1
|
Stefanello R, Puntel RT, Bevilaqua DB, da Silva Garcia WJ, Rodrigo Bohn Rhoden C, Strazzabosco Dorneles L. Conditioning rice seeds with chitosan to mitigate salt stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:279-290. [PMID: 39718006 DOI: 10.1080/15287394.2024.2434656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Rice is considered to be moderately salt-tolerant during germination, development, and ripening stages, and environmentally sensitive during seedling and reproductive stages, which affects seedling emergence and growth, resulting in significant yield losses. Seed conditioning with chitosan has been employed as a useful tool in high-salinity environments with the aim of increasing crop productivity and quality, as well as promoting more sustainable agricultural practices. Therefore, this study aimed to examine the effect of seed conditioning with chitosan on seed germination and rice seedling growth under salinity stress. The experiment consisted of three seeds conditioning and 4 salinity levels, arranged in a completely randomized design with 4 replications. Seeds were sown on germitest paper, and the rolls were placed in a germination chamber (25 ± 2°C and 12 hr photoperiod). Germination and seedling growth parameters were determined. The high salt concentration resulted in reduced growth of rice seedlings, and exogenous application of chitosan at different concentrations and soaking times exerted no apparent adverse effect on germination and growth variables. The attenuating effect of chitosan was observed in the length of the seedlings at all the concentrations utilized. Therefore, evidence indicates that conditioning rice seeds with chitosan might serve as an alternative to mitigate the adverse effects of exposure to stress induced by high salt concentrations.
Collapse
Affiliation(s)
- Raquel Stefanello
- Department of Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Raissa Tainá Puntel
- Department of Agronomy, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | - Lucio Strazzabosco Dorneles
- Laboratory of Nanostructured Magnetic Materials, Department of Physics, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
2
|
Dou J, Tang Z, Yu J, Wang G, An W, Zhang Y, Yang Q. Effects of exogenous melatonin on the growth and photosynthetic characteristics of tomato seedlings under saline-alkali stress. Sci Rep 2025; 15:5172. [PMID: 39939713 PMCID: PMC11821904 DOI: 10.1038/s41598-025-88565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
Saline-alkali stress is a major abiotic stress factor that adversely affects the growth, development, and yield of crops by disrupting ion homeostasis, osmotic balance, and metabolic processes. This study was designed to explore the alleviating effect of melatonin on the growth and development of tomato plants under saline-alkali stress conditions and to screen for optimal concentrations to alleviate the stress. Tomato variety 'Condine Red' was used as the test material, and a total of six treatments were designed including no saline-alkali stress and no melatonin spray as control (CK), and foliar spraying of 0, 50, 100, 150, and 200 µmol·L- 1 melatonin under saline-alkali stress (75 mmol·L- 1), which were used to determine the growth and photosynthetic characteristics of tomato plants. The results showed that saline-alkali stress significantly inhibited plant height, stem diameter, root activity and biomass accumulation, significantly reduced the chlorophyll content of tomato leaves and the efficiency of photosynthetic electron transfer from primary quinone receptor QA to secondary quinone receptor QB, and caused significant deformation of the fast chlorophyll fluorescence induced kinetic curve (OJIP), inhibiting photosynthesis. Exogenous melatonin could improve tomato tolerance to saline-alkali stress, and the effect depended on the concentration. In this experiment, treatment with 100 µmol·L- 1 melatonin showed the strongest positive effect on the growth of tomato plants under saline-alkali stress according to the comprehensive evaluation of principal components. In addition, changes in photosynthetic chlorophyll fluorescence parameters and chlorophyll fluorescence induction curves after melatonin treatment highlighted that melatonin could improve the response of the photosynthetic system to saline-alkali stress by enhancing quenching of excess excitation energy and protecting the photosynthetic electron transport system. Collectively, exogenous melatonin pretreatment increased root activity, chlorophyll content and improved photosystem processes, thereby alleviating tomato growth under saline-alkali stress. The results of this study lay the foundation for the practical application of melatonin in saline-alkali stress.
Collapse
Affiliation(s)
- Jianhua Dou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Guangzheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wangwang An
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yonghai Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qing Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
3
|
Mierek-Adamska A, Tylman-Mojżeszek W, Pawełek A, Kulasek M, Dąbrowska GB. The Potential Role of Brassica napus Metallothioneins in Salt Stress and Interactions with Plant Growth-Promoting Bacteria. Genes (Basel) 2025; 16:166. [PMID: 40004495 PMCID: PMC11855018 DOI: 10.3390/genes16020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Plant metallothioneins (MTs) are low-molecular-weight proteins involved in heavy metal binding and response to stress conditions. This work aimed to analyse canola (Brassica napus L.) MTs (BnMT1-4) response to salinity and plant interaction with bacteria. METHODS (1) We tested germination and canola growth and development in the presence of sodium chloride and bacteria Serratia plymuthica; (2) We analysed phytohormones content using LC-MS/MS; (3) We identified in silico cis-regulatory elements in promoters of BnMT1-4 genes; and (4) we investigated BnMT1-4 genes' expression in B. napus. RESULTS Under saline conditions, canola germination and plant growth were notably inhibited, whereas inoculation of seeds with S. plymuthica significantly stimulated the analysed physiological traits of B. napus. The content of auxin, abscisic acid, jasmonates, gibberellins, and salicylic acid in B. napus was significantly affected by salinity and modulated by S. plymuthica presence. The promoter regions of the BnMT1-4 genes contain numerous regulatory elements controlled by light, hormones, and various stresses. Interestingly, the expression of BnMT1-3 genes was down-regulated under salt stress, while BnMT4 transcript levels increased strongly at the highest salt concentrations with and without S. plymuthica present. CONCLUSIONS The results show that BnMT genes are differently affected by salinity and bacteria S. plymuthica and significantly correlate with particular phytohormones content in canola tissues, confirming the diversified functions of MTs in plant responses to changing environment.
Collapse
Affiliation(s)
- Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland (A.P.); (M.K.); (G.B.D.)
| | | | | | | | | |
Collapse
|
4
|
Gackowska A, Studziński W, Shyichuk A. Intermediates of Hydrogen Peroxide-Assisted Photooxidation of Salicylic Acid: Their Degradation Rates and Ecotoxicological Assessment. Int J Mol Sci 2025; 26:697. [PMID: 39859411 PMCID: PMC11765528 DOI: 10.3390/ijms26020697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Accelerated photooxidation of salicylic acid (SA) was performed using UV radiation and hydrogen peroxide. HPLC-MS analysis showed that the primary intermediates are 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, pyrocatechol, and phenol. Deeper oxidation leads to low molecular weight aliphatic acids, such as maleic, fumaric, and glyoxylic. The photooxidation of the main intermediates was carried out in the same conditions. The degradation of SA and its main intermediates follows first-order reaction kinetics. In the case of UV irradiation alone, photodegradation of 2,5-dihydroxybenzoic acid is slightly faster (reaction rate constant is 0.007 min-1) compared to SA (0.0052 min-1). Other products degrade more slowly than SA. Hydrogen peroxide, in concentrations of 1.8-8.8 mM, accelerates the photodegradation of salicylic acid and intermediate products. An ecotoxicological evaluation of SA and the main products was performed using the EPI SuiteTM software. The overall persistence (POV) and long-range transport potential (LRTP) of all transformation products were assessed using OECD POV and the LRTP screening tool. Salicylic acid and its transformation products have low toxicity. Due to their high solubility, these contaminants can travel considerable distances in the aquatic environment. SA and phenol have LRTP values of 156-190 km. Other products can travel shorter distances (less than 100 km).
Collapse
Affiliation(s)
- Alicja Gackowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland; (W.S.); (A.S.)
| | - Waldemar Studziński
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland; (W.S.); (A.S.)
| | - Alexander Shyichuk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland; (W.S.); (A.S.)
- Department of Chemistry, Vasyl Stefanyk Precarpathian National University, 76018 Ivano-Frankivsk, Ukraine
| |
Collapse
|
5
|
Muhammad S, Ulhassan Z, Munir R, Yasin MU, Islam F, Zhang K, Chen W, Jan M, Afzal M, Muhammad A, Hannan F, Zhou W. Nanosilica and salicylic acid synergistically regulate cadmium toxicity in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125331. [PMID: 39551376 DOI: 10.1016/j.envpol.2024.125331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Cadmium (Cd) toxicity negatively impacts plant health and productivity. Nanosilica (SiO2NPs) and salicylic acid (SA) enhance plant performance and alleviate heavy metals stress. Yet, their combined effects against Cd-toxicity in rice remained less-explored. Thus, a hydroponic study investigated the individual and combined effects of SiO2NPs and SA on Cd-stress mitigation in rice at physio-biochemical, cellular, and molecular levels. Results indicated that Cd-alone treatment caused a significant reduction in rice growth and biomass and photosynthetic efficiency, which was associated with oxidative damage caused by enhanced Cd-accumulation in plant tissues. Cd-induction also potentiated its phytotoxicity by triggering enzymatic antioxidants against the extra production of reactive oxygen species (ROS). The addition of SiO2NPs and/or SA markedly minimized the Cd-induced toxicity by reducing Cd-bioaccumulation (42-56%), protecting photosynthetic efficiency, which were directly correlated with seedling biomass and restored cellular structures (leaf ultrastructure and surface morphology). The combined application of SiO2NPs and SA was more effective in activating antioxidant enzymes, phytohormones biosynthesis, and reducing oxidative damages caused by Cd than sole application. This was evident in the decreased production of ROS, malondialdehyde contents (29-37%), and recovered membrane stability. Moreover, SiO2NPs and/or SA relieved Cd-bioaccumulation (41-56%) by downregulating the Cd-related transporter genes (OsNramp1, OsNramp5, OsHMA2, and OsHMA3). Altogether, the cellular Cd-accumulation, photosynthesis, antioxidant defense, and phytohormones against oxidative stress can be ideal markers for cultivating rice in Cd-contaminated soils.
Collapse
Affiliation(s)
- Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zaid Ulhassan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Kangni Zhang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weiqi Chen
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mehmood Jan
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Muhammad Afzal
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ali Muhammad
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Fakhir Hannan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Rai S, Lemke MD, Arias AM, Gomez Mendez MF, Dehesh K, Woodson JD. Transcript profiling of plastid ferrochelatase two mutants reveals that chloroplast singlet oxygen signals lead to global changes in RNA profiles and are mediated by Plant U-Box 4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593788. [PMID: 38798329 PMCID: PMC11118471 DOI: 10.1101/2024.05.13.593788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background In response to environmental stresses, chloroplasts generate reactive oxygen species, including singlet oxygen (1O2), an excited state of oxygen that regulates chloroplast-to-nucleus (retrograde) signaling, chloroplast turnover, and programmed cell death (PCD). Yet, the central signaling mechanisms and downstream responses remain poorly understood. The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates 1O2 and Plant U-Box 4 (PUB4), a cytoplasmic E3 ubiquitin ligase, is involved in propagating 1O2 signals for chloroplast turnover and cellular degradation. Thus, the fc2 and fc2 pub4 mutants are useful genetic tools to elucidate these signaling pathways. Previous studies have focused on the role of 1O2 in promoting cellular degradation in fc2 mutants, but its impact on retrograde signaling from mature chloroplasts (the major site of 1O2 production) is poorly understood. Results To gain mechanistic insights into 1O2 signaling pathways, we compared transcriptomes of adult wt, fc2, and fc2 pub4 plants. The accumulation of 1O2 in fc2 plants broadly repressed genes involved in chloroplast function and photosynthesis, while inducing genes and transcription factors involved in abiotic and biotic stress, the biosynthesis of jasmonic acid (JA) and salicylic acid (SA), microautophagy, and senescence. Elevated JA and SA levels were observed in 1O2-stressed fc2 plants. pub4 reversed most of this 1O2-induced gene expression and reduced the JA content in fc2 plants. The pub4 mutation also blocked JA-induced senescence pathways in the dark. However, fc2 pub4 plants maintained constitutively elevated levels of SA even in the absence of bulk 1O2 accumulation. Conclusions Together, this work demonstrates that in fc2 plants, 1O2 leads to a robust retrograde signal that may protect cells by downregulating photosynthesis and ROS production while simultaneously mounting a stress response involving SA and JA. The induction of microautophagy and senescence pathways indicate that 1O2-induced cellular degradation is a genetic response to this stress, and the bulk of this transcriptional response is modulated by the PUB4 protein. However, the effect of pub4 on hormone synthesis and signaling is complex and indicates that an intricate interplay of SA and JA are involved in promoting stress responses and programmed cell death during photo-oxidative damage.
Collapse
Affiliation(s)
- Snigdha Rai
- The School of Plant Sciences, University of Arizona, Tucson, AZ
| | | | - Anika M. Arias
- The School of Plant Sciences, University of Arizona, Tucson, AZ
| | - Maria F. Gomez Mendez
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA
| | | |
Collapse
|
7
|
Wang R, Yang X, Chi Y, Zhang X, Ma X, Zhang D, Zhao T, Ren Y, Yang H, Ding W, Chu S, Zhou P. Regulation of hydrogen rich water on strawberry seedlings and root endophytic bacteria under salt stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1497362. [PMID: 39640989 PMCID: PMC11617194 DOI: 10.3389/fpls.2024.1497362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Salt stress could lead to plant growth barriers and crop yield reduction. Strawberries are sensitive to salt stress, and improving salt tolerance is important for strawberry production. This study aimed to explore the potential of hydrogen-rich water (HRW) to enhance salt tolerance in strawberries. Through pot experiments, we investigated how HRW affects plant growth, ion absorption, osmotic stress, oxidative stress, antioxidant enzyme levels, hormone levels, and root endophytic bacteria in strawberry seedlings under salt stress. The results showed that under 100 mM NaCl treatment, 50% and 100% HRW treatments significantly increased strawberry biomass by 0.29 g and 0.54g, respectively, wherein, 100% HRW significantly increased the shoot and root length by 15.34% and 24.49%, respectively. In addition, under salt stress the absorption of K+ by strawberry seedlings was increased with the HRW supplement, while the absorption of Na+ was reduced. Meanwhile, HRW treatment reduced the transfer of Na+ from root to shoot. Furthermore, under salt stress, HRW treatment increased the relative water content (RWC) by 12.35%, decreased the electrolyte leakage rate (EL) by 7.56%. HRW modulated phytohormone levels in strawberry seedlings, thereby alleviating the salt stress on strawberries. Moreover, HRW was found to promote plant growth by altering the diversity of bacteria in strawberry roots and recruiting specific microorganisms, such as Tistella. Our findings indicate that HRW could help restore the microecological homeostasis of strawberry seedlings, thus further mitigating salt stress. This study provides a novel perspective on the mechanisms by which HRW alleviates salt stress, thereby enriching the scientific understanding of hydrogen's applications in agriculture.
Collapse
Affiliation(s)
- Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Ting Zhao
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Yongfeng Ren
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Haiyan Yang
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjiang Ding
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Hydrogen Science and Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, China
| |
Collapse
|
8
|
Albuquerque IC, Silva-Moraes VKDO, Alves GL, Pinheiro JF, Henschel JM, Lima ADS, Rivas PMS, de Andrade JR, Batista DS, Reis FDO, Ferraz TM, Figueiredo FAMMDA, Catunda PHA, Corrêa TR, Felipe SHS. The Role of Salicylic Acid in Salinity Stress Mitigation in Dizygostemon riparius: A Medicinal Species Native to South America. PLANTS (BASEL, SWITZERLAND) 2024; 13:3111. [PMID: 39520029 PMCID: PMC11548665 DOI: 10.3390/plants13213111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Salicylic acid (SA) is a bioregulator well-known for mitigating salinity damage in plants. However, no studies have examined the interaction between SA and salinity in Dizygostemon riparius, a species rich in bioactive molecules. Therefore, we aimed to evaluate the effect of SA application on Dizygostemon riparius under different salinity levels. A completely randomized experiment was conducted in a 2 × 3 factorial design (two SA concentrations of 0 and 100 µM and three salinity concentrations of 0, 200, and 400 mM NaCl) with five replicates. At 400 mM NaCl, leaf temperature increased by 11%, while relative water content and total soluble carbohydrates decreased by 30% and 35%, respectively, leading to reduced biomass accumulation. Notably, the SA application mitigated these effects by restoring relative water content under 400 mM NaCl and improving carboxylation efficiency and intrinsic water-use efficiency under 200 mM NaCl. Additionally, dry biomass was maintained under both 200 and 400 mM NaCl with SA treatment. These findings suggest that SA has a promising potential to alleviate salt stress in Dizygostemon riparius. Our results could inform cultivation practices, opening new perspectives on the use of SA as an attenuator of salinity stress.
Collapse
Affiliation(s)
- Irislene Cutrim Albuquerque
- Programa de Pós–Graduação em Ciências Agrárias, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil; (I.C.A.); (V.K.d.O.S.-M.); (G.L.A.); (J.F.P.); (P.M.S.R.); (J.R.d.A.); (D.S.B.); (F.d.O.R.); (T.M.F.); (F.A.M.M.d.A.F.); (T.R.C.)
| | - Vitória Karla de Oliveira Silva-Moraes
- Programa de Pós–Graduação em Ciências Agrárias, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil; (I.C.A.); (V.K.d.O.S.-M.); (G.L.A.); (J.F.P.); (P.M.S.R.); (J.R.d.A.); (D.S.B.); (F.d.O.R.); (T.M.F.); (F.A.M.M.d.A.F.); (T.R.C.)
| | - Givago Lopes Alves
- Programa de Pós–Graduação em Ciências Agrárias, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil; (I.C.A.); (V.K.d.O.S.-M.); (G.L.A.); (J.F.P.); (P.M.S.R.); (J.R.d.A.); (D.S.B.); (F.d.O.R.); (T.M.F.); (F.A.M.M.d.A.F.); (T.R.C.)
| | - Jordanya Ferreira Pinheiro
- Programa de Pós–Graduação em Ciências Agrárias, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil; (I.C.A.); (V.K.d.O.S.-M.); (G.L.A.); (J.F.P.); (P.M.S.R.); (J.R.d.A.); (D.S.B.); (F.d.O.R.); (T.M.F.); (F.A.M.M.d.A.F.); (T.R.C.)
| | - Juliane Maciel Henschel
- Programa de Pós-graduação em Agronomia, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil;
| | - Aldilene da Silva Lima
- Centro de Estudos Superiores de Coelho Neto, Universidade Estadual do Maranhão, Coelho Neto 65620-000, MA, Brazil;
| | - Priscila Marlys Sá Rivas
- Programa de Pós–Graduação em Ciências Agrárias, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil; (I.C.A.); (V.K.d.O.S.-M.); (G.L.A.); (J.F.P.); (P.M.S.R.); (J.R.d.A.); (D.S.B.); (F.d.O.R.); (T.M.F.); (F.A.M.M.d.A.F.); (T.R.C.)
| | - Jailma Ribeiro de Andrade
- Programa de Pós–Graduação em Ciências Agrárias, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil; (I.C.A.); (V.K.d.O.S.-M.); (G.L.A.); (J.F.P.); (P.M.S.R.); (J.R.d.A.); (D.S.B.); (F.d.O.R.); (T.M.F.); (F.A.M.M.d.A.F.); (T.R.C.)
| | - Diego Silva Batista
- Programa de Pós–Graduação em Ciências Agrárias, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil; (I.C.A.); (V.K.d.O.S.-M.); (G.L.A.); (J.F.P.); (P.M.S.R.); (J.R.d.A.); (D.S.B.); (F.d.O.R.); (T.M.F.); (F.A.M.M.d.A.F.); (T.R.C.)
- Programa de Pós-graduação em Agronomia, Universidade Federal da Paraíba, Areia 58397-000, PB, Brazil;
| | - Fabrício de Oliveira Reis
- Programa de Pós–Graduação em Ciências Agrárias, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil; (I.C.A.); (V.K.d.O.S.-M.); (G.L.A.); (J.F.P.); (P.M.S.R.); (J.R.d.A.); (D.S.B.); (F.d.O.R.); (T.M.F.); (F.A.M.M.d.A.F.); (T.R.C.)
| | - Tiago Massi Ferraz
- Programa de Pós–Graduação em Ciências Agrárias, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil; (I.C.A.); (V.K.d.O.S.-M.); (G.L.A.); (J.F.P.); (P.M.S.R.); (J.R.d.A.); (D.S.B.); (F.d.O.R.); (T.M.F.); (F.A.M.M.d.A.F.); (T.R.C.)
| | - Fábio Afonso Mazzei Moura de Assis Figueiredo
- Programa de Pós–Graduação em Ciências Agrárias, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil; (I.C.A.); (V.K.d.O.S.-M.); (G.L.A.); (J.F.P.); (P.M.S.R.); (J.R.d.A.); (D.S.B.); (F.d.O.R.); (T.M.F.); (F.A.M.M.d.A.F.); (T.R.C.)
| | - Paulo Henrique Aragão Catunda
- Programa de Mestrado Profissional em Rede Nacional em Gestão e Regulação de Recursos Hídricos, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil;
- Laboratório de Sementes Florestais, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil
| | - Thais Roseli Corrêa
- Programa de Pós–Graduação em Ciências Agrárias, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil; (I.C.A.); (V.K.d.O.S.-M.); (G.L.A.); (J.F.P.); (P.M.S.R.); (J.R.d.A.); (D.S.B.); (F.d.O.R.); (T.M.F.); (F.A.M.M.d.A.F.); (T.R.C.)
| | - Sérgio Heitor Sousa Felipe
- Programa de Pós–Graduação em Ciências Agrárias, Universidade Estadual do Maranhão, São Luís 65055-310, MA, Brazil; (I.C.A.); (V.K.d.O.S.-M.); (G.L.A.); (J.F.P.); (P.M.S.R.); (J.R.d.A.); (D.S.B.); (F.d.O.R.); (T.M.F.); (F.A.M.M.d.A.F.); (T.R.C.)
| |
Collapse
|
9
|
Zhao DS, Farooq MA, Li M, Chen YT, Xu JM, Liu XL, Zhang A, Yan X, Zou HX, Pang Q. Acute toxicity of salicylic acid and its derivatives on the diatom Phaeodactylum tricornutum: Physico-Biochemical and transcriptomic insights. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107116. [PMID: 39383783 DOI: 10.1016/j.aquatox.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Salicylate pollutants (SAs) poses a serious threat to marine ecosystems as emerging contaminants. However, the toxic effects of SAs on marine phytoplankton, as well as the potential mechanisms and their ecological risks linked with them, are remain largely unknown. In this study, we aimed to evaluate the toxic effects of salicylic acid (SA) and its 5-substituted derivatives (5-sSA) on the marine diatom Phaeodactylum tricornutum, as well as the potential molecular mechanism involved in the toxicity. Physiological assays conducted on P. tricornutum revealed significant changes in photosynthetic pigments, chlorophyll fluorescence parameters, and antioxidant enzyme activities. The results showed that exposure of P. tricornutum to SAs caused a significant decline in chlorophyll contents and damage to the photosystem II (PSII) core resulting in the decline of photosynthesis. Although the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced, oxidative damage occurred. Transcriptome analysis showed that a large number of differentially expresses genes (DEGs) were significantly enriched in metabolic pathways such as porphyrin metabolism, terpenoid backbone biosynthesis, and carbon fixation in photosynthetic organisms after SA and 5-BrSA treatments. In addition, key genes in transcriptomic metabolic pathways were further analyzed and validated using weighted correlation network analysis (WGCNA) and real-time fluorescence quantitative PCR (qPCR). Considering the above results, SAs mainly inhibit the processes of photosynthesis by repressing the expression of genes involved in secondary metabolite synthesis and photosynthetic carbon sequestration pathways, thus exerting toxic effects on algal cells. The results of the study will provide key data for understanding the ecological risk and toxicity mechanisms of SA pollutants.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology oration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Muhammad Ahsan Farooq
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Min Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Yu-Ting Chen
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Jia-Min Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Li Liu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology oration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Hui-Xi Zou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology oration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
10
|
Pang F, Solanki MK, Xing YX, Dong DF, Wang Z. Streptomyces improves sugarcane drought tolerance by enhancing phenylalanine biosynthesis and optimizing the rhizosphere environment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109236. [PMID: 39481196 DOI: 10.1016/j.plaphy.2024.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Drought stress is a common hazard faced by sugarcane growth, and utilizing microorganisms to enhance plant tolerance to abiotic stress has become an important method for sustainable agricultural development. Several studies have demonstrated that Streptomyces chartreuses WZS021 improves sugarcane tolerance to drought stress. However, the molecular mechanisms underlying tolerance at the transcriptional and metabolomic levels remain unclear. We comprehensively evaluated the physiological and molecular mechanisms by which WZS021 enhances drought tolerance in sugarcane, by performing transcriptome sequencing and non-targeted metabolomics; and examining rhizosphere soil properties and plant tissue antioxidant capacity. WZS021 inoculation improved the rhizosphere nutritional environment (AP, ammonia, OM) of sugarcane and enhanced the antioxidant capacity of plant roots, stems, and leaves (POD, SOD, CAT). Comprehensive analyses of the transcriptome and metabolome revealed that WZS021 mainly affects plant drought tolerance through phenylalanine metabolism, plant hormone signal transduction, and flavonoid biosynthesis pathways. The drought tolerance signaling molecules mediated by WZS021 include petunidin, salicylic acid, α-Linoleic acid, auxin, geranylgeraniol and phenylalanine, as well as key genes related to plant hormone signaling transduction (YUCCA, amiE, AUX, CYPs, PAL, etc.). Interestingly, inoculation with WZS021 during regular watering induces a transcriptome-level response to biological stress in sugarcane plants. This study further elucidates a WZS021-dependent rhizosphere-mediated regulatory mechanism for improving sugarcane drought tolerance, providing a theoretical basis for increasing sugarcane production capacity.
Collapse
Affiliation(s)
- Fei Pang
- College of Agriculture, Guangxi University, Nanning, China
| | - Manoj Kumar Solanki
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, 537000, China; Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| | - Deng-Feng Dong
- College of Agriculture, Guangxi University, Nanning, China.
| | - Zhen Wang
- College of Agriculture, Guangxi University, Nanning, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
11
|
Miao C, Zhang Y, Cui J, Zhang H, Wang H, Jin H, Lu P, He L, Zhou Q, Yu J, Ding X. An Enhanced Interaction of Graft and Exogenous SA on Photosynthesis, Phytohormone, and Transcriptome Analysis in Tomato under Salinity Stress. Int J Mol Sci 2024; 25:10799. [PMID: 39409129 PMCID: PMC11477039 DOI: 10.3390/ijms251910799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Salt stress can adversely affect global agricultural productivity, necessitating innovative strategies to mitigate its adverse effects on plant growth and yield. This study investigated the effects of exogenous salicylic acid (SA), grafting (G), and their combined application (GSA) on various parameters in tomato plants subjected to salt stress. The analysis focused on growth characteristics, photosynthesis, osmotic stress substances, antioxidant enzyme activity, plant hormones, ion content, and transcriptome profiles. Salt stress severely inhibits the growth of tomato seedlings. However, SA, G, and GSA improved the plant height by 22.5%, 26.5%, and 40.2%; the stem diameter by 11.0%, 26.0%, and 23.7%; the shoot fresh weight by 76.3%, 113.2%, and 247.4%; the root fresh weight by 150.9%, 238.6%, and 286.0%; the shoot dry weight by 53.5%, 65.1%, and 162.8%; the root dry weight by 150.0%, 150.0%, and 166.7%, and photosynthesis by 4.0%, 16.3%, and 32.7%, with GSA presenting the most pronounced positive effect. Regarding the osmotic stress substances, the proline content increased significantly by more than 259.2% in all treatments, with the highest levels in GSA. Under salt stress, the tomato seedlings accumulated high Na+ levels; the SA, G, and GSA treatments enhanced the K+ and Ca2+ absorption while reducing the Na+ and Al3+ levels, thereby alleviating the ion toxicity. The transcriptome analysis indicated that SA, G, and GSA influenced tomato growth under salt stress by regulating specific signaling pathways, including the phytohormone and MAPK pathways, which were characterized by increased endogenous SA and decreased ABA content. The combined application of grafting and exogenous SA could be a promising strategy for enhancing plant tolerance to salt stress, offering potential solutions for sustainable agriculture in saline environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai 201403, China; (C.M.)
| |
Collapse
|
12
|
Ilyas M, Maqsood MF, Shahbaz M, Zulfiqar U, Ahmad K, Naz N, Ali MF, Ahmad M, Ali Q, Yong JWH, Ali HM. Alleviating salinity stress in canola (Brassica napus L.) through exogenous application of salicylic acid. BMC PLANT BIOLOGY 2024; 24:611. [PMID: 38926637 PMCID: PMC11210054 DOI: 10.1186/s12870-024-05314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.
Collapse
Affiliation(s)
- Maria Ilyas
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Kamran Ahmad
- Department of Botany, College of Life Sciences, Northwest A&F University, Yangling , Shaanxi, 712100, China
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Fraz Ali
- College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Qasim Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Moustakas M, Panteris E, Moustaka J, Aydın T, Bayçu G, Sperdouli I. Modulation of Photosystem II Function in Celery via Foliar-Applied Salicylic Acid during Gradual Water Deficit Stress. Int J Mol Sci 2024; 25:6721. [PMID: 38928427 PMCID: PMC11203862 DOI: 10.3390/ijms25126721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Water deficit is the major stress factor magnified by climate change that causes the most reductions in plant productivity. Knowledge of photosystem II (PSII) response mechanisms underlying crop vulnerability to drought is critical to better understanding the consequences of climate change on crop plants. Salicylic acid (SA) application under drought stress may stimulate PSII function, although the exact mechanism remains essentially unclear. To reveal the PSII response mechanism of celery plants sprayed with water (WA) or SA, we employed chlorophyll fluorescence imaging analysis at 48 h, 96 h, and 192 h after watering. The results showed that up to 96 h after watering, the stroma lamellae of SA-sprayed leaves appeared dilated, and the efficiency of PSII declined, compared to WA-sprayed plants, which displayed a better PSII function. However, 192 h after watering, the stroma lamellae of SA-sprayed leaves was restored, while SA boosted chlorophyll synthesis, and by ameliorating the osmotic potential of celery plants, it resulted in higher relative leaf water content compared to WA-sprayed plants. SA, by acting as an antioxidant under drought stress, suppressed phototoxicity, thereby offering PSII photoprotection, together with enhanced effective quantum yield of PSII photochemistry (ΦPSII) and decreased quantity of singlet oxygen (1O2) generation compared to WA-sprayed plants. The PSII photoprotection mechanism induced by SA under drought stress was triggered by non-photochemical quenching (NPQ), which is a strategy to protect the chloroplast from photo-oxidative damage by dissipating the excess light energy as heat. This photoprotective mechanism, triggered by NPQ under drought stress, was adequate in keeping, especially in high-light conditions, an equal fraction of open PSII reaction centers (qp) as of non-stress conditions. Thus, under water deficit stress, SA activates a regulatory network of stress and light energy partitioning signaling that can mitigate, to an extent, the water deficit stress on PSII functioning.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (E.P.)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (E.P.)
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Tuğba Aydın
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Dimitra), 57001 Thermi, Greece
| |
Collapse
|
14
|
Elsisi M, Elshiekh M, Sabry N, Aziz M, Attia K, Islam F, Chen J, Abdelrahman M. The genetic orchestra of salicylic acid in plant resilience to climate change induced abiotic stress: critical review. STRESS BIOLOGY 2024; 4:31. [PMID: 38880851 PMCID: PMC11180647 DOI: 10.1007/s44154-024-00160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Climate change, driven by human activities and natural processes, has led to critical alterations in varying patterns during cropping seasons and is a vital threat to global food security. The climate change impose several abiotic stresses on crop production systems. These abiotic stresses include extreme temperatures, drought, and salinity, which expose agricultural fields to more vulnerable conditions and lead to substantial crop yield and quality losses. Plant hormones, especially salicylic acid (SA), has crucial roles for plant resiliency under unfavorable environments. This review explores the genetics and molecular mechanisms underlying SA's role in mitigating abiotic stress-induced damage in plants. It also explores the SA biosynthesis pathways, and highlights the regulation of their products under several abiotic stresses. Various roles and possible modes of action of SA in mitigating abiotic stresses are discussed, along with unraveling the genetic mechanisms and genes involved in responses under stress conditions. Additionally, this review investigates molecular pathways and mechanisms through which SA exerts its protective effects, such as redox signaling, cross-talks with other plant hormones, and mitogen-activated protein kinase pathways. Moreover, the review discusses potentials of using genetic engineering approaches, such as CRISPR technology, for deciphering the roles of SA in enhancing plant resilience to climate change related abiotic stresses. This comprehensive analysis bridges the gap between genetics of SA role in response to climate change related stressors. Overall goal is to highlight SA's significance in safeguarding plants and by offering insights of SA hormone for sustainable agriculture under challenging environmental conditions.
Collapse
Affiliation(s)
- Mohamed Elsisi
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Moaz Elshiekh
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Nourine Sabry
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Mark Aziz
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Kotb Attia
- College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | | |
Collapse
|
15
|
Liu Y, Ma J, Li F, Zeng X, Wu Z, Huang Y, Xue Y, Wang Y. High Concentrations of Se Inhibited the Growth of Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:1580. [PMID: 38891388 PMCID: PMC11174541 DOI: 10.3390/plants13111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Selenium (Se) is crucial for both plants and humans, with plants acting as the main source for human Se intake. In plants, moderate Se enhances growth and increases stress resistance, whereas excessive Se leads to toxicity. The physiological mechanisms by which Se influences rice seedlings' growth are poorly understood and require additional research. In order to study the effects of selenium stress on rice seedlings, plant phenotype analysis, root scanning, metal ion content determination, physiological response index determination, hormone level determination, quantitative PCR (qPCR), and other methods were used. Our findings indicated that sodium selenite had dual effects on rice seedling growth under hydroponic conditions. At low concentrations, Se treatment promotes rice seedling growth by enhancing biomass, root length, and antioxidant capacity. Conversely, high concentrations of sodium selenite impair and damage rice, as evidenced by leaf yellowing, reduced chlorophyll content, decreased biomass, and stunted growth. Elevated Se levels also significantly affect antioxidase activities and the levels of proline, malondialdehyde, metal ions, and various phytohormones and selenium metabolism, ion transport, and antioxidant genes in rice. The adverse effects of high Se concentrations may directly disrupt protein synthesis or indirectly induce oxidative stress by altering the absorption and synthesis of other compounds. This study aims to elucidate the physiological responses of rice to Se toxicity stress and lay the groundwork for the development of Se-enriched rice varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanyan Wang
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.)
| |
Collapse
|
16
|
Ikram S, Li Y, Lin C, Yi D, Heng W, Li Q, Tao L, Hongjun Y, Weijie J. Selenium in plants: A nexus of growth, antioxidants, and phytohormones. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154237. [PMID: 38583194 DOI: 10.1016/j.jplph.2024.154237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
Selenium (Se) is an essential micronutrient for both human and animals. Plants serve as the primary source of Se in the food chain. Se concentration and availability in plants is influenced by soil properties and environmental conditions. Optimal Se levels promote plant growth and enhance stress tolerance, while excessive Se concentration can result in toxicity. Se enhances plants ROS scavenging ability by promoting antioxidant compound synthesis. The ability of Se to maintain redox balance depends upon ROS compounds, stress conditions and Se application rate. Furthermore, Se-dependent antioxidant compound synthesis is critically reliant on plant macro and micro nutritional status. As these nutrients are fundamental for different co-factors and amino acid synthesis. Additionally, phytohormones also interact with Se to promote plant growth. Hence, utilization of phytohormones and modified crop nutrition can improve Se-dependent crop growth and plant stress tolerance. This review aims to explore the assimilation of Se into plant proteins, its intricate effect on plant redox status, and the specific interactions between Se and phytohormones. Furthermore, we highlight the proposed physiological and genetic mechanisms underlying Se-mediated phytohormone-dependent plant growth modulation and identified research opportunities that could contribute to sustainable agricultural production in the future.
Collapse
Affiliation(s)
- Sufian Ikram
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Chai Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Debao Yi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wang Heng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Tao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Hongjun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiang Weijie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
17
|
Song J, Wang D, Han D, Zhang DD, Li R, Kong ZQ, Dai XF, Subbarao KV, Chen JY. Characterization of the Endophytic Bacillus subtilis KRS015 Strain for Its Biocontrol Efficacy Against Verticillium dahliae. PHYTOPATHOLOGY 2024; 114:61-72. [PMID: 37530500 DOI: 10.1094/phyto-04-23-0142-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Endophytes play important roles in promoting plant growth and controlling plant diseases. Verticillium wilt is a vascular wilt disease caused by Verticillium dahliae, a widely distributed soilborne pathogen that causes significant economic losses on cotton each year. In this study, an endophyte KRS015, isolated from the seed of the Verticillium wilt-resistant Gossypium hirsutum 'Zhongzhimian No. 2', was identified as Bacillus subtilis by morphological, phylogenetic, physiological, and biochemical analyses. The volatile organic compounds (VOCs) produced by KRS015 or its cell-free fermentation extract had significant antagonistic effects on various pathogenic fungi, including V. dahliae. KRS015 reduced Verticillium wilt index and colonization of V. dahliae in treated cotton seedlings significantly; the disease reduction rate was ∼62%. KRS015 also promoted plant growth, potentially mediated by the growth-related cotton genes GhACL5 and GhCPD-3. The cell-free fermentation extract of KRS015 triggered a hypersensitivity response, including reactive oxygen species (ROS) and expression of resistance-related plant genes. VOCs from KRS015 also inhibited germination of conidia and the mycelial growth of V. dahliae, and were mediated by growth and development-related genes such as VdHapX, VdMcm1, Vdpf, and Vel1. These results suggest that KRS015 is a potential agent for controlling Verticillium wilt and promoting growth of cotton.
Collapse
Affiliation(s)
- Jian Song
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dan-Dan Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Ran Li
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Zhi-Qiang Kong
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xiao-Feng Dai
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA 93905
| | - Jie-Yin Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
18
|
Ogunsiji E, Umebese C, Stabentheiner E, Iwuala E, Odjegba V, Oluwajobi A. Salicylic Acid Enhances Growth, Photosynthetic Performance and Antioxidant Defense Activity Under Salt Stress in Two Mungbean [Vigna radiata (L.) R. Wilczek] Variety. PLANT SIGNALING & BEHAVIOR 2023; 18:2217605. [PMID: 37289001 PMCID: PMC10251775 DOI: 10.1080/15592324.2023.2217605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
Salt is regarded as a main cause for reduced yield under challenging conditions. Mungbean, a valuable protein crop, is sensitive to salt stress, leading to yield shortage. The growth hormone, salicylic acid (SA), enhances several processes necessary to confer salt tolerance and relieves poor agricultural yield. Seeds of mungbean were initially pretreated with SA (0.5 mM) for 4 h before sowing, while under a cumulative combination of SA + salt regimes: control, SA, 100 mM, SA +100 mM, 200 mM and SA +200 mM. Our study examined photosynthesis parameters such as photosynthetic pigment concentration, chlorophyll a fluorescence, protein, proline, and antioxidant enzymes in plants subjected to single and combined SA + salt stress concentrations. The result showed a greater decline in SPAD and photosynthetic quantum yield under 200 mM NaCl at 43% in Var. 145 than in Var. 155 at 32% compared to 11% in SA +100 mM and 34% in SA + 200 mM treatments in both varieties. Var. 145 was found to be more sensitive to 100 and 200 mM NaCl salt stress. In Var. 155, chlorophyll a and chlorophyll b concentrations were higher under control 52%, SA + 100 mM 49%, and SA +200 mM 42% than in Var. 145 at 51%, 38%, and 31%. Protein and proline revealed a higher content in Var. 155 in contrast to the lower activity in Var. 145. The enhanced performance of the Var. 155 exposed to SA + salt stress was followed by an increase in the activities of peroxidase (POD), CAT while the activity of MDA revealed a significant increase in Var. 145 under 100 mM 43% and 200 mM 48% NaCl treatment compared to Var. 155, which had 38% and 34%. The above results suggest that SA-treated Var. 155 confers tolerance to salt stress and is accompanied with a high osmoprotectant responses as provided by SA in Var. 155 than Var. 145. The potency of SA in providing salt tolerance capacity to plants is a future research interest to maintain sustainable yield in mungbean seedlings.
Collapse
Affiliation(s)
- Esther Ogunsiji
- Institute of Plant Science, University of Graz, Graz, Austria
- Department of Botany, University of Lagos, Lagos, Nigeria
| | | | | | - Emmanuel Iwuala
- Institute of Plant Science, University of Graz, Graz, Austria
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Victor Odjegba
- Department of Botany, University of Lagos, Lagos, Nigeria
| | - Ayoola Oluwajobi
- Department of Plant Science and Biotechnology, Federal University Oye Ekiti, Ekiti State, Nigeria
| |
Collapse
|
19
|
Yang W, Liu X, Yu S, Liu J, Jiang L, Lu X, Liu Y, Zhang J, Li X, Zhang S. The maize ATP-binding cassette (ABC) transporter ZmMRPA6 confers cold and salt stress tolerance in plants. PLANT CELL REPORTS 2023; 43:13. [PMID: 38135780 DOI: 10.1007/s00299-023-03094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023]
Abstract
KEY MESSAGE ZmMRPA6 was cloned and characterized as the first ATP-binding cassette (ABC) transporter in maize to be proven to participate in cold and salt tolerance. Homologous genes AtABCC4 and AtABCC14 of ZmMRPA6 also responded to salt stress. ATP-binding cassette (ABC) proteins are major transmembrane transporters that play significant roles in plant development against various abiotic stresses. However, available information regarding stress-related ABC genes in maize is minimal. In this study, a maize ABC transporter gene, ZmMRPA6, was identified through genome-wide association analysis (GWAS) for cold tolerance in maize seeds germination and functionally characterized. During germination and seedling stages, the zmmrpa6 mutant exhibited enhanced resistance to cold or salt stress. Mutated of ZmMRPA6 did not affect the expression of downstream response genes related cold or salt response at the transcriptional level. Mass spectrometry analysis revealed that most of the differential proteins between zmmrpa6 and wild-type plants were involved in response to stress process including oxidative reduction, hydrolase activity, small molecule metabolism, and photosynthesis process. Meanwhile, the plants which lack the ZmMRPA6 homologous genes AtABCC4 or AtABCC14 were sensitive to salt stress in Arabidopsis. These results indicated that ZmMRPA6 and its homologous genes play a conserved role in cold and salt stress, and functional differentiation occurs in monocotyledonous and dicotyledonous plants. In summary, these findings dramatically improved our understanding of the function of ABC transporters resistance to abiotic stresses in plants.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shaowei Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jisheng Liu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, Shandong, China
| | - Lijun Jiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, Shandong, China
| | - Yinggao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jiedao Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
20
|
Zhao M, Li J, Shi X, Sanaullah Malik M, Quan Y, Guo D, Wang L, Wang S. Effects of exogenous plant regulators on growth and development of "Kyoho" grape under salt alkali stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1274684. [PMID: 38162314 PMCID: PMC10756669 DOI: 10.3389/fpls.2023.1274684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
Salinity is one of the major abiotic stresses besides drought and cold stress. The application of plant growth regulators (PGRs) is an effective method to mitigate yield losses caused by salinity. However, we investigated the effects of exogenous regulatory substances (γ-aminobutyric acid (GABA), salicylic acid (SA), and brassinolide (BR) on the growth and development of "Kyoho" grapevine under salt stress. The results showed that exogenous regulators GABA, SA, and BR alleviated the inhibition of grape growth by saline stress and regulated the effects of salinity stress on grape fruit development and quality. All three regulators significantly increased fruit set, cross-sectional diameter, weight per unit, and anthocyanin content. In conclusion, this study provides a theoretical basis for grape production practices by using exogenous aminobutyric acid (GABA), salicylic acid (SA), and brassinolide (BR) to mitigate the hazards of salinity stress.
Collapse
Affiliation(s)
- Maoxiang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Jiajia Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangneng Shi
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Sinochem Agriculture Holdings, Beijing, China
| | - M. Sanaullah Malik
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Quan
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dinghan Guo
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Song W, Shao H, Zheng A, Zhao L, Xu Y. Advances in Roles of Salicylic Acid in Plant Tolerance Responses to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3475. [PMID: 37836215 PMCID: PMC10574961 DOI: 10.3390/plants12193475] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
A multitude of biotic and abiotic stress factors do harm to plants by bringing about diseases and inhibiting normal growth and development. As a pivotal signaling molecule, salicylic acid (SA) plays crucial roles in plant tolerance responses to both biotic and abiotic stresses, thereby maintaining plant normal growth and improving yields under stress. In view of this, this paper mainly discusses the role of SA in both biotic and abiotic stresses of plants. SA regulates the expression of genes involved in defense signaling pathways, thus enhancing plant immunity. In addition, SA mitigates the negative effects of abiotic stresses, and acts as a signaling molecule to induce the expression of stress-responsive genes and the synthesis of stress-related proteins. In addition, SA also improves certain yield-related photosynthetic indexes, thereby enhancing crop yield under stress. On the other hand, SA acts with other signaling molecules, such as jasmonic acid (JA), auxin, ethylene (ETH), and so on, in regulating plant growth and improving tolerance under stress. This paper reviews recent advances in SA's roles in plant stress tolerance, so as to provide theoretical references for further studies concerning the decryption of molecular mechanisms for SA's roles and the improvement of crop management under stress.
Collapse
Affiliation(s)
- Weiyi Song
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; (W.S.); (A.Z.); (L.Z.); (Y.X.)
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu 476000, China
| | - Hongbo Shao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng 224002, China
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agriculture Sciences (JAAS), Nanjing 210014, China
| | - Aizhen Zheng
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; (W.S.); (A.Z.); (L.Z.); (Y.X.)
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu 476000, China
| | - Longfei Zhao
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; (W.S.); (A.Z.); (L.Z.); (Y.X.)
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu 476000, China
| | - Yajun Xu
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China; (W.S.); (A.Z.); (L.Z.); (Y.X.)
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu 476000, China
| |
Collapse
|
22
|
Xiao S, Wan Y, Zheng Y, Wang Y, Fan J, Xu Q, Gao Z, Wu C. Halomonas ventosae JPT10 promotes salt tolerance in foxtail millet ( Setaria italica) by affecting the levels of multiple antioxidants and phytohormones. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:275-290. [PMID: 37822729 PMCID: PMC10564379 DOI: 10.1002/pei3.10122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 10/13/2023]
Abstract
Plant growth-promoting bacterias (PGPBs) can increase crop output under normal and abiotic conditions. However, the mechanisms underlying the plant salt tolerance-promoting role of PGPBs still remain largely unknown. In this study, we demonstrated that Halomonas ventosae JPT10 promoted the salt tolerance of both dicots and monocots. Physiological analysis revealed that JPT10 reduced reactive oxygen species accumulation by improving the antioxidant capability of foxtail millet seedlings. The metabolomic analysis of JPT10-inoculated foxtail millet seedlings led to the identification of 438 diversely accumulated metabolites, including flavonoids, phenolic acids, lignans, coumarins, sugar, alkaloids, organic acids, and lipids, under salt stress. Exogenous apigenin and chlorogenic acid increased the salt tolerance of foxtail millet seedlings. Simultaneously, JPT10 led to greater amounts of abscisic acid (ABA), indole-3-acetic acid (IAA), salicylic acid (SA), and their derivatives but lower levels of 12-oxo-phytodienoic acid (OPDA), jasmonate (JA), and JA-isoleucine (JA-Ile) under salt stress. Exogenous JA, methyl-JA, and OPDA intensified, whereas ibuprofen or phenitone, two inhibitors of JA and OPDA biosynthesis, partially reversed, the growth inhibition of foxtail millet seedlings caused by salt stress. Our results shed light on the response of foxtail millet seedlings to H. ventosae under salt stress and provide potential compounds to increase salt tolerance in foxtail millet and other crops.
Collapse
Affiliation(s)
- Shenghui Xiao
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Yiman Wan
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Yue Zheng
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Yongdong Wang
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Jiayin Fan
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Zheng Gao
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Changai Wu
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| |
Collapse
|
23
|
Yadav P, Ansari MW, Kaula BC, Rao YR, Meselmani MA, Siddiqui ZH, Brajendra, Kumar SB, Rani V, Sarkar A, Rakwal R, Gill SS, Tuteja N. Regulation of ethylene metabolism in tomato under salinity stress involving linkages with important physiological signaling pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111736. [PMID: 37211221 DOI: 10.1016/j.plantsci.2023.111736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tomato is well-known for its anti-oxidative and anti-cancer properties, and with a wide range of health benefits is an important cash crop for human well-being. However, environmental stresses (especially abiotic) are having a deleterious effect on plant growth and productivity, including tomato. In this review, authors describe how salinity stress imposes risk consequences on growth and developmental processes of tomato through toxicity by ethylene (ET) and cyanide (HCN), and ionic, oxidative, and osmotic stresses. Recent research has clarified how salinity stress induced-ACS and - β-CAS expressions stimulate the accumulation of ET and HCN, wherein the action of salicylic acid (SA),compatible solutes (CSs), polyamines (PAs) and ET inhibitors (ETIs) regulate ET and HCN metabolism. Here we emphasize how ET, SA and PA cooperates with mitochondrial alternating oxidase (AOX), salt overly sensitive (SOS) pathways and the antioxidants (ANTOX) system to better understand the salinity stress resistance mechanism. The current literature evaluated in this paper provides an overview of salinity stress resistance mechanism involving synchronized routes of ET metabolism by SA and PAs, connecting regulated network of central physiological processes governing through the action of AOX, β-CAS, SOS and ANTOX pathways, which might be crucial for the development of tomato.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Babeeta C Kaula
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Yalaga Rama Rao
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Moaed Al Meselmani
- School of Biosciences, Alfred Denny Building, Grantham Centre, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, England, UK
| | | | - Brajendra
- Division of Soil Science, ICAR-IIRR, Hyderabad, Telangana, India
| | - Shashi Bhushan Kumar
- Department of Soil Science, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India
| | - Varsha Rani
- Department of Crop Physiology, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India
| | - Abhijit Sarkar
- Department of Botany, University of GourBanga, Malda 732103, West Bengal, India
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak 124001, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|