1
|
Li C, Ren H, Liu H, Li T, Liu Y, Wu B, Han K, Zang S, Zhao G, Wang X. Middle frontal gyrus volume mediates the relationship between interleukin-1β and antidepressant response in major depressive disorder. J Affect Disord 2025; 372:56-65. [PMID: 39592061 DOI: 10.1016/j.jad.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Inflammation is a leading biological risk factor contributing to unfavorable outcomes of major depressive disorder (MDD). Both inflammation and depression are associated with similar alterations in brain structure, indicating that brain structural alterations could serve as a mediating factor in the adverse influence of inflammation on clinical outcomes in MDD. Nonetheless, longitudinal research has yet to confirm this hypothesis. Therefore, this study aimed at elucidating the relationships between peripheral inflammatory cytokines, gray matter volume (GMV) alterations, and antidepressant response in MDD. We studied 104 MDD patients treated with selective serotonin reuptake inhibitors and 85 healthy controls (HCs). Antidepressant response was assessed after 8-week antidepressant treatment by changes in 17-item Hamilton Depression Rating Scale (HAMD-17) scores. The GMV alterations were investigated using a voxel-based morphometry analysis. Inflammatory cytokines were measured using flow cytometry. Partial correlations were used to explore the relationships between inflammatory cytokines, GMV alterations, and antidepressant response. Compared to HCs, MDD patients showed reduced GMVs primarily in the frontal-limbic area, right insula, and right superior temporal gyrus. Furthermore, the alterations in GMVs, particularly in the right middle frontal gyrus and the left anterior cingulate gyrus, were associated with ΔHAMD-17 and inflammatory cytokines. Additionally, GMV alterations in the right middle frontal gyrus mediated the negative relationship between interleukin -1β and ΔHAMD-17. This study contributes to understanding the effect of inflammation on the brain and their relationships with antidepressant response, offering a potential explanation for the connection between inflammatory status and treatment efficacy.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Honghong Ren
- Department of Psychology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongzhu Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Tong Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yigang Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Baolin Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ke Han
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan, Shandong, China
| | - Shuqi Zang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan, Shandong, China
| | - Guoqing Zhao
- Department of Psychology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
3
|
Júnior JIRN, Aires R, de Sousa Cutrim TA, Vasquez EC, Pereira TMC, Campagnaro BP. Efficacy of probiotic adjuvant therapy in women with major depressive disorder: insights from a case series study. Pharmacol Rep 2025:10.1007/s43440-024-00690-6. [PMID: 39808404 DOI: 10.1007/s43440-024-00690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The therapeutic targeting of the intestinal microbiota has gained increasing attention as a promising avenue for addressing mood disorders. This study aimed to assess the potential effect of supplementing standard pharmacological treatment with the probiotic kefir in patients with Major Depressive Disorder (MDD). METHODS Thirty-eight female participants diagnosed with moderate MDD by the Hamilton Rating Scale for Depression (HAM-D) were selected to receive the probiotic kefir in conjunction with antidepressant therapy for 12 weeks. The participants were evaluated at baseline (T0) and 90 days after probiotic kefir supplementation (T90). HAM-D scores and blood samples were collected at both time points. RESULTS Probiotic supplementation significantly reduced MDD severity, as evidenced by lower HAM-D scores compared to baseline. Probiotic consumption for 90 days also significantly decreased interleukin-6 (IL-6), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) levels compared to baseline. However, probiotic kefir supplementation did not significantly affect serum serotonin levels. Additionally, after 90 days of probiotic consumption, insulin and morning cortisol levels were significantly reduced. In contrast, no significant changes were observed in serum levels of prolactin, vitamin D, and afternoon cortisol. CONCLUSION This study provides valuable insights into the potential benefits of probiotics, specifically kefir, as adjunctive therapy for female patients with MDD. The findings highlight promising results in ameliorating depressive symptoms and modulating inflammatory and hormonal markers.
Collapse
Affiliation(s)
- Jairo Izidro Rossetti Navarro Júnior
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil
| | - Thiago Antonio de Sousa Cutrim
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil
| | - Thiago Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), R Mercurio s/n, Vila Velha, ES, 29102623, Brazil.
| |
Collapse
|
4
|
Zhang C, Deng D, Wu Y, Song L, Geng J, Feng H, Jiang S, Zhang K, Cheng Y, Yin S. New insights into the neurophysiological effects of heat stress on the Chinese mitten crab (Eriocheir sinensis). J Therm Biol 2025; 127:104055. [PMID: 39818005 DOI: 10.1016/j.jtherbio.2025.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Climate warming and frequent incidents of extreme high temperatures are serious global concerns. Heat stress induced by high temperature has many adverse effects on animal physiology, especially in aquatic poikilotherms. Chinese mitten crab (Eriocheir sinensis) is sensitive to high temperatures, this study evaluated the harmful effects of heat stress on the neurotoxicity, intestinal health, microbial diversity, and metabolite profiles. The results showed that heat stress caused histopathological damages and altered the ultrastructure of lesions in the cranial ganglia. Heat stress significantly upregulated the mRNA expression of apoptosis-related genes, and significantly altered the expression of neurotransmitter receptors. In addition, heat stress induced significant intestinal damages that mainly manifested as a significant increase in the activity of diamine oxidase in the serum and contents of histamine in the intestine. The diversity and abundance of intestinal microbiota altered abnormally in E. sinensis exposed to heat stress, and the bacteria that exhibited significant variations in abundance were closely related to the production of neurotransmitters and neuromodulators. Heat stress caused significant changes in the intestinal metabolite profiles, which mainly involved the amino acid and lipid metabolism pathways. Analysis of the correlation showed that the abnormal changes in metabolites were closely related to differences in the abundance of intestinal microbiota. Therefore, this study showed that heat stress could cause neurophysiological toxic effects, which may be related to intestinal ecological imbalance.
Collapse
Affiliation(s)
- Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China.
| | - Dunqian Deng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Yi Wu
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Lexue Song
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Jiayin Geng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Huixia Feng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Su Jiang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China
| | - Yongxu Cheng
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, 210023, PR China.
| |
Collapse
|
5
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
6
|
Lakhawat SS, Mech P, Kumar A, Malik N, Kumar V, Sharma V, Bhatti JS, Jaswal S, Kumar S, Sharma PK. Intricate mechanism of anxiety disorder, recognizing the potential role of gut microbiota and therapeutic interventions. Metab Brain Dis 2024; 40:64. [PMID: 39671133 DOI: 10.1007/s11011-024-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Anxiety is a widespread psychological disorder affecting both humans and animals. It is a typical stress reaction; however, its longer persistence can cause severe health disorders affecting the day-to-day life activities of individuals. An intriguing facet of the anxiety-related disorder can be addressed better by investigating the role of neurotransmitters in regulating emotions, provoking anxiety, analyzing the cross-talks between neurotransmitters, and, most importantly, identifying the biomarkers of the anxiety. Recent years have witnessed the potential role of the gut microbiota in human health and disorders, including anxiety. Animal models are commonly used to study anxiety disorder as they offer a simpler and more controlled environment than humans. Ultimately, developing new strategies for diagnosing and treating anxiety is of paramount interest to medical scientists. Altogether, this review article shall highlight the intricate mechanisms of anxiety while emphasizing the emerging role of gut microbiota in regulating metabolic pathways through various interaction networks in the host. In addition, the review will foster information about the therapeutic interventions of the anxiety and related disorder.
Collapse
Affiliation(s)
- Sudarshan Singh Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Priyanka Mech
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Environmental Sciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Sunil Jaswal
- Department of Human Genetics and Molecular Medicine Central University Punjab, Bathinda, 151401, India
| | - Sunil Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
7
|
Jia W, Ma Q, Xing R, Yang X, Liu D, Zeng H, Liu Z, Liu S, Xu W, Liu Z, Wu W. Jianghua Kucha black tea containing theacrine attenuates depression-like behavior in CUMS mice by regulating gut microbiota-brain neurochemicals and cytokines. Food Res Int 2024; 198:115306. [PMID: 39643357 DOI: 10.1016/j.foodres.2024.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
Theacrine and theaflavins are known for their potential to mitigate depression and cognitive impairment. Jianghua Kucha black tea (JH) contains both compounds, yet its antidepressant properties are seldom documented. This study evaluated the effects of JH on depression in chronic unpredictable mild stress (CUMS) mice and explored the underlying mechanisms through integrative analyses of gut microbiota and fecal metabolomics. JH was found to significantly alleviate CUMS-induced depression-like behavior by improving body weight, food intake, 1% sucrose preference, immobility time, and numbers of crossings and standings compared to Zhuyeqi black tea (ZYQ), which contains theaflavins. JH notably altered the gut microbiota composition, enriching genera such as Turicibacter, Faecalibaculum, Akkermansia, and Desulfovibrio, while inhibiting genera norank_f__Muribaculaceae and Lactobacillus. Additionally, JH modified the fecal metabolite profile, characterized by increased levels of several secondary bile acids (BAs) and decreased levels of several purine intermediate metabolites. Furthermore, JH upregulated levels of monoamine neurotransmitters (5-HT and DA) and brain-derived neurotrophic factor (BDNF), while downregulating pro-inflammatory cytokines IL-6 and TNF-α in brain tissue. These findings suggested that JH could mitigate CUMS-induced depression-like behavior, potentially by modulating gut microbiota composition and function, as well as brain neurochemicals and cytokines.
Collapse
Affiliation(s)
- Wenbao Jia
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China; Horticulture Colleges, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qianting Ma
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China; Longping Branch, College of Biology, Hunan University, Changsha, Hunan 410125, China
| | - Ruixue Xing
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China; Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaolu Yang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Dongmin Liu
- Changsha University of Science & Technology, Changsha 410114, China
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, China
| | - Zhen Liu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| | - Shujuan Liu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| | - Wei Xu
- Horticulture Colleges, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China; Longping Branch, College of Biology, Hunan University, Changsha, Hunan 410125, China.
| |
Collapse
|
8
|
Castro-Martínez JA, Vargas E, Díaz-Beltrán L, Esteban FJ. Enhancing Transcriptomic Insights into Neurological Disorders Through the Comparative Analysis of Shapley Values. Curr Issues Mol Biol 2024; 46:13583-13606. [PMID: 39727940 PMCID: PMC11726880 DOI: 10.3390/cimb46120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Neurological disorders such as Autism Spectrum Disorder (ASD), Schizophrenia (SCH), Bipolar Disorder (BD), and Major Depressive Disorder (MDD) affect millions of people worldwide, yet their molecular mechanisms remain poorly understood. This study describes the application of the Comparative Analysis of Shapley values (CASh) to transcriptomic data from nine datasets associated with these complex disorders, demonstrating its effectiveness in identifying differentially expressed genes (DEGs). CASh, which combines Game Theory with Bootstrap resampling, offers a robust alternative to traditional statistical methods by assessing the contribution of each gene in the broader context of the complete dataset. Unlike conventional approaches, CASh is highly effective at detecting subtle but meaningful molecular patterns that are often missed. These findings highlight the potential of CASh to enhance the precision of transcriptomic analysis, providing a deeper understanding of the molecular mechanisms underlying these disorders and establishing a solid basis to improve diagnostic techniques and developing more targeted therapeutic interventions.
Collapse
Affiliation(s)
- José A. Castro-Martínez
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| | - Eva Vargas
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| | - Leticia Díaz-Beltrán
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
- Clinical Research Unit, Department of Medical Oncology, University Hospital of Jaén, 23007 Jaén, Spain
| | - Francisco J. Esteban
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| |
Collapse
|
9
|
Chen X, Mo X, Zhang Y, He D, Xiao R, Cheng Q, Wang H, Liu L, Li WW, Xie P. A comprehensive analysis of the differential expression in the hippocampus of depression induced by gut microbiota compared to traditional stress. Gene 2024; 927:148633. [PMID: 38838871 DOI: 10.1016/j.gene.2024.148633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Depression, which is a disease of heterogeneous etiology, is characterized by high disability and mortality rates. Gut microbiota are associated with the development of depression. To further explore any differences in the mechanisms of depression induced by gut microbiota and traditional stresses, as well as facilitate the development of microbiota-based interventions, a fecal microbiota transplantation (FMT) depression model was made. This was achieved by transplanting feces from major depressive disorder (MDD) patients into germ-free mice. Second, the mechanisms of the depression induced by gut microbiota were analyzed in comparison with those of the depression caused by different forms of stress. It turned out that mice exhibited depressive-like behavior after FMT. Then, PCR array analysis was performed on the hippocampus of the depressed mice to identify differentially expressed genes (DEGs). The KEGG analysis revealed that the pathways of depression induced by gut microbes are closely associated with immuno-inflammation. To determine the pathogenic pathways of physiological stress and psychological stress-induced depression, raw data was extracted from several databases and KEGG analysis was performed. The results from the analysis revealed that the mechanisms of depression induced by physiological and psychological stress are closely related to the regulation of neurotransmitters and energy metabolism. Interestingly, the immunoinflammatory response was distinct across different etiologies that induced depression. The findings showed that gut microbiota dysbiosis-induced depression was mainly associated with adaptive immunity, while physiological stress-induced depression was more linked to innate immunity. This study compared the pathogenesis of depression caused by gut microbiota dysbiosis, and physiological and psychological stress. We explored new intervention methods for depression and laid the foundation for precise treatment.
Collapse
Affiliation(s)
- Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; School of Basic Medical Sciences, Department of Pathology, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolong Mo
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dian He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; School of Basic Medical Sciences, Department of Pathology, Chongqing Medical University, Chongqing 400016, China
| | - Qisheng Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Wen-Wen Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; School of Basic Medical Sciences, Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China.
| |
Collapse
|
10
|
Zhao J, Liu J, Feng J, Liu X, Hu Q. The gut microbiota-brain connection: insights into major depressive disorder and bipolar disorder. Front Psychiatry 2024; 15:1421490. [PMID: 39564459 PMCID: PMC11574523 DOI: 10.3389/fpsyt.2024.1421490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) are two of the most prevalent mood disorders that seriously jeopardize both physical and mental health. The current diagnosis of MDD and BD relies primarily on clinical symptoms. However, correctly differentiating between MDD and BD during depressive episode states remains a substantial clinical challenge. The human gut hosts a large and diverse microbiota, which plays a pivotal role in various physiological processes. Emerging evidence suggests that the gut microbiota (GM) exerts beneficial effects on mental health disorders, including MDD, BD, and schizophrenia, through the microbe-gut-brain axis (MGBA). In recent years, the relationship between GM and mood disorders has garnered considerable attention, leading to intensive research in this area. The MGBA is a bidirectional communication system between the gut and the brain. Growing evidence indicates that the brain can influence the GM, which in turn may modulate the brain through this axis. This review aims to explore the changes in the GM of patients with MDD and BD and evaluate the effects of different treatments on their GM, including medication, probiotic, prebiotic and synbiotic interventions, and fecal microbiota transplantation (FMT). By doing so, we seek to identify potential disease-specific biomarkers, improve differential diagnosis, and offer novel therapeutic avenues for these disorders.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jiaoyan Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xing Liu
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Qinxue Hu
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Duan DM, Wang YC, Hu X, Wang YB, Wang YQ, Hu Y, Zhou XJ, Dong XZ. Effects of regulating gut microbiota by electroacupuncture in the chronic unpredictable mild stress rat model. Neuroscience 2024; 557:24-36. [PMID: 39128700 DOI: 10.1016/j.neuroscience.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE This study aims to investigate the effect of electroacupuncture (EA) treatment on depression, and the potential molecular mechanism of EA in depression-like behaviors rats. METHODS A total of 40 male Sprague Dawley rats were divided into three groups: normal control, chronic unpredictable mild stress (CUMS), and EA (CUMS + EA). The rats in CUMS and EA groups underwent chronic stress for 10 weeks, and EA group rats received EA treatment for 4 weeks starting from week 7. Body weight and behavioral tests, including the sucrose preference test (SPT), the forced swimming test (FST), and the open field test (OFT) were monitored. Gut microbiota composition was assessed via 16S rDNA sequencing, and lipid metabolism was analyzed by using UPLC-Q-TOF/MS technology. RESULTS In comparison to CUMS group, EA could improve the behavior including bodyweight, immovability time, sucrose preference index, crossing piece index and rearing times index. After 4 weeks of EA treatment, 5-HT in hippocampus, serum and colon of depressive rats were simultaneously increased, indicating a potential alleviation of depression-like behaviors. In future studies revealed that EA could regulate the distribution and functions of gut microbiota, and improve the intestinal barrier function of CUMS rats. The regulation of intestinal microbial homeostasis by EA may further affect lipid metabolism in CUMS rats, and thus play an antidepressant role. CONCLUSION This study suggested that EA has potential antidepressant effects by regulating gut microbiota composition and abundance, subsequently affecting lipid metabolism.
Collapse
Affiliation(s)
- Dong-Mei Duan
- No.1 Health Care Department, Second Medical Center of Chinese, PLA General Hospital, 100853, China
| | - Yi-Chen Wang
- Chinese PLA Medical School, 100853, China; Chinese PLA General Hospital, 100853, China
| | - Xin Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, China; School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yuan-Bo Wang
- Chinese PLA Medical School, 100853, China; Chinese PLA General Hospital, 100853, China
| | - Yu-Qing Wang
- Chinese PLA Medical School, 100853, China; Chinese PLA General Hospital, 100853, China
| | - Yuan Hu
- Chinese PLA General Hospital, 100853, China
| | | | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, China.
| |
Collapse
|
12
|
Que M, Li S, Xia Q, Li X, Luo X, Zhan G, Luo A. Microbiota-gut-brain axis in perioperative neurocognitive and depressive disorders: Pathogenesis to treatment. Neurobiol Dis 2024; 200:106627. [PMID: 39111702 DOI: 10.1016/j.nbd.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
An increasing number of people undergo anesthesia and surgery. Perioperative neurocognitive and depressive disorders are common central nervous system complications with similar pathogeneses. These conditions pose a deleterious threat to human health and a significant societal burden. In recent years, numerous studies have focused on the role of the gut microbiota and its metabolites in the central nervous system via the gut-brain axis. Its involvement in perioperative neurocognitive and depressive disorders has attracted considerable attention. This review aimed to elucidate the role of the gut microbiota and its metabolites in the pathogenesis of perioperative neurocognitive and depressive disorders, as well as the value of targeted interventions and treatments.
Collapse
Affiliation(s)
- Mengxin Que
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Liu M, Fan G, Meng L, Yang K, Liu H. New perspectives on microbiome-dependent gut-brain pathways for the treatment of depression with gastrointestinal symptoms: from bench to bedside. J Zhejiang Univ Sci B 2024; 26:1-25. [PMID: 39428337 PMCID: PMC11735910 DOI: 10.1631/jzus.b2300343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 10/22/2024]
Abstract
Patients with depression are more likely to have chronic gastrointestinal (GI) symptoms than the general population, but such symptoms are considered only somatic symptoms of depression and lack special attention. There is a chronic lack of appropriate diagnosis and effective treatment for patients with depression accompanied by GI symptoms, and studying the association between depression and GI disorders (GIDs) is extremely important for clinical management. There is growing evidence that depression is closely related to the microbiota present in the GI tract, and the microbiota-gut-brain axis (MGBA) is creating a new perspective on the association between depression and GIDs. Identifying and treating GIDs would provide a key opportunity to prevent episodes of depression and may also improve the outcome of refractory depression. Current studies on depression and the microbially related gut-brain axis (GBA) lack a focus on GI function. In this review, we combine preclinical and clinical evidence to summarize the roles of the microbially regulated GBA in emotions and GI function, and summarize potential therapeutic strategies to provide a reference for the study of the pathomechanism and treatment of depression in combination with GI symptoms.
Collapse
Affiliation(s)
- Menglin Liu
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Brain Disease Regional Diagnosis and Treatment Center, Zhengzhou 450000, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Genhao Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
- The First Affiliated Hospital of Zhengzhou University, Department of Geriatrics, Zhengzhou 450052, China
| | - Lingkai Meng
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China
| | - Kuo Yang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China
| | - Huayi Liu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China.
| |
Collapse
|
14
|
Lee J, Park SJ, Choi S, Chang J, Park YJ, Jeong S, Son JS, Lee G, Ahn JC, Kim JA, Park SM. Antibiotic exposure and depression incidence: A cohort study of the Korean population. Psychiatry Res 2024; 339:115992. [PMID: 38875919 DOI: 10.1016/j.psychres.2024.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Recent research highlights the crucial role of the gut-brain axis in understanding depression etiologies. While burgeoning studies suggest an association between disruptions in gut microbiota and the development of depression, limited longitudinal studies have investigated this link. To address this gap, we conducted a retrospective cohort study using National Health Insurance Service-Health Screening Cohort (NHIS-HEALS) data in South Korea, involving 199,144 individuals aged 40-79. We examined the impact of cumulative antibiotic exposure (2004-2008) on subsequent depression incidence (2009-2013) by conducting Cox proportional hazards regressions. Our findings show an increasing depression risk with extended antibiotic exposure after adjusting for comorbidities and behavioral covariates. A broader antibiotic spectrum was associated with a higher depression risk. These trends persisted after adjusting for the original antibiotic indications. In conclusion, our study highlights the duration-dependent association between antibiotic exposure and increased depression risk, offering insights into depression etiologies and relevant novel therapeutic tools, and advocating for heightened antibiotic stewardship considering their impact on mental health.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Psychiatry, University of Rochester, Rochester, NY, USA
| | - Sun Jae Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seulggie Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Jun Park
- Medical Research Center, Genomic Medicine Institute, Seoul National University, Seoul, South Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
| | - Joung Sik Son
- Department of Internal Medicine, Hanyang University Hospital, Seoul, South Korea
| | - Gyeongsil Lee
- Division of Family Medicine, Life Clinic, Seoul, South Korea; KS Healthlink Institute, Seoul, South Korea
| | - Joseph C Ahn
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, USA
| | - Jihoon Andrew Kim
- Department of Psychiatry, Columbia University, New York, NY, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
15
|
Shi M, Li Z, Tang Z, Zhou H, Huang X, Wei Y, Li X, Li X, Shi H, Qin D. Exploring the pathogenesis and treatment of PSD from the perspective of gut microbiota. Brain Res Bull 2024; 215:111022. [PMID: 38936669 DOI: 10.1016/j.brainresbull.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Post-stroke depression (PSD) is a psychological disease that can occur following a stroke and is associated with serious consequences. Research on the pathogenesis and treatment of PSD is still in the infancy stage. Patients with PSD often exhibit gastrointestinal symptoms; therefore the role of gut microbiota in the pathophysiology and potential treatment effects of PSD has become a hot topic of research. In this review, describe the research on the pathogenesis and therapy of PSD. We also describe how the gut microbiota influences neurotransmitters, the endocrine system, energy metabolism, and the immune system. It was proposed that the gut microbiota is involved in the pathogenesis and treatment of PSD through the regulation of neurotransmitter levels, vagal signaling, hypothalamic-pituitary-adrenal axis activation and inhibition, hormone secretion and release, in addition to immunity and inflammation.
Collapse
Affiliation(s)
- Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Zhenmin Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Zhengxiu Tang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Haimei Zhou
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xinyao Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xiahuang Li
- The People's Hospital of Mengzi, The Affiliated Hospital of Yunnan University of Chinese Medicine, Mengzi Honghe, China.
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People's Hospital of Yunnan Province, Kunming Yunnan, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| |
Collapse
|
16
|
Molska M, Mruczyk K, Cisek-Woźniak A, Prokopowicz W, Szydełko P, Jakuszewska Z, Marzec K, Trocholepsza M. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients 2024; 16:2891. [PMID: 39275207 PMCID: PMC11397622 DOI: 10.3390/nu16172891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The regulation of neurogenesis, the complex process of producing and differentiating new brain tissue cells, is influenced by a complex interaction of internal and external factors. Over the past decade, extensive research has been conducted on neurotrophins and their key role in adult neurogenesis, as well as their impact on diseases such as depression. Among neurotrophins, the brain-derived neurotrophic factor (BDNF) has been the subject of comprehensive studies on adult neurogenesis, and scientific evidence supports its necessity for neurogenesis in the subventricular zone of the hippocampus. A novel area of research is the emerging role of gut microbiota as a significant contributor to neurogenesis and neurotrophin production. Studies have shown that reduced BDNF levels can lead to mood disorders, which are observed in intestinal dysbiosis, characterized by an imbalance in the composition and quantity of the intestinal microbiota. There is evidence in the literature that there is a link between brain function and gut microbiota. Physical activity, and especially the regularity and intensity of exercise, is important in relation to the level of BDNF and the intestinal microbiota. Probiotics, prebiotics and physical activity may have a positive effect on the intestinal microbiota, and therefore also on the level of the brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Marta Molska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Kinga Mruczyk
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Angelika Cisek-Woźniak
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Wojciech Prokopowicz
- GSP Clinic Limited Liability Company, Kostrzyńska Street 12, 66-400 Gorzow Wielkopolski, Poland;
| | - Patrycja Szydełko
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Zuzanna Jakuszewska
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Karolina Marzec
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| | - Martyna Trocholepsza
- Department of Dietetics, Faculty of Physical Culture in Gorzow Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzow Wielkopolski, Poland; (K.M.); (A.C.-W.); (P.S.); (Z.J.); (K.M.); (M.T.)
| |
Collapse
|
17
|
Panpetch J, Kiatrungrit K, Tuntipopipat S, Tangphatsornruang S, Mhuantong W, Chongviriyaphan N. Gut Microbiota and Clinical Manifestations in Thai Pediatric Patients with Attention-Deficit Hyperactivity Disorder. J Pers Med 2024; 14:739. [PMID: 39063993 PMCID: PMC11277806 DOI: 10.3390/jpm14070739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder potentially linked to gut dysbiosis. This comparative cross-sectional study profiled the gut microbiota in 24 treatment-naïve Thai children diagnosed with ADHD and 24 healthy ones matched by age and gender (median age: 7 years). Fecal microbial compositions were genetically analyzed using 16s rRNA gene amplicon sequencing. The study findings indicated no statistically significant differences in microbial diversity between groups, although Firmicutes and Actinobacteria appeared dominant in both groups. Moreover, ADHD patients exhibited enrichment in Alloprevotella, CAG-352, Succinivibrio, and Acidaminococcus genera, while healthy controls had higher levels of Megamonas, Enterobacter, Eubacterium hallii, and Negativibacillus genera. Spearman correlation analysis demonstrated a significant positive association between CAG-352 and inattention and hyperactivity/impulsivity scores, whereas the Eubacterium hallii group and Megamonas exhibited negative correlations with these symptomatology domains. Beta-carotene intake was associated with the Eubacterium hallii group and Succinivibrio: likewise, vitamin B2 intake was associated with Alloprevotella. Additional research should aim to elucidate the underlying mechanisms influencing clinical biomarkers that signify alterations in specific gut microbiome profiles linked to ADHD.
Collapse
Affiliation(s)
- Jittraporn Panpetch
- Doctoral Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand;
| | - Komsan Kiatrungrit
- Department of Psychiatry, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | | | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Paholyothin Rd., Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand; (S.T.); (W.M.)
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Paholyothin Rd., Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand; (S.T.); (W.M.)
| | - Nalinee Chongviriyaphan
- Division of Nutrition, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
18
|
Ji J, Yi X, Gao X, Wang B, Zhang X, Shen X, Xia G. Synergistic effects of tilapia head protein hydrolysate and walnut protein hydrolysate on the amelioration of cognitive impairment in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5419-5434. [PMID: 38334319 DOI: 10.1002/jsfa.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cognitive impairment (CI) is a significant public health concern, and bioactive peptides have shown potential as therapeutic agents. However, information about their synergistic effects on cognitive function is still limited. Here, we investigated the synergistic effects of tilapia head protein hydrolysate (THPH) and walnut protein hydrolysate (WPH) in mitigating CI induced by scopolamine in mice. RESULTS The results showed that the combined supplementation of THPH and WPH (mass ratio, 1:1) was superior to either individual supplement in enhancing spatial memory and object recognition abilities in CI mice, and significantly lessened brain injury in CI mice by alleviating neuronal damage, reducing oxidative stress and stabilizing the cholinergic system. In addition, the combined supplementation was found to be more conducive to remodeling the gut microbiota structure in CI mice by not only remarkably reducing the ratio of Firmicutes to Bacteroidota, but also specifically enriching the genus Roseburia. On the other hand, the combined supplementation regulated the disorders of sphingolipid and amino acid metabolism in CI mice, particularly upregulating glutathione and histidine metabolism, and displayed a stronger ability to increase the expression of genes and proteins related to the brain-derived neurotrophic factor (BDNF)/TrkB/CrEB signaling pathway in the brain. CONCLUSION These findings demonstrate that tilapia head and walnut-derived protein hydrolysates exerted synergistic effects in ameliorating CI, which was achieved through modulation of gut microbiota, serum metabolic pathways and BDNF signaling pathways. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Ji
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
- Univ. Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Xiangzhou Yi
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xia Gao
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Bohui Wang
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xueying Zhang
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Guanghua Xia
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
19
|
Du C, Zhang T, Feng C, Sun Q, Chen Z, Shen X, Liu Y, Dai G, Zhang X, Tang N. The effects of venlafaxine on depressive-like behaviors and gut microbiome in cuprizone-treated mice. Front Psychiatry 2024; 15:1347867. [PMID: 38899045 PMCID: PMC11186413 DOI: 10.3389/fpsyt.2024.1347867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Background Cuprizone (CPZ)-treated mice show significant demyelination, altered gut microbiome, and depressive-like behaviors. However, the effects of venlafaxine (Ven) on the gut microbiome and depressive-like behavior of CPZ-treated mice are largely unclear. Methods Male C57BL/6J mice were fed a chow containing 0.2% cuprizone (w/w) for 5 weeks to induce a model of demyelination. Meanwhile, the gut microbiota and depressive-like behaviors were assessed after the mice were fed with Ven (20 mg/kg/day) or equal volumes of distilled water for 2 weeks by oral gavage from the third week onward during CPZ treatment. Results CPZ treatment decreased the sucrose preference rate in the sucrose preference test and increased the immobility time in the tail-suspension test, and it also induced an abnormality in β-diversity and changes in microbial composition. Ven alleviated the depressive-like behavior and regulated the composition of the gut microbiota, such as the increase of Lactobacillus and Bifidobacterium in CPZ-treated mice. Conclusion The anti-depressant effects of Ven might be related to the regulation of gut microbiota in the CPZ-treated mice.
Collapse
Affiliation(s)
- Chunhai Du
- Department of Oncology, Hengshui Hospital of Traditional Chinese Medicine, Hengshui, Hebei, China
| | - Tian Zhang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Chong Feng
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Qian Sun
- Department of Oncology, Hengshui Hospital of Traditional Chinese Medicine, Hengshui, Hebei, China
| | - ZhiGuo Chen
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Xin Shen
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Ying Liu
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Gengwu Dai
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Xuan Zhang
- Institute for Hospital Management Research, Chinese PLA General Hospital, Beijing, China
| | - Nailong Tang
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| |
Collapse
|
20
|
Wardenaar FC, Mohr AE, Ortega-Santos CP, Nyakayiru J, Kersch-Counet C, Chan Y, Clear AM, Kurka J, Schott KD, Seltzer RGN. Explorative Characterization of GI Complaints, General Physical and Mental Wellbeing, and Gut Microbiota in Trained Recreative and Competitive Athletes with or without Self-Reported Gastrointestinal Symptoms. Nutrients 2024; 16:1712. [PMID: 38892645 PMCID: PMC11174857 DOI: 10.3390/nu16111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The current state of the literature lacks a clear characterization of gastrointestinal (GI) symptoms, gut microbiota composition, and general physical and mental wellbeing in well-trained athletes. Therefore, this study aimed to characterize differences in self-reported symptoms, gut microbiota composition, and wellbeing (i.e., sleep quality, mood, and physical (PHQ) and mental wellbeing) between athletes with and without GI symptoms. In addition, we assessed the potential impact of a 3-week multi-ingredient fermented whey supplement in the GI complaints group, without a control group, on the gut microbiota and self-reported GI symptoms and wellbeing. A total of 50 athletes (24.7 ± 4.5 years) with GI issues (GI group at baseline, GI-B) and 21 athletes (25.4 ± 5.3 years) without GI issues (non-GI group, NGI) were included. At baseline, there was a significant difference in the total gastrointestinal symptom rating scale (GSRS) score (24.1 ± 8.48 vs. 30.3 ± 8.82, p = 0.008) and a trend difference in PHQ (33.9 ± 10.7 vs. 30.3 ± 8.82, p = 0.081), but no differences (p > 0.05) were seen for other outcomes, including gut microbiota metrics, between groups. After 3-week supplementation, the GI group (GI-S) showed increased Bifidobacterium relative abundance (p < 0.05), reported a lower number of severe GI complaints (from 72% to 54%, p < 0.001), and PHQ declined (p = 0.010). In conclusion, well-trained athletes with GI complaints reported more severe GI symptoms than an athletic reference group, without showing clear differences in wellbeing or microbiota composition. Future controlled research should further investigate the impact of such multi-ingredient supplements on GI complaints and the associated changes in gut health-related markers.
Collapse
Affiliation(s)
- Floris C. Wardenaar
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
| | - Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Carmen P. Ortega-Santos
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA;
| | - Jean Nyakayiru
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (J.N.); (C.K.-C.)
| | | | - Yat Chan
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
| | - Anna-Marie Clear
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
| | - Jonathan Kurka
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
| | - Kinta D. Schott
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
| | - Ryan G. N. Seltzer
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
| |
Collapse
|
21
|
Duan WX, Wang F, Liu JY, Liu CF. Relationship Between Short-chain Fatty Acids and Parkinson's Disease: A Review from Pathology to Clinic. Neurosci Bull 2024; 40:500-516. [PMID: 37755674 PMCID: PMC11003953 DOI: 10.1007/s12264-023-01123-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/15/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease, characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies and neurites, and massive loss of midbrain dopamine neurons. Increasing evidence suggests that gut microbiota and microbial metabolites are involved in the development of PD. Among these, short-chain fatty acids (SCFAs), the most abundant microbial metabolites, have been proven to play a key role in brain-gut communication. In this review, we analyze the role of SCFAs in the pathology of PD from multiple dimensions and summarize the alterations of SCFAs in PD patients as well as their correlation with motor and non-motor symptoms. Future research should focus on further elucidating the role of SCFAs in neuroinflammation, as well as developing novel strategies employing SCFAs and their derivatives to treat PD.
Collapse
Affiliation(s)
- Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital affiliated to Soochow University, Suzhou, 215125, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
22
|
Jang HJ, Lee NK, Paik HD. A Narrative Review on the Advance of Probiotics to Metabiotics. J Microbiol Biotechnol 2024; 34:487-494. [PMID: 38247208 PMCID: PMC11018519 DOI: 10.4014/jmb.2311.11023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Recently, the term metabiotics has emerged as a new concept of probiotics. This concept entails combining existing probiotic components with metabolic by-products improve specific physiological functionalities. Representative ingredients of these metabiotics include short-chain fatty acids (SCFAs), bacteriocins, polysaccharides, and peptides. The new concept is highly regarded as it complements the side effects of existing probiotics and is safe and easy to administer. Known health functions of metabiotics are mainly immune regulation, anti-inflammatory, anticancer, and brain-neurological health. Research has been actively conducted on the health benefits related to the composition of intestinal microorganisms. Among them, the focus has been on brain neurological health, which requires extensive research. This study showed that neurological disorders, such as depression, anxiety, autism spectrum disorder, Alzheimer's disease, and Parkinson's disease, can be treated and prevented according to the gut-brain axis theory by changing the intestinal microflora. In addition, various studies are being conducted on the immunomodulatory and anticancer effects of substances related to metabiotics of the microbiome. In particular, its efficacy is expected to be confirmed through human studies on various cancers. Therefore, developing various health functional effects of the next-generation probiotics such as metabiotics to prevent or treatment of various diseases is anticipated.
Collapse
Affiliation(s)
- Hye Ji Jang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
23
|
Warren M, O'Connor C, Lee JE, Burton J, Walton D, Keathley J, Wammes M, Osuch E. Predispose, precipitate, perpetuate, and protect: how diet and the gut influence mental health in emerging adulthood. Front Nutr 2024; 11:1339269. [PMID: 38505265 PMCID: PMC10948435 DOI: 10.3389/fnut.2024.1339269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
Medicine often employs the 4Ps of predisposing, precipitating, perpetuating, and protective factors to identify salient influences on illness states, and to help guide patient care. Mental illness is a significant cause of morbidity and mortality worldwide. Mental health is a complex combination of biological, psychological, environmental, and social factors. There is growing interest in the gut-brain-microbiome (GBM) axis and its impact on mental health. We use the medical model of the 4Ps to explore factors involving the connection between nutrition and the GBM axis and their associated risks with mental health problems in emerging adults (EAs), a life stage when mental illness onset is the most common. We review the impact of current dietary trends on the GBM and on mental health, and the role that gut microbiome-based interventions can have in modulating the GBM axis of EAs. We discuss the implications of gut health on the GBM and areas for clinical intervention.
Collapse
Affiliation(s)
- Michael Warren
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Colleen O'Connor
- School of Food and Nutritional Sciences, Brescia University College, London, ON, Canada
| | - Ju Eun Lee
- Geriatrics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jeremy Burton
- Department of Surgery, Microbiology and Immunology, Lawson Health Research Institute, Western University, London, ON, Canada
| | - David Walton
- School of Physical Therapy, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Justine Keathley
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Michael Wammes
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Elizabeth Osuch
- Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- First Episode Mood and Anxiety Program, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
24
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
25
|
Wang Y, Zhang X, Yao Y, Hu S, Wang W, Wang D, Huang C, Liu H, Zhang Q, He T, Wang S, Wu Z, Jiang R, Yang C. Inferior social hierarchy is vulnerable to anxiety-like behavior in chronic pain mice: Potential role of gut microbiota and metabolites. Neurobiol Dis 2024; 191:106402. [PMID: 38184015 DOI: 10.1016/j.nbd.2024.106402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024] Open
Abstract
Social dominance is a universal phenomenon among grouped animals that profoundly affects survival, health, and reproductive success by determining access to resources, and exerting a powerful influence on subsequent behavior. However, the understanding of pain and anxiety comorbidities in dominant or subordinate animals suffering from chronic pain is not well-defined. Here, we provide evidence that subordinate mice are more susceptible to pain-induced anxiety compared to dominant mice. We propose that the gut microbiota may play a mediating role in this mechanism. Our findings demonstrate that transplantation of fecal microbiota from subordinate mice with chronic inflammatory pain, but not dominant mice, into antibiotics-treated pseudo-germ-free mice significantly amplifies anxiety-like phenotypes, highlighting the critical involvement of gut microbiota in this behavioral response. Using chronic inflammatory pain model, we carried out 16S rRNA sequencing and untargeted metabolomic analyses to explore the relationship between microbiota and metabolites in a stable social hierarchy of mice. Interestingly, anxiety-like behaviors were directly associated with some microbial genera and metabolites, especially bile acid metabolism. Overall, we have demonstrated a close relationship between social status and anxiety susceptibility, highlighting the contributions of gut microbiota and the associated metabolites in the high-anxiety state of subordinate mice with chronic inflammatory pain.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinying Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiting Yao
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenli Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chaoli Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hanyu Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Teng He
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sen Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Riyue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
26
|
Kopera AF, Khiew YC, Amer Alsamman M, Mattar MC, Olsen RS, Doman DB. Depression and the Aberrant Intestinal Microbiome. Gastroenterol Hepatol (N Y) 2024; 20:30-40. [PMID: 38405047 PMCID: PMC10885418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Depression is one of the most common mental health disorders affecting adults in the United States. The current treatment is the combination of pharmacotherapy and psychotherapy. Recently, the evidence linking gut microbiome dysregulation to the development of depression has grown. The pathophysiology is currently poorly understood, although leading hypotheses include involvement of the hypothalamic-pituitary-adrenal axis, a bidirectional relationship between the gut microbiome and the central nervous system, and production of signaling molecules by the gut microbiome. Available and emerging treatments of the aberrant microbiome include antidepressants, antibiotics, diet modification, probiotics, and fecal microbiota transplant. This article explores the interconnectivity of gut microbiota and depression and treatments targeted toward the gut, reviews the gastroenterologist's potential role in managing gut dysbiosis in patients with depression, and highlights research topics to be addressed to create evidence-based guidelines.
Collapse
Affiliation(s)
- Ann F. Kopera
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Yii Chun Khiew
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - Mohd Amer Alsamman
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - Mark C. Mattar
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - Raena S. Olsen
- Department of Gastroenterology, MedStar Health Gastroenterology at Silver Spring, Silver Spring, Maryland
| | - David B. Doman
- Department of Gastroenterology, MedStar Health Gastroenterology at Silver Spring, Silver Spring, Maryland
| |
Collapse
|
27
|
Angelova IY, Kovtun AS, Averina OV, Koshenko TA, Danilenko VN. Unveiling the Connection between Microbiota and Depressive Disorder through Machine Learning. Int J Mol Sci 2023; 24:16459. [PMID: 38003647 PMCID: PMC10671666 DOI: 10.3390/ijms242216459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In the last few years, investigation of the gut-brain axis and the connection between the gut microbiota and the human nervous system and mental health has become one of the most popular topics. Correlations between the taxonomic and functional changes in gut microbiota and major depressive disorder have been shown in several studies. Machine learning provides a promising approach to analyze large-scale metagenomic data and identify biomarkers associated with depression. In this work, machine learning algorithms, such as random forest, elastic net, and You Only Look Once (YOLO), were utilized to detect significant features in microbiome samples and classify individuals based on their disorder status. The analysis was conducted on metagenomic data obtained during the study of gut microbiota of healthy people and patients with major depressive disorder. The YOLO method showed the greatest effectiveness in the analysis of the metagenomic samples and confirmed the experimental results on the critical importance of a reduction in the amount of Faecalibacterium prausnitzii for the manifestation of depression. These findings could contribute to a better understanding of the role of the gut microbiota in major depressive disorder and potentially lead the way for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Irina Y. Angelova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (A.S.K.); (O.V.A.); (V.N.D.)
| | | | | | | | | |
Collapse
|
28
|
Mazloomi SN, Talebi S, Mehrabani S, Bagheri R, Ghavami A, Zarpoosh M, Mohammadi H, Wong A, Nordvall M, Kermani MAH, Moradi S. The association of ultra-processed food consumption with adult mental health disorders: a systematic review and dose-response meta-analysis of 260,385 participants. Nutr Neurosci 2023; 26:913-931. [PMID: 36094005 DOI: 10.1080/1028415x.2022.2110188] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
OBJECTIVE We aimed to conduct a systematic review and meta-analysis of observational studies examining the relationship between ultra-processed food (UPF) consumption and the risk of mental health disorders. METHODS The ISI Web of Science, PubMed/MEDLINE, and Scopus databases were searched without date restriction until 28 December 2021. Data were extracted from 26 studies, including 260,385 participants from twelve countries. Risk ratios for mental health disorders were pooled by a random-effects model. RESULTS Meta-analyses suggested that UPF consumption was associated with an increased risk of depression (RR = 1.28; 95% CI: 1.19, 1.38; I2 = 61.8%; p = 0.022) but not anxiety (RR = 1.35; 95% CI: 0.86, 2.11; I2 = 77.8%; p = 0.198). However, when analyzed for the dietary assessment method, UPF consumption was significantly associated with an enhanced risk of depression among studies utilizing food frequency questionnaires (RR = 1.31; 95% CI: 1.21, 1.41; I2 = 60.0%; p < 0.001) as opposed to other forms of dietary recall approaches. Additionally, for every 10% increase in UPF consumption per daily calorie intake, 11% higher risk of depression (RR = 1.11; 95% CI: 1.01, 1.17; I2 = 88.9%; p < 0.001) was observed among adults. Dose-response analysis further emphasized a positive linear association between UPF consumption with depression risk (p-nonlinearity = 0.819, p-dose-response = p < 0.001). CONCLUSION Our findings indicate that UPF consumption is related to an enhanced depressive mental health status risk. There may be different causes for this increased risk, and further studies are needed to investigate if there is a causal relationship between consumption of UPF and mental health.
Collapse
Affiliation(s)
- Seyadeh Narges Mazloomi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Food and Drug Administration, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sepide Talebi
- Department of Clinical Nutrition, School of Nutritional Science, Tehran University of Medical Science, Tehran, Iran
| | - Sanaz Mehrabani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Isfahan University of Medical Sciences, Tehran, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Abed Ghavami
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Isfahan University of Medical Sciences, Tehran, Iran
| | - Mahsa Zarpoosh
- General Practitioner, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Science, Tehran University of Medical Science, Tehran, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, United States
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, VA, United States
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Moradi
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
29
|
Mela V, Agüera Z, Alvarez-Bermudez MD, Martín-Reyes F, Granero R, Sánchez-García A, Oliva-Olivera W, Tomé M, Moreno-Ruiz FJ, Soler-Humanes R, Fernández-Serrano JL, Sánchez-Gallegos P, Martínez-Moreno JM, Sancho-Marín R, Fernández-Aranda F, García-Fuentes E, Tinahones FJ, Garrido-Sánchez L. The Relationship between Depressive Symptoms, Quality of Life and miRNAs 8 Years after Bariatric Surgery. Nutrients 2023; 15:4109. [PMID: 37836393 PMCID: PMC10574314 DOI: 10.3390/nu15194109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: There are conflicting results on whether weight loss after bariatric surgery (BS) might be associated with quality of life (QoL)/depressive symptomatology. We aim to determine whether BS outcomes are associated with QoL/depressive symptomatology in studied patients at the 8-year follow-up after BS, as well as their relationship with different serum proteins and miRNAs. (2) Methods: A total of 53 patients with class III obesity who underwent BS, and then classified into "good responders" and "non-responders" depending on the percentage of excess weight lost (%EWL) 8 years after BS (%EWL ≥ 50% and %EWL < 50%, respectively), were included. Basal serum miRNAs and different proteins were analysed, and patients completed tests to evaluate QoL/depressive symptomatology at 8 years after BS. (3) Results: The good responders group showed higher scores on SF-36 scales of physical functioning, role functioning-physical, role functioning-emotional, body pain and global general health compared with the non-responders. The expression of hsa-miR-101-3p, hsa-miR-15a-5p, hsa-miR-29c-3p, hsa-miR-144-3p and hsa-miR-19b-3p were lower in non-responders. Hsa-miR-19b-3p was the variable associated with the response to BS in a logistic regression model. (4) Conclusions: The mental health of patients after BS is limited by the success of the intervention. In addition, the expression of basal serum miRNAs related to depression/anxiety could predict the success of BS.
Collapse
Affiliation(s)
- Virginia Mela
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Zaida Agüera
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
- Departament d’Infermeria de Salut Pública, Salut Mental i Maternoinfantil, Escola d’Infermeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Maria D. Alvarez-Bermudez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Flores Martín-Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Roser Granero
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Department of Psychobiology and Methodology, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Ana Sánchez-García
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Wilfredo Oliva-Olivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Monica Tomé
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain;
| | - Francisco J. Moreno-Ruiz
- Unidad de Gestión Clínica de Cirugía General y Digestiva, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain;
| | - Rocío Soler-Humanes
- Unidad de Gestión Clínica de Cirugía General y Digestiva, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain; (R.S.-H.); (J.L.F.-S.)
| | - Jose L. Fernández-Serrano
- Unidad de Gestión Clínica de Cirugía General y Digestiva, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain; (R.S.-H.); (J.L.F.-S.)
| | - Pilar Sánchez-Gallegos
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain; (P.S.-G.); (J.M.M.-M.); (R.S.-M.)
| | - Jose M. Martínez-Moreno
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain; (P.S.-G.); (J.M.M.-M.); (R.S.-M.)
| | - Raquel Sancho-Marín
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain; (P.S.-G.); (J.M.M.-M.); (R.S.-M.)
| | - Fernando Fernández-Aranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Department of Psychiatry, University Hospital of Bellvitge, 08907 Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Tinahones
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Lourdes Garrido-Sánchez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| |
Collapse
|
30
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
31
|
Ferrari S, Galla R, Mulè S, Rosso G, Brovero A, Macchi V, Ruga S, Uberti F. The Role of Bifidobacterium bifidum novaBBF7, Bifidobacterium longum novaBLG2 and Lactobacillus paracasei TJB8 to Improve Mechanisms Linked to Neuronal Cells Protection against Oxidative Condition in a Gut-Brain Axis Model. Int J Mol Sci 2023; 24:12281. [PMID: 37569657 PMCID: PMC10419296 DOI: 10.3390/ijms241512281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Despite the identification of several innovative targets for avoiding cognitive decline, there has yet to be a widely accepted approach that deals with minimising the deterioration of cognitive function. In this light, recent studies suggest that regulating the gut-brain axis with probiotics is a potential therapeutic strategy to support brain health. For this reason, in vitro models were used to examine the efficacy of different probiotic combinations to enhance intestinal homeostasis and positively affect the brain. Therefore, the new formulation has been evaluated for its capacity to modify intestinal barrier functions in a 3D in vitro model without any adverse effects and directly impact the mechanisms underlying cognitive function in a gut-brain axis model. According to our findings, B. bifidum novaBBF7 10 mg/mL, B. longum novaBLG2 5 mg/mL and L. paracasei TJB8 10 mg/mL may successfully modify the intestinal barrier and improve SCFA production. Successively, the probiotics studied caused no harm at the neuronal level, as demonstrated by iNOS, mitochondrial potential, and cell viability tests, confirming their safety features and enhancing antioxidant mechanisms and antineuroinflammation activity. Additionally, the damage caused by oxidative stress was also healed, and critical pathways that result in cognitive impairment were changed by synergetic action, supporting the hypothesis that brain ageing and neurodegeneration are slowed down. All these findings demonstrate the ability of probiotics to affect cognitive processes and their ability to sustain the mechanisms underlying cognitive function by acting on intestinal function.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Noivita Srls, Spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Giorgia Rosso
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Arianna Brovero
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Valentina Macchi
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Sara Ruga
- Noivita Srls, Spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
32
|
Fang Q, Tu Y, Fan X, Zang T, Wu N, Qiu T, Li Y, Bai J, Liu Y. Inflammatory cytokines and prenatal depression: Is there a mediating role of maternal gut microbiota? J Psychiatr Res 2023; 164:458-467. [PMID: 37437318 DOI: 10.1016/j.jpsychires.2023.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVE The mechanism of levels of inflammatory cytokines that affects brain function and mood through gut microbiota has not been fully elucidated. This study aimed to investigate the potential mediating role of gut microbiota between maternal inflammatory cytokines levels and prenatal depression. DESIGN There were 29 women in the prenatal depression group and 27 women in the control group enrolled in this study. The Edinburgh Postnatal Depression Scale (EPDS) score of 10 was considered the cut-off value for prenatal depression. We collected demographic information, stool and blood samples. The gut microbiota was profiled using V3-V4 gene sequence of 16S rRNA, and the concentration of inflammatory cytokines were analyzed. The mediation model was analyzed by using the model 4 in the process procedure for SPSS. RESULTS There were significance differences in the concentration of interleukin-1beta (IL-1β)(Z = -2.383, P = 0.017) and IL-17A (Z = -2.439, P = 0.015) between the prenatal depression group and control group. There was no significant difference in α- diversity and β-diversity between the two groups. Intestinibacter (OR: 0.012; 95% CI, 0.001-0.195) and Escherichia_Shigella (OR: 0.103; 95% CI, 0.014-0.763) were protective factors for prenatal depression, while Tyzzerella (OR: 17.941; 95% CI, 1.764-182.445) and Unclassified_f_Ruminococcaceae (OR: 22.607; 95% CI, 1.242-411.389) were risk factors. And Intestinibacter play a mediation effect between IL-17A and prenatal depression. CONCLUSION Maternal gut microbiota is a significant mediator of the relationship between inflammatory cytokines and prenatal depression. Further research is still needed in exploring the mediating mechanisms of gut microbiota between inflammatory cytokines and depression.
Collapse
Affiliation(s)
- Qingbo Fang
- Center for Women's and Children's Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yiming Tu
- Center for Women's and Children's Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Xiaoxiao Fan
- Center for Women's and Children's Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Tianzi Zang
- Center for Women's and Children's Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Ni Wu
- Center for Women's and Children's Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Tianlai Qiu
- Center for Women's and Children's Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yanting Li
- Center for Women's and Children's Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA, 30322, USA
| | - Yanqun Liu
- Center for Women's and Children's Health and Metabolism Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
33
|
Bleibel L, Dziomba S, Waleron KF, Kowalczyk E, Karbownik MS. Deciphering psychobiotics' mechanism of action: bacterial extracellular vesicles in the spotlight. Front Microbiol 2023; 14:1211447. [PMID: 37396391 PMCID: PMC10309211 DOI: 10.3389/fmicb.2023.1211447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
The intake of psychobiotic bacteria appears to be a promising adjunct to neuropsychiatric treatment, and their consumption may even be beneficial for healthy people in terms of mental functioning. The psychobiotics' mechanism of action is largely outlined by the gut-brain axis; however, it is not fully understood. Based on very recent studies, we provide compelling evidence to suggest a novel understanding of this mechanism: bacterial extracellular vesicles appear to mediate many known effects that psychobiotic bacteria exert on the brain. In this mini-review paper, we characterize the extracellular vesicles derived from psychobiotic bacteria to demonstrate that they can be absorbed from the gastrointestinal tract, penetrate to the brain, and carry the intracellular content to exert beneficial multidirectional action. Specifically, by regulating epigenetic factors, extracellular vesicles from psychobiotics appear to enhance expression of neurotrophic molecules, improve serotonergic neurotransmission, and likely supply astrocytes with glycolytic enzymes to favor neuroprotective mechanisms. As a result, some data suggest an antidepressant action of extracellular vesicles that originate even from taxonomically remote psychobiotic bacteria. As such, these extracellular vesicles may be regarded as postbiotics of potentially therapeutic application. The mini-review is enriched with illustrations to better introduce the complex nature of brain signaling mediated by bacterial extracellular vesicles and indicates knowledge gaps that require scientific exploration before further progress is made. In conclusion, bacterial extracellular vesicles appear to represent the missing piece of the puzzle in the mechanism of action of psychobiotics.
Collapse
Affiliation(s)
- Layla Bleibel
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | - Szymon Dziomba
- Department of Toxicology, Medical University of Gdansk, Gdańsk, Poland
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | | |
Collapse
|
34
|
Gong Y, Chen A, Zhang G, Shen Q, Zou L, Li J, Miao YB, Liu W. Cracking Brain Diseases from Gut Microbes-Mediated Metabolites for Precise Treatment. Int J Biol Sci 2023; 19:2974-2998. [PMID: 37416776 PMCID: PMC10321288 DOI: 10.7150/ijbs.85259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
The gut-brain axis has been a subject of significant interest in recent years. Understanding the link between the gut and brain axis is crucial for the treatment of disorders. Here, the intricate components and unique relationship between gut microbiota-derived metabolites and the brain are explained in detail. Additionally, the association between gut microbiota-derived metabolites and the integrity of the blood-brain barrier and brain health is emphasized. Meanwhile, gut microbiota-derived metabolites with their recent applications, challenges and opportunities their pathways on different disease treatment are focus discussed. The prospective strategy of gut microbiota-derived metabolites potential applies to the brain disease treatments, such as Parkinson's disease and Alzheimer's disease, is proposed. This review provides a broad perspective on gut microbiota-derived metabolites characteristics facilitate understand the connection between gut and brain and pave the way for the development of a new medication delivery system for gut microbiota-derived metabolites.
Collapse
Affiliation(s)
- Ying Gong
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Anmei Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
| | - Guohui Zhang
- Key Laboratory of reproductive medicine, Sichuan Provincial maternity and Child Health Care Hospital, Chengdu 610000, China
| | - Qing Shen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610041, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu 610000, China
| | - Weixin Liu
- Key Laboratory of reproductive medicine, Sichuan Provincial maternity and Child Health Care Hospital, Chengdu 610000, China
| |
Collapse
|
35
|
Kaunang TMD, Setiawan AA, Mayulu N, Leonita I, Wijaya A, Yusuf VM, Mahira MFNA, Yudisthira D, Gunawan WB, Taslim NA, Purnomo AF, Sabrina N, Amalia N, Permatasari HK, Nurkolis F. Are probiotics beneficial for obese patients with major depressive disorder? Opinion for future implications and strategies. Front Nutr 2023; 10:1205434. [PMID: 37324742 PMCID: PMC10264610 DOI: 10.3389/fnut.2023.1205434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
- Theresia M. D. Kaunang
- Department of Mental Health Sciences, Faculty of Medicine, Sam Ratulangi University-Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | | | - Nelly Mayulu
- Department of Nutrition, Universitas Muhammadiyah Manado, Manado, Indonesia
| | - Ivena Leonita
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Afredo Wijaya
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | | | | | - Dewangga Yudisthira
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - William Ben Gunawan
- Alumnus of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Athaya Febriantyo Purnomo
- Department of Urology, Faculty of Medicine, Universitas Brawijaya - Saiful Anwar General Hospital, Malang, Indonesia
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nindy Sabrina
- Nutrition Program, Faculty of Food Technology and Health, Sahid University of Jakarta, South Jakarta, Indonesia
| | - Nurlinah Amalia
- Biomedical Science Master Program, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Happy Kurnia Permatasari
- Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| |
Collapse
|
36
|
Chen MM, Wang P, Xie XH, Nie Z, Xu SX, Zhang N, Wang W, Yao L, Liu Z. Young adults with major depression show altered microbiome. Neuroscience 2023; 522:23-32. [PMID: 37169166 DOI: 10.1016/j.neuroscience.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
There is growing basic and clinical evidence that major depressive disorder (MDD) is associated with gut microbiome alterations, but clinical studies have tended not to adjust for confounding factors. And few studies on the gut microbiome focused on young adults with MDD. Here we performed a pilot study to compare the gut microbiome of young adults with MDD with healthy controls. Shotgun metagenomic sequencing was performed on stool samples obtained from 40 young adults with MDD and 42 healthy controls. After controlling for confounding factors including sex, age, BMI, alcohol or cigarette consumption, bowel movement quality, exercise or defecation frequency, we compared microbiome diversity between groups, identified differentially abundant taxa, and further compared functional differences through gut-brain and gut-metabolic module analysis. There were no significant differences in overall gut microbiome structure and function in young adults with MDD compared with controls. Abundance of Sutterellaceae and species belonging to Clostridium, Eubacterium, and Ruminococcus were significantly different between groups. The cysteine degradation I pathway was increased in MDD. After controlling for most confounding factors, this pilot study provides new evidence on the specific, often subtle gut dysbiosis affecting young adults with depression.
Collapse
Affiliation(s)
- Mian-Mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Peilin Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China.
| |
Collapse
|
37
|
Šik Novak K, Bogataj Jontez N, Petelin A, Hladnik M, Baruca Arbeiter A, Bandelj D, Pražnikar J, Kenig S, Mohorko N, Jenko Pražnikar Z. Could Gut Microbiota Composition Be a Useful Indicator of a Long-Term Dietary Pattern? Nutrients 2023; 15:2196. [PMID: 37432336 DOI: 10.3390/nu15092196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the known effects of diet on gut microbiota composition, not many studies have evaluated the relationship between distinct dietary patterns and gut microbiota. The aim of our study was to determine whether gut microbiota composition could be a useful indicator of a long-term dietary pattern. We collected data from 89 subjects adhering to omnivorous, vegetarian, vegan, and low-carbohydrate, high-fat diet that were equally distributed between groups and homogenous by age, gender, and BMI. Gut microbiota composition was analyzed with a metabarcoding approach using V4 hypervariable region of the 16S rRNA gene. K-means clustering of gut microbiota at the genus level was performed and the nearest neighbor classifier was applied to predict microbiota clustering classes. Our results suggest that gut microbiota composition at the genus level is not a useful indicator of a subject's dietary pattern, with the exception of a vegan diet that is represented by a high abundance of Prevotella 9. Based on our model, a combination of 26 variables (anthropometric measurements, serum biomarkers, lifestyle factors, gastrointestinal symptoms, psychological factors, specific nutrients intake) is more important to predict an individual's microbiota composition cluster, with 91% accuracy, than the dietary intake alone. Our findings could serve to develop strategies to educate individuals about changes of some modifiable lifestyle factors, aiming to classify them into clusters with favorable health markers, independent of their dietary pattern.
Collapse
Affiliation(s)
- Karin Šik Novak
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Nives Bogataj Jontez
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Ana Petelin
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Matjaž Hladnik
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Alenka Baruca Arbeiter
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Dunja Bandelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Jure Pražnikar
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Saša Kenig
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Nina Mohorko
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Zala Jenko Pražnikar
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| |
Collapse
|
38
|
Medina-Rodriguez EM, Cruz AA, De Abreu JC, Beurel E. Stress, inflammation, microbiome and depression. Pharmacol Biochem Behav 2023:173561. [PMID: 37148918 DOI: 10.1016/j.pbb.2023.173561] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/13/2022] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Psychiatric disorders are mental illnesses involving changes in mood, cognition and behavior. Their prevalence has rapidly increased in the last decades. One of the most prevalent psychiatric disorders is major depressive disorder (MDD), a debilitating disease lacking efficient treatments. Increasing evidence shows that microbial and immunological changes contribute to the pathophysiology of depression and both are modulated by stress. This bidirectional relationship constitutes the brain-gut axis involving various neuroendocrine, immunological, neuroenterocrine and autonomic pathways. The present review covers the most recent findings on the relationships between stress, the gut microbiome and the inflammatory response and their contribution to depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, United States of America; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States of America.
| | - Alyssa A Cruz
- Department of Psychiatry and Behavioral Sciences, United States of America
| | | | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, United States of America; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America
| |
Collapse
|
39
|
Chen X, Liu Y, Pu J, Gui S, Wang D, Zhong X, Chen W, Tao W, Chen Y, Chen X, Xie P. Proteomics reveals mitochondrial dysfunction and energy metabolism disturbance of intestine in a nonhuman primate model of depression. J Affect Disord 2023; 333:562-570. [PMID: 37080496 DOI: 10.1016/j.jad.2023.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND The gut-brain axis has been shown to play an important role in depression. However, few studies have examined proteomic changes in the intestine of the nonhuman primate model of depression. METHODS We investigated the intestinal proteome of macaques (Macaca fascicularis) with depression-like (DL) behaviors by data-independent acquisition techniques. We also performed integration analyses of proteomic changes, previous metabolomic and microbiotic data. Moreover, we confirmed the gene expressions of key proteins. RESULTS Sixty-five differentially expressed proteins (DEPs) were identified, of which fifty-four DEPs were down-regulated and the others were altered conversely in DL macaques compared with the control group. Pathway analysis indicated that mitochondrial function and energy metabolism were representative functions of DEPs. The key DEPs were significantly associated with glycerophospholipid metabolism and imbalances of gut microbe. We confirmed that key molecules (NDUFB4, UQCR10, PISD) were significantly inhibited, which may disturb the energy transformation of the electron respiratory chain and the homeostasis of the mitochondrial membrane. LIMITATIONS Further research is warranted to determine the effects of depression on other peripheral organs. CONCLUSIONS These findings suggest the functional disorder of intestinal mitochondria in DL macaques. The disturbances of glycerophospholipid metabolism and gut microbiota may exacerbate disruptions of energy metabolism. Taking together, our study provides new clues to the relationship between depression and intestinal proteome.
Collapse
Affiliation(s)
- Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiang Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
40
|
Gao J, Zhao L, Cheng Y, Lei W, Wang Y, Liu X, Zheng N, Shao L, Chen X, Sun Y, Ling Z, Xu W. Probiotics for the treatment of depression and its comorbidities: A systemic review. Front Cell Infect Microbiol 2023; 13:1167116. [PMID: 37139495 PMCID: PMC10149938 DOI: 10.3389/fcimb.2023.1167116] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Depression is one of the most common psychiatric conditions, characterized by significant and persistent depressed mood and diminished interest, and often coexists with various comorbidities. The underlying mechanism of depression remain elusive, evidenced by the lack of an appreciate therapy. Recent abundant clinical trials and animal studies support the new notion that the gut microbiota has emerged as a novel actor in the pathophysiology of depression, which partakes in bidirectional communication between the gut and the brain through the neuroendocrine, nervous, and immune signaling pathways, collectively known as the microbiota-gut-brain (MGB) axis. Alterations in the gut microbiota can trigger the changes in neurotransmitters, neuroinflammation, and behaviors. With the transition of human microbiome research from studying associations to investigating mechanistic causality, the MGB axis has emerged as a novel therapeutic target in depression and its comorbidities. These novel insights have fueled idea that targeting on the gut microbiota may open new windows for efficient treatment of depression and its comorbidities. Probiotics, live beneficial microorganisms, can be used to modulate gut dysbiosis into a new eubiosis and modify the occurrence and development of depression and its comorbidities. In present review, we summarize recent findings regarding the MGB axis in depression and discuss the potential therapeutic effects of probiotics on depression and its comorbidities.
Collapse
Affiliation(s)
- Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xulei Chen
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yilai Sun
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Weijie Xu
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
41
|
Ruxton CHS, Kajita C, Rocca P, Pot B. Microbiota and probiotics: chances and challenges - a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e6. [PMID: 39295904 PMCID: PMC11406417 DOI: 10.1017/gmb.2023.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 09/21/2024]
Abstract
The 10th International Yakult Symposium was held in Milan, Italy, on 13-14 October 2022. Two keynote lectures covered the crewed journey to space and its implications for the human microbiome, and how current regulatory systems can be adapted and updated to ensure the safety of microorganisms used as probiotics or food processing ingredients. The remaining lectures were split into sections entitled "Chances" and "Challenges." The "Chances" section explored opportunities for the science of probiotics and fermented foods to contribute to diverse areas of health such as irritable bowel syndrome, major depression, Parkinson's disease, immune dysfunction, infant colic, intensive care, respiratory infections, and promoting healthy longevity. The "Challenges" section included selecting appropriate clinical trial participants and methodologies to minimise heterogeneity in responses, how to view probiotics in the context of One Health, adapting regulatory frameworks, and understanding how substances of bacterial origin can cross the blood-brain barrier. The symposium provided evidence from cutting-edge research that gut eubiosis is vital for human health and, like space, the microbiota deserves further exploration of its vast potential.
Collapse
Affiliation(s)
| | | | | | - Bruno Pot
- Yakult Europe BV, Almere, Netherlands
| |
Collapse
|
42
|
Johnson D, Letchumanan V, Thum CC, Thurairajasingam S, Lee LH. A Microbial-Based Approach to Mental Health: The Potential of Probiotics in the Treatment of Depression. Nutrients 2023; 15:nu15061382. [PMID: 36986112 PMCID: PMC10053794 DOI: 10.3390/nu15061382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Probiotics are currently the subject of intensive research pursuits and also represent a multi-billion-dollar global industry given their vast potential to improve human health. In addition, mental health represents a key domain of healthcare, which currently has limited, adverse-effect prone treatment options, and probiotics may hold the potential to be a novel, customizable treatment for depression. Clinical depression is a common, potentially debilitating condition that may be amenable to a precision psychiatry-based approach utilizing probiotics. Although our understanding has not yet reached a sufficient level, this could be a therapeutic approach that can be tailored for specific individuals with their own unique set of characteristics and health issues. Scientifically, the use of probiotics as a treatment for depression has a valid basis rooted in the microbiota-gut-brain axis (MGBA) mechanisms, which play a role in the pathophysiology of depression. In theory, probiotics appear to be ideal as adjunct therapeutics for major depressive disorder (MDD) and as stand-alone therapeutics for mild MDD and may potentially revolutionize the treatment of depressive disorders. Although there is a wide range of probiotics and an almost limitless range of therapeutic combinations, this review aims to narrow the focus to the most widely commercialized and studied strains, namely Lactobacillus and Bifidobacterium, and to bring together the arguments for their usage in patients with major depressive disorder (MDD). Clinicians, scientists, and industrialists are critical stakeholders in exploring this groundbreaking concept.
Collapse
Affiliation(s)
- Dinyadarshini Johnson
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Chern Choong Thum
- Department of Psychiatry, Hospital Sultan Abdul Aziz Shah, Persiaran Mardi-UPM, Serdang 43400, Malaysia
| | - Sivakumar Thurairajasingam
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| |
Collapse
|
43
|
Peripheral Regulation of Central Brain-Derived Neurotrophic Factor Expression through the Vagus Nerve. Int J Mol Sci 2023; 24:ijms24043543. [PMID: 36834953 PMCID: PMC9964523 DOI: 10.3390/ijms24043543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The brain-derived neurotrophic factor (BDNF) is an extensively studied neurotrophin es sential for both developing the brain and maintaining adult brain function. In the adult hippocampus, BDNF is critical for maintaining adult neurogenesis. Adult hippocampal neurogenesis is involved not only in memory formation and learning ability, but also mood regulation and stress responses. Accordingly, decreased levels of BDNF, accompanied by low levels of adult neurogenesis, occurs in brains of older adults with impaired cognitive function and in those of patients with major depression disorder. Therefore, elucidating the mechanisms that maintain hippocampal BDNF levels is biologically and clinically important. It has been revealed that signalling from peripheral tissues contribute to the regulation of BDNF expression in the brain across the blood-brain barrier. Moreover, recent studies indicated evidence that neuronal pathways can also be a mechanism by which peripheral tissues signal to the brain for the regulation of BDNF expression. In this review, we give an overview of the current status in the regulation of central BDNF expression by peripheral signalling, with a special interest in the regulation of hippocampal BDNF levels by signals via the vagus nerve. Finally, we discuss the relationship between signalling from peripheral tissues and age-associated control of central BDNF expression.
Collapse
|
44
|
Satti S, Palepu MSK, Singh AA, Jaiswal Y, Dash SP, Gajula SNR, Chaganti S, Samanthula G, Sonti R, Dandekar MP. Anxiolytic- and antidepressant-like effects of Bacillus coagulans Unique IS-2 mediate via reshaping of microbiome gut-brain axis in rats. Neurochem Int 2023; 163:105483. [PMID: 36641109 DOI: 10.1016/j.neuint.2023.105483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Due to the rising cases of treatment-refractory affective disorders, the discovery of newer therapeutic approaches is needed. In recent times, probiotics have garnered notable attention in managing stress-related disorders. Herein, we examined the effect of Bacillus coagulans Unique IS-2® probiotic on anxiety- and depression-like phenotypes employing maternal separation (MS) and chronic-unpredictable mild stress (CUMS) model in rats. METHODS Both male and female Sprague-Dawley rats were subjected to MS + CUMS. Probiotic treatment was provided for 6 weeks via drinking water. Anxiety- and depression-like phenotypes were assessed using sucrose-preference test (SPT), forced-swimming test (FST), elevated-plus maze test (EPM), and open-field test (OFT). Blood, brain, intestine, and fecal samples were obtained for biochemical and molecular studies. RESULTS Stress-exposed rats drank less sucrose solution, showed increased passivity, and explored less in open-arms in SPT, FST, and EPM, respectively. These stress-generated neurobehavioral aberrations were alleviated by 6-week of Bacillus coagulans Unique IS-2 treatment. The overall locomotor activity in OFT remained unchanged. The decreased levels of BDNF and serotonin and increased levels of C-reactive protein, TNF-α, IL-1β, and dopamine, in the hippocampus and/or frontal cortex of stress-exposed rats were reversed following probiotic treatment. Administration of probiotic also restored the systemic levels of L-tryptophan, L-kynurenine, kynurenic-acid, and 3-hydroxyanthranilic acid, villi/crypt ratio, goblet-cell count, Firmicutes to Bacteroides ratio, and levels of acetate, propionate, and butyrate in fecal samples. These results indicate remodeling of the microbiome gut-brain axis in Bacillus coagulans Unique IS-2 recipient rats. However, protein levels of doublecortin, GFAP, and zona occludens in the hippocampus and occludin-immunoreactivity in the intestine remained unchanged. No prominent sex-specific changes were noted. CONCLUSION Anxiolytic- and antidepressant-like effects of Bacillus coagulans Unique IS-2 in MS + CUMS rat model may be mediated via reshaping the microbiome gut-brain axis.
Collapse
Affiliation(s)
- Srilakshmi Satti
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Mani Surya Kumar Palepu
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Aditya A Singh
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Yash Jaiswal
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Surya Prakash Dash
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Sowmya Chaganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Manoj P Dandekar
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India.
| |
Collapse
|
45
|
Lynch CMK, Cowan CSM, Bastiaanssen TFS, Moloney GM, Theune N, van de Wouw M, Florensa Zanuy E, Ventura-Silva AP, Codagnone MG, Villalobos-Manríquez F, Segalla M, Koc F, Stanton C, Ross P, Dinan TG, Clarke G, Cryan JF. Critical windows of early-life microbiota disruption on behaviour, neuroimmune function, and neurodevelopment. Brain Behav Immun 2023; 108:309-327. [PMID: 36535610 DOI: 10.1016/j.bbi.2022.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Numerous studies have emphasised the importance of the gut microbiota during early life and its role in modulating neurodevelopment and behaviour. Epidemiological studies have shown that early-life antibiotic exposure can increase an individual's risk of developing immune and metabolic diseases. Moreover, preclinical studies have shown that long-term antibiotic-induced microbial disruption in early life can have enduring effects on physiology, brain function and behaviour. However, these studies have not investigated the impact of targeted antibiotic-induced microbiota depletion during critical developmental windows and how this may be related to neurodevelopmental outcomes. Here, we addressed this gap by administering a broad-spectrum oral antibiotic cocktail (ampicillin, gentamicin, vancomycin, and imipenem) to mice during one of three putative critical windows: the postnatal (PN; P2-9), pre-weaning (PreWean; P12-18), or post-weaning (Wean; P21-27) developmental periods and assessed the effects on physiology and behaviour in later life. Our results demonstrate that targeted microbiota disruption during early life has enduring effects into adolescence on the structure and function of the caecal microbiome, especially for antibiotic exposure during the weaning period. Further, we show that microbial disruption in early life selectively alters circulating immune cells and modifies neurophysiology in adolescence, including altered myelin-related gene expression in the prefrontal cortex and altered microglial morphology in the basolateral amygdala. We also observed sex and time-dependent effects of microbiota depletion on anxiety-related behavioural outcomes in adolescence and adulthood. Antibiotic-induced microbial disruption had limited and subtle effects on social behaviour and did not have any significant effects on depressive-like behaviour, short-term working, or recognition memory. Overall, this study highlights the importance of the gut microbiota during critical windows of development and the subtle but long-term effects that microbiota-targeted perturbations can have on brain physiology and behaviour.
Collapse
Affiliation(s)
- Caoimhe M K Lynch
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | | | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Nigel Theune
- APC Microbiome Ireland, University College Cork, Ireland
| | | | | | | | | | | | | | - Fatma Koc
- APC Microbiome Ireland, University College Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Paul Ross
- APC Microbiome Ireland, University College Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry & Neurobehavioural Sciences, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry & Neurobehavioural Sciences, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland.
| |
Collapse
|
46
|
Anderson G. Depression Pathophysiology: Astrocyte Mitochondrial Melatonergic Pathway as Crucial Hub. Int J Mol Sci 2022; 24:ijms24010350. [PMID: 36613794 PMCID: PMC9820523 DOI: 10.3390/ijms24010350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is widely accepted as having a heterogenous pathophysiology involving a complex mixture of systemic and CNS processes. A developmental etiology coupled to genetic and epigenetic risk factors as well as lifestyle and social process influences add further to the complexity. Consequently, antidepressant treatment is generally regarded as open to improvement, undoubtedly as a consequence of inappropriately targeted pathophysiological processes. This article reviews the diverse array of pathophysiological processes linked to MDD, and integrates these within a perspective that emphasizes alterations in mitochondrial function, both centrally and systemically. It is proposed that the long-standing association of MDD with suppressed serotonin availability is reflective of the role of serotonin as a precursor for the mitochondrial melatonergic pathway. Astrocytes, and the astrocyte mitochondrial melatonergic pathway, are highlighted as crucial hubs in the integration of the wide array of biological underpinnings of MDD, including gut dysbiosis and permeability, as well as developmental and social stressors, which can act to suppress the capacity of mitochondria to upregulate the melatonergic pathway, with consequences for oxidant-induced changes in patterned microRNAs and subsequent patterned gene responses. This is placed within a development context, including how social processes, such as discrimination, can physiologically regulate a susceptibility to MDD. Future research directions and treatment implications are derived from this.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| |
Collapse
|
47
|
Pinchaud K, Hafeez Z, Auger S, Chatel JM, Chadi S, Langella P, Paoli J, Dary-Mourot A, Maguin-Gaté K, Olivier JL. Impact of Dietary Arachidonic Acid on Gut Microbiota Composition and Gut-Brain Axis in Male BALB/C Mice. Nutrients 2022; 14:nu14245338. [PMID: 36558497 PMCID: PMC9786182 DOI: 10.3390/nu14245338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Although arachidonic acid (ARA) is the precursor of the majority of eicosanoids, its influence as a food component on health is not well known. Therefore, we investigated its impact on the gut microbiota and gut-brain axis. Groups of male BALB/c mice were fed either a standard diet containing 5% lipids (Std-ARA) or 15%-lipid diets without ARA (HL-ARA) or with 1% ARA (HL + ARA) for 9 weeks. Fatty acid profiles of all three diets were the same. The HL-ARA diet favored the growth of Bifidobacterium pseudolongum contrary to the HL + ARA diet that favored the pro-inflammatory Escherichia-Shigella genus in fecal microbiota. Dietary ARA intake induced 4- and 15-fold colic overexpression of the pro-inflammatory markers IL-1β and CD40, respectively, without affecting those of TNFα and adiponectin. In the brain, dietary ARA intake led to moderate overexpression of GFAP in the hippocampus and cortex. Both the hyperlipidic diets reduced IL-6 and IL-12 in the brain. For the first time, it was shown that dietary ARA altered the gut microbiota, led to low-grade colic inflammation, and induced astrogliosis in the brain. Further work is necessary to determine the involved mechanisms.
Collapse
Affiliation(s)
- Katleen Pinchaud
- Calbinotox (UR7488), Université de Lorraine, 54000 Nancy, France
| | - Zeeshan Hafeez
- Calbinotox (UR7488), Université de Lorraine, 54000 Nancy, France
| | - Sandrine Auger
- INRAE, Université Paris-Saclay, AgroParisTech, UMR 1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Jean-Marc Chatel
- INRAE, Université Paris-Saclay, AgroParisTech, UMR 1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Sead Chadi
- INRAE, Université Paris-Saclay, AgroParisTech, UMR 1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Philippe Langella
- INRAE, Université Paris-Saclay, AgroParisTech, UMR 1319 Micalis Institute, 78352 Jouy-en-Josas, France
| | - Justine Paoli
- Calbinotox (UR7488), Université de Lorraine, 54000 Nancy, France
| | | | - Katy Maguin-Gaté
- Calbinotox (UR7488), Université de Lorraine, 54000 Nancy, France
| | - Jean Luc Olivier
- Calbinotox (UR7488), Université de Lorraine, 54000 Nancy, France
- CHRU de Nancy, Pôle des Laboratoires, Service de Biochimie-Biologie Moléculaire-Nutrition, 54000 Nancy, France
- Correspondence:
| |
Collapse
|
48
|
Han W, Wang N, Han M, Ban M, Sun T, Xu J. Reviewing the role of gut microbiota in the pathogenesis of depression and exploring new therapeutic options. Front Neurosci 2022; 16:1029495. [PMID: 36570854 PMCID: PMC9772619 DOI: 10.3389/fnins.2022.1029495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The relationship between gut microbiota (GM) and mental health is one of the focuses of psychobiology research. In recent years, the microbial-gut-brain axis (MGBA) concept has gradually formed about this bidirectional communication between gut and brain. But how the GM is involved in regulating brain function and how they affect emotional disorders these mechanisms are tenuous and limited to animal research, and often controversial. Therefore, in this review, we attempt to summarize and categorize the latest advances in current research on the mechanisms of GM and depression to provide valid information for future diagnoses and therapy of mental disorders. Finally, we introduced some antidepressant regimens that can help restore gut dysbiosis, including classic antidepressants, Chinese materia medica (CMM), diet, and exogenous strains. These studies provide further insight into GM's role and potential pathways in emotion-related diseases, which holds essential possible clinical outcomes for people with depression or related psychiatric disorders. Future research should focus on clarifying the causal role of GM in disease and developing microbial targets, applying these findings to the prevention and treatment of depression.
Collapse
Affiliation(s)
- Wenjie Han
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China,Department of Pharmacology, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Na Wang
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China,Department of Pharmacology, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Mengzhen Han
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China,Department of Pharmacology, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Meng Ban
- Liaoning Microhealth Biotechnology Co., Ltd., Shenyang, China
| | - Tao Sun
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China,Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, China
| | - Junnan Xu
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China,Department of Pharmacology, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China,Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, China,*Correspondence: Junnan Xu,
| |
Collapse
|
49
|
Lu X, Liu H, Cai Z, Hu Z, Ye M, Gu Y, Wang Y, Wang D, Lu Q, Shen Z, Shen X, Huang C. ERK1/2-dependent BDNF synthesis and signaling is required for the antidepressant effect of microglia stimulation. Brain Behav Immun 2022; 106:147-160. [PMID: 35995236 DOI: 10.1016/j.bbi.2022.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 10/31/2022] Open
Abstract
Depressed mice have lower numbers of microglia in the dentate gyrus (DG). Reversal of this decline by a single low dose of lipopolysaccharide (LPS) may have antidepressant effects, but there is little information on the molecular mechanisms underlying this effect. It is known that impairment of brain-derived neurotrophic factor (BDNF) signaling is involved in the development of depression. Here, we used a combination of neutralizing antibodies, mutant mice, and pharmacological approaches to test the role of BDNF-tyrosine kinase receptor B (TrkB) signaling in the DG in the effect of microglial stimulation. Our results suggest that inhibition of BDNF signaling by infusion of an anti-BDNF antibody, the BDNF receptor antagonist K252a, or knock-in of the mutant BDNF Val68Met allele abolished the antidepressant effect of LPS in chronically stressed mice. Increased BDNF synthesis in DG, mediated by extracellular signal-regulated kinase1/2 (ERK1/2) signaling but not protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling, was essential for the antidepressant effect of microglial stimulation. These results suggest that increased BDNF synthesis through activation of ERK1/2 caused by a single LPS injection and subsequent TrkB signaling are required for the antidepressant effect of hippocampal microglial stimulation.
Collapse
Affiliation(s)
- Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hospital, the Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng 224006, Jiangsu, China
| | - Zixuan Cai
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhichao Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Minxiu Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yue Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yue Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong 226006, Jiangsu, China
| | - Zhongxia Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Xinhua Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
50
|
Hua H, Huang C, Liu H, Xu X, Xu X, Wu Z, Liu C, Wang Y, Yang C. Depression and antidepressant effects of ketamine and its metabolites: The pivotal role of gut microbiota. Neuropharmacology 2022; 220:109272. [PMID: 36170927 DOI: 10.1016/j.neuropharm.2022.109272] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023]
Abstract
The discovery of the robust antidepressant actions of ketamine is regarded as one of the greatest advancements in depression treatment in the past 60 years. Recent findings have provided strong evidence for the presence of bidirectional communication networks between the gastrointestinal tract and the brain in depression. Moreover, increasing evidence supports the antidepressant role of ketamine in regulating the gut microbiome and microbiota-derived molecules; however, the mechanisms underpinning such effects are still ambiguous. This review summarizes the current understanding of the anti-depressant mechanisms of ketamine and its metabolites regarding the bidirectional regulation by microbiota-gut-brain axis. We review the relationship between gut microbiota and the antidepressant mechanisms of ketamine, and discuss the role of stress response, brain-derived neurotrophic factor (BDNF)-mediated neurogenesis, anti-inflammatory effect and neurotransmitters.
Collapse
Affiliation(s)
- Hao Hua
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Chaoli Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hanyu Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiangyang Xu
- Nhwa Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou, 221116, China
| | - Xiangqing Xu
- Nhwa Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou, 221116, China
| | - Zifeng Wu
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|