1
|
Boyes C, Rowntree JK, Coulthard E. A bee's-eye view of landscape change: differences in diet of 2 Andrena species (Hymenoptera: Andrenidae) between 1943 and 2021. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:27. [PMID: 39348595 PMCID: PMC11441578 DOI: 10.1093/jisesa/ieae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 08/29/2024] [Indexed: 10/02/2024]
Abstract
Declines in pollinating insects have been linked to changes in land cover, affecting the availability of nesting sites and floral resources. Our study is the first analysis of changes in pollen load composition of 2 mining bees, Andrena barbilabris (Kirby) and Andrena flavipes (Panzer) (Hymenoptera: Andrenidae), at the same sites in central England, over 75 years. This provides a unique opportunity to remove spatial variation and review temporal changes in pollen diet within the context of landscape change. We analyzed modern-day pollen load composition for these species and compared it with historical data from the same sites. We then examined potential links between land-use change and the bees' diets. Both bees showed dietary flexibility and lower diet breadth for A. barbilabris, and the bees' foraging strategies appear to have changed. Andrena flavipes collected more pollen taxa in a single load, while A. barbilabris appeared to source pollen from greater distances. Landscape changes at the studied sites have affected the nutritional environment for these bees. Our findings are supported by an existing assessment of floral resources, which found floral diversity has decreased overall in both the habitats used by these bees. However, more research is needed on the nutritional content of pollens used by these bees, both now and historically, to estimate how pollen diversity has changed. The bee's-eye view underlines the importance of understanding how species respond to local changes so that effective conservation strategies can be developed.
Collapse
Affiliation(s)
- Clare Boyes
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jennifer K Rowntree
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Emma Coulthard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
2
|
Balvino‐Olvera FJ, Olivares‐Pinto U, González‐Rodríguez A, Aguilar‐Aguilar MJ, Ruiz‐Guzmán G, Lobo‐Segura J, Cortés‐Flores J, Cristobal‐Perez EJ, Martén‐Rodríguez S, Patiño‐Conde V, Quesada M. Effects of floral resources on honey bee populations in Mexico: Using dietary metabarcoding to examine landscape quality in agroecosystems. Ecol Evol 2024; 14:e11456. [PMID: 38895569 PMCID: PMC11183941 DOI: 10.1002/ece3.11456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
The decline of honey bee populations significantly impacts the human food supply due to poor pollination and yield decreases of essential crop species. Given the reduction of pollinators, research into critical landscape components, such as floral resource availability and land use change, might provide valuable information about the nutritional status and health of honey bee colonies. To address this issue, we examine the effects of landscape factors like agricultural area, urban area, and climatic factors, including maximum temperature, minimum temperature, relative humidity, and precipitation, on honey bee hive populations and nutritional health of 326 honey bee colonies across varying landscapes in Mexico. DNA metabarcoding facilitated the precise identification of pollen from 267 plant species, encompassing 243 genera and 80 families, revealing a primary herb-based diet. Areas characterized by high landscape diversity exhibited greater pollen diversity within the colony. Conversely, colonies situated in regions with higher proportions of agricultural and urban landscapes demonstrated lower bee density. The maximum ambient temperature outside hives positively correlated with pollen diversity, aligning with a simultaneous decrease in bee density. Conversely, higher relative humidity positively influenced both the bee density of the colony and the diversity of foraged pollen. Our national-level study investigated pollen dietary availability and colony size in different habitat types, latitudes, climatic conditions, and varied levels and types of disturbances. This effort was taken to gain a better insight into the mechanisms driving declines in honey bee populations. This study illustrates the need for more biodiverse agricultural landscapes, the preservation of diverse habitats, and the conservation of natural and semi-natural spaces. These measures can help to improve the habitat quality of other bee species, as well as restore essential ecosystem processes, such as pollination and pest control.
Collapse
Affiliation(s)
- Francisco J. Balvino‐Olvera
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios SuperioresUnidad MoreliaMoreliaMichoacánMexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de PosgradosCiudad UniversitariaCDMXMexico
| | - Ulises Olivares‐Pinto
- Escuela Nacional de Estudios Superiores Unidad JuriquillaUniversidad Nacional Autónoma de MéxicoJuriquillaQuerétaroMexico
| | - Antonio González‐Rodríguez
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMichoacánMexico
| | - María J. Aguilar‐Aguilar
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios SuperioresUnidad MoreliaMoreliaMichoacánMexico
| | - Gloria Ruiz‐Guzmán
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios SuperioresUnidad MoreliaMoreliaMichoacánMexico
| | - Jorge Lobo‐Segura
- Escuela de BiologíaUniversidad de Costa RicaSan PedroCosta Rica
- Laboratorio Binacional de Análisis y Síntesis Ecológica, Escuela de BiologíaUniversidad de Costa RicaSan PedroCosta Rica
| | - Jorge Cortés‐Flores
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios SuperioresUnidad MoreliaMoreliaMichoacánMexico
- Jardín Botánico, Instituto de Biología, Sede TlaxcalaUniversidad Nacional Autónoma de MéxicoSanta Cruz TlaxcalaMexico
| | - E. Jacob Cristobal‐Perez
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios SuperioresUnidad MoreliaMoreliaMichoacánMexico
- Laboratorio Binacional de Análisis y Síntesis Ecológica, Escuela de BiologíaUniversidad de Costa RicaSan PedroCosta Rica
| | - Silvana Martén‐Rodríguez
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios SuperioresUnidad MoreliaMoreliaMichoacánMexico
| | - Violeta Patiño‐Conde
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios SuperioresUnidad MoreliaMoreliaMichoacánMexico
| | - Mauricio Quesada
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios SuperioresUnidad MoreliaMoreliaMichoacánMexico
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMichoacánMexico
- Laboratorio Binacional de Análisis y Síntesis Ecológica, Escuela de BiologíaUniversidad de Costa RicaSan PedroCosta Rica
| |
Collapse
|
3
|
Bell KL, Turo KJ, Lowe A, Nota K, Keller A, Encinas‐Viso F, Parducci L, Richardson RT, Leggett RM, Brosi BJ, Burgess KS, Suyama Y, de Vere N. Plants, pollinators and their interactions under global ecological change: The role of pollen DNA metabarcoding. Mol Ecol 2023; 32:6345-6362. [PMID: 36086900 PMCID: PMC10947134 DOI: 10.1111/mec.16689] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.
Collapse
Affiliation(s)
- Karen L. Bell
- CSIRO Health & Biosecurity and CSIRO Land & WaterFloreatWAAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Katherine J. Turo
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | | | - Kevin Nota
- Department of Ecology and GeneticsEvolutionary Biology Centre, Uppsala UniversityUppsalaSweden
| | - Alexander Keller
- Organismic and Cellular Networks, Faculty of BiologyBiocenter, Ludwig‐Maximilians‐Universität MünchenPlaneggGermany
| | - Francisco Encinas‐Viso
- Centre for Australian National Biodiversity ResearchCSIROBlack MountainAustralian Capital TerritoryAustralia
| | - Laura Parducci
- Department of Ecology and GeneticsEvolutionary Biology Centre, Uppsala UniversityUppsalaSweden
- Department of Environmental BiologySapienza University of RomeRomeItaly
| | - Rodney T. Richardson
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMarylandUSA
| | | | - Berry J. Brosi
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Kevin S. Burgess
- Department of BiologyCollege of Letters and Sciences, Columbus State University, University System of GeorgiaAtlantaGeorgiaUSA
| | - Yoshihisa Suyama
- Field Science CenterGraduate School of Agricultural Science, Tohoku UniversityOsakiMiyagiJapan
| | - Natasha de Vere
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Rittschof CC, Denny AS. The Impacts of Early-Life Experience on Bee Phenotypes and Fitness. Integr Comp Biol 2023; 63:808-824. [PMID: 36881719 DOI: 10.1093/icb/icad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Across diverse animal species, early-life experiences have lifelong impacts on a variety of traits. The scope of these impacts, their implications, and the mechanisms that drive these effects are central research foci for a variety of disciplines in biology, from ecology and evolution to molecular biology and neuroscience. Here, we review the role of early life in shaping adult phenotypes and fitness in bees, emphasizing the possibility that bees are ideal species to investigate variation in early-life experience and its consequences at both individual and population levels. Bee early life includes the larval and pupal stages, critical time periods during which factors like food availability, maternal care, and temperature set the phenotypic trajectory for an individual's lifetime. We discuss how some common traits impacted by these experiences, including development rate and adult body size, influence fitness at the individual level, with possible ramifications at the population level. Finally, we review ways in which human alterations to the landscape may impact bee populations through early-life effects. This review highlights aspects of bees' natural history and behavioral ecology that warrant further investigation with the goal of understanding how environmental disturbances threaten these vulnerable species.
Collapse
Affiliation(s)
- Clare C Rittschof
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546, USA
| | - Amanda S Denny
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546, USA
| |
Collapse
|
5
|
Russo L, Ruedenauer F, Gronert A, Van de Vreken I, Vanderplanck M, Michez D, Klein A, Leonhardt S, Stout JC. Fertilizer and herbicide alter nectar and pollen quality with consequences for pollinator floral choices. PeerJ 2023; 11:e15452. [PMID: 37334137 PMCID: PMC10269573 DOI: 10.7717/peerj.15452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/03/2023] [Indexed: 06/20/2023] Open
Abstract
Background Pollinating insects provide economically and ecologically valuable services, but are threatened by a variety of anthropogenic changes. The availability and quality of floral resources may be affected by anthropogenic land use. For example, flower-visiting insects in agroecosystems rely on weeds on field edges for foraging resources, but these weeds are often exposed to agrochemicals that may compromise the quality of their floral resources. Methods We conducted complementary field and greenhouse experiments to evaluate the: (1) effect of low concentrations of agrochemical exposure on nectar and pollen quality and (2) relationship between floral resource quality and insect visitation. We applied the same agrochemcial treatments (low concentrations of fertilizer, low concentrations of herbicide, a combination of both, and a control of just water) to seven plant species in the field and greenhouse. We collected data on floral visitation by insects in the field experiment for two field seasons and collected pollen and nectar from focal plants in the greenhouse to avoid interfering with insect visitation in the field. Results We found pollen amino acid concentrations were lower in plants exposed to low concentrations of herbicide, and pollen fatty acid concentrations were lower in plants exposed to low concentrations of fertilizer, while nectar amino acids were higher in plants exposed to low concentrations of either fertilizer or herbicide. Exposure to low fertilizer concentrations also increased the quantity of pollen and nectar produced per flower. The responses of plants exposed to the experimental treatments in the greenhouse helped explain insect visitation in the field study. The insect visitation rate correlated with nectar amino acids, pollen amino acids, and pollen fatty acids. An interaction between pollen protein and floral display suggested pollen amino acid concentrations drove insect preference among plant species when floral display sizes were large. We show that floral resource quality is sensitive to agrochemical exposure and that flower-visiting insects are sensitive to variation in floral resource quality.
Collapse
Affiliation(s)
- Laura Russo
- University of Tennessee, Knoxville, United States of America
- Trinity College Dublin, Dublin, Ireland
| | | | - Angela Gronert
- Chair of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | | | | - Alexandra Klein
- Chair of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
6
|
Abstract
Stingless bees form perennial colonies of honey-making insects. The >600 species of stingless bees, mainly Neotropical, live throughout tropical latitudes. Foragers influence floral biology, plant reproduction, microbe dispersal, and diverse ecosystem functions. As tropical forest residents since the upper Cretaceous, they have had a long evolutionary history without competition from honey bees. Most stingless bees are smaller than any Apis species and recruit nest mates to resources, while their defense strategies exclude stinging behavior but incorporate biting. Stingless bees have diversified ecologically; excel in nesting site selection and mutualisms with plants, arthropods, and microbes; and display opportunism, including co-opting plant defenses. As their biology becomes better known, applications to human endeavors are imposing selective pressures from exploitation and approaches to conservation that entail colony extraction from wildlands. Although some meliponines can adjust to new conditions, their populations shall require tropical diversity for survival and reproduction.
Collapse
Affiliation(s)
- David W Roubik
- Smithsonian Tropical Research Institute, Balboa, Republic of Panamá;
| |
Collapse
|
7
|
Jones J, Rader R. Pollinator nutrition and its role in merging the dual objectives of pollinator health and optimal crop production. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210170. [PMID: 35491607 PMCID: PMC9058521 DOI: 10.1098/rstb.2021.0170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bee and non-bee insect pollinators play an integral role in the quantity and quality of production for many food crops, yet there is growing evidence that nutritional challenges to pollinators in agricultural landscapes are an important factor in the reduction of pollinator populations worldwide. Schemes to enhance crop pollinator health have historically focused on floral resource plantings aimed at increasing pollinator abundance and diversity by providing more foraging opportunities for bees. These efforts have demonstrated that improvements in bee diversity and abundance are achievable; however, goals of increasing crop pollination outcomes via these interventions are not consistently met. To support pollinator health and crop pollination outcomes in tandem, habitat enhancements must be tailored to meet the life-history needs of specific crop pollinators, including non-bees. This will require greater understanding of the nutritional demands of these taxa together with the supply of floral and non-floral food resources and how these interact in cropping environments. Understanding the mechanisms underlying crop pollination and pollinator health in unison across a range of taxa is clearly a win–win for industry and conservation, yet achievement of these goals will require new knowledge and novel, targeted methods. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.
Collapse
Affiliation(s)
- Jeremy Jones
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Romina Rader
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
8
|
Peters B, Keller A, Leonhardt SD. Diets maintained in a changing world: Does land‐use intensification alter wild bee communities by selecting for flexible generalists? Ecol Evol 2022; 12:e8919. [PMID: 35600696 PMCID: PMC9108308 DOI: 10.1002/ece3.8919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Birte Peters
- Department for Animal Ecology and Tropical Biology University of Würzburg Biocenter Würzburg Germany
- Department of Bioinformatics University of Würzburg Biocenter Würzburg Germany
- Center for Computational and Theoretical Biology University of Würzburg Würzburg Germany
| | - Alexander Keller
- Cellular and Organismic Networks Faculty of Biology Ludwig‐Maximilians‐Universität Munich Planegg‐Martinsried Germany
| | - Sara Diana Leonhardt
- Department for Animal Ecology and Tropical Biology University of Würzburg Biocenter Würzburg Germany
- Department of Life Science Systems Technical University of Munich Freising Germany
| |
Collapse
|
9
|
Filipiak ZM, Denisow B, Stawiarz E, Filipiak M. Unravelling the dependence of a wild bee on floral diversity and composition using a feeding experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153326. [PMID: 35074369 DOI: 10.1016/j.scitotenv.2022.153326] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
We investigated nutrition as a potential mechanism underlying the link between floral diversity/composition and wild bee performance. The health, resilience, and fitness of bees may be limited by a lack of nutritionally balanced larval food (pollen), influencing the entire population, even if adults are not limited nutritionally by the availability and quality of their food (mainly nectar). We hypothesized that the nutritional quality of bee larval food is indirectly connected to the species diversity of pollen provisions and is directly driven by the pollen species composition. Therefore, the accessibility of specific, nutritionally desirable key plant species for larvae might promote bee populations. Using a fully controlled feeding experiment, we simulated different pollen resources that could be available to bees in various environments, reflecting potential changes in floral species diversity and composition that could be caused by landscape changes. Suboptimal concentrations of certain nutrients in pollen produced by specific plant species resulted in reduced bee fitness. The negative effects were alleviated when scarce nutrients were added to these pollen diets. The scarcity of specific nutrients was associated with certain plant species but not with plant diversity. Thus, one of the mechanisms underlying the decreased fitness of wild bees in homogenous landscapes may be nutritional imbalance, i.e., the scarcity of specific nutrients associated with the presence of certain plant species and not with species diversity in pollen provisions eaten by larvae. Accordingly, we provide a conceptual representation of how the floral species composition and diversity can impact bee populations by affecting fitness-related life history traits. Additionally, we suggest that mixes of 'bee-friendly' plants used to improve the nutritional base for wild bees should be composed considering the local flora to supplement bees with vital nutrients that are scarce in the considered environment.
Collapse
Affiliation(s)
- Zuzanna M Filipiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Bożena Denisow
- Laboratory of Plant Biology, Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Ernest Stawiarz
- Laboratory of Plant Biology, Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Michał Filipiak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
10
|
Crone MK, Biddinger DJ, Grozinger CM. Wild Bee Nutritional Ecology: Integrative Strategies to Assess Foraging Preferences and Nutritional Requirements. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.847003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bees depend on flowering plants for their nutrition, and reduced availability of floral resources is a major driver of declines in both managed and wild bee populations. Understanding the nutritional needs of different bee species, and how these needs are met by the varying nutritional resources provided by different flowering plant taxa, can greatly inform land management recommendations to support bee populations and their associated ecosystem services. However, most bee nutrition research has focused on the three most commonly managed and commercially reared bee taxa—honey bees, bumble bees, and mason bees—with fewer studies focused on wild bees and other managed species, such as leafcutting bees, stingless bees, and alkali bees. Thus, we have limited information about the nutritional requirements and foraging preferences of the vast majority of bee species. Here, we discuss the approaches traditionally used to understand bee nutritional ecology: identification of floral visitors of selected focal plant species, evaluation of the foraging preferences of adults in selected focal bee species, evaluation of the nutritional requirements of focal bee species (larvae or adults) in controlled settings, and examine how these methods may be adapted to study a wider range of bee species. We also highlight emerging technologies that have the potential to greatly facilitate studies of the nutritional ecology of wild bee species, as well as evaluate bee nutritional ecology at significantly larger spatio-temporal scales than were previously feasible. While the focus of this review is on bee species, many of these techniques can be applied to other pollinator taxa as well.
Collapse
|
11
|
Abstract
The identification of floral visitation by pollinators provides an opportunity to improve our understanding of the fine-scale ecological interactions between plants and pollinators, contributing to biodiversity conservation and promoting ecosystem health. In this review, we outline the various methods which can be used to identify floral visitation, including plant-focused and insect-focused methods. We reviewed the literature covering the ways in which DNA metabarcoding has been used to answer ecological questions relating to plant use by pollinators and discuss the findings of this research. We present detailed methodological considerations for each step of the metabarcoding workflow, from sampling through to amplification, and finally bioinformatic analysis. Detailed guidance is provided to researchers for utilisation of these techniques, emphasising the importance of standardisation of methods and improving the reliability of results. Future opportunities and directions of using molecular methods to analyse plant–pollinator interactions are then discussed.
Collapse
|
12
|
Trueman SJ, Kämper W, Nichols J, Ogbourne SM, Hawkes D, Peters T, Hosseini Bai S, Wallace HM. Pollen limitation and xenia effects in a cultivated mass-flowering tree, Macadamia integrifolia (Proteaceae). ANNALS OF BOTANY 2022; 129:135-146. [PMID: 34473241 PMCID: PMC8796667 DOI: 10.1093/aob/mcab112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Pollen limitation is most prevalent among bee-pollinated plants, self-incompatible plants and tropical plants. However, we have very little understanding of the extent to which pollen limitation affects fruit set in mass-flowering trees despite tree crops accounting for at least 600 million tons of the 9200 million tons of annual global food production. METHODS We determined the extent of pollen limitation in a bee-pollinated, partially self-incompatible, subtropical tree by hand cross-pollinating the majority of flowers on mass-flowering macadamia (Macadamia integrifolia) trees that produce about 200 000-400 000 flowers. We measured tree yield and kernel quality and estimated final fruit set. We genotyped individual kernels by MassARRAY to determine levels of outcrossing in orchards and assess paternity effects on nut quality. KEY RESULTS Macadamia trees were pollen-limited. Supplementary cross-pollination increased nut-in-shell yield, kernel yield and fruit set by as much as 97, 109 and 92 %, respectively. The extent of pollen limitation depended upon the proximity of experimental trees to trees of another cultivar because macadamia trees were highly outcrossing. Between 84 and 100 % of fruit arose from cross-pollination, even at 200 m (25 rows) from orchard blocks of another cultivar. Large variations in nut-in-shell mass, kernel mass, kernel recovery and kernel oil concentration were related to differences in fruit paternity, including between self-pollinated and cross-pollinated fruit, thus demonstrating pollen-parent effects on fruit quality (i.e. xenia). CONCLUSIONS This study is the first to demonstrate pollen limitation in a mass-flowering tree. Improved pollination led to increased kernel yield of 0.31-0.59 tons ha-1, which equates currently to higher farm-gate income of approximately $US3720-$US7080 ha-1. The heavy reliance of macadamia flowers on cross-pollination and the strong xenia effects on kernel mass demonstrate the high value that pollination services can provide to food production.
Collapse
Affiliation(s)
- Stephen J Trueman
- Centre for Planetary Health and Food Security, School of Environment and
Science, Griffith University, Nathan, QLD 4111,
Australia
| | - Wiebke Kämper
- Centre for Planetary Health and Food Security, School of Environment and
Science, Griffith University, Nathan, QLD 4111,
Australia
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University
Bochum, 44780 Bochum, Germany
| | - Joel Nichols
- Centre for Planetary Health and Food Security, School of Environment and
Science, Griffith University, Nathan, QLD 4111,
Australia
| | - Steven M Ogbourne
- GeneCology Research Centre, University of the Sunshine Coast,
Maroochydore DC, QLD 4558, Australia
- School of Science, Technology & Engineering, University of the Sunshine
Coast, Maroochydore DC, QLD 4558, Australia
| | - David Hawkes
- Australian Genome Research Facility, Gehrmann Laboratories, University of
Queensland, Brisbane, QLD 4072, Australia
| | - Trent Peters
- Australian Genome Research Facility, Gehrmann Laboratories, University of
Queensland, Brisbane, QLD 4072, Australia
| | - Shahla Hosseini Bai
- Centre for Planetary Health and Food Security, School of Environment and
Science, Griffith University, Nathan, QLD 4111,
Australia
| | - Helen M Wallace
- Centre for Planetary Health and Food Security, School of Environment and
Science, Griffith University, Nathan, QLD 4111,
Australia
| |
Collapse
|
13
|
Parreño MA, Alaux C, Brunet JL, Buydens L, Filipiak M, Henry M, Keller A, Klein AM, Kuhlmann M, Leroy C, Meeus I, Palmer-Young E, Piot N, Requier F, Ruedenauer F, Smagghe G, Stevenson PC, Leonhardt SD. Critical links between biodiversity and health in wild bee conservation. Trends Ecol Evol 2021; 37:309-321. [PMID: 34955328 DOI: 10.1016/j.tree.2021.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
Wild bee populations are declining due to human activities, such as land use change, which strongly affect the composition and diversity of available plants and food sources. The chemical composition of food (i.e., nutrition) in turn determines the health, resilience, and fitness of bees. For pollinators, however, the term 'health' is recent and is subject to debate, as is the interaction between nutrition and wild bee health. We define bee health as a multidimensional concept in a novel integrative framework linking bee biological traits (physiology, stoichiometry, and disease) and environmental factors (floral diversity and nutritional landscapes). Linking information on tolerated nutritional niches and health in different bee species will allow us to better predict their distribution and responses to environmental change, and thus support wild pollinator conservation.
Collapse
Affiliation(s)
- M A Parreño
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich (TUM), Freising, Germany.
| | - C Alaux
- INRAE, Abeilles et Environnement, Avignon, France
| | - J-L Brunet
- INRAE, Abeilles et Environnement, Avignon, France
| | - L Buydens
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - M Filipiak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - M Henry
- INRAE, Abeilles et Environnement, Avignon, France
| | - A Keller
- Center for Computational and Theoretical Biology, and Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - A-M Klein
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - M Kuhlmann
- Zoological Museum of Kiel University, Kiel, Germany
| | - C Leroy
- INRAE, Abeilles et Environnement, Avignon, France
| | - I Meeus
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - E Palmer-Young
- US Department of Agriculture (USDA) Agricultural Research Service Bee Research Laboratory, Beltsville, MD, USA
| | - N Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - F Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement, et Écologie, 91198 Gif-sur-Yvette, France
| | - F Ruedenauer
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich (TUM), Freising, Germany
| | - G Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - P C Stevenson
- Royal Botanic Gardens, Kew, Surrey TW9 3AE, UK; University of Greenwich, London, UK
| | - S D Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich (TUM), Freising, Germany.
| |
Collapse
|
14
|
van der Kooi CJ, Vallejo-Marín M, Leonhardt SD. Mutualisms and (A)symmetry in Plant-Pollinator Interactions. Curr Biol 2021; 31:R91-R99. [PMID: 33497641 DOI: 10.1016/j.cub.2020.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The majority of flowering plants relies on animal pollinators for sexual reproduction and many animal pollinators rely on floral resources. However, interests of plants and pollinators are often not the same, resulting in an asymmetric relationship that ranges from mutualistic to parasitic interactions. Our understanding of the processes that underlie this asymmetry remains fragmentary. In this Review, we bring together evidence from evolutionary biology, plant chemistry, biomechanics, sensory ecology and behaviour to illustrate that the degree of symmetry often depends on the perspective taken. We also highlight variation in (a)symmetry within and between plant and pollinator species as well as between geographic locations. Through taking different perspectives from the plant and pollinator sides we provide new ground for studies on the maintenance and evolution of animal pollination and on the (a)symmetry in plant-pollinator interactions.
Collapse
Affiliation(s)
- Casper J van der Kooi
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| | | | - Sara D Leonhardt
- Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| |
Collapse
|
15
|
Nicholls E, Rossi M, Niven JE. Larval nutrition impacts survival to adulthood, body size and the allometric scaling of metabolic rate in adult honeybees. J Exp Biol 2021; 224:jeb242393. [PMID: 34263905 DOI: 10.1242/jeb.242393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
Resting metabolic rate (RMR) is a fundamental physiological measure linked to numerous aspects of organismal function, including lifespan. Although dietary restriction in insects during larval growth/development affects adult RMR, the impact of the nutritional composition of larval diets (i.e. diet quality) on adult RMR has not been studied. Using in vitro rearing to control larval diet quality, we determined the effect of dietary protein and carbohydrate on honeybee survival to adulthood, time to eclosion, body mass/size and adult RMR. High carbohydrate larval diets increased survival to adulthood and time to eclosion compared with both low carbohydrate and high protein diets. Upon emergence, bees reared on the high protein diet were smaller and lighter than those reared on other diets, whilst those raised on the high carbohydrate diet varied more in body mass. Newly emerged adult bees reared on the high carbohydrate diet showed a significantly steeper increase in allometric scaling of RMR compared with those reared on other diets. This suggests that the nutritional composition of larval diets influences survival to adulthood, time to eclosion and the allometric scaling of RMR. Given that agricultural intensification and increasing urbanisation have led to a decrease in both forage availability and dietary diversity for bees, our results are critical to improving understanding of the impacts of poor developmental nutrition on bee growth/development and physiology.
Collapse
Affiliation(s)
| | - Marta Rossi
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Jeremy E Niven
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
16
|
Filipiak M, Woyciechowski M, Czarnoleski M. Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon. Sci Rep 2021; 11:652. [PMID: 33436811 PMCID: PMC7804283 DOI: 10.1038/s41598-020-79647-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
Life histories of species may be shaped by nutritional limitations posed on populations. Yet, populations contain individuals that differ according to sex and life stage, each of which having different nutritional demands and experiencing specific limitations. We studied patterns of resource assimilation, allocation and excretion during the growth of the solitary bee Osmia bicornis (two sexes) under natural conditions. Adopting an ecological perspective, we assert that organisms ingest mutable organic molecules that are transformed during physiological processes and that the immutable atoms of the chemical elements composing these molecules may be allocated to specific functions, thereby influencing organismal fitness and life history. Therefore, using the framework of ecological stoichiometry, we investigated the multielemental (C, N, S, P, K, Na, Ca, Mg, Fe, Zn, Mn, Cu) compositions of six components of the bee elemental budget: food (pollen), eggs, pupae, adults, cocoons and excreta. The sexes differed fundamentally in the assimilation and allocation of acquired atoms, elemental phenotypes, and stoichiometric niches for all six components. Phosphorus, which supports larval growth, was allocated mainly (55-75%) to the cocoon after larval development was complete. Additionally, the majority (60-99%) of the Mn, Ca, Mg and Zn acquired during larval development was allocated to the cocoon, probably influencing bee fitness by conferring protection. We conclude that for holometabolous insects, considering only the chemical composition of the adult body within the context of nutritional ecology does not provide a complete picture. Low ratios of C to other nutrients, low N:P and high Na concentrations in excreta and cocoons may be important for local-scale nutrient cycling. Limited access to specific nutritional elements may hinder bee development in a sex-dependent manner, and N and P limitations, commonly considered elsewhere, may not play important roles in O. bicornis. Sexual dimorphism in nutritional limitations due to nutrient scarcity during the larval stage may influence bee population function and should be considered in bee conservation efforts.
Collapse
Affiliation(s)
- Michał Filipiak
- grid.5522.00000 0001 2162 9631Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Michal Woyciechowski
- grid.5522.00000 0001 2162 9631Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Marcin Czarnoleski
- grid.5522.00000 0001 2162 9631Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
17
|
Filipiak ZM, Filipiak M. The Scarcity of Specific Nutrients in Wild Bee Larval Food Negatively Influences Certain Life History Traits. BIOLOGY 2020; 9:E462. [PMID: 33322450 PMCID: PMC7764569 DOI: 10.3390/biology9120462] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
Bee nutrition studies have focused on food quantity rather than quality, and on details of bee biology rather than on the functioning of bees in ecosystems. Ecological stoichiometry has been proposed for studies on bee nutritional ecology as an ecosystem-oriented approach complementary to traditional approaches. It uses atomic ratios of chemical elements in foods and organisms as metrics to ask ecological questions. However, information is needed on the fitness effects of nutritional mismatches between bee demand and the supply of specific elements in food. We performed the first laboratory feeding experiment on the wild bee Osmia bicornis, investigating the impact of Na, K, and Zn scarcity in larval food on fitness-related life history traits (mortality, cocoon development, and imago body mass). We showed that bee fitness is shaped by chemical element availability in larval food; this effect may be sex-specific, where Na might influence female body mass, while Zn influences male mortality and body mass, and the trade-off between K allocation in cocoons and adults may influence cocoon and body development. These results elucidate the nutritional mechanisms underlying the nutritional ecology, behavioral ecology, and population functioning of bees within the context of nutrient cycling in the food web.
Collapse
Affiliation(s)
- Zuzanna M. Filipiak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Michał Filipiak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
18
|
Hall MA, Brettell LE, Liu H, Nacko S, Spooner-Hart R, Riegler M, Cook JM. Temporal changes in the microbiome of stingless bee foragers following colony relocation. FEMS Microbiol Ecol 2020; 97:5998223. [DOI: 10.1093/femsec/fiaa236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
ABSTRACT
Maintaining beneficial interactions with microbial symbionts is vital for animal health. Yet, for social insects, the stability of microbial associations within and between cohorts is largely unknown. We investigated temporal changes in the microbiomes of nine stingless bee (Tetragonula carbonaria) colonies at seven timepoints across a 10-month period when moved between two climatically and florally different sites. Bacterial 16S rRNA gene and fungal ITS amplicon sequencing confirmed that microbiomes varied considerably between colonies initially at site one. However, following relocation, considerable changes occurred in bacterial community composition within each colony, and the microbiome composition became more similar across colonies. Notably, Snodgrassella disappeared and Zymobacter appeared as relatively abundant taxa. Remarkably, bacterial communities within colonies continued to shift over time but remained similar across colonies, becoming dominated by Acinetobacter six months after returning to the original site. Our results indicate that the stingless bee microbiome can undergo major changes in response to the environment, and that these changes can be long-lasting. Such legacy effects have not been reported for corbiculate bees. Further understanding the microbial ecology of stingless bees will aid future management of colonies used in agricultural production.
Collapse
Affiliation(s)
- Mark A Hall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Scott Nacko
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Robert Spooner-Hart
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - James M Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
19
|
Leonhardt SD, Lihoreau M, Spaethe J. Mechanisms of Nutritional Resource Exploitation by Insects. INSECTS 2020; 11:insects11090570. [PMID: 32854218 PMCID: PMC7564569 DOI: 10.3390/insects11090570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
Insects have evolved an extraordinary range of nutritional adaptations to exploit other animals, plants, bacteria, fungi and soils as resources in terrestrial and aquatic environments. This special issue provides some new insights into the mechanisms underlying these adaptations. Contributions comprise lab and field studies investigating the chemical, physiological, cognitive and behavioral mechanisms that enable resource exploitation and nutrient intake regulation in insects. The collection of papers highlights the need for more studies on the comparative sensory ecology, underlying nutritional quality assessment, cue perception and decision making to fully understand how insects adjust resource selection and exploitation in response to environmental heterogeneity and variability.
Collapse
Affiliation(s)
- Sara D. Leonhardt
- Plant-Insect-Interactions Group, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Correspondence:
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, 31062 Toulouse, France;
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Biozentrum, Am Hubland, 97074 Würzburg, Germany;
| |
Collapse
|