1
|
Đanić M, Pavlović N, Zaklan D, Stanimirov B, Lazarević S, Al-Salami H, Mikov M. Computational studies for pre-evaluation of pharmacological profile of gut microbiota-produced gliclazide metabolites. Front Pharmacol 2024; 15:1492284. [PMID: 39691391 PMCID: PMC11649407 DOI: 10.3389/fphar.2024.1492284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Background Gliclazide, a second-generation sulfonylurea derivative still widely used as a second-line treatment for type 2 diabetes mellitus, is well known to be subject to interindividual differences in bioavailability, leading to variations in therapeutic responses among patients. Distinct gut microbiota profiles among individuals are one of the most crucial yet commonly overlooked factors contributing to the variable bioavailability of numerous drugs. In light of the shift towards a more patient-centered approach in diabetes treatment, this study aimed to conduct a pharmacoinformatic analysis of gliclazide metabolites produced by gut microbiota and assess their docking potential with the SUR1 receptor to identify compounds with improved pharmacological profiles compared to the parent drug. Methods Ten potential gliclazide metabolites produced by the gut microbiota were screened for their pharmacological properties. Molecular docking analysis regarding SUR1 receptor was performed using Molegro Virtual Docker software. Drug-likeness properties were evaluated using DruLiTo software. Subsequently, the physicochemical and pharmacokinetic properties of gliclazide and its metabolites were determined by using VolSurf+ software package. Results All studied metabolites exhibited better intrinsic solubility than gliclazide, which is of interest, considering that solubility is a limiting factor for its bioavailability. Based on the values of investigated molecular descriptors, hydroxylated metabolites M1-M6 showed the most pronounced polar and hydrophilic properties, which could significantly contribute to their in vivo solubility. Additionally, docking analysis revealed that four hydroxyl-metabolites (M1, M3, M4, and M5), although having a slightly poorer permeability through the Caco-2 cells compared to gliclazide, showed the highest binding affinity to the SUR1 receptor and exhibited the most suitable pharmacological properties. Conclusion In silico study revealed that hydroxylated gut microbiota-produced gliclazide metabolites should be further investigated as potential drug candidates with improved characteristics compared to parent drug. Moreover, their part in the therapeutic effects of gliclazide should be additionally studied in vivo, in order to elucidate the role of gut microbiota in gliclazide pharmacology, namely from the perspective of personalized medicine.
Collapse
Affiliation(s)
- Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Dragana Zaklan
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Slavica Lazarević
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
2
|
Li L, Mang XY, Jiang KW, Zhao Y, Chen YR. Swimming training promotes angiogenesis of endothelial progenitor cells by upregulating IGF1 expression and activating the PI3K/AKT pathway in type 2 diabetic rats. Mol Med Rep 2024; 30:237. [PMID: 39422032 PMCID: PMC11529167 DOI: 10.3892/mmr.2024.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/15/2024] [Indexed: 10/19/2024] Open
Abstract
The present study aimed to investigate the effect of swimming training on the angiogenesis of endothelial progenitor cells (EPCs) in type 2 diabetes mellitus (T2DM) rats by upregulating the insulin‑like growth factor 1 (IGF1) expression and to reveal its potential mechanism of action. Male Sprague‑Dawley rats were divided into the Control, Model, Model train, Model train + short interfering (si)‑NC and Model train + si‑IGF1 groups. Serum glucose levels were measured using the oral glucose tolerance test. EPCs were isolated from the bone marrow cavity and identified through morphological observation and immunofluorescence staining. The expression of IGF‑1 mRNA in rat serum and EPCs was analyzed by reverse transcription‑quantitative PCR. The fasting insulin levels in serum were assessed by ELISA. Cell Counting Kit‑8, scratch assay and tube formation assay were used to determine the cell viability, migration and tube formation of rat EPCs, and western blotting was employed to measure the expression levels of IGF1, phosphoinositide 3‑kinase (PI3K), phosphorylated‑PI3K, protein kinase B (AKT) and phosphorylated‑AKT. The present study demonstrated that swimming training significantly decreased the glucose levels and homeostatic model assessment of insulin resistance scores, but increased the fasting insulin levels and IGF1 mRNA expression. Microscopic observation and immunofluorescence identification suggested that EPCs were successfully isolated. In addition, swimming training markedly elevated the levels of IGF1 and promoted cell viability, migration and tube formation in rat EPCs. Furthermore, IGF1 knockdown experiments indicated that swimming training might play a regulatory role by elevating the IGF1 expression to activate the PI3K/AKT pathway. Overall, swimming training promoted the angiogenesis of EPCs in T2DM rats and its potential mechanism may be related to the upregulation of IGF1 expression and the activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Lan Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xiao-Ying Mang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ke-Wei Jiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ying Zhao
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yu-Rong Chen
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
3
|
Tong A, Wang D, Jia N, Zheng Y, Qiu Y, Chen W, El-Seed HR, Zhao C. Algal Active Ingredients and Their Involvement in Managing Diabetic Mellitus. BIOLOGY 2024; 13:904. [PMID: 39596859 PMCID: PMC11591677 DOI: 10.3390/biology13110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Diabetes mellitus (DM) is becoming increasingly prominent, posing a serious threat to human health. Its prevalence is rising every year, and often affects young people. In the past few decades, research on marine algae has been recognized as a major field of drug discovery. Seaweed active substances, including algal polysaccharides, algal polyphenols, algal unsaturated fatty acids, and algal dietary fiber, have unique biological activities. This article reviews the effects and mechanisms of the types, structures, and compositions of seaweed on inhibiting glucose and lipid metabolism disorders, with a focus on the inhibitory effect of active substances on blood glucose reduction. The aim is to provide a basis for the development of seaweed active substance hypoglycemic drugs.
Collapse
Affiliation(s)
- Aijun Tong
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China;
| | - Dengwei Wang
- Department of Chronic and Noncommunicable Disease Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, China;
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
| | - Nan Jia
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yusong Qiu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weichao Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hesham R. El-Seed
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Li X, Zhou D, Liu M, Zeng H, Yu X, Song Y, He Q, Liu X, Zhang H, Shen Z, Zhu Z, Gu M, Hu X, Zhou W. Evaluation of anti-diabetic effects of Glimepiride/metformin cocrystal. J Drug Target 2024:1-16. [PMID: 39484922 DOI: 10.1080/1061186x.2024.2424901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Emerging data suggest that cocrystal of two compounds may have a different pharmacological effect from two compounds alone or their physical combination. Glimepiride (Gli) and metformin (Met) are two types of anti-diabetic drugs. Previously we generated the glimepiride/metformin cocrystal (GM). In this study, we evaluated the anti-diabetic effects of GM and explored the underlying mechanisms. Our result showed that GM reduced the blood glucose and HbA1c levels in db/db mice, and low doses of GM can achieve the hypoglycemic effect as Gli or Met alone, and high dose of GM was better than Gli and Met alone in improving the pathological changes of liver. In vivo studies showed that GM activated AMPK and STAT3 signaling, downregulated TXNIP expression and upregulated MaFA expression. Moreover, GM promoted the secretion of insulin in pancreas of db/db mice and in high glucose-treated INS-1 and MIN-6 cells. Together, GM possesses slightly better anti-diabetic effects than Met or Gli alone in db/db mice, and the mechanism of GM protecting β-cell dysfunction induced by glucotoxicity may be associated with activation of the AMPK/TXNIP/MaFA pathway.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Duanfang Zhou
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Mingpu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Hongfang Zeng
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Xiaoping Yu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Yi Song
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Qichen He
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Xu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Huan Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| | - Zhengze Shen
- Department of Pharmacy, Yongchuan Hospital affiliated to Chongqing Medical University, Chongqing 400016, China
| | - Zeng Zhu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mingyan Gu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xiangnan Hu
- Department of Pharmacochemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, China
| |
Collapse
|
5
|
Asaad GF, Doghish AS, Rashad AA, El-Dakroury WA. Exploring cutting-edge approaches in diabetes care: from nanotechnology to personalized therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03532-7. [PMID: 39453501 DOI: 10.1007/s00210-024-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus (DM) is a persistent condition characterized by high levels of glucose in the blood due to irregularities in the secretion of insulin, its action, or both. The disease was believed to be incurable until insulin was extracted, refined, and produced for sale. In DM, insulin delivery devices and insulin analogs have improved glycemic management even further. Sulfonylureas, biguanides, alpha-glucosidase inhibitors, and thiazolidinediones are examples of newer-generation medications having high efficacy in decreasing hyperglycemia as a result of scientific and technological advancements. Incretin mimetics, dual glucose-dependent insulinotropic polypeptide, GLP-1 agonists, PPARs, dipeptidyl peptidase-4 inhibitors, anti-CD3 mAbs, glucokinase activators, and glimins as targets have all performed well in recent clinical studies. Considerable focus was placed on free FA receptor 1 agonist, protein tyrosine phosphatase-1B inhibitors, and Sparc-related modular calcium-binding protein 1 which are still being studied. Theranostics, stem cell therapy, gene therapy, siRNA, and nanotechnology are some of the new therapeutic techniques. Traditional Chinese medicinal plants will also be discussed. This study seeks to present a comprehensive analysis of the latest research advancements, the emerging trends in medication therapy, and the utilization of delivery systems in treating DM. The objective is to provide valuable insights into the application of different pharmaceuticals in the field of diabetes mellitus treatment. Also, the therapeutic approach for diabetic patients infected with COVID-19 will be highlighted. Recent clinical and experimental studies evidence the Egyptian experience. Finally, as per the knowledge of the state of the art, our conclusion and future perspective will be declared.
Collapse
Affiliation(s)
- Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11651, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
6
|
Mostafa MEA, Alrasheed T. Risk of bone fracture by using dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes mellitus: a network meta-analysis of population-based cohort studies. Front Endocrinol (Lausanne) 2024; 15:1410883. [PMID: 39464183 PMCID: PMC11502341 DOI: 10.3389/fendo.2024.1410883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is linked to a heightened likelihood of experiencing fractures. It is crucial to ascertain whether medications used to lower blood sugar levels can elevate the risk of fractures. We aimed to investigate and compare the effects of glucagon-like peptide 1 receptor agonists (GLP-1RA), Dipeptidyl Peptidase-4 Inhibitors (DPP-4i), and Sodium-Glucose Cotransporter-2 Inhibitors (SGLT-2i) on the fracture risk in patients with T2D in the real world. Methods A network meta-analysis conducted an inclusive literature search in PubMed, Scopus, Web of Science, and Cochrane Library to select appropriate population-based cohort studies that investigated the risk of bone fractures of (GLP-1RA), (DPP-4i) or (SGLT-2i) in the real world. A network meta-analysis (NMA) was performed using R software to investigate the risk of total fractures as a primary outcome among patients who used (GLP-1RAs), (SGLT-2i) or (DPP-4i) versus each other or other glucose-lowering medications (GLMs). The odds ratio (OR) and 95% confidence interval (CI) were summarized overall network and for each pairwise direct and indirect comparison. The surface under the cumulative ranking curve (SUCRA) with the P-scores was calculated for each treatment in the network meta-analysis to detect their cumulative ranking probabilities in lowering the risk of total fractures. Results In our NMA, we identified a set of 13 population-based cohort studies comprising a total of 1,064,952 patients. The risk of fracture was identified with the follow-up duration for each class. We found a significant decrease in the fracture risk by about 87% associated with patients who used SGLT2 inhibitors in combination with other glucose-lowering medications, followed by SGLT2 inhibitors alone by about 67%, then GLP-1 receptor agonists by about 60%, and at last DPP-4 inhibitors by about 55%. Conclusion Our study's collective findings suggest a significant association of the low risk of fracture with the use of SGLT2i with other GLMs combination, SGLT2i alone, GLP-1RA, and DPP-4i, respectively. This population-based analysis offers the best available evidence and might be helpful for clinicians in the decision of the most suitable T2DM treatment strategies, especially for elderly type 2 diabetic patients, as they may be safe in terms of fracture. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023448720.
Collapse
Affiliation(s)
- Mohamed E. A. Mostafa
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Tariq Alrasheed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
7
|
Wang Z, Li R, Chen X, Ren H, Wang C, Min R, Zhang X. Network pharmacology, molecular docking and experimental validation to elucidate the anti-T2DM mechanism of Lanxangia tsaoko. Fitoterapia 2024; 178:106117. [PMID: 38996878 DOI: 10.1016/j.fitote.2024.106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Lanxangia tsaoko (L. tsaoko) is a natural medicine which could be used to treat type 2 diabetes mellitus (T2DM). However, there is no systematic and comprehensive research on the its active compounds and mechanism. This study aimed to investigate the active ingredients and potential mechanism of L. tsaoko for the treatment of T2DM. The chemical constituents of L. tsaoko were identified by UPLC-Q-Exactive Orbitrap/MS. The active compounds and mechanism of L. tsaoko were predicted by network pharmacology. Then the docking modes of key components and core targets were analyzed by molecular docking. Finally, animal experiments were conducted to verify the efficacy and targets of L. tsaoko in T2DM treatment. 70 compounds from L. tsaoko were identified. We obtained 37 active components, including quercetin, genistein and kaempferol, 5 core targets were AKT1, INS, TP53, TNF and IL-6. Mainly involved in PI3K/Akt, MAPK, RAGE/AGE, HIF-1, FoxO signaling pathways. Molecular docking results showed that the L. tsaoko had good binding potential to TNF. Therefore, we took the inflammatory mechanism as the prediction target for experimental verification. Animal experiments showed that L. tsaoko could alleviated colon injury of T2DM mice, improve glucose metabolism and decrease inflammatory levels. L. tsaoko exerted therapeutic effects on T2DM through multi-component, multi-target and multi-pathway regulation. Its action mechanisms were related to PI3K/Akt, MAPK, RAGE/AGE, HIF-1 and FoxO signaling pathways. This study provided new insights for the clinical treatment of T2DM.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Ruonan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Huilin Ren
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Caixia Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Ruixue Min
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Su J, Xu J, Hu S, Ye H, Xie L, Ouyang S. Advances in small-molecule insulin secretagogues for diabetes treatment. Biomed Pharmacother 2024; 178:117179. [PMID: 39059347 DOI: 10.1016/j.biopha.2024.117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes, a metabolic disease caused by abnormally high levels of blood glucose, has a high prevalence rate worldwide and causes a series of complications, including coronary heart disease, stroke, peripheral vascular disease, end-stage renal disease, and retinopathy. Small-molecule compounds have been developed as drugs for the treatment of diabetes because of their oral advantages. Insulin secretagogues are a class of small-molecule drugs used to treat diabetes, and include sulfonylureas, non-sulfonylureas, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase 4 inhibitors, and other novel small-molecule insulin secretagogues. However, many small-molecule compounds cause different side effects, posing huge challenges to drug monotherapy and drug selection. Therefore, the use of different small-molecule drugs must be improved. This article reviews the mechanism, advantages, limitations, and potential risks of small-molecule insulin secretagogues to provide future research directions on small-molecule drugs for the treatment of diabetes.
Collapse
Affiliation(s)
- Jingqian Su
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Jingran Xu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hui Ye
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Lian Xie
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
9
|
Zinellu A, Mangoni AA. A systematic review and meta-analysis of ischemia-modified albumin in diabetes mellitus. Heliyon 2024; 10:e35953. [PMID: 39224304 PMCID: PMC11366936 DOI: 10.1016/j.heliyon.2024.e35953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Aim There is an ongoing search for novel biomarkers of diabetes. We conducted a systematic review and meta-analysis of the serum concentrations of ischemia-modified albumin (IMA), a candidate biomarker of oxidative stress, acidosis, and ischemia, in patients with pre-diabetes, different types of diabetes mellitus (type 1, T1DM, type 2, T2DM, and gestational, GDM), and healthy controls. Methods We searched for case-control studies published in PubMed, Web of Science, and Scopus from inception to December 31, 2023. The risk of bias and the certainty of evidence were assessed using the Joanna Briggs Institute Critical Appraisal Checklist and GRADE, respectively. Results In 29 studies, T2DM patients had significantly higher IMA concentrations when compared to controls (standard mean difference, SMD = 1.83, 95 % CI 1.46 to 2.21, p˂0.001; I2 = 95.7 %, p < 0.001; low certainty of evidence). Significant associations were observed between the SMD and glycated hemoglobin (p = 0.007), creatinine (p = 0.003), triglycerides (p = 0.029), and the presence of diabetes complications (p = 0.003). Similar trends, albeit in a smaller number of studies, were observed in T1DM (two studies; SMD = 1.59, 95 % CI -0.09 to 3.26, p˂0.063; I2 = 95.8 %, p < 0.001), GDM (three studies; SMD = 3.41, 95 % CI 1.14 to 5.67, p = 0.003; I2 = 97.0 %, p < 0.001) and pre-diabetes (three studies; SMD = 15.25, 95 % CI 9.86 to 20.65, p˂0.001; I2 = 99.3 %, p < 0.001). Conclusion Our study suggests that IMA is a promising biomarker for determining the presence of oxidative stress, acidosis, and ischemia in pre-diabetes and T1DM, T2DM, and GDM. However, the utility of measuring circulating IMA warrants confirmation in prospective studies investigating clinical endpoints in pre-diabetes and in different types of diabetes (PROSPERO registration number: CRD42024504690).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
10
|
Sun J, Xiao D, Lang M, Xu X. Novel sulfonyl hydrazide based β-carboline derivatives as potential α-glucosidase inhibitors: design, synthesis, and biological evaluation. Mol Divers 2024:10.1007/s11030-024-10943-4. [PMID: 39141208 DOI: 10.1007/s11030-024-10943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
A series of novel sulfonyl hydrazide based β-carboline derivatives (SX1-SX32) were designed and synthesized, and their structures were characterized on NMR and HRMS. Their α-glucosidase inhibitory screening results found that compounds (SX1-SX32) presented potential α-glucosidase inhibitory: IC50 values being 2.12 ± 0.33-19.37 ± 1.49 μM. Compound SX29 with a para-phenyl (IC50: 2.12 ± 0.33 μM) presented the strongest activity and was confirmed as a noncompetitive inhibitor. Fluorescence spectra, CD spectra and molecular docking were conducted to describe the inhibition mechanism of SX29 against α-glucosidase. Cells cytotoxicity indicated SX29 (0-32 μM) had no cytotoxicity on 293T cells. In particular, in vivo experiments revealed that oral administration of SX29 could regulate hyperglycemia and glucose tolerance of diabetic mice. These achieved findings indicated that sulfonyl hydrazide based β-carboline derivatives bore promising potential for discovering new α-glucosidase inhibitors with hypoglycemic activity.
Collapse
Affiliation(s)
- Jinping Sun
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Di Xiao
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Ming Lang
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| | - Xuetao Xu
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
11
|
Tewari J, Qidwai KA, Rana A, Tewari A, Tewari V, Maheshwari A. Safety and Efficacy of Remogliflozin in People With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e66145. [PMID: 39233944 PMCID: PMC11372186 DOI: 10.7759/cureus.66145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 09/06/2024] Open
Abstract
Remogliflozin is a novel SGLT-2 inhibitor used for the management of Type 2 Diabetes Mellitus (T2DM). Since its introduction medical literature is scarce on its quantitative effects. We performed this meta-analysis to ascertain its safety and efficacy in the treatment of T2DM. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the Cochrane Handbook, six studies involving 1,605 participants were analyzed. Our analysis found comparable reductions in glycated hemoglobin (HbA1c) by remogliflozin in comparison to the comparators. It was found to be inferior to other anti-diabetic drugs in decreasing fasting plasma glucose and post-prandial glucose. A significant reduction was obtained in body weight and a significant increase was also found in high-density lipoprotein cholesterol (HDL-C) levels. Remogliflozin did not significantly increase the risk for total adverse events, severe adverse events, or hypoglycemic episodes. The results were accompanied by high heterogeneity, which necessitates conducting high-quality randomized control trials for more robust evidence synthesis. Overall Remogliflozin can be considered a safe drug with beneficial effects on body weight and HDL-C levels for the treatment of people with T2DM.
Collapse
Affiliation(s)
- Jay Tewari
- Internal Medicine, King George's Medical University, Lucknow, IND
| | | | - Anadika Rana
- Internal Medicine, King George's Medical University, Lucknow, IND
| | - Ajoy Tewari
- Internal Medicine, Hind Institute of Medical Sciences, Lucknow, IND
- Diabetes and Endocrinology, Jai Clinic and Diabetes Care Center, Lucknow, IND
| | - Vineeta Tewari
- Anatomy, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Anuj Maheshwari
- Medicine, Hind Institute of Medical Sciences, Lucknow, IND
- Medicine, Shri Hari Kamal Diabetes and Heart Research Clinic, Lucknow, IND
| |
Collapse
|
12
|
Zhang J, He M, Gao G, Sun T. Bibliometric analysis of research on the utilization of nanotechnology in diabetes mellitus and its complications. Nanomedicine (Lond) 2024; 19:1449-1469. [PMID: 39121376 PMCID: PMC11318711 DOI: 10.1080/17435889.2024.2358741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/20/2024] [Indexed: 08/11/2024] Open
Abstract
Aim: To identify hotspots in this field and provide insights into future research directions. Methods: Publications were retrieved from the Web of Science Core Collection database. R Bibliometrix software, VOSviewer and CiteSpace were used to perform the bibliometric and visualization analyses. Results: The analysis comprised 468 publications from 58 countries, with the United States, China and India being the leading contributors. 'Gene therapy', 'nanoparticles' and 'insulin therapy' are the primary focuses. 'Green synthesis', 'cytotoxicity', 'bioavailability' and 'diabetic foot ulcers' have gained prominence, signifying high-intensity areas of interest expected to persist as favored research topics in the future. Conclusion: This study delves into recent frontiers and topical research directions and provides valuable references for further research in this field.
Collapse
Affiliation(s)
- Jiexin Zhang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan430070, P. R. China
| | - Meng He
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan430070, P. R. China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis & Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan430070, P. R. China
| | - Taolei Sun
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan430070, P. R. China
| |
Collapse
|
13
|
Li S, Song Z, Fan C, Zhang W, Ma T, Li X, Zhang Q, Zhao M, Yu T, Li S. Potential of FGF21 in type 2 diabetes mellitus treatment based on untargeted metabolomics. Biochem Pharmacol 2024; 225:116306. [PMID: 38782076 DOI: 10.1016/j.bcp.2024.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Fibroblast growth factor 21 (FGF21) has promise for treating diabetes and its associated comorbidities. It has been found to reduce blood glucose in mice and humans; however, its underlying mechanism is not known. Here, the metabolic function of FGF21 in diabetes was investigated. Diabetic db/db mice received intraperitoneal injections of FGF21 for 28 days, the serum of each mouse was collected, and their metabolites were analyzed by untargeted metabolomics using UHPLC-MS/MS. It was found that FGF21 reduced blood glucose and oral glucose tolerance without causing hypoglycemia. Moreover, administration of FGF21 reduced the levels of TG and LDL levels while increasing those of HDL and adiponectin. Importantly, the levels of 45 metabolites, including amino acids and lipids, were significantly altered, suggesting their potential as biomarkers. We speculated that FGF21 may treat T2DM through the regulation of fatty acid biosynthesis, the TCA cycle, and vitamin digestion and absorption. These findings provide insight into the mechanism of FGF21 in diabetes and suggest its potential for treating diabetes.
Collapse
Affiliation(s)
- Shuai Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China; State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang 222001, People s Republic of China
| | - Zilong Song
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Chunxiang Fan
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Weiwei Zhang
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Tianyi Ma
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Xu Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang 222001, People s Republic of China
| | - Qi Zhang
- President's Office, Qiqihar University, Qiqihar 161006, China.
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Tianfei Yu
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Shanshan Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
14
|
Hu F, Xiong L, Li Z, Li L, Wang L, Wang X, Zhou X, Zheng Y. Deciphering the shared mechanisms of Gegen Qinlian Decoction in treating type 2 diabetes and ulcerative colitis via bioinformatics and machine learning. Front Med (Lausanne) 2024; 11:1406149. [PMID: 38962743 PMCID: PMC11220276 DOI: 10.3389/fmed.2024.1406149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Background Although previous clinical studies and animal experiments have demonstrated the efficacy of Gegen Qinlian Decoction (GQD) in treating Type 2 Diabetes Mellitus (T2DM) and Ulcerative Colitis (UC), the underlying mechanisms of its therapeutic effects remain elusive. Purpose This study aims to investigate the shared pathogenic mechanisms between T2DM and UC and elucidate the mechanisms through which GQD modulates these diseases using bioinformatics approaches. Methods Data for this study were sourced from the Gene Expression Omnibus (GEO) database. Targets of GQD were identified using PharmMapper and SwissTargetPrediction, while targets associated with T2DM and UC were compiled from the DrugBank, GeneCards, Therapeutic Target Database (TTD), DisGeNET databases, and differentially expressed genes (DEGs). Our analysis encompassed six approaches: weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, single-cell sequencing analysis, machine learning, DEG analysis, and network pharmacology. Results Through GO and KEGG analysis of weighted gene co-expression network analysis (WGCNA) modular genes and DEGs intersection, we found that the co-morbidity between T2DM and UC is primarily associated with immune-inflammatory pathways, including IL-17, TNF, chemokine, and toll-like receptor signaling pathways. Immune infiltration analysis supported these findings. Three distinct machine learning studies identified IGFBP3 as a biomarker for GQD in treating T2DM, while BACE2, EPHB4, and EPHA2 emerged as biomarkers for GQD in UC treatment. Network pharmacology revealed that GQD treatment for T2DM and UC mainly targets immune-inflammatory pathways like Toll-like receptor, IL-17, TNF, MAPK, and PI3K-Akt signaling pathways. Conclusion This study provides insights into the shared pathogenesis of T2DM and UC and clarifies the regulatory mechanisms of GQD on these conditions. It also proposes novel targets and therapeutic strategies for individuals suffering from T2DM and UC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuemei Zhou
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yujiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
15
|
Singhal S, Manikrao Patil V, Verma S, Masand N. Recent advances and structure-activity relationship studies of DPP-4 inhibitors as anti-diabetic agents. Bioorg Chem 2024; 146:107277. [PMID: 38493634 DOI: 10.1016/j.bioorg.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Diabetes mellitus (DM) is one of the largest public health problems worldwide and in the last decades various therapeutic targets have been investigated. For the treatment of type-2 DM (T2DM), dipeptidyl peptidase-4 (DPP-4) is one of the well reported target and has established safety in terms of cardiovascular complexicity. Preclinical and clinical studies using DPP-4 inhibitors have demonstrated its safety and effectiveness and have lesser risk of associated hypoglycaemic effect making it suitable for elderly patients. FDA has approved a number of structurally diverse DPP-4 inhibitors for clinical use. The present manuscript aims to focus on the well reported hybrid and non-hybrid analogues and their structural activity relationship (SAR) studies. It aims to provide structural insights for this class of compounds pertaining to favourable applicability of selective DPP-4 inhibitors in the treatment of T2DM.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi NCR, Ghaziabad, Uttar Pradesh, India
| | - Vaishali Manikrao Patil
- Charak School of Pharmacy, Chaudhary Charan Singh (CCS) University, Meerut, Uttar Pradesh, India; Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia.
| | - Saroj Verma
- Department of Pharmacy, School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
16
|
Xie Y, Li S, Wu D, Wang Y, Chen J, Duan L, Li S, Li Y. Vitamin K: Infection, Inflammation, and Auto-Immunity. J Inflamm Res 2024; 17:1147-1160. [PMID: 38406326 PMCID: PMC10893789 DOI: 10.2147/jir.s445806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Vitamin K (VK) comprises a group of substances with chlorophyll quinone bioactivity and exists in nature in the form of VK1 and VK2. As its initial recognition originated from the ability to promote blood coagulation, it is known as the coagulation vitamin. However, based on extensive research, VK has shown potential for the prevention and treatment of various diseases. Studies demonstrating the beneficial effects of VK on immunity, antioxidant capacity, intestinal microbiota regulation, epithelial development, and bone protection have drawn growing interest in recent years. This review article focuses on the mechanism of action of VK and its potential preventive and therapeutic effects on infections (eg, asthma, COVID-19), inflammation (eg, in type 2 diabetes mellitus, Alzheimer's disease, Parkinson's disease, cancer, aging, atherosclerosis) and autoimmune disorders (eg, inflammatory bowel disease, type 1 diabetes mellitus, multiple sclerosis, rheumatoid arthritis). In addition, VK-dependent proteins (VKDPs) are another crucial mechanism by which VK exerts anti-inflammatory and immunomodulatory effects. This review explores the potential role of VK in preventing aging, combating neurological abnormalities, and treating diseases such as cancer and diabetes. Although current research appoints VK as a therapeutic tool for practical clinical applications in infections, inflammation, and autoimmune diseases, future research is necessary to elucidate the mechanism of action in more detail and overcome current limitations.
Collapse
Affiliation(s)
- Yuanyuan Xie
- The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Shifang Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Dinan Wu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China
| | - Yining Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd, Guangdong, People’s Republic of China
| | - Lili Duan
- Sungen Bioscience Co., Ltd, Guangdong, People’s Republic of China
| | - Shuzhuang Li
- College of Basic Medical Science, Dalian Medical University, Dalian, People’s Republic of China
| | - Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China
| |
Collapse
|
17
|
Mehra A, Mittal A, Vishwakarma PK. Prediction of Protein-Drug Interactions, Pharmacophore Modeling, and Toxicokinetics of Novel Leads for Type 2 Diabetes Treatment. Curr Drug Metab 2024; 25:355-380. [PMID: 39108115 DOI: 10.2174/0113892002321919240801065905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Small heterocyclic compounds have been crucial in pioneering advances in type 2 diabetes treatment. There has been a dramatic increase in the pharmacological development of novel heterocyclic derivatives aimed at stimulating the activation of Glucokinase (GK). A pharmaceutical intervention for diabetes is increasingly targeting GK as a legitimate target. Diabetes type 2 compromises Glucokinase's function, an enzyme vital for maintaining the balance of blood glucose levels. Medicinal substances strategically positioned to improve type 2 diabetes management are used to stimulate the GK enzyme using heterocyclic derivatives. OBJECTIVE The research endeavor aimed to craft novel compounds, drawing inspiration from the inherent coumarin nucleus found in nature. The goal was to evoke the activity of the glucokinase enzyme, offering a tailored approach to mitigate the undesired side effects typically associated with conventional therapies employed in the treatment of type 2 diabetes. METHODS Coumarin, sourced from nature's embrace, unfolds as a potent and naturally derived ally in the quest for innovative antidiabetic interventions. Coumarin was extracted from a variety of botanical origins, including Artemisia keiskeana, Mallotus resinosus, Jatropha integerrima, Ferula tingitana, Zanthoxylum schinifolium, Phebalium clavatum, and Mammea siamensis. This inclusive evaluation was conducted on Muybridge's digital database containing 53,000 hit compounds. The presence of the coumarin nucleus was found in 100 compounds, that were selected from this extensive repository. Utilizing Auto Dock Vina 1.5.6 and ChemBioDraw Ultra, structures generated through this process underwent docking analysis. Furthermore, these compounds were accurately predicted online log P using the Swiss ADME algorithm. A predictive analysis was conducted using PKCSM software on the primary compounds to assess potential toxicity. RESULTS Using Auto Dock Vina 1.5.6, 100 coumarin derivatives were assessed for docking. Glucokinase (GK) binding was significantly enhanced by most of these compounds. Based on superior binding characteristics compared with Dorzagliatin (standard GKA) and MRK (co-crystallized ligand), the top eight molecules were identified. After further evaluation through ADMET analysis of these eight promising candidates, it was confirmed that they met the Lipinski rule of five and their pharmacokinetic profile was enhanced. The highest binding affinity was demonstrated by APV16 at -10.6 kcal/mol. A comparison between the APV16, Dorzagliatin and MRK in terms of toxicity predictions using PKCSM indicated that the former exhibited less skin sensitization, AMES toxicity, and hepatotoxicity. CONCLUSION Glucokinase is most potently activated by 100 of the compound leads in the database of 53,000 compounds that contain the coumarin nucleus. APV12, with its high binding affinity, favorable ADMET (adjusted drug metabolic equivalents), minimal toxicity, and favorable pharmacokinetic profile warrants consideration for progress to in vitro testing. Nevertheless, to uncover potential therapeutic implications, particularly in the context of type 2 diabetes, thorough investigations and in-vivo evaluations are necessary for benchmarking before therapeutic use, especially experiments involving the STZ diabetic rat model.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| | - Prakhar Kumar Vishwakarma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| |
Collapse
|
18
|
Szkudelski T, Szkudelska K. The Anti-Diabetic Potential of Baicalin: Evidence from Rodent Studies. Int J Mol Sci 2023; 25:431. [PMID: 38203600 PMCID: PMC10779254 DOI: 10.3390/ijms25010431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Baicalin is a biologically active flavonoid compound that benefits the organism in various pathological conditions. Rodent studies have shown that this compound effectively alleviates diabetes-related disturbances in models of type 1 and type 2 diabetes. Baicalin supplementation limited hyperglycemia and improved insulin sensitivity. The anti-diabetic effects of baicalin covered the main insulin-sensitive tissues, i.e., the skeletal muscle, the adipose tissue, and the liver. In the muscle tissue, baicalin limited lipid accumulation and improved glucose transport. Baicalin therapy was associated with diminished adipose tissue content and increased mitochondrial biogenesis. Hepatic lipid accumulation and glucose output were also decreased as a result of baicalin supplementation. The molecular mechanism of the anti-diabetic action of this compound is pleiotropic and is associated with changes in the expression/action of pivotal enzymes and signaling molecules. Baicalin positively affected, among others, the tissue insulin receptor, glucose transporter, AMP-activated protein kinase, protein kinase B, carnitine palmitoyltransferase, acetyl-CoA carboxylase, and fatty acid synthase. Moreover, this compound ameliorated diabetes-related oxidative and inflammatory stress and reduced epigenetic modifications. Importantly, baicalin supplementation at the effective doses did not induce any side effects. Results of rodent studies imply that baicalin may be tested as an anti-diabetic agent in humans.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | | |
Collapse
|
19
|
Tang LT, Feng L, Cao HY, Shi R, Luo BB, Zhang YB, Liu YM, Zhang J, Li SY. Comparative study of type 2 diabetes mellitus-associated gut microbiota between the Dai and Han populations. World J Diabetes 2023; 14:1766-1783. [PMID: 38222790 PMCID: PMC10784794 DOI: 10.4239/wjd.v14.i12.1766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND The global prevalence of type 2 diabetes mellitus (T2DM) is increasing. T2DM is associated with alterations of the gut microbiota, which can be affected by age, illness, and genetics. Previous studies revealed that there are discriminating microbiota compositions between the Dai and the Han populations. However, the specific gut microbiota differences between the two populations have not been elucidated. AIM To compare the gut microbiota differences in subjects with and without T2DM in the Dai and Han populations. METHODS A total of 35 subjects of the Han population (including 15 healthy children, 8 adult healthy controls, and 12 adult T2DM patients) and 32 subjects of the Dai population (including 10 healthy children, 10 adult healthy controls, and 12 adult T2DM patients) were enrolled in this study. Fasting venous blood samples were collected from all the subjects for biochemical analysis. Fecal samples were collected from all the subjects for DNA extraction and 16S rRNA sequencing, which was followed by analyses of the gut microbiota composition. RESULTS No significant difference in alpha diversity was observed between healthy children and adults. The diversity of gut microbiota was decreased in T2DM patients compared to the healthy adults in both the Dai and Han populations. There was a significant difference in gut microbiota between healthy children and healthy adults in the Han population with an increased abundance of Bacteroidetes and decreased Firmicutes in children. However, this difference was less in the Dai population. Significant increases in Bacteroidetes in the Han population and Proteobacteria in the Dai population and decreases in Firmicutes in both the Han and Dai population were observed in T2DM patients compared to healthy adults. Linear discriminant analysis Effect Size analysis also showed that the gut microbiota was different between the Han and Dai populations in heathy children, adults, and T2DM patients. Four bacteria were consistently increased and two consistently decreased in the Han population compared to the Dai population. CONCLUSION Differences in gut microbiota were found between the Han and Dai populations. A significant increase in Bacteroidetes was related to the occurrence of T2DM in the Han population, while a significant increase in Proteobacteria was related to the occurrence of T2DM in the Dai population.
Collapse
Affiliation(s)
- Ling-Tong Tang
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Lei Feng
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Hui-Ying Cao
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Rui Shi
- Department of Clinical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Bei-Bei Luo
- Department of Clinical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Yan-Bi Zhang
- Department of Clinical Laboratory, Sixth Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Yan-Mei Liu
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Jian Zhang
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Shuang-Yue Li
- Department of Clinical Laboratory, Yan’an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
| |
Collapse
|
20
|
Othman AM, Ashour Ibrahim I, Saleh SM, Abo-Elmatty DM, Mesbah NM, Abdel-Hamed AR. The Safety and Efficacy of Combining Saxagliptin and Pioglitazone Therapy in Streptozocin-Induced Diabetic Rats. Biomedicines 2023; 11:3300. [PMID: 38137521 PMCID: PMC10741989 DOI: 10.3390/biomedicines11123300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic progressive disease due to insulin resistance. Oxidative stress complicates the etiology of T2DM. Saxagliptin is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor, while Pioglitazone is a thiazolidinedione insulin sensitizer. This study aimed to assess the effect of Saxagliptin and Pioglitazone monotherapy and combination therapy on the biochemical and biological parameters in streptozotocin (STZ)-induced diabetic rats. METHODS The study included thirty-five male albino rats. Diabetes mellitus was induced by intraperitoneal STZ injection (35 mg/kg). For a 1-month duration, rats were divided into five groups. Glucose homeostasis traits, lipid profiles, kidney functions, liver enzymes, and oxidative stress markers were measured. Gene expression of miRNA-29a, phosphoenolpyruvate carboxykinase (PEPCK), phosphoinositide-3-kinase (PI3K), and interleukin 1 beta (IL-1β) was assessed using qRT-PCR. RESULTS At a 1-month treatment duration, combination therapy improves oxidative stress markers more than either drug alone. The combination therapy had significantly higher levels of SOD, catalase, and GSH and lower levels of MDA compared to the monotherapy. Additionally, the diabetic group showed a significant increase in the expression levels of miRNA-29a, PEPCK, and IL-1β and a significant decrease in PI3K compared to the normal control group. However, combination therapy of Saxagliptin and Pioglitazone was more effective than either Saxagliptin or Pioglitazone alone in reversing these results, especially for PEPCK and IL-1β. CONCLUSIONS Our findings revealed that combining Saxagliptin and Pioglitazone improves glycemic control and genetic and epigenetic expression profiles, which play an essential regulatory role in normal metabolism.
Collapse
Affiliation(s)
- Ahmed Mohamed Othman
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt (N.M.M.)
| | - Ibrahim Ashour Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Samy M. Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt (N.M.M.)
| | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt (N.M.M.)
| | - Noha M. Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt (N.M.M.)
| | - Asmaa R. Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt (N.M.M.)
| |
Collapse
|
21
|
Trifonov RE, Ostrovskii VA. Tetrazoles and Related Heterocycles as Promising Synthetic Antidiabetic Agents. Int J Mol Sci 2023; 24:17190. [PMID: 38139019 PMCID: PMC10742751 DOI: 10.3390/ijms242417190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Tetrazole heterocycle is a promising scaffold in drug design, and it is incorporated into active pharmaceutical ingredients of medications of various actions: hypotensives, diuretics, antihistamines, antibiotics, analgesics, and others. This heterocyclic system is metabolically stable and easily participates in various intermolecular interactions with different biological targets through hydrogen bonding, conjugation, or van der Waals forces. In the present review, a systematic analysis of the activity of tetrazole derivatives against type 2 diabetes mellitus (T2DM) has been performed. As it was shown, the tetrazolyl moiety is a key fragment of many antidiabetic agents with different activities, including the following: peroxisome proliferator-activated receptors (PPARs) agonists, protein tyrosine phosphatase 1B (PTP1B) inhibitors, aldose reductase (AR) inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors and glucagon-like peptide 1 (GLP-1) agonists, G protein-coupled receptor (GPCRs) agonists, glycogen phosphorylases (GP) Inhibitors, α-glycosidase (AG) Inhibitors, sodium glucose co-transporter (SGLT) inhibitors, fructose-1,6-bisphosphatase (FBPase) inhibitors, IkB kinase ε (IKKε) and TANK binding kinase 1 (TBK1) inhibitors, and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). In many cases, the tetrazole-containing leader compounds markedly exceed the activity of medications already known and used in T2DM therapy, and some of them are undergoing clinical trials. In addition, tetrazole derivatives are very often used to act on diabetes-related targets or to treat post-diabetic disorders.
Collapse
Affiliation(s)
- Rostislav E. Trifonov
- Department of Chemistry and Technology of Nitrogen-Containing Organic Compounds, Saint Petersburg State Institute of Technology (Technical University), St. Petersburg 190013, Russia
| | - Vladimir A. Ostrovskii
- Department of Chemistry and Technology of Nitrogen-Containing Organic Compounds, Saint Petersburg State Institute of Technology (Technical University), St. Petersburg 190013, Russia
- Saint Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), St. Petersburg 199178, Russia
| |
Collapse
|