseed oil, linseed oil, and grape seed oil. The effect of compatibilisers of a natural origin on the plasticisation process of BNC, such as chlorophyll, curcumin, and L-glutamine, was also evaluated. BNC samples were modified with rapeseed, linseed, and grapeseed oils, as well as mixtures of each of these oils with the previously mentioned additives. The modification was carried out by passing the oil, or oil mixture, through the BNC using vacuum filtration, where the BNC acted as a filter. The following tests were performed to determine the effect of the modification on the BNC: FTIR spectroscopic analysis, contact angle measurements, and static mechanical analysis. As a result of the modification, the BNC was plasticised. Rapeseed oil proved to be the best for this purpose, with the help of which a material with good strength and elasticity was obtained.
Collapse
Affiliation(s)
- Dawid Lisowski
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland; (D.L.)
| | - Stanisław Bielecki
- International Center for Research on Innovative Biobased Materials, Lodz University of Technology, 2/22 Stefanowskiego Str., 90-537 Lodz, Poland;
| | - Stefan Cichosz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland; (D.L.)
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland; (D.L.)
| |
Collapse
|
27
|
Khanchezar S, Babaeipour V, Mostafa AS. Overproduction of bacterial cellulose from Acetobacter xylinum BPR2001 using food industries wastes. Biotechnol Appl Biochem 2024; 71:584-595. [PMID: 38233730 DOI: 10.1002/bab.2560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
In this study, a cost-effective complex culture media containing molasses and corn steep liquor (CSL) was developed for the high production of bacterial cellulose (BC) by investigating the effect of four effective factors on BC production at three levels using Taguchi and combined methods. The predicted and actual values of BC production in optimal conditions by Taguchi and combined methods were 8.41 and 14.52 g/L, respectively. These results showed that the combined method was more suitable for predicting the optimal conditions in the optimization of BC production, the cost of developed culture medium was around 94% cost of HS medium preparation, molasses was the most effective factor in both experimental design methods, and initial pH adjustment had little impact on BC production. Then, the effect of inoculation conditions containing three factors of inoculation age, ethanol addition time, and agitation rate on the increase of BC production at three levels was investigated using the response surface methodology with the Box-Behnken design algorithm. Under the optimal conditions including inoculum age of 3 days, ethanol addition time of 10 days, and stirring speed of 100 rpm, the predicted and experimental results of BC production were 21.61 and 20.21 g/L, respectively. This is among the highest ever reported for BC production, which was achieved with a more cost-effective culture medium containing molasses and CSL.
Collapse
Affiliation(s)
- Sirwan Khanchezar
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Valiolah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Atiyeh Sadat Mostafa
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
28
|
Correia AAV, de Almeida Campos LA, de Queiroz Macêdo HLR, de Lacerda Coriolano D, Agreles MAA, Xavier DE, de Siqueira Ferraz-Carvalho R, de Andrade Aguiar JL, Cavalcanti IMF. Antibacterial and Antibiofilm Potential of Bacterial Cellulose Hydrogel Containing Vancomycin against Multidrug-Resistant Staphylococcus aureus and Staphylococcus epidermidis. BIOLOGY 2024; 13:354. [PMID: 38785836 PMCID: PMC11118175 DOI: 10.3390/biology13050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The present study aimed to evaluate the in vitro antibacterial and antibiofilm activity of bacterial cellulose hydrogel produced by Zoogloea sp. (HYDROGEL) containing vancomycin (VAN) against bacterial strains that cause wound infections, such as multidrug-resistant (MDR) Staphylococcus aureus and Staphylococcus epidermidis. Initially, HYDROGEL was obtained from sugar cane molasses, and scanning electron microscopy (SEM) was performed to determine morphological characteristics. Then, VAN was incorporated into HYDROGEL (VAN-HYDROGEL). The antibacterial activity of VAN, HYDROGEL, and VAN-HYDROGEL was assessed using the broth microdilution method to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) against methicillin-sensitive S. aureus (MSSA) ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 33591, S. epidermidis INCQS 00016 (ATCC 12228), five clinical isolates of MRSA, and nine clinical isolates of methicillin-resistant S. epidermidis, following the Clinical and Laboratory Standards Institute (CLSI) guidelines. Additionally, the antibacterial activity of VAN, HYDROGEL, and VAN-HYDROGEL was studied using the time-kill assay. Subsequently, the antibiofilm activity of VAN, HYDROGEL, and VAN-HYDROGEL was evaluated using crystal violet and Congo red methods, as well as SEM analysis. VAN and VAN-HYDROGEL showed bacteriostatic and bactericidal activity against MRSA and methicillin-resistant S. epidermidis strains. HYDROGEL did not show any antibacterial activity. Analysis of the time-kill assay indicated that HYDROGEL maintained the antibacterial efficacy of VAN, highlighting its efficiency as a promising carrier. Regarding antibiofilm activity, VAN and HYDROGEL inhibited biofilm formation but did not demonstrate biofilm eradication activity against methicillin-resistant S. aureus and S. epidermidis strains. However, it was observed that the biofilm eradication potential of VAN was enhanced after incorporation into HYDROGEL, a result also proven through images obtained by SEM. From the methods carried out in this study, it was possible to observe that HYDROGEL preserved the antibacterial activity of vancomycin, aside from exhibiting antibiofilm activity and enhancing the antibiofilm effect of VAN. In conclusion, this study demonstrated the potential of HYDROGEL as a candidate and/or vehicle for antibiotics against MDR bacteria that cause wound infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Danilo Elias Xavier
- Department of Microbiology, Aggeu Magalhães Institute, FIOCRUZ-PE, Recife 50740-465, Brazil
| | | | | | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, Brazil
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Brazil
| |
Collapse
|
29
|
Núñez D, Oyarzún P, Cáceres R, Elgueta E, Gamboa M. Citrate-buffered Yamanaka medium allows to produce high-yield bacterial nanocellulose in static culture using Komagataeibacter strains isolated from apple cider vinegar. Front Bioeng Biotechnol 2024; 12:1375984. [PMID: 38812914 PMCID: PMC11133569 DOI: 10.3389/fbioe.2024.1375984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Bacterial nanocellulose (BNC) is a sustainable, renewable, and eco-friendly nanomaterial, which has gained great attentions in both academic and industrial fields. Two bacterial nanocellulose-producing strains (CVV and CVN) were isolated from apple vinegar sources, presenting high 16S rRNA gene sequence similarities (96%-98%) with Komagataeibacter species. The biofilm was characterized by scanning electron microscopy (SEM), revealing the presence of rod-shaped bacteria intricately embedded in the polymeric matrix composed of nanofibers of bacterial nanocellulose. FTIR spectrum and XRD pattern additionally confirmed the characteristic chemical structure associated with this material. The yields and productivities achieved during 10 days of fermentation were compared with Komagataeibacter xylinus ATCC 53524, resulting in low levels of BNC production. However, a remarkable increase in the BNC yield was achieved for CVV (690% increase) and CVN (750% increase) strains at day 6 of the fermentation upon adding 22 mM citrate buffer into the medium. This effect is mainly attributed to the buffering capacity of the modified Yakamana medium, which allowed to maintain pH close to 4.0 until day 6, though in combination with additional factors including stimulation of the gluconeogenesis pathway and citrate assimilation as a carbon source. In addition, the productivities determined for both isolated strains (0.850 and 0.917 g L-1 d-1) compare favorably to previous works, supporting current efforts to improve fermentation performance in static cultures and the feasibility of scaling-up BNC production in these systems.
Collapse
Affiliation(s)
- Dariela Núñez
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Patricio Oyarzún
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción, Chile
| | - Rodrigo Cáceres
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Elizabeth Elgueta
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Maribet Gamboa
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
30
|
Almihyawi RAH, Musazade E, Alhussany N, Zhang S, Chen H. Production and characterization of bacterial cellulose by Rhizobium sp. isolated from bean root. Sci Rep 2024; 14:10848. [PMID: 38740945 DOI: 10.1038/s41598-024-61619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Bacterial cellulose (BC) is a natural polymer renowned for its unique physicochemical and mechanical attributes, including notable water-holding capacity, crystallinity, and a pristine fiber network structure. While BC has broad applications spanning agriculture, industry, and medicine, its industrial utilization is hindered by production costs and yield limitations. In this study, Rhizobium sp. was isolated from bean roots and systematically assessed for BC synthesis under optimal conditions, with a comparative analysis against BC produced by Komagataeibacter hansenii. The study revealed that Rhizobium sp. exhibited optimal BC synthesis when supplied with a 1.5% glucose carbon source and a 0.15% yeast extract nitrogen source. Under static conditions at 30 °C and pH 6.5, the most favorable conditions for growth and BC production (2.5 g/L) were identified. Modifications were introduced using nisin to enhance BC properties, and the resulting BC-nisin composites were comprehensively characterized through various techniques, including FE-SEM, FTIR, porosity, swelling, filtration, and antibacterial activity assessments. The results demonstrated that BC produced by Rhizobium sp. displayed properties comparable to K. hansenii-produced BC. Furthermore, the BC-nisin composites exhibited remarkable inhibitory activity against Escherichia coli and Pseudomonas aeruginosa. This study contributes valuable insights into BC's production, modification, and characterization utilizing Rhizobium sp., highlighting the exceptional properties that render it efficacious across diverse applications.
Collapse
Affiliation(s)
- Raed A H Almihyawi
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
- Department of Quality Control, Baghdad Water Authority, Baghdad, 10011, Iraq
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | | | - Sitong Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Changchun, 130118, China.
| | - Huan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Changchun, 130118, China.
| |
Collapse
|
31
|
Thivya P, Gururaj PN, Reddy NBP, Rajam R. Recent advances in protein-polysaccharide based biocomposites and their potential applications in food packaging: A review. Int J Biol Macromol 2024; 268:131757. [PMID: 38657934 DOI: 10.1016/j.ijbiomac.2024.131757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
This review addresses the current trend of replacing petroleum-based polymers in food packaging with bio-based alternatives, specifically focusing on proteins and polysaccharides. While these biopolymers exhibit excellent film-forming properties and are abundant in nature, their individual use in packaging lacks ideal plastic-like characteristics, especially in terms of mechanical and barrier properties. A recent solution involves the formulation of biocomposites through the reinforcement of one biopolymer with another (e.g., protein with a polysaccharide), significantly enhancing the physical, mechanical, and barrier properties of packaging materials. The review concentrates on the integration of proteins and polysaccharides in biocomposite materials, emphasizing their potential applications in active and intelligent food packaging systems. It covers sources, manufacturing methods, interaction mechanisms, recent developments, perspectives, and opportunities. The exploration extends to practical implementations of these biocomposites in enhancing food quality, safety, and shelf life-a green technological approach contributing to the reduction of food waste and loss.
Collapse
Affiliation(s)
- P Thivya
- Department of Food Technology, Kalasalingam Academy of Research and Education (KARE), Krishnankoil, Virudhunagar, Tamilnadu, India.
| | - P N Gururaj
- Department of Food Science and Technology, Hamelmalo Agricultural College, Hamelmalo, Zoba-Anseba, Eritrea
| | - N Bhanu Prakash Reddy
- Department of Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management, (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | - R Rajam
- Department of Food Technology, Kalasalingam Academy of Research and Education (KARE), Virudhunagar 626126, Tamilnadu, India
| |
Collapse
|
32
|
Nasharudin MIH, Siew SW, Ahmad HF, Mahmud N. Whole genome sequencing analysis of Komagataeibacter nataicola reveals its potential in food waste valorisation for cellulose production. Mol Biol Rep 2024; 51:503. [PMID: 38600404 DOI: 10.1007/s11033-024-09492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Komagataeibacter nataicola (K. nataicola) is a gram-negative acetic acid bacterium that produces natural bacterial cellulose (BC) as a fermentation product under acidic conditions. The goal of this work was to study the complete genome of K. nataicola and gain insight into the functional genes in K. nataicola that are responsible for BC synthesis in acidic environments. METHODS AND RESULT The pure culture of K. nataicola was obtained from yeast-glucose-calcium carbonate (YGC) agar, followed by genomic DNA extraction, and subjected to whole genome sequencing on a Nanopore flongle flow cell. The genome of K. nataicola consists of a 3,767,936 bp chromosome with six contigs and 4,557 protein coding sequences. The maximum likelihood phylogenetic tree and average nucleotide identity analysis confirmed that the bacterial isolate was K. nataicola. The gene annotation via RAST server discovered the presence of cellulose synthase, along with three genes associated with lactate utilization and eight genes involved in lactate fermentation that could potentially contribute to the increase in acid concentration during BC synthesis. CONCLUSION A more comprehensive genome study of K. nataicola may shed light into biological pathway in BC productivity as well as benefit the analysis of metabolites generated and understanding of biological and chemical interactions in BC production later.
Collapse
Affiliation(s)
- Muhammad Irhamni Haziqi Nasharudin
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| | - Shing-Wei Siew
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
- Group of Environment, Microbiology and Bioprocessing (GERMS), Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| | - Nazira Mahmud
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia.
- Group of Environment, Microbiology and Bioprocessing (GERMS), Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia.
| |
Collapse
|
33
|
Adamopoulou V, Bekatorou A, Brinias V, Michalopoulou P, Dimopoulos C, Zafeiropoulos J, Petsi T, Koutinas AA. Optimization of bacterial cellulose production by Komagataeibacter sucrofermentans in synthetic media and agrifood side streams supplemented with organic acids and vitamins. BIORESOURCE TECHNOLOGY 2024; 398:130511. [PMID: 38437963 DOI: 10.1016/j.biortech.2024.130511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
The effect of thiamine (TA), ascorbic acid (AA), citric acid, and gallic acid (GA) on bacterial cellulose (BC) production by Komagataeibacter sucrofermentans, in synthetic (Hestrin and Schramm, HS) and natural substrates (industrial raisins finishing side stream extract, FSSE; orange juice, OJ; green tea extract, GTE), was investigated. The Response Surface Methodology was found reliable for BC yield prediction and optimization. Higher yields were achieved in the FSSE substrates, especially those supplemented with AA, TA, and GA (up to 19.4 g BC/L). The yield in the non-fortified substrates was 1.1-5.4 and 11.6-15.7 g/L, in HS and FSSE, respectively. The best yield in the natural non-fortified substrate FSSE-OJ-GTE (50-20-30 %), was 5.9 g/L. The porosity, crystallinity, and antioxidant properties of the produced BC films were affected by both the substrate and the drying method (freeze- or oven-drying). The natural substrates and the process wastewaters can be further exploited towards added value and sustainability. Take Home Message Sentence: Raisin and citrus side-streams can be efficiently combined for bacterial cellulose production, enhanced by other vitamin- and phenolic-rich substrates such as green tea.
Collapse
Affiliation(s)
| | - Argyro Bekatorou
- Department of Chemistry, University of Patras, Patras 26504, Greece.
| | - Vasilios Brinias
- Department of Chemistry, University of Patras, Patras 26504, Greece
| | | | | | - John Zafeiropoulos
- School of Science and Technology, Hellenic Open University, Parodos Aristotelous 18, Patras 26335, Greece
| | - Theano Petsi
- Department of Chemistry, University of Patras, Patras 26504, Greece
| | | |
Collapse
|
34
|
Da Silva Pereira EH, Mojicevic M, Tas CE, Lanzagorta Garcia E, Brennan Fournet M. Targeting Bacterial Nanocellulose Properties through Tailored Downstream Techniques. Polymers (Basel) 2024; 16:678. [PMID: 38475361 DOI: 10.3390/polym16050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Bacterial nanocellulose (BNC) is a biodegradable polysaccharide with unique properties that make it an attractive material for various industrial applications. This study focuses on the strain Komagataeibacter medellinensis ID13488, a strain with the ability to produce high yields of BNC under acidic growth conditions and a promising candidate to use for industrial production of BNC. We conducted a comprehensive investigation into the effects of downstream treatments on the structural and mechanical characteristics of BNC. When compared to alkaline-treated BNC, autoclave-treated BNC exhibited around 78% superior flexibility in average, while it displayed nearly 40% lower stiffness on average. An SEM analysis revealed distinct surface characteristics, indicating differences in cellulose chain compaction. FTIR spectra demonstrated increased hydrogen bonding with prolonged interaction time with alkaline solutions. A thermal analysis showed enhanced thermal stability in alkaline-treated BNC, withstanding temperatures of nearly 300 °C before commencing degradation, compared to autoclaved BNC which starts degradation around 200 °C. These findings provide valuable insights for tailoring BNC properties for specific applications, particularly in industries requiring high purity and specific mechanical characteristics.
Collapse
Affiliation(s)
- Everton Henrique Da Silva Pereira
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, Co. Westmeath, N37 HD68 Athlone, Ireland
| | - Marija Mojicevic
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, Co. Westmeath, N37 HD68 Athlone, Ireland
| | - Cuneyt Erdinc Tas
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, Co. Westmeath, N37 HD68 Athlone, Ireland
| | - Eduardo Lanzagorta Garcia
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, Co. Westmeath, N37 HD68 Athlone, Ireland
| | - Margaret Brennan Fournet
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, Co. Westmeath, N37 HD68 Athlone, Ireland
| |
Collapse
|
35
|
Yang L, Zhu X, Chen Y, Wang J. Enhanced bacterial cellulose production in Gluconacetobacter xylinus by overexpression of two genes (bscC and bcsD) and a modified static culture. Int J Biol Macromol 2024; 260:129552. [PMID: 38242407 DOI: 10.1016/j.ijbiomac.2024.129552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Bacterial cellulose (BC), a nanostructured material, is renowned for its excellent properties. However, its production by bacteria is costly due to low medium utilization and conversion rates. To enhance the yield of BC, this study aimed to increase BC yield through genetic modification, specifically by overexpressing bcsC and bcsD in Gluconacetobacter xylinus, and by developing a modified culture method to reduce medium viscosity by adding water during fermentation. As a result, BC yields of 5.4, 6.2, and 6.8 g/L were achieved from strains overexpressing genes bcsC, bcsD, and bcsCD, significantly surpassing the yield of 2.2 g/L from wild-type (WT) strains. In the modified culture, the BC yields of all four strains increased by >1 g/L with the addition of 20 mL of water during fermentation. Upon comparing the properties of BC, minimal differences were observed between the WT and pbcsC strains, as well as between the static and modified cultures. In contrast, BC produced by strains overexpressing bcsD had a denser microstructural network and exhibited demonstrated higher tensile strength and elongation-to-break. Compared to WT, BC from bcsD overexpressed strains also displayed enhanced crystallinity, higher degree of polymerization and improved thermal stability.
Collapse
Affiliation(s)
- Leyun Yang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Xinxin Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
36
|
Joshi JS, Langwald SV, Ehrmann A, Sabantina L. Algae-Based Biopolymers for Batteries and Biofuel Applications in Comparison with Bacterial Biopolymers-A Review. Polymers (Basel) 2024; 16:610. [PMID: 38475294 DOI: 10.3390/polym16050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Algae-based biopolymers can be used in diverse energy-related applications, such as separators and polymer electrolytes in batteries and fuel cells and also as microalgal biofuel, which is regarded as a highly renewable energy source. For these purposes, different physical, thermochemical, and biochemical properties are necessary, which are discussed within this review, such as porosity, high temperature resistance, or good mechanical properties for batteries and high energy density and abundance of the base materials in case of biofuel, along with the environmental aspects of using algae-based biopolymers in these applications. On the other hand, bacterial biopolymers are also often used in batteries as bacterial cellulose separators or as biopolymer network binders, besides their potential use as polymer electrolytes. In addition, they are also regarded as potential sustainable biofuel producers and converters. This review aims at comparing biopolymers from both aforementioned sources for energy conversion and storage. Challenges regarding the production of algal biopolymers include low scalability and low cost-effectiveness, and for bacterial polymers, slow growth rates and non-optimal fermentation processes often cause challenges. On the other hand, environmental benefits in comparison with conventional polymers and the better biodegradability are large advantages of these biopolymers, which suggest further research to make their production more economical.
Collapse
Affiliation(s)
- Jnanada Shrikant Joshi
- Faculty of Engineering Sciences and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Sarah Vanessa Langwald
- Faculty of Engineering Sciences and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering Sciences and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Department of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences-HTW Berlin, 12459 Berlin, Germany
- Department of Textile and Paper Engineering, Higher Polytechnic School of Alcoy, Polytechnic University of Valencia (UPV), 03801 Alcoy, Spain
| |
Collapse
|
37
|
Dzięgielewska M, Bartoszewicz M, Książczyk M, Dudek B, Brożyna M, Szymczyk-Ziółkowska P, Gruber P, Pawlak J, Kozłowska W, Zielińska S, Fischer J, Woytoń A, Junka A. Abietic Acid as a Novel Agent against Ocular Biofilms: An In Vitro and Preliminary In Vivo Investigation. Int J Mol Sci 2024; 25:1528. [PMID: 38338807 PMCID: PMC10855443 DOI: 10.3390/ijms25031528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Biofilm-related ocular infections can lead to vision loss and are difficult to treat with antibiotics due to challenges with application and increasing microbial resistance. In turn, the design and testing of new synthetic drugs is a time- and cost-consuming process. Therefore, in this work, for the first time, we assessed the in vitro efficacy of the plant-based abietic acid molecule, both alone and when introduced to a polymeric cellulose carrier, against biofilms formed by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans in standard laboratory settings as well as in a self-designed setting using the topologically challenging surface of the artificial eye. These analyses were performed using the standard microdilution method, the biofilm-oriented antiseptic test (BOAT), a modified disk-diffusion method, and eyeball models. Additionally, we assessed the cytotoxicity of abietic acid against eukaryotic cell lines and its anti-staphylococcal efficacy in an in vivo model using Galleria mellonella larvae. We found that abietic acid was more effective against Staphylococcus than Pseudomonas (from two to four times, depending on the test applied) and that it was generally more effective against the tested bacteria (up to four times) than against the fungus C. albicans at concentrations non-cytotoxic to the eukaryotic cell lines and to G. mellonella (256 and 512 µg/mL, respectively). In the in vivo infection model, abietic acid effectively prevented the spread of staphylococcus throughout the larvae organisms, decreasing their lethality by up to 50%. These initial results obtained indicate promising features of abietic acid, which may potentially be applied to treat ocular infections caused by pathogenic biofilms, with higher efficiency manifested against bacterial than fungal biofilms.
Collapse
Affiliation(s)
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland;
| | - Marta Książczyk
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, 51-148 Wroclaw, Poland;
| | - Bartłomiej Dudek
- Platform for Unique Model Application, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland; (M.B.); (A.W.)
| | - Malwina Brożyna
- Platform for Unique Model Application, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland; (M.B.); (A.W.)
| | - Patrycja Szymczyk-Ziółkowska
- Center for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wroclaw, Poland; (P.S.-Z.); (P.G.)
| | - Piotr Gruber
- Center for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wroclaw, Poland; (P.S.-Z.); (P.G.)
| | - Jacek Pawlak
- Medical Department, Lazarski University, 02-662 Warsaw, Poland;
| | - Weronika Kozłowska
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biotechnology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (W.K.); (S.Z.)
| | - Sylwia Zielińska
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biotechnology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (W.K.); (S.Z.)
| | - Jędrzej Fischer
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Aleksandra Woytoń
- Platform for Unique Model Application, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland; (M.B.); (A.W.)
| | - Adam Junka
- Platform for Unique Model Application, Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-367 Wroclaw, Poland; (M.B.); (A.W.)
| |
Collapse
|
38
|
Tranquilan-Aranilla C, Flores J, Gallardo AK, Abrera G, Pares F. Radiation processing of bacterial cellulose-monolaurin wound dressing: Physicochemical effects, functional analysis, and sterilization. J Biomater Appl 2024; 38:721-732. [PMID: 38031885 DOI: 10.1177/08853282231219276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A commercial bacterial cellulose-monolaurin wound dressing was investigated for changes in the chemical structure, mechanical strength, thermal degradation, morphology, and functional swelling properties after exposure to gamma and electron beam radiations at doses 15-50 kGy. Radiation-induced oxidation occurred as seen in the FT-IR peaks at 1720-1750 cm-1. Degradation of the cellulosic network was observed in tensile strength reduction and shift in degradation temperature to lower values. The SEM cross-section images of the irradiated dressings revealed a less dense nanostructure network compared to the non-irradiated samples while the XRD diffractograms indicated a change in lattice direction/plane. Despite these changes, irradiation caused no significant effect on the functional properties especially at 15-25 kGy doses where most biomedical devices are sterilized. All irradiated wound dressings exhibited physical integrity, increased exudate absorption, and water vapor transmission rate - properties beneficial to wound-healing functionality. The pre-selected sterilization dose of 15 kGy for each ionizing radiation was successfully verified and substantiated following ISO 11137-2:2016, hence ionizing radiation is a suitable sterilization modality for the product.
Collapse
Affiliation(s)
| | - Jeric Flores
- Department of Science and Technology, Philippine Nuclear Research Institute, Quezon, Philippines
- Department of Science and Technology, Science Education Institute, Taguig, Philippines
| | - Alvin Kier Gallardo
- Department of Science and Technology, Philippine Nuclear Research Institute, Quezon, Philippines
| | - Gina Abrera
- Department of Science and Technology, Philippine Nuclear Research Institute, Quezon, Philippines
| | - Franklin Pares
- Department of Science and Technology, Philippine Nuclear Research Institute, Quezon, Philippines
| |
Collapse
|
39
|
Kumari R, Sakhrie M, Kumar M, Vivekanand V, Pareek N. Enhanced production of bacterial cellulose employing banana peel as a cost-effective nutrient resource. Braz J Microbiol 2023; 54:2745-2753. [PMID: 37872277 PMCID: PMC10689649 DOI: 10.1007/s42770-023-01151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Bacterial cellulose (BC) is an exopolysaccharide produced by bacteria that has unusual structural features and is more refined than plant cellulose. BC has recently gained more attention in a variety of fields including biological and biomedical applications due to its excellent physiochemical properties including easy biodegradability, better water holding capacity, high tensile strength, high thermal stability, and high degree of polymerization. However, application of BC at industrial scale is still limited due to its high production cost and lesser yielding strains. The present study is an attempt to isolate and characterize a novel BC-producing bacterial strain. The bacterial strain S5 has resulted into maximum cellulose production of 4.76 ± 0.49 gL-1 (30°C, pH 7.0). The strain has been further identified as Stenotrophomonas sp. Derivation of nutritional and cultural conditions has resulted into 2.34-fold enhanced BC production (banana peel powder, peptone, tartaric acid, pH 7, 30°C). FTIR spectrum of BC revealed characteristic absorption bands which could be attributed to the O-H band, C-H stretching, C-O-C stretching band, O-H bending, and >CH2 bending, indicative of the β-1,4 glycosidic linkages of cellulose. Thermogravimetric analysis has also revealed stability of polysaccharide backbones and characteristic weight loss points. Employment of banana peel powder has appeared as a proficient low-cost source for large-scale economic production of BC for industrial applications.
Collapse
Affiliation(s)
- Rajni Kumari
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Mesevilhou Sakhrie
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Manish Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - V Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
40
|
Radenkovs V, Valdovska A, Galina D, Cairns S, Jakovlevs D, Gaidukovs S, Cinkmanis I, Juhnevica-Radenkova K. Elaboration of Nanostructured Levan-Based Colloid System as a Biological Alternative with Antimicrobial Activity for Applications in the Management of Pathogenic Microorganisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2969. [PMID: 37999323 PMCID: PMC10674346 DOI: 10.3390/nano13222969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Considering the documented health benefits of bacterial exopolysaccharides (EPSs), specifically of bacterial levan (BL), including its intrinsic antimicrobial activity against certain pathogenic species, the current study concentrated on the development of active pharmaceutical ingredients (APIs) in the form of colloid systems (CoSs) containing silver nanoparticles (AgNPs) employing in-house biosynthesized BL as a reducing and capping agent. The established protocol of fermentation conditions implicating two species of lactic acid bacteria (LAB), i.e., Streptococcus salivarius K12 and Leuconostoc mesenteroides DSM 20343, ensured a yield of up to 25.7 and 13.7 g L-1 of BL within 72 h, respectively. An analytical approach accomplished by Fourier-transform infrared (FT-IR) spectroscopy allowed for the verification of structural features attributed to biosynthesized BL. Furthermore, scanning electron microscopy (SEM) revealed the crystalline morphology of biosynthesized BL with a smooth and glossy surface and highly porous structure. Molecular weight (Mw) estimated by multi-detector size-exclusion chromatography (SEC) indicated that BL biosynthesized using S. salivarius K12 has an impressively high Mw, corresponding to 15.435 × 104 kilodaltons (kDa). In turn, BL isolated from L. mesenteroides DSM 20343 was found to have an Mw of only 26.6 kDa. Polydispersity index estimation (PD = Mw/Mn) of produced BL displayed a monodispersed molecule isolated from S. salivarius K12, corresponding to 1.08, while this was 2.17 for L. mesenteroides DSM 20343 isolate. The presence of fructose as the main backbone and, to a lesser extent, glucose and galactose as side chain molecules in EPS hydrolysates was supported by HPLC-RID detection. In producing CoS-BL@AgNPs within green biosynthesis, the presence of nanostructured objects with a size distribution from 12.67 ± 5.56 nm to 46.97 ± 20.23 was confirmed by SEM and energy-dispersive X-ray spectroscopy (EDX). The prominent inhibitory potency of elaborated CoS-BL@AgNPs against both reference test cultures, i.e., Pseudomonas aeruginosa, Escherichia coli, Enterobacter aerogenes, and Staphylococcus aureus and those of clinical origin with multi-drug resistance (MDR), was confirmed by disc and well diffusion tests and supported by the values of the minimum inhibitory and bactericidal concentrations. CoS-BL@AgNPs can be treated as APIs suitable for designing new antimicrobial agents and modifying therapies in controlling MDR pathogens.
Collapse
Affiliation(s)
- Vitalijs Radenkovs
- Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia;
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
| | - Anda Valdovska
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Daiga Galina
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Stefan Cairns
- Malvern Panalytical Ltd., Worcestershire, Malvern WR14 1XZ, UK
| | - Dmitrijs Jakovlevs
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
| | - Sergejs Gaidukovs
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia;
| | - Ingmars Cinkmanis
- Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| | | |
Collapse
|
41
|
Achamyeleh A, Ankala BA, Workie YA, Mekonnen ML, Abda EM. Bacterial Nanocellulose/Copper as a Robust Laccase-Mimicking Bionanozyme for Catalytic Oxidation of Phenolic Pollutants. ACS OMEGA 2023; 8:43178-43187. [PMID: 38024715 PMCID: PMC10652835 DOI: 10.1021/acsomega.3c06847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Industrial effluents containing phenolic compounds are a major public health concern and thus require effective and robust remediation technologies. Although laccase-like nanozymes are generally recognized as being catalytically efficient in oxidizing phenols, their support materials often lack resilience in harsh environments. Herein, bacterial nanocellulose (BNC) was introduced as a sustainable, strong, biocompatible, and environmentally friendly biopolymer for the synthesis of a laccase-like nanozyme (BNC/Cu). A native bacterial strain that produces nanocellulose was isolated from black tea broth fermented for 1 month. The isolate that produced BNC was identified as Bacillus sp. strain T15, and it can metabolize hexoses, sucrose, and less expensive substrates, such as molasses. Further, BNC/Cu nanozyme was synthesized using the in situ reduction of copper on the BNC. Characterization of the nanozyme by scanning electron microscopy (SEM) and X-ray diffraction (XRD) confirmed the presence of the copper nanoparticles dispersed in the layered sheets of BNC. The laccase-mimetic activity was assessed using the chromogenic redox reaction between 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP) with characteristic absorption at 510 nm. Remarkably, BNC/Cu has 50.69% higher catalytic activity than the pristine Cu NPs, indicating that BNC served as an effective biomatrix to disperse Cu NPs. Also, the bionanozyme showed the highest specificity toward 2,4-DP with a Km of 0.187 mM, which was lower than that of natural laccase. The bionanozyme retained catalytic activity across a wider temperature range with optimum activity at 85 °C, maintaining 38% laccase activity after 11 days and 46.77% activity after the fourth cycle. The BNC/Cu bionanozyme could efficiently oxidize more than 70% of 1,4-dichlorophenol and phenol in 5 h. Thereby, the BNC/Cu bionanozyme is described here as having an efficient ability to mimic laccase in the oxidation of phenolic compounds that are commonly released into the environment by industry.
Collapse
Affiliation(s)
- Afomiya
Animaw Achamyeleh
- Biotechnology
Department, Addis Ababa Science and Technology
University, Addis Ababa, P.O. Box 1647, Ethiopia
| | - Biniyam Abera Ankala
- Industrial
Chemistry Department, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box
1647, Ethiopia
| | - Yitayal Admassu Workie
- Industrial
Chemistry Department, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box
1647, Ethiopia
- Nanotechnology
Center of Excellence, Addis Ababa Science
and Technology University, Addis
Ababa, P.O. Box 1647, Ethiopia
| | - Menbere Leul Mekonnen
- Industrial
Chemistry Department, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box
1647, Ethiopia
- Nanotechnology
Center of Excellence, Addis Ababa Science
and Technology University, Addis
Ababa, P.O. Box 1647, Ethiopia
| | - Ebrahim M. Abda
- Biotechnology
Department, Addis Ababa Science and Technology
University, Addis Ababa, P.O. Box 1647, Ethiopia
- Biotechnology
and Bio-processing Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box 1647, Ethiopia
| |
Collapse
|
42
|
Talipova AB, Buranych VV, Savitskaya IS, Bondar OV, Turlybekuly A, Pogrebnjak AD. Synthesis, Properties, and Applications of Nanocomposite Materials Based on Bacterial Cellulose and MXene. Polymers (Basel) 2023; 15:4067. [PMID: 37896311 PMCID: PMC10610809 DOI: 10.3390/polym15204067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
MXene exhibits impressive characteristics, including flexibility, mechanical robustness, the capacity to cleanse liquids like water through MXene membranes, water-attracting nature, and effectiveness against bacteria. Additionally, bacterial cellulose (BC) exhibits remarkable qualities, including mechanical strength, water absorption, porosity, and biodegradability. The central hypothesis posits that the incorporation of both MXene and bacterial cellulose into the material will result in a remarkable synthesis of the attributes inherent to MXene and BC. In layered MXene/BC coatings, the presence of BC serves to separate the MXene layers and enhance the material's integrity through hydrogen bond interactions. This interaction contributes to achieving a high mechanical strength of this film. Introducing cellulose into one layer of multilayer MXene can increase the interlayer space and more efficient use of MXene. Composite materials utilizing MXene and BC have gained significant traction in sensor electronics due to the heightened sensitivity exhibited by these sensors compared to usual ones. Hydrogel wound healing bandages are also fabricated using composite materials based on MXene/BC. It is worth mentioning that MXene/BC composites are used to store energy in supercapacitors. And finally, MXene/BC-based composites have demonstrated high electromagnetic interference (EMI) shielding efficiency.
Collapse
Affiliation(s)
- Aizhan B Talipova
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Volodymyr V Buranych
- Department of Nanoelectronics and Surface Modification, Sumy State University, 40000 Sumy, Ukraine
- Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 24 Trnava, Slovakia
| | - Irina S Savitskaya
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Oleksandr V Bondar
- Department of Nanoelectronics and Surface Modification, Sumy State University, 40000 Sumy, Ukraine
| | - Amanzhol Turlybekuly
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
- Aman Technologies, LLP, Astana 010000, Kazakhstan
| | - Alexander D Pogrebnjak
- Department of Nanoelectronics and Surface Modification, Sumy State University, 40000 Sumy, Ukraine
- Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 24 Trnava, Slovakia
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| |
Collapse
|
43
|
Yang Y, Zhou R, Yuan M, He H. Nano Ag/PPy Biocomposites Based on Graphene Oxide Modified Bacterial Cellulose from the Juice of Xinhui Citrus and Its Antibacterial Activity. MICROMACHINES 2023; 14:1809. [PMID: 37893246 PMCID: PMC10608959 DOI: 10.3390/mi14101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023]
Abstract
Bacterial cellulose (BC) is a green, natural biopolymer with excellent biocompatibility and a film-forming ability. However, its lack of inherent antibacterial activity restricts its application in medical materials and food preservation. In this study, BC derived from the juice of discarded Xinhui citrus was obtained through fermentation and further modified in situ with graphene oxide (GO) to obtain BC(GO). Subsequently, BC(GO) was loaded with cell-compatible polypyrrole (PPy) and antibacterial agent silver nanoparticles (AgNPs) to prepare Ag-PPy/BC(GO) composite films. Composite films were characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) to evaluate their chemical structure and morphology. The results demonstrate effective adsorption of PPy and AgNPs onto the surface of BC nanofibers modified with GO. Antibacterial experiments reveal synergistic antibacterial effects of PPy and AgNPs. The Ag-PPy/BC(GO) membranes exhibit strong antibacterial activity against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with 48-h growth inhibition rates of 75-84% and 82-84%, respectively.
Collapse
Affiliation(s)
- Yihong Yang
- School of Materials Science and Food Engineering, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528400, China; (R.Z.); (M.Y.); (H.H.)
| | | | | | | |
Collapse
|
44
|
Le HV, Dao NT, Bui HT, Kim Le PT, Le KA, Tuong Tran AT, Nguyen KD, Mai Nguyen HH, Ho PH. Bacterial Cellulose Aerogels Derived from Pineapple Peel Waste for the Adsorption of Dyes. ACS OMEGA 2023; 8:33412-33425. [PMID: 37744831 PMCID: PMC10515182 DOI: 10.1021/acsomega.3c03130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
Valorization of pineapple peel waste is an attractive research topic because of the huge quantities of this byproduct generated from pineapple processing industries. In this study, the extract from pineapple waste was collected to produce a hydrogel-like form containing bacterial cellulose fibers with a three-dimensional structure and nanoscale diameter by the Acetobacter xylinum fermentation process. The bacterial cellulose suspension was subsequently activated by freeze-drying, affording lightweight aerogels as potential adsorbents in wastewater treatment, in particular the adsorptive removal of organic dyes. Intensive tests were carried out with the adsorption of methylene blue, a typical cationic dye, to investigate the influence of adsorption conditions (temperature, pH, initial dye concentration, time, and experiment scale) and aerogel-preparation parameters (grinding time and bacterial cellulose concentration). The bacterial cellulose-based aerogels exhibited high adsorption capacity not only for methylene blue but also for other cationic dyes, including malachite green, rhodamine B, and crystal violet (28-49 mg/g). However, its activity was limited for most of the anionic dyes, such as methyl orange, sunset yellow, and quinoline yellow, due to the repulsion of these anionic dyes with the aerogel surface, except for the case of congo red. It is also an anionic dye but has two amine groups providing a strong interaction with the hydroxyl group of the aerogel via hydrogen bonding. Indeed, the aerogel has a substantially large congo red-trapping capacity of 101 mg/g. Notably, the adsorption process exhibited similar performances, upscaling the solution volume to 50 times. The utilization of abundant agricultural waste in the simple aerogel preparation to produce a highly efficient and biodegradable adsorbent is the highlight of this work.
Collapse
Affiliation(s)
- Ha Vu Le
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Nghia Thi Dao
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Ha Truc Bui
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Phung Thi Kim Le
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Kien Anh Le
- Institute
for Tropical Technology and Environmental Protection, 57A Truong Quoc Dung, Phu Nhuan
District, Ho Chi Minh City 726500, Viet Nam
| | - An Thi Tuong Tran
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Khoa Dang Nguyen
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Hanh Huynh Mai Nguyen
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Phuoc Hoang Ho
- Chemical
Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| |
Collapse
|
45
|
Molina-Menor E, Vidal-Verdú À, Gomis-Olcina C, Peretó J, Porcar M. A 3D printed plastic frame deeply impacts yeast cell growth. Front Bioeng Biotechnol 2023; 11:1250667. [PMID: 37771573 PMCID: PMC10523559 DOI: 10.3389/fbioe.2023.1250667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 09/30/2023] Open
Abstract
Solid State Fermentation (SSF) processes have been explored for yeast growth and protein and metabolites production. However, most of these processes lack standardization. In this work, we present a polylactic acid (PLA) 3D printed matrix that dramatically enhances yeast growth when embedded in liquid media compared to equivalent static cultures, and changes yeast expression patterns at the proteome level (data are available via ProteomeXchange with identifier PXD043759). Moreover, differences in sugar assimilation and ethanol production, as the main product of alcoholic fermentation, are observed. Our results suggest that these matrixes may be useful for a vast range of biotechnological applications based on yeast fermentation.
Collapse
Affiliation(s)
- Esther Molina-Menor
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Àngela Vidal-Verdú
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Carlos Gomis-Olcina
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Juli Peretó
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
- Darwin Bioprospecting Excellence SL, Parc Científic Universitat de València, Valencia, Spain
| |
Collapse
|
46
|
Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, Piszko P, Krupa A, Biernat M, Gazińska M, Kasprzak M, Nawrotek K, Mira NP, Rudnicka K. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng 2023; 9:5222-5254. [PMID: 37585562 PMCID: PMC10498424 DOI: 10.1021/acsbiomaterials.3c00609] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually. The current engineering technologies permit the construction of synthetic, complex, biomimetic biomaterials with properties nearly as good as those of natural bone with good biocompatibility. To ensure that all these requirements meet, bioactive molecules are coupled to structural scaffolding constituents to form a final product with the desired physical, chemical, and biological properties. Bioactive molecules that have been used to promote bone regeneration include protein growth factors, peptides, amino acids, hormones, lipids, and flavonoids. Various strategies have been adapted to investigate the coupling of bioactive molecules with scaffolding materials to sustain activity and allow controlled release. The current manuscript is a thorough survey of the strategies that have been exploited for the delivery of biomolecules for bone regeneration purposes, from choosing the bioactive molecule to selecting the optimal strategy to synthesize the scaffold and assessing the advantages and disadvantages of various delivery strategies.
Collapse
Affiliation(s)
- Aleksandra Szwed-Georgiou
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Przemysław Płociński
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Barbara Kupikowska-Stobba
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Mateusz M. Urbaniak
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Paulina Rusek-Wala
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Konrad Szustakiewicz
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Paweł Piszko
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Agnieszka Krupa
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Monika Biernat
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Małgorzata Gazińska
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Mirosław Kasprzak
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Katarzyna Nawrotek
- Faculty
of Process and Environmental Engineering, Lodz University of Technology, Lodz 90-924, Poland
| | - Nuno Pereira Mira
- iBB-Institute
for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior
Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Instituto
Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Karolina Rudnicka
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| |
Collapse
|
47
|
Bao Y, Li H, He J, Song K, Yu H, Tian C, Guo J, Zhou X, Liu S. Polyethylene glycol modified graphene oxide-silver nanoparticles nanocomposite as a novel antibacterial material with high stability and activity. Colloids Surf B Biointerfaces 2023; 229:113435. [PMID: 37437413 DOI: 10.1016/j.colsurfb.2023.113435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Inorganic antibacterial nanomaterials play an increasingly important role in addressing the growing threat of drug-resistant bacteria. Graphene oxide-silver nanoparticles composite (GO-AgNPs), as a kind of inorganic nanomaterials, have excellent antibacterial properties, showing promising potential in biomedical field. However, GO-AgNPs are terribly prone to sedimentation due to aggregation in physiological solutions, along with its non-environmental issues during the synthesis process, seriously limits the antibacterial application of GO-AgNPs in the biomedical field. To solve this problem, herein, polyethylene glycol-graphene oxide-silver nanoparticles composite (GO-AgNPs-PEG) were prepared by modifying GO-AgNPs with polyethylene glycol to enhance their dispersion stability in physiological solutions. In addition, GO-AgNPs-PEG were prepared with using the natural product gallic acid as a reductant and stabilizer, exhibiting the characteristic of environmentally friendly. Meanwhile, the dispersion stability and antibacterial activity of GO-AgNPs-PEG were characterized by various technical methods, it was found that GO-AgNPs-PEG can be stably dispersed in a variety of physiological solutions (e.g., physiological saline, phosphate buffer solution, Luria-Bertani medium, Murashige and Skoog medium) for more than one week. Moreover, the antibacterial properties of GO-AgNPs-PEG in physiological solutions were significantly better than those of GO-AgNPs. Furthermore, it was discovered that the antibacterial mechanism of GO-AgNPs-PEG was probably associated to destroying the integrity of bacterial cell walls and membranes. The findings in this work can provide new ideas and references for the development of new inorganic antibacterial nanomaterials with stable dispersion in physiological solutions.
Collapse
Affiliation(s)
- Yunhui Bao
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China
| | - Huanhuan Li
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jian He
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ke Song
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Huazhong Yu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Chunlian Tian
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China
| | - Jie Guo
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Xianwu Zhou
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shima Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China.
| |
Collapse
|
48
|
Liang S. Advances in drug delivery applications of modified bacterial cellulose-based materials. Front Bioeng Biotechnol 2023; 11:1252706. [PMID: 37600320 PMCID: PMC10436498 DOI: 10.3389/fbioe.2023.1252706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Bacterial cellulose (BC) is generated by certain species of bacteria and comprises polysaccharides with unique physical, chemical, and mechanical characteristics. Due to its outstanding biocompatibility, high purity, excellent mechanical strength, high water absorption, and highly porous structure, bacterial cellulose has been recently investigated for biomedical application. However, the pure form of bacterial cellulose is hardly used as a biomedical material due to some of its inherent shortcomings. To extend its applications in drug delivery, modifications of native bacterial cellulose are widely used to improve its properties. Usually, bacterial cellulose modifications can be carried out by physical, chemical, and biological methods. In this review, a brief introduction to bacterial cellulose and its production and fabrication is first given, followed by up-to-date and in-depth discussions of modification. Finally, we focus on the potential applications of bacterial cellulose as a drug delivery system.
Collapse
Affiliation(s)
- Shuya Liang
- Department of Dermatology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
49
|
Ortega MA, De Leon-Oliva D, Boaru DL, Fraile-Martinez O, García-Montero C, Diaz R, Coca S, Barrena-Blázquez S, Bujan J, García-Honduvilla N, Saez MA, Álvarez-Mon M, Saz JV. Unraveling the New Perspectives on Antimicrobial Hydrogels: State-of-the-Art and Translational Applications. Gels 2023; 9:617. [PMID: 37623072 PMCID: PMC10453485 DOI: 10.3390/gels9080617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The growing impact of infections and the rapid emergence of antibiotic resistance represent a public health concern worldwide. The exponential development in the field of biomaterials and its multiple applications can offer a solution to the problems that derive from these situations. In this sense, antimicrobial hydrogels represent a promising opportunity with multiple translational expectations in the medical management of infectious diseases due to their unique physicochemical and biological properties as well as for drug delivery in specific areas. Hydrogels are three-dimensional cross-linked networks of hydrophilic polymers that can absorb and retain large amounts of water or biological fluids. Moreover, antimicrobial hydrogels (AMH) present good biocompatibility, low toxicity, availability, viscoelasticity, biodegradability, and antimicrobial properties. In the present review, we collect and discuss the most promising strategies in the development of AMH, which are divided into hydrogels with inherent antimicrobial activity and antimicrobial agent-loaded hydrogels based on their composition. Then, we present an overview of the main translational applications: wound healing, tissue engineering and regeneration, drug delivery systems, contact lenses, 3D printing, biosensing, and water purification.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Jose V. Saz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
50
|
Morrow R, Ribul M, Eastmond H, Lanot A, Baurley S. Bio-Producing Bacterial Cellulose Filaments through Co-Designing with Biological Characteristics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4893. [PMID: 37512168 PMCID: PMC10381431 DOI: 10.3390/ma16144893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
The need for circular textiles has led to an interest in the production of biologically derived materials, generating new research into the bioproduction of textiles through design and interdisciplinary approaches. Bacterial cellulose has been produced directly from fermentation into sheets but not yet investigated in terms of producing filaments directly from fermentation. This leaves a wealth of material qualities unexplored. Further, by growing the material directly into filaments, production such as wet spinning are made redundant, thus reducing textile manufacturing steps. The aim of this study was to grow the bio-material, namely bacterial cellulose directly into a filament. This was achieved using a method of co-designing with the characteristics of biological materials. The method combines approaches of material-driven textile design and human-centred co-design to investigate co-designing with the characteristics of living materials for biological material production. The project is part of a wider exploration of bio-manufacturing textiles from waste. The practice-based approach brought together biological sciences and material design through a series of iterative experiments. This, in turn, resulted in designing with the inherent characteristics of bacterial cellulose, and by doing so filaments were designed to be fabricated directly from fermentation. In this investigation, creative exploration was encouraged within a biological laboratory space, showing how interdisciplinary collaboration can offer innovative alternative bioproduction routes for textile filament production.
Collapse
Affiliation(s)
- Roberta Morrow
- Materials Science Research Centre, Royal College of Art, London SW11 4NL, UK
| | - Miriam Ribul
- Materials Science Research Centre, Royal College of Art, London SW11 4NL, UK
| | - Heather Eastmond
- CNAP-Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Alexandra Lanot
- CNAP-Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Sharon Baurley
- Materials Science Research Centre, Royal College of Art, London SW11 4NL, UK
| |
Collapse
|