1
|
Owen NE, Williams TL, Maguire JJ, Kuc RE, Davenport EE, Davenport AP. Microarray analysis demonstrates up-regulation of the endothelin-1 gene with compensatory down-regulation of the ETA receptor gene in human portal vein. Biosci Rep 2024; 44:BSR20240528. [PMID: 38860875 DOI: 10.1042/bsr20240528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024] Open
Abstract
High blood pressure in the portal vein, portal hypertension (PH), is the final common pathway in liver cirrhosis regardless of aetiology. Complications from PH are the major cause of morbidity and mortality in these patients. Current drug therapy to reduce portal pressure is mainly limited to β-adrenergic receptor blockade but approximately 40% of patients do not respond. Our aim was to use microarray to measure the expression of ∼20,800 genes in portal vein from patients with PH undergoing transplantation for liver cirrhosis (PH, n=12) versus healthy vessels (control, n=9) to identify potential drug targets to improve therapy. Expression of 9,964 genes above background was detected in portal vein samples. Comparing PH veins versus control (adjusted P-value < 0.05, fold change > 1.5) identified 548 up-regulated genes and 1,996 down-regulated genes. The 2,544 differentially expressed genes were subjected to pathway analysis. We identified 49 significantly enriched pathways. The endothelin pathway was ranked the tenth most significant, the only vasoconstrictive pathway to be identified. ET-1 gene (EDN1) was significantly up-regulated, consistent with elevated levels of ET-1 peptide previously measured in PH and cirrhosis. ETA receptor gene (EDNRA) was significantly down-regulated, consistent with an adaptive response to increased peptide levels in the portal vein but there was no change in the ETB gene (EDNRB). The results provide further support for evaluating the efficacy of ETA receptor antagonists as a potential therapy in addition to β-blockers in patients with PH and cirrhosis.
Collapse
Affiliation(s)
- Nicola E Owen
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Emma E Davenport
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, U.K
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| |
Collapse
|
2
|
Du D, Li J, Jiang X. Evidence of a causal relationship between blood pressure and pathological scars: a bidirectional Mendelian randomization study. Front Med (Lausanne) 2024; 11:1405079. [PMID: 39114830 PMCID: PMC11303301 DOI: 10.3389/fmed.2024.1405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Background Recent advancements in basic medicine and epidemiology suggest a potential influence of blood pressure on scar formation, yet the specifics of this relationship are not fully understood. This study aims to clarify the causal link between blood pressure and the development of pathological scars using Mendelian randomization (MR). Methods This study employed genetic variants closely linked to blood pressure as instrumental variables to explore the relationship between blood pressure and pathological scars. The inverse variance weighted (IVW) method was used for analysis. Results Our analysis identified a notable association where higher blood pressure was correlated with a lower risk of pathological scars. Specifically, an increase in diastolic blood pressure (odds ratio [OR] per standard deviation increase: 0.67 [95% Confidence Interval [CI], 0.49-0.99]), systolic blood pressure (OR per standard deviation increase: 0.66 [95% CI, 0.46-0.93]), and hypertension (pooled OR: 0.39 [95% CI, 0.18-0.85]) were significantly associated with a reduced risk of keloids. Similarly, a genetic predisposition to hypertension (pooled OR: 0.31 [95% CI, 0.11-0.89]) was significantly associated with a reduced risk of hypertrophic scars. Neither reverse MR analysis nor Steiger's test indicated a significant reverse causal relationship between hypertension and either keloids or hypertrophic scars. Conclusion The findings suggest a protective role of higher blood pressure against the development of pathological scars, including keloids and hypertrophic scars. However, the inconsistency observed across different MR methods warrants cautious interpretation and underscores the need for further investigation to confirm these findings.
Collapse
Affiliation(s)
- Dan Du
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jiaqi Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Schaich CL, Leisman DE, Goldberg MB, Filbin MR, Khanna AK, Chappell MC. Dysfunction of the renin-angiotensin-aldosterone system in human septic shock. Peptides 2024; 176:171201. [PMID: 38555976 PMCID: PMC11060897 DOI: 10.1016/j.peptides.2024.171201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Sepsis and septic shock are global healthcare problems associated with mortality rates of up to 40% despite optimal standard-of-care therapy and constitute the primary cause of death in intensive care units worldwide. Circulating biomarkers of septic shock severity may represent a clinically relevant approach to individualize those patients at risk for worse outcomes early in the course of the disease, which may facilitate early and more precise interventions to improve the clinical course. However, currently used septic shock biomarkers, including lactate, may be non-specific and have variable impact on prognosis and/or disease management. Activation of the renin-angiotensin-aldosterone system (RAAS) is likely an early event in septic shock, and studies suggest that an elevated level of renin, the early and committed step in the RAAS cascade, is a better predictor of worse outcomes in septic shock, including mortality, than the current standard-of-care measure of lactate. Despite a robust increase in renin, other elements of the RAAS, including endogenous levels of Ang II, may fail to sufficiently increase to maintain blood pressure, tissue perfusion, and protective immune responses in septic shock patients. We review the current clinical literature regarding the dysfunction of the RAAS in septic shock and potential therapeutic approaches to improve clinical outcomes.
Collapse
Affiliation(s)
- Christopher L Schaich
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel E Leisman
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marcia B Goldberg
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Micheal R Filbin
- Department of Emergency Medicine, Massachusetts General Hospital,Boston, MA, USA
| | - Ashish K Khanna
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Anesthesiology, Section on Critical Care Medicine, Atrium Health Wake Forest Baptist Medical Center, USA; Outcomes Research Consortium, Cleveland, OH, USA
| | - Mark C Chappell
- Hypertension & Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
McGrath MS, Wentworth BJ. The Renin-Angiotensin System in Liver Disease. Int J Mol Sci 2024; 25:5807. [PMID: 38891995 PMCID: PMC11172481 DOI: 10.3390/ijms25115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
The renin-angiotensin system (RAS) is a complex homeostatic entity with multiorgan systemic and local effects. Traditionally, RAS works in conjunction with the kidney to control effective arterial circulation, systemic vascular resistance, and electrolyte balance. However, chronic hepatic injury and resulting splanchnic dilation may disrupt this delicate balance. The role of RAS in liver disease, however, is even more extensive, modulating hepatic fibrosis and portal hypertension. Recognition of an alternative RAS pathway in the past few decades has changed our understanding of RAS in liver disease, and the concept of opposing vs. "rebalanced" forces is an ongoing focus of research. Whether RAS inhibition is beneficial in patients with chronic liver disease appears to be context-dependent, but further study is needed to optimize clinical management and reduce organ-specific morbidity and mortality. This review presents the current understanding of RAS in liver disease, acknowledges areas of uncertainty, and describes potential areas of future investigation.
Collapse
Affiliation(s)
- Mary S. McGrath
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Brian J. Wentworth
- Division of Gastroenterology & Hepatology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Zou L, Yu X, Xiong J, Chen C, Xiao G. Partial Replacement of NaCl with KCl in Cooked Meat Could Reduce the Liver Damage Through Renin-Angiotensin System in Mice. Mol Nutr Food Res 2024; 68:e2200783. [PMID: 38308101 DOI: 10.1002/mnfr.202200783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/29/2023] [Indexed: 02/04/2024]
Abstract
SCOPE Dietary salt (sodium chloride, NaCl) is necessary for processed meat products, but intake of a high-sodium diet carries serious health risks. Considerable studies indicate that the partial substitution of NaCl with potassium chloride (KCl) can produce sodium-reduced cooked meat. However, most studies of sodium-reduced cooked meat focus on the production process in vitro, and the effect of cooked meat on health has not been well clarified in vivo. METHODS AND RESULTS This study finds that compared to the high-sodium group (HS), serum renin, angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and the levels of some indicators of dyslipidemia are decreased in the reduced salt by partial substitution of NaCl with KCl group (RS + K). Furthermore, RS + K increases the antioxidation abilities, inhibits the renin-angiotensin system (RAS) through ACE/Ang II/Ang II type 1 receptor axis pathway, reduces synthesis of triglyceride and cholesterol and protein expressions of inflammatory factors interleukin-17A and nuclear factor-kappa B in the liver. CONCLUSION Partial substitution of NaCl with KCl in cooked meat can be a feasible approach for improving the health benefits and developing novel functional meat products for nutritional health interventions.
Collapse
Affiliation(s)
- Lifang Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
| | - Xia Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
| | - Jiahao Xiong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
| | - Conggui Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
6
|
Xu X, Tang C, Linghu E, Ding H. Guidelines for the Management of Esophagogastric Variceal Bleeding in Cirrhotic Portal Hypertension. J Clin Transl Hepatol 2023; 11:1565-1579. [PMID: 38161497 PMCID: PMC10752807 DOI: 10.14218/jcth.2023.00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/11/2023] [Accepted: 09/07/2023] [Indexed: 01/03/2024] Open
Abstract
To standardize the diagnosis, treatment, and management of esophagogastric variceal bleeding (EVB) in patients with cirrhotic portal hypertension, the Chinese Society of Hepatology, the Chinese Society of Gastroenterology, and the Chinese Society of Digestive Endoscopy of the Chinese Medical Association brought together relevant experts, reviewed the latest national and international progress in clinical research on EVB in cirrhotic portal hypertension, and followed evidence-based medicine to update the Guidelines on the Management of EVB in Cirrhotic Portal Hypertension. The guidelines provide recommendations for the diagnosis, treatment, and management of EVB in cirrhotic portal hypertension and with the aim to improve the level of clinical treatment of EVB in patients with cirrhotic portal hypertension.
Collapse
Affiliation(s)
- Xiaoyuan Xu
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Chengwei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Enqiang Linghu
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Digestive Endoscopy, Chinese Medical Association
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Chaikijurajai T, Rincon-Choles H, Tang WHW. Natriuretic peptide testing strategies in heart failure: A 2023 update. Adv Clin Chem 2023; 118:155-203. [PMID: 38280805 DOI: 10.1016/bs.acc.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Natriuretic peptides (NPs), including B-type natriuretic peptide (BNP) and N-terminal pro-BNP (NT-proBNP), have been recommended as standard biomarkers for diagnosing heart failure (HF), and one of the strongest risk predictors for mortality and HF hospitalization regardless of ejection fraction (EF) and etiology of HF. BNP is an active neurohormone opposing renin-angiotensin-aldosterone and sympathetic nervous system overactivated in HF, whereas NT-proBNP is an inactive prohormone released from cardiomyocytes in response to wall stress. Despite substantial advances in the development of guideline-directed medical therapy (GDMT) for HF with reduced EF, studies demonstrating direct benefits of NP-guided chronic HF therapy on mortality, HF hospitalization, and GDMT optimization have yielded conflicting results. However, accumulating evidence shows that achieving prespecified BNP or NT-proBNP target over time is significantly associated with favorable outcomes, suggesting that benefits of serially measured NPs may be limited to particular groups of HF patients, such as those with extreme levels of baseline BNP or NT-proBNP, which could represent severe phenotypes of HF associated with natriuretic peptide resistance or cardiorenal syndrome. Over the past decade, clinical utilization of BNP and NT-proBNP has been expanded, especially using serial NP measurements for guiding HF therapy, optimizing GDMT and identifying at-risk patients with HF phenotypes who may be minimally symptomatic or asymptomatic.
Collapse
Affiliation(s)
- Thanat Chaikijurajai
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Hernan Rincon-Choles
- Department of Nephrology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, United States
| | - W H Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
8
|
Xiao Y, Yan Y, Chang L, Ji H, Sun H, Song S, Feng K, Nuermaimaiti A, Lu Z, Wang L. CDK4/6 inhibitor palbociclib promotes SARS-CoV-2 cell entry by down-regulating SKP2 dependent ACE2 degradation. Antiviral Res 2023; 212:105558. [PMID: 36806814 PMCID: PMC9938000 DOI: 10.1016/j.antiviral.2023.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) outbreak has become a global pandemic. CDK4/6 inhibitor palbociclib was reported to be one of the top-scored repurposed drugs to treat COVID-19. As the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry, expression level of angiotensin-converting enzyme 2 (ACE2) is closely related to SARS-CoV-2 infection. In this study, we demonstrated that palbociclib and other methods could arrest cells in G0/G1 phase and up-regulate ACE2 mRNA and protein levels without altering its subcellular localization. Palbociclib inhibited ubiquitin-proteasome and lysosomal degradation of ACE2 through down-regulating S-phase kinase-associated protein 2 (SKP2). In addition, increased ACE2 expression induced by palbociclib and other cell cycle arresting compounds facilitated pseudotyped SARS-CoV-2 infection. This study suggested that ACE2 expression was down-regulated in proliferating cells. Cell cycle arresting compounds could increase ACE2 expression and facilitate SARS-CoV-2 cell entry, which may not be suitable therapeutic agents for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital / National Center of Gerontology, Beijing, PR China; National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China.
| |
Collapse
|
9
|
Diminazene aceturate attenuates hepatic ischemia/reperfusion injury in mice. Sci Rep 2022; 12:18158. [PMID: 36307457 PMCID: PMC9616812 DOI: 10.1038/s41598-022-21865-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/04/2022] [Indexed: 12/31/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is one of the leading causes of mortality following partial hepatectomy, liver transplantation, hypovolemic shock and trauma; however, effective therapeutic targets for the treatment of hepatic I/R injury are lacking. Recent studies have shown that diminazene aceturate (DIZE) has protective effects against inflammation, oxidative stress and cell death, which are the main pathogenetic mechanisms associated with hepatic I/R injury. However, the mechanistic effects DIZE exerts on hepatic I/R remain unknown. C57BL/6 male mice were pretreated with either 15 mg/kg DIZE or vehicle control (saline) and subjected to partial liver ischemia for 60 min. One day after induction of hepatic I/R, liver damage, inflammatory responses, oxidative stress and apoptosis were analyzed. By evaluating plasma alanine aminotransferase levels and histology, we found that DIZE treatment attenuated liver failure and was associated with a reduction in histologically-apparent liver damage. We also found that DIZE-treated mice had milder inflammatory responses, less reactive oxidative damage and less apoptosis following hepatic I/R compared to vehicle-treated mice. Taken together, our study demonstrates that DIZE protects against ischemic liver injury by attenuating inflammation and oxidative damage and may be a potential therapeutic agent for the prevention and treatment of ischemic liver failure.
Collapse
|
10
|
Alqudah A, AbuDalo R, Qnais E, Wedyan M, Oqal M, McClements L. The emerging importance of immunophilins in fibrosis development. Mol Cell Biochem 2022; 478:1281-1291. [PMID: 36302992 PMCID: PMC10164022 DOI: 10.1007/s11010-022-04591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
AbstractImmunophilins are a family of proteins encompassing FK506-binding proteins (FKBPs) and cyclophilins (Cyps). FKBPs and Cyps exert peptidyl-prolyl cis-trans isomerase (PPIase) activity, which facilitates diverse protein folding assembly, or disassembly. In addition, they bind to immunosuppressant medications where FKBPs bind to tacrolimus (FK506) and rapamycin, whereas cyclophilins bind to cyclosporin. Some large immunophilins have domains other than PPIase referred to as tetratricopeptide (TPR) domain, which is involved in heat shock protein 90 (Hsp90) and heat shock protein 70 (Hsp 70) chaperone interaction. The TPR domain confers immunophilins’ pleotropic actions to mediate various physiological and biochemical processes. So far, immunophilins have been implicated to play an important role in pathophysiology of inflammation, cancer and neurodegenerative disorders. However, their importance in the development of fibrosis has not yet been elucidated. In this review we focus on the pivotal functional and mechanistic roles of different immunophilins in fibrosis establishment affecting various organs. The vast majority of the studies reported that cyclophilin A, FKBP12 and FKBP10 likely induce organ fibrosis through the calcineurin or TGF-β pathways. FKBP51 demonstrated a role in myelofibrosis development through calcineurin-dependant pathway, STAT5 or NF-κB pathways. Inhibition of these specific immunophilins has been shown to decrease the extent of fibrosis suggesting that immunophilins could be a novel promising therapeutic target to prevent or reverse fibrosis.
Collapse
|
11
|
Godoy-Lugo JA, Mendez DA, Rodriguez R, Nishiyama A, Nakano D, Soñanez-Organis JG, Ortiz RM. Improved lipogenesis gene expression in liver is associated with elevated plasma angiotensin 1-7 after AT1 receptor blockade in insulin-resistant OLETF rats. Mol Cell Endocrinol 2022; 555:111729. [PMID: 35921918 DOI: 10.1016/j.mce.2022.111729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
Abstract
Increased angiotensin II (Ang II) signaling contributes to insulin resistance and liver steatosis. In addition to ameliorating hypertension, angiotensin receptor blockers (ARBs) improve lipid metabolism and hepatic steatosis, which are impaired with metabolic syndrome (MetS). Chronic blockade of the Ang II receptor type 1 (AT1) increases plasma angiotensin 1-7 (Ang 1-7), which mediates mechanisms counterregulatory to AT1 signaling. Elevated plasma Ang 1-7 is associated with decreased plasma triacylglycerol (TAG), cholesterol, glucose, and insulin; however, the benefits of RAS modulation to prevent non-alcoholic fatty liver disease (NAFLD) are not fully investigated. To better address the relationships among chronic ARB treatment, plasma Ang 1-7, and hepatic steatosis, three groups of 10-week-old-rats were studied: (1) untreated lean Long Evans Tokushima Otsuka (LETO), (2) untreated Otsuka Long Evans Tokushima Fatty (OLETF), and (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/d × 6 weeks). Following overnight fasting, rats underwent an acute glucose load to better understand the dynamic metabolic responses during hepatic steatosis and early MetS. Tissues were collected at baseline (pre-load; T0) and 1 and 2 h post-glucose load. AT1 blockade increased plasma Ang 1-7 and decreased liver lipids, which was associated with decreased fatty acid transporter 5 (FATP5) and fatty acid synthase (FASN) expression. AT1 blockade decreased liver glucose and increased glucokinase (GCK) expression. These results demonstrate that during MetS, overactivation of AT1 promotes hepatic lipid deposition that is stimulated by an acute glucose load and lipogenesis genes, suggesting that the chronic hyperglycemia associated with MetS contributes to fatty liver pathologies via an AT1-mediated mechanism.
Collapse
Affiliation(s)
- Jose A Godoy-Lugo
- School of Natural Sciences, University of California, Merced, CA, USA.
| | - Dora A Mendez
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Ruben Rodriguez
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Jose G Soñanez-Organis
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Navojoa, Sonora, Mexico
| | - Rudy M Ortiz
- School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
12
|
Norambuena-Soto I, Lopez-Crisosto C, Martinez-Bilbao J, Hernandez-Fuentes C, Parra V, Lavandero S, Chiong M. Angiotensin-(1-9) in hypertension. Biochem Pharmacol 2022; 203:115183. [PMID: 35870482 DOI: 10.1016/j.bcp.2022.115183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)] is a peptide of the non-canonical renin-angiotensin system (RAS) synthesized from angiotensin I by the monopeptidase angiotensin-converting enzyme type 2 (ACE2). Using osmotic minipumps, infusion of Ang-(1-9) consistently reduces blood pressure in several rat hypertension models. In these animals, hypertension-induced end-organ damage is also decreased. Several pieces of evidence suggest that Ang-(1-9) is the endogenous ligand that binds and activates the type-2 angiotensin II receptor (AT2R). Activation of AT2R triggers different tissue-specific signaling pathways. This phenomenon could be explained by the ability of AT2R to form different heterodimers with other G protein-coupled receptors. Because of the antihypertensive and protective effects of AT2R activation by Ang-(1-9), associated with a short half-life of RAS peptides, several synthetic AT2R agonists have been synthesized and assayed. Some of them, particularly CGP42112, C21 and novokinin, have demonstrated antihypertensive properties. Only two synthetic AT2R agonists, C21 and LP2-3, have been tested in clinical trials, but none of them like an antihypertensive. Therefore, Ang-(1-9) is a promising antihypertensive drug that reduces hypertension-induced end-organ damage. However, further research is required to translate this finding successfully to the clinic.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carolina Hernandez-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
13
|
Yu Q, Zhu D, Zou Y, Wang K, Rao P, Shen Y. Catalpol Attenuates Pulmonary Fibrosis by Inhibiting Ang II/AT1 and TGF-β/Smad-Mediated Epithelial Mesenchymal Transition. Front Med (Lausanne) 2022; 9:878601. [PMID: 35685407 PMCID: PMC9171363 DOI: 10.3389/fmed.2022.878601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating chronic lung condition affecting over 3 million people worldwide with a high mortality rate and there are no effective drugs. Angiotensin II (Ang II), as a major effector peptide of the renin angiotensin aldosterone system, has been shown to act in tandem with the transforming growth factor-β (TGF-β) signaling pathway to promote the infiltration of inflammatory cells, production of reactive oxygen species (ROS) and profibrotic factors after lung injury, and to participate in the process of epithelial mesenchymal transition (EMT). Catalpol (CAT) has been shown to have anti-inflammatory and antifibrotic effects. However, the effects and mechanisms of CAT on pulmonary fibrosis are not clear. Purpose To assess the effects and mechanisms of catalpol on bleomycin-induced pulmonary fibrosis in mice. Methods We used bleomycin-induced mouse model of pulmonary fibrosis to evaluate the alleviation effect of CAT at 7, 14, 28d, respectively. Next, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, immunofluorescence, Masson trichrome staining and western blotting were used to study the underlying mechanism of CAT on bleomycin-induced pulmonary fibrosis. Results It's demonstrated that CAT exerted a potent anti-fibrotic function in BLM-induced mice pulmonary fibrosis via alleviating inflammatory, ameliorating collagen deposition, reducing the level of Ang II and HYP and alleviating the degree of EMT. Moreover, CAT attenuate BLM-induced fibrosis by targeting Ang II/AT1 and TGF-β/Smad signaling in vivo. Conclusion CAT may serve as a novel therapeutic candidate for the simultaneous blockade of Ang II and TGF-β pathway to attenuate pulmonary fibrosis.
Collapse
Affiliation(s)
- Qun Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dewei Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peili Rao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunhui Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yunhui Shen
| |
Collapse
|
14
|
Renin–Angiotensin System in Liver Metabolism: Gender Differences and Role of Incretins. Metabolites 2022; 12:metabo12050411. [PMID: 35629915 PMCID: PMC9143858 DOI: 10.3390/metabo12050411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The impaired hepatic lipids and carbohydrates metabolism result in various metabolic disorders, including obesity, diabetes, insulin resistance, hyperlipidemia and metabolic syndrome. The renin–angiotensin system (RAS) has been identified in the liver and it is now recognized as an important modulator of body metabolic processes. This review is intended to provide an update of the impact of the renin–angiotensin system on lipid and carbohydrate metabolism, regarding gender difference and prenatal undernutrition, specifically focused on the role of the liver. The discovery of angiotensin-converting enzyme 2 (ACE2) has renewed interest in the potential therapeutic role of RAS modulation. RAS is over activated in non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma. Glucagon-like peptide-1 (GLP-1) has been shown to modulate RAS. The GLP-I analogue liraglutide antagonizes hepatocellular steatosis and exhibits liver protection. Liraglutide has a negative effect on the ACE/AngII/AT1R axis and a positive impact on the ACE2/Ang(1-7)/Mas axis. Activation of the ACE2/Ang(1-7)/Mas counter-regulatory axis is able to prevent liver injuries. Angiotensin(1-7) and ACE2 shows more favorable effects on lipid homeostasis in males but there is a need to do more investigation in female models. Prenatal undernutrition exerts long-term effects in the liver of offspring and is associated with a number of metabolic and endocrine alterations. These findings provide a novel therapeutic regimen to prevent and treat many chronic diseases by accelerating the effect of the ACE2/Ang1-7/Mas axis and inhibiting the ACE/AngII/AT1R axis.
Collapse
|
15
|
Rajapaksha IG, Gunarathne LS, Asadi K, Laybutt R, Andrikopoulous S, Alexander IE, Watt MJ, Angus PW, Herath CB. Angiotensin Converting Enzyme-2 Therapy Improves Liver Fibrosis and Glycemic Control in Diabetic Mice With Fatty Liver. Hepatol Commun 2022; 6:1056-1072. [PMID: 34951153 PMCID: PMC9035567 DOI: 10.1002/hep4.1884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/26/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and is frequently associated with type 2 diabetes. However, there is no specific medical therapy to treat this condition. Angiotensin-converting enzyme 2 (ACE2) of the protective renin angiotensin system generates the antifibrotic peptide angiotensin-(1-7) from profibrotic angiotensin II peptide. In this study, we investigated the therapeutic potential of ACE2 in diabetic NAFLD mice fed a high-fat (20%), high-cholesterol (2%) diet for 40 weeks. Mice were given a single intraperitoneal injection of ACE2 using an adeno-associated viral vector at 30 weeks of high-fat, high-cholesterol diet (15 weeks after induction of diabetes) and sacrificed 10 weeks later. ACE2 significantly reduced liver injury and fibrosis in diabetic NAFLD mice compared with the control vector injected mice. This was accompanied by reductions in proinflammatory cytokine expressions, hepatic stellate cell activation, and collagen 1 expression. Moreover, ACE2 therapy significantly increased islet numbers, leading to an increased insulin protein content in β-cells and plasma insulin levels with subsequent reduction in plasma glucose levels compared with controls. Conclusion: We conclude that ACE2 gene therapy reduces liver fibrosis and hyperglycemia in diabetic NAFLD mice and has potential as a therapy for patients with NAFLD with diabetes.
Collapse
Affiliation(s)
- Indu G Rajapaksha
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia
| | - Lakmie S Gunarathne
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia
| | | | - Ross Laybutt
- Garvan Institute of Medical ResearchSydneyNSWAustralia.,St. Vincent's Clinical SchoolUniversity of New South WalesSydneyNSWAustralia
| | - Sof Andrikopoulous
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia
| | - Ian E Alexander
- School of MedicineUniversity of SydneyChildren's Medical Research InstituteSydneyNSWAustralia
| | - Mathew J Watt
- Department Anatomy and PhysiologyThe University of MelbourneMelbourneVICAustralia
| | - Peter W Angus
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia.,Department GastroenterologyAustin HealthHeidelbergVICAustralia
| | - Chandana B Herath
- Department of MedicineThe University of MelbourneAustin HealthHeidelbergVICAustralia.,South Western Sydney Clinical SchoolFaculty of MedicineUniversity of New South WalesSydneyNSWAustralia.,Ingham Institute for Applied Medical ResearchLiverpoolNSWAustralia
| |
Collapse
|
16
|
Li H. Intercellular crosstalk of liver sinusoidal endothelial cells in liver fibrosis, cirrhosis and hepatocellular carcinoma. Dig Liver Dis 2022; 54:598-613. [PMID: 34344577 DOI: 10.1016/j.dld.2021.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Intercellular crosstalk among various liver cells plays an important role in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Capillarization of liver sinusoidal endothelial cells (LSECs) precedes fibrosis and accumulating evidence suggests that the crosstalk between LSECs and other liver cells is critical in the development and progression of liver fibrosis. LSECs dysfunction, a key event in the progression from fibrosis to cirrhosis, and subsequently obstruction of hepatic sinuses and increased intrahepatic vascular resistance (IHVR) contribute to development of portal hypertension (PHT) and cirrhosis. More importantly, immunosuppressive tumor microenvironment (TME), which is closely related to the crosstalk between LSECs and immune liver cells like CD8+ T cells, promotes advances tumorigenesis, especially HCC. However, the connections within the crosstalk between LSECs and other liver cells during the progression from liver fibrosis to cirrhosis to HCC have yet to be discussed. In this review, we first summarize the current knowledge of how different crosstalk between LSECs and other liver cells, including hepatocytes, hepatic stellate cells (HSCs), macrophoges, immune cells in liver and extra cellular matrix (ECM) contribute to the physiological function and the progrssion from liver fibrosis to cirrhosis, or even to HCC. Then we examine current treatment strategies for LSECs crosstalk in liver fibrosis, cirrhosis and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
17
|
Moeckli B, Delaune V, Prados J, Tihy M, Peloso A, Oldani G, Delmi T, Slits F, Gex Q, Rubbia-Brandt L, Goossens N, Lacotte S, Toso C. Impact of Maternal Obesity on Liver Disease in the Offspring: A Comprehensive Transcriptomic Analysis and Confirmation of Results in a Murine Model. Biomedicines 2022; 10:biomedicines10020294. [PMID: 35203502 PMCID: PMC8869223 DOI: 10.3390/biomedicines10020294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The global obesity epidemic particularly affects women of reproductive age. Offspring of obese mothers suffer from an increased risk of liver disease but the molecular mechanisms involved remain unknown. We performed an integrative genomic analysis of datasets that investigated the impact of maternal obesity on the hepatic gene expression profile of the offspring in mice. Furthermore, we developed a murine model of maternal obesity and studied the development of liver disease and the gene expression profile of the top dysregulated genes by quantitative real-time polymerase chain reaction (qPCR). Our data are available for interactive exploration on our companion webpage. We identified five publicly available datasets relevant to our research question. Pathways involved in metabolism, the innate immune system, the clotting cascade, and the cell cycle were consistently dysregulated in the offspring of obese mothers. Concerning genes involved in the development of liver disease, Egfr, Vegfb, Wnt2,Pparg and six other genes were dysregulated in multiple independent datasets. In our own model, we observed a higher tendency towards the development of non-alcoholic liver disease (60 vs. 20%) and higher levels of alanine aminotransferase (41.0 vs. 12.5 IU/l, p = 0.008) in female offspring of obese mothers. Male offspring presented higher levels of liver fibrosis (2.4 vs. 0.6% relative surface area, p = 0.045). In a qPCR gene expression analysis of our own samples, we found Fgf21, Pparg, Ppard, and Casp6 to be dysregulated by maternal obesity. Maternal obesity represents a looming threat to the liver health of future generations. Our comprehensive transcriptomic analysis will help to better understand the mechanisms of the development of liver disease in the offspring of obese mothers and can give rise to further explorations.
Collapse
Affiliation(s)
- Beat Moeckli
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Vaihere Delaune
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Julien Prados
- Bioinformatics Support Platform, Services Communs de la Faculté, University of Geneva, 1206 Geneva, Switzerland;
| | - Matthieu Tihy
- Division of Clinical Pathology, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.T.); (L.R.-B.)
| | - Andrea Peloso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Graziano Oldani
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Thomas Delmi
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
| | - Florence Slits
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
| | - Quentin Gex
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
| | - Laura Rubbia-Brandt
- Division of Clinical Pathology, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.T.); (L.R.-B.)
| | - Nicolas Goossens
- Division of Gastroenterology, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Correspondence:
| | - Christian Toso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
18
|
Caradonna A, Patel T, Toleska M, Alabed S, Chang SL. Meta-Analysis of APP Expression Modulated by SARS-CoV-2 Infection via the ACE2 Receptor. Int J Mol Sci 2022; 23:ijms23031182. [PMID: 35163117 PMCID: PMC8835589 DOI: 10.3390/ijms23031182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta (Aβ) plaques from improper amyloid-beta precursor protein (APP) cleavage. Following studies of inflammation caused by coronavirus-2019 (COVID-19) infection, this study investigated the impact of COVID-19 on APP expression. A meta-analysis was conducted utilizing QIAGEN Ingenuity Pathway Analysis (IPA) to examine the link between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and the modulation of APP expression upon virus binding the Angiotensin-converting enzyme-2 (ACE2) receptor. A Core Analysis was run on the infection by severe acute respiratory syndrome (SARS) coronavirus node, which included molecules affected by SARS-CoV-2, revealing its upstream regulators. Intermediary molecules were found between the upstream regulators and ACE2 and between ACE2 and APP. Activation of the upstream regulators downregulated the expression of ACE2 with a Z-score of -1.719 (p-value = 0.086) and upregulated APP with a Z-score of 1.898 (p-value = 0.058), showing a less than 10% chance of the results occurring by chance and pointing to an inverse relationship between ACE2 and APP expression. The neuroinflammation signaling pathway was the fifth top canonical pathway involved in APP upregulation. The study results suggest that ACE2 could be downregulated by SARS-CoV-2, resulting in APP upregulation, and potentially exacerbating the onset and progression of AD.
Collapse
Affiliation(s)
- Alyssa Caradonna
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
| | - Tanvi Patel
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
| | - Matea Toleska
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
| | - Sedra Alabed
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Correspondence: (S.A.); (S.L.C.)
| | - Sulie L. Chang
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Correspondence: (S.A.); (S.L.C.)
| |
Collapse
|
19
|
Furuhashi M, Sakai A, Tanaka M, Higashiura Y, Mori K, Koyama M, Ohnishi H, Saitoh S, Shimamoto K. Distinct Regulation of U-ACE2 and P-ACE2 (Urinary and Plasma Angiotensin-Converting Enzyme 2) in a Japanese General Population. Hypertension 2021; 78:1138-1149. [PMID: 34420372 PMCID: PMC8415520 DOI: 10.1161/hypertensionaha.121.17674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine (M.F., A.S., M.T., Y.H., K.M., M.K., H.O., S.S.), Sapporo Medical University School of Medicine, Japan
| | - Akiko Sakai
- Department of Cardiovascular, Renal and Metabolic Medicine (M.F., A.S., M.T., Y.H., K.M., M.K., H.O., S.S.), Sapporo Medical University School of Medicine, Japan
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine (M.F., A.S., M.T., Y.H., K.M., M.K., H.O., S.S.), Sapporo Medical University School of Medicine, Japan
| | - Yukimura Higashiura
- Department of Cardiovascular, Renal and Metabolic Medicine (M.F., A.S., M.T., Y.H., K.M., M.K., H.O., S.S.), Sapporo Medical University School of Medicine, Japan
| | - Kazuma Mori
- Department of Cardiovascular, Renal and Metabolic Medicine (M.F., A.S., M.T., Y.H., K.M., M.K., H.O., S.S.), Sapporo Medical University School of Medicine, Japan
| | - Masayuki Koyama
- Department of Cardiovascular, Renal and Metabolic Medicine (M.F., A.S., M.T., Y.H., K.M., M.K., H.O., S.S.), Sapporo Medical University School of Medicine, Japan
- Department of Public Health (M.K., H.O.), Sapporo Medical University School of Medicine, Japan
| | - Hirofumi Ohnishi
- Department of Cardiovascular, Renal and Metabolic Medicine (M.F., A.S., M.T., Y.H., K.M., M.K., H.O., S.S.), Sapporo Medical University School of Medicine, Japan
- Department of Public Health (M.K., H.O.), Sapporo Medical University School of Medicine, Japan
| | - Shigeyuki Saitoh
- Department of Cardiovascular, Renal and Metabolic Medicine (M.F., A.S., M.T., Y.H., K.M., M.K., H.O., S.S.), Sapporo Medical University School of Medicine, Japan
- Division of Medical and Behavioral Subjects, Department of Nursing, Sapporo Medical University School of Health Sciences, Japan (S.S.)
| | | |
Collapse
|