1
|
Ahmadizar F, Younossi ZM. Exploring Biomarkers in Nonalcoholic Fatty Liver Disease Among Individuals With Type 2 Diabetes Mellitus. J Clin Gastroenterol 2025; 59:36-46. [PMID: 39352015 PMCID: PMC11630663 DOI: 10.1097/mcg.0000000000002079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024]
Abstract
Integrating biomarkers into a comprehensive strategy is crucial for precise patient management, especially considering the significant healthcare costs associated with diseases. Current studies emphasize the urgent need for a paradigm shift in conceptualizing nonalcoholic fatty liver disease (NAFLD), now renamed metabolic dysfunction-associated steatotic liver disease (MASLD). Biomarkers are emerging as indispensable tools for accurate diagnosis, risk stratification, and monitoring disease progression. This review classifies biomarkers into conventional and novel categories, such as lipids, insulin resistance, hepatic function, and cutting-edge imaging/omics, and evaluates their potential to transform the approach to MASLD among individuals with type 2 diabetes mellitus (T2D). It focuses on the critical role of biomarkers in early MASLD detection, enhancing predictive accuracy, and discerning responses to interventions (pharmacological or lifestyle modifications). Amid this discussion, the complexities of the relationship between T2D and MASLD are explored, considering factors like age, gender, genetics, ethnicity, and socioeconomic background. Biomarkers enhance the effectiveness of interventions and support global initiatives to reduce the burden of MASLD, thereby improving public health outcomes. This review recognizes the promising potential of biomarkers for diagnostic precision while candidly addressing the challenges in implementing these advancements in clinical practice. The transformative role of biomarkers emerges as a central theme, promising to reshape our understanding of disease trajectories, prognosis, and the customization of personalized therapeutic strategies for improved patient outcomes. From a future perspective, identifying early-stage biomarkers, understanding environmental impact through exposomes, and applying a multiomics approach may reveal additional insight into MASLD development.
Collapse
Affiliation(s)
- Fariba Ahmadizar
- Data Science and Biostatistics Department, Julius Global Health, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Beatty Liver and Obesity Research Program Center for Liver Diseases, Inova Health System, Falls Church, VA
| | - Zobair M. Younossi
- The Global NASH Council, Center for Outcomes Research in Liver Disease, Washington, DC
| |
Collapse
|
2
|
Zuo R, Wang M, Wang YT, ShenTu Y, Moura AK, Zhou Y, Roudbari K, Hu JZ, Li PL, Hao J, Li X, Zhang Y. Ablation of Hepatic Asah1 Gene Disrupts Hepatic Lipid Homeostasis and Promotes Fibrotic Nonalcoholic Steatohepatitis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00444-9. [PMID: 39719015 DOI: 10.1016/j.ajpath.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 12/26/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of chronic liver conditions, ranging from simple steatosis to nonalcoholic steatohepatitis, which may progress to fibrosis/cirrhosis. Here, the GSE163211 data set was analyzed, and Asah1 (encoding acid ceramidase) was identified as a crucial lysosomal gene that positively correlated with NAFLD stages in obese patients. To evaluate the role of Asah1 in the progression of NAFLD, Asah1fl/fl/Albcre mice (hepatocyte-specific deletion of Asah1) and Asah1 floxed (Asah1fl/fl/wild-type) mice were fed with either a normal diet or a high-fat, high-cholesterol paigen diet (PD) for 20 weeks. The results showed that hepatocyte-specific Asah1 ablation markedly aggravated PD-induced hepatic steatosis, hepatitis, and apoptosis, and resulted in marked fibrotic changes. In addition, Asah1 gene ablation exacerbated PD-induced portal venous hemodynamic abnormality. In cultured hepatocytes, Asah1 gene knockdown resulted in increased ceramide and cholesterol levels but did not affect triglyceride level. Knocking down Asah1 gene also exhibited broad impacts on lipid homeostasis pathways, including lipogenesis, fatty acid uptake, fatty acid oxidation, and lipid transport. Furthermore, Asah1 knockdown resulted in increased endoplasmic reticulum stress and lipid droplet biogenesis. Last, Asah1 gene knockdown impaired chaperone-mediated autophagy. In conclusion, these results suggest that Asah1 functions as an important regulator of hepatic lipid homeostasis, and its deficiency exacerbates hepatocyte lipotoxicity and injury, and promotes the development of fibrotic nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Mi Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas; Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - YangPing ShenTu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas; Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Alexandra K Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Ying Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas; Department Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kiana Roudbari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Jenny Z Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - JiuKuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas.
| |
Collapse
|
3
|
Gautam J, Aggarwal H, Kumari D, Gupta SK, Kumar Y, Dikshit M. A methionine-choline-deficient diet induces nonalcoholic steatohepatitis and alters the lipidome, metabolome, and gut microbiome profile in the C57BL/6J mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159545. [PMID: 39089643 DOI: 10.1016/j.bbalip.2024.159545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The methionine-choline-deficient (MCD) diet-induced non-alcoholic steatohepatitis (NASH) in mice is a well-established model. Our study aims to elucidate the factors influencing liver pathology in the MCD mouse model by examining physiological, biochemical, and molecular changes using histology, molecular techniques, and OMICS approaches (lipidomics, metabolomics, and metagenomics). Male C57BL/6J mice were fed a standard chow diet, a methionine-choline-sufficient (MCS) diet, or an MCD diet for 10 weeks. The MCD diet resulted in reduced body weight and fat mass, along with decreased plasma triglyceride, cholesterol, glucose, and insulin levels. However, it notably induced steatosis, inflammation, and alterations in gene expression associated with lipogenesis, inflammation, fibrosis, and the synthesis of apolipoproteins, sphingolipids, ceramides, and carboxylesterases. Lipid analysis revealed significant changes in plasma and tissues: most ceramide non-hydroxy-sphingosine lipids significantly decreased in the liver and plasma but increased in the adipose tissue of MCD diet-fed animals. Oxidized glycerophospholipids mostly increased in the liver but decreased in the adipose tissue of the MCD diet-fed group. The gut microbiome of the MCD diet-fed group showed an increase in Firmicutes and a decrease in Bacteroidetes and Actinobacteria. Metabolomic profiling demonstrated that the MCD diet significantly altered amino acid biosynthesis, metabolism, and nucleic acid metabolism pathways in plasma, liver, fecal, and cecal samples. LC-MS data indicated higher total plasma bile acid intensity and reduced fecal glycohyodeoxycholic acid intensity in the MCD diet group. This study demonstrates that although the MCD diet induces hepatic steatosis, the mechanisms underlying NASH in this model differ from those in human NASH pathology.
Collapse
Affiliation(s)
- Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
4
|
Pascoa TC, Pike ACW, Tautermann CS, Chi G, Traub M, Quigley A, Chalk R, Štefanić S, Thamm S, Pautsch A, Carpenter EP, Schnapp G, Sauer DB. Structural basis of the mechanism and inhibition of a human ceramide synthase. Nat Struct Mol Biol 2024:10.1038/s41594-024-01414-3. [PMID: 39528795 DOI: 10.1038/s41594-024-01414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Ceramides are bioactive sphingolipids crucial for regulating cellular metabolism. Ceramides and dihydroceramides are synthesized by six ceramide synthase (CerS) enzymes, each with specificity for different acyl-CoA substrates. Ceramide with a 16-carbon acyl chain (C16 ceramide) has been implicated in obesity, insulin resistance and liver disease and the C16 ceramide-synthesizing CerS6 is regarded as an attractive drug target for obesity-associated disease. Despite their importance, the molecular mechanism underlying ceramide synthesis by CerS enzymes remains poorly understood. Here we report cryo-electron microscopy structures of human CerS6, capturing covalent intermediate and product-bound states. These structures, along with biochemical characterization, reveal that CerS catalysis proceeds through a ping-pong reaction mechanism involving a covalent acyl-enzyme intermediate. Notably, the product-bound structure was obtained upon reaction with the mycotoxin fumonisin B1, yielding insights into its inhibition of CerS. These results provide a framework for understanding CerS function, selectivity and inhibition and open routes for future drug discovery.
Collapse
Affiliation(s)
- Tomas C Pascoa
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ashley C W Pike
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Traub
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Biberach, Germany
| | - Andrew Quigley
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Membrane Protein Laboratory, Research Complex at Harwell, Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Rod Chalk
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Saša Štefanić
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
- Nanobody Service Facility, University of Zürich, AgroVet-Strickhof, Lindau, Switzerland
| | - Sven Thamm
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Biberach, Germany
| | | | - Elisabeth P Carpenter
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Gisela Schnapp
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Biberach, Germany.
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Phan F, Bourron O, Foufelle F, Le Stunff H, Hajduch E. Sphingosine-1-phosphate signalling in the heart: exploring emerging perspectives in cardiopathology. FEBS Lett 2024; 598:2641-2655. [PMID: 38965662 DOI: 10.1002/1873-3468.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Cardiometabolic disorders contribute to the global burden of cardiovascular diseases. Emerging sphingolipid metabolites like sphingosine-1-phosphate (S1P) and its receptors, S1PRs, present a dynamic signalling axis significantly impacting cardiac homeostasis. S1P's intricate mechanisms extend to its transportation in the bloodstream by two specific carriers: high-density lipoprotein particles and albumin. This intricate transport system ensures the accessibility of S1P to distant target tissues, influencing several physiological processes critical for cardiovascular health. This review delves into the diverse functions of S1P and S1PRs in both physiological and pathophysiological conditions of the heart. Emphasis is placed on their diverse roles in modulating cardiac health, spanning from cardiac contractility, angiogenesis, inflammation, atherosclerosis and myocardial infarction. The intricate interplays involving S1P and its receptors are analysed concerning different cardiac cell types, shedding light on their respective roles in different heart diseases. We also review the therapeutic applications of targeting S1P/S1PRs in cardiac diseases, considering existing drugs like Fingolimod, as well as the prospects and challenges in developing novel therapies that selectively modulate S1PRs.
Collapse
Affiliation(s)
- Franck Phan
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris-Saclay, France
| | - Eric Hajduch
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
6
|
Xu W, Zhang D, Ma Y, Gaspar RC, Kahn M, Nasiri A, Murray S, Samuel VT, Shulman GI. Ceramide synthesis inhibitors prevent lipid-induced insulin resistance through the DAG-PKCε-insulin receptor T1150 phosphorylation pathway. Cell Rep 2024; 43:114746. [PMID: 39302831 DOI: 10.1016/j.celrep.2024.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Inhibition of the ceramide synthetic pathway with myriocin or an antisense oligonucleotide (ASO) targeting dihydroceramide desaturase (DES1) both improved hepatic insulin sensitivity in rats fed either a saturated or unsaturated fat diet and was associated with reductions in both hepatic ceramide and plasma membrane (PM)-sn-1,2-diacylglycerol (DAG) content. The insulin sensitizing effects of myriocin and Des1 ASO were abrogated by acute treatment with an ASO against DGAT2, which increased hepatic PM-sn-1,2-DAG but not hepatic C16 ceramide content. Increased PM-sn-1,2-DAG content was associated with protein kinase C (PKC)ε activation, increased insulin receptor (INSR)T1150 phosphorylation leading to reduced insulin-stimulated INSRY1152/AktS473 phosphorylation, and impaired insulin-mediated suppression of endogenous glucose production. These results demonstrate that inhibition of de novo ceramide synthesis by either myriocin treatment or DES1 knockdown protects against lipid-induced hepatic insulin resistance through a C16 ceramide-independent mechanism and that they mediate their effects to protect from lipid-induced hepatic insulin resistance via the PM-sn-1,2-DAG-PKCε-INSRT1150 phosphorylation pathway.
Collapse
Affiliation(s)
- Weiwei Xu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yumin Ma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Endocrinology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sue Murray
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Varman T Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
7
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3. [DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractCurrent treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences , Hangzhou, Zhejiang 310024 , China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences , Hangzhou, Zhejiang 310024 , China
| |
Collapse
|
8
|
Fitzgerald VK, Lutsiv T, McGinley JN, Neil ES, Playdon MC, Thompson HJ. Common Bean Suppresses Hepatic Ceramide Metabolism in a Mouse Model of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:3196. [PMID: 39339796 PMCID: PMC11434909 DOI: 10.3390/nu16183196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD), a condition linked to the ongoing obesity pandemic, is rapidly increasing worldwide. In turn, its multifactorial etiology is consistently associated with low dietary quality. Changing dietary macronutrient and phytochemical quality via incorporating cooked common bean into an obesogenic diet formulation has measurable health benefits on the occurrence of both obesity and hepatic steatosis in C57BL/6 mice. Methods: A cohort of C57BL/6 mice were randomized into experimental diets containing multiple dietary concentrations of common bean. The primary endpoint of this study was comparing metabolomic analyses from liver and plasma of different treatment groups. Additionally, RNA sequencing and protein expression analysis via nanocapillary immunoelectrophoresis were used to elucidate signaling mediators involved. Results: Herein, global metabolomic profiling of liver and plasma identified sphingolipids as a lipid subcategory on which bean consumption exerted significant effects. Of note, C16 and C18 ceramides were significantly decreased in bean-fed animals. Hepatic RNAseq data revealed patterns of transcript expression of genes involved in sphingolipid metabolism that were consistent with metabolite profiles. Conclusions: Bean incorporation into an otherwise obesogenic diet induces effects on synthesis, biotransformation, and degradation of sphingolipids that inhibit the accumulation of ceramide species that exert pathological activity. These effects are consistent with a mechanistic role for altered sphingolipid metabolism in explaining how bean inhibits the development of MASLD.
Collapse
Affiliation(s)
- Vanessa K Fitzgerald
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Tymofiy Lutsiv
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - John N McGinley
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth S Neil
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Henry J Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
9
|
Acuña-Pilarte K, Reichert EC, Green YS, Halberg LMT, Golkowski M, Maguire KM, Mimche PN, Kamdem SD, Hu PA, Wright J, Ducker GS, Voth WP, O'Connell RM, McFarland SA, Egal ESA, Chaix A, Summers SA, Reelitz JW, Maschek JA, Cox JE, Evason KJ, Koh MY. HAF prevents hepatocyte apoptosis and progression to MASH and HCC through transcriptional regulation of the NF-κB pathway. Hepatology 2024:01515467-990000000-01023. [PMID: 39255518 DOI: 10.1097/hep.0000000000001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND AIMS HCC incidence is increasing worldwide due to the obesity epidemic, which drives metabolic dysfunction-associated steatohepatitis (MASH) that can lead to HCC. However, the molecular pathways driving MASH-HCC are poorly understood. We have previously reported that male mice with haploinsufficiency of hypoxia-associated factor (HAF) ( SART1+/ - ) spontaneously develop MASH-HCC. However, the cell type(s) responsible for HCC associated with HAF loss are unclear. APPROACH AND RESULTS We generated SART1 -floxed mice, which were crossed with mice expressing Cre recombinase within hepatocytes (Alb-Cre; hepS -/- ) or myeloid cells (LysM-Cre, macS -/- ). HepS - / - mice (both male and female) developed HCC associated with profound inflammatory and lipid dysregulation, suggesting that HAF protects against HCC primarily within hepatocytes. HAF-deficient hepatocytes showed decreased P-p65 and P-p50 in many components of the NF-κB pathway, which was recapitulated using HAF small interfering RNA in vitro. HAF depletion also triggered apoptosis, suggesting that HAF protects against HCC by suppressing hepatocyte apoptosis. We show that HAF regulates NF-κB activity by regulating the transcription of TRADD and RIPK1 . Mice fed a high-fat diet showed marked suppression of HAF, P-p65, and TRADD within their livers after 26 weeks but showed profound upregulation of these proteins after 40 weeks, implicating deregulation of the HAF-NF-κB axis in the progression to MASH. In humans, HAF was significantly decreased in livers with simple steatosis but significantly increased in HCC compared with normal liver. CONCLUSIONS HAF is a novel transcriptional regulator of the NF-κB pathway and is a key determinant of cell fate during progression to MASH and MASH-HCC.
Collapse
Affiliation(s)
- Karen Acuña-Pilarte
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Ethan C Reichert
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Yangsook Song Green
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Lily M-T Halberg
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Martin Golkowski
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | | | - Patrice N Mimche
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | | | - Po-An Hu
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Jillian Wright
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Gregory S Ducker
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Warren P Voth
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Ryan M O'Connell
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Sydney A McFarland
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Erika Said Abu Egal
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Jordan W Reelitz
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - John Alan Maschek
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Kimberley J Evason
- Department of Anatomic Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Mei Yee Koh
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Yadav AK, MacNeill JJ, Krylov A, Ashrafi N, Mimi RA, Saxena R, Liu S, Graham SF, Wan J, Morral N. Sex- and age-associated factors drive the pathophysiology of MASLD. Hepatol Commun 2024; 8:e0523. [PMID: 39185904 PMCID: PMC11357696 DOI: 10.1097/hc9.0000000000000523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly associated with obesity. Sex and age affect MASLD prevalence and pathophysiology. The use of animal models fed Western-style diets is vital for investigating the molecular mechanisms contributing to metabolic dysregulation and for facilitating novel drug target identification. However, the sex-associated and age-associated mechanisms underlying the pathophysiology remain poorly understood. This knowledge gap limits the development of personalized sex-specific and age-specific drug treatments. METHODS Young (7 wk) and aged (52 wk) male and female mice were fed a high-fat diet (HFD) or low-fat diet. Liver metabolome (>600 molecules) and transcriptome profiles were analyzed. RESULTS Male and female mice fed an HFD developed obesity, glucose intolerance, and hepatic steatosis. However, fasting blood glucose, insulin, and serum alanine aminotransferase levels were higher in males fed an HFD, indicating a more severe metabolic disease. In addition, males showed significant increases in liver diacylglycerides and glycosylceramides (known mediators of insulin resistance and fibrosis), and more changes in the transcriptome: extracellular matrix organization and proinflammatory genes were elevated only in males. In contrast, no major increase in damaging lipid classes was observed in females fed an HFD. However, aging affected the liver to a greater extent in females. Acylcarnitine levels were significantly reduced, suggestive of changes in fatty acid oxidation, and broad changes in the transcriptome were observed, including reduced oxidative stress response gene expression and alterations in lipid partitioning genes. CONCLUSIONS Here, we show distinct responses to an HFD between males and females. Our study underscores the need for using both sexes in drug target identification studies, and characterizing the molecular mechanisms contributing to the MASLD pathophysiology in aging animals.
Collapse
Affiliation(s)
- Ajay K. Yadav
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Justin J. MacNeill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aleksei Krylov
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nadia Ashrafi
- Metabolomics Department, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Romana Ashrafi Mimi
- Metabolomics Department, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stewart F. Graham
- Metabolomics Department, Corewell Health Research Institute, Royal Oak, Michigan, USA
- Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
- Oakland University-William Beaumont School of Medicine, Rochester, Michigan USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Chowdhury RR, Grosso MF, Gadara DC, Spáčil Z, Vidová V, Sovadinová I, Babica P. Cyanotoxin cylindrospermopsin disrupts lipid homeostasis and metabolism in a 3D in vitro model of the human liver. Chem Biol Interact 2024; 397:111046. [PMID: 38735451 DOI: 10.1016/j.cbi.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 μM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion. However, it increased neutral lipid accumulation in HepG2 spheroids while decreasing phospholipid levels. Simultaneously, cylindrospermopsin upregulated genes for lipogenesis regulation (SREBF1) and triacylglycerol synthesis (DGAT1/2) and downregulated genes for fatty acid synthesis (ACLY, ACCA, FASN, SCD1). Fatty acid uptake, oxidation, and lipid efflux genes were not significantly affected. Targeted proteomics revealed increased levels of perilipin 2 (adipophilin), a major hepatocyte lipid droplet-associated protein. Lipid profiling quantified 246 lipid species in the spheroids, with 28 significantly enriched and 15 downregulated by cylindrospermopsin. Upregulated species included neutral lipids, sphingolipids (e.g., ceramides and dihexosylceramides), and some glycerophospholipids (phosphatidylethanolamines, phosphatidylserines), while phosphatidylcholines and phosphatidylinositols were mostly reduced. It suggests that cylindrospermopsin exposures might contribute to developing and progressing towards hepatic steatosis or metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Riju Roy Chowdhury
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Marina Felipe Grosso
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | | | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Veronika Vidová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
| |
Collapse
|
12
|
Ramos-Molina B, Rossell J, Pérez-Montes de Oca A, Pardina E, Genua I, Rojo-López MI, Julián MT, Alonso N, Julve J, Mauricio D. Therapeutic implications for sphingolipid metabolism in metabolic dysfunction-associated steatohepatitis. Front Endocrinol (Lausanne) 2024; 15:1400961. [PMID: 38962680 PMCID: PMC11220194 DOI: 10.3389/fendo.2024.1400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver disease, has increased worldwide along with the epidemics of obesity and related dysmetabolic conditions characterized by impaired glucose metabolism and insulin signaling, such as type 2 diabetes mellitus (T2D). MASLD can be defined as an excessive accumulation of lipid droplets in hepatocytes that occurs when the hepatic lipid metabolism is totally surpassed. This metabolic lipid inflexibility constitutes a central node in the pathogenesis of MASLD and is frequently linked to the overproduction of lipotoxic species, increased cellular stress, and mitochondrial dysfunction. A compelling body of evidence suggests that the accumulation of lipid species derived from sphingolipid metabolism, such as ceramides, contributes significantly to the structural and functional tissue damage observed in more severe grades of MASLD by triggering inflammatory and fibrogenic mechanisms. In this context, MASLD can further progress to metabolic dysfunction-associated steatohepatitis (MASH), which represents the advanced form of MASLD, and hepatic fibrosis. In this review, we discuss the role of sphingolipid species as drivers of MASH and the mechanisms involved in the disease. In addition, given the absence of approved therapies and the limited options for treating MASH, we discuss the feasibility of therapeutic strategies to protect against MASH and other severe manifestations by modulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Joana Rossell
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eva Pardina
- Department de Biochemistry & Molecular Biology, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Idoia Genua
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marina I. Rojo-López
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
| | - María Teresa Julián
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Núria Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Josep Julve
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Didac Mauricio
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), Vic, Spain
| |
Collapse
|
13
|
Ezhilarasan D. Deciphering the molecular pathways of saroglitazar: A dual PPAR α/γ agonist for managing metabolic NAFLD. Metabolism 2024; 155:155912. [PMID: 38609038 DOI: 10.1016/j.metabol.2024.155912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Saroglitazar (SARO), a dual peroxisome proliferator activated receptor (PPAR)-α/γ agonist, has been used to treat metabolic diseases such as insulin resistance and diabetic dyslipidemia in patients with non-alcoholic fatty liver disease (NAFLD). SARO, administered at a dose of 4 mg/day, has been consistently studied in clinical trials with different time points ranging from 4 to 24 weeks with NAFLD patients. Due to its PPAR-γ agonistic action, SARO prevents adipose tissue-mediated fatty acid delivery to the liver by increasing insulin sensitivity and regulating adiponectin and leptin levels in adipose tissue. In hepatocytes, SARO induces fatty acid β-oxidation in mitochondria and transcriptionally activates lipid metabolizing genes in peroxisomes. SARO inhibits insulin resistance, thereby preventing the activation of sterol regulatory element-binding proteins -1c and carbohydrate response element binding protein in hepatocytes through its PPAR-α agonistic action. SARO treatment reduces lipotoxicity-mediated oxidative stress by activating the nuclear factor erythroid 2-related factor 2 and transcriptionally expressing the antioxidants from the antioxidant response element in the nucleus through its PPAR-γ agonistic action. SARO provides a PPAR-α/γ-mediated anti-inflammatory effect by preventing the phosphorylation of mitogen-activated protein kinases (JNK and ERK) and nuclear factor kappa B in hepatocytes. Additionally, SARO interferes with transforming growth factor-β/Smad downstream signaling, thereby reducing liver fibrosis progression through its PPAR-α/γ agonistic actions. Thus, SARO improves insulin resistance and dyslipidemia in NAFLD, reduces lipid accumulation in the liver, and thereby prevents mitochondrial toxicity, oxidative stress, inflammation, and fibrosis progression. This review summarizes the possible molecular mechanism of SARO in the NAFLD.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
14
|
Xu G, Quan S, Schell J, Gao Y, Varmazyad M, Sreenivas P, Cruz D, Jiang H, Pan M, Han X, Palavicini JP, Zhao P, Sun X, Marchant ED, Rasmussen BB, Li G, Katsumura S, Morita M, Munkácsy E, Horikoshi N, Chocron ES, Gius D. Mitochondrial ACSS1-K635 acetylation knock-in mice exhibit altered metabolism, cell senescence, and nonalcoholic fatty liver disease. SCIENCE ADVANCES 2024; 10:eadj5942. [PMID: 38758779 PMCID: PMC11100568 DOI: 10.1126/sciadv.adj5942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.
Collapse
Affiliation(s)
- Guogang Xu
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Songhua Quan
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph Schell
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Yucheng Gao
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mahboubeh Varmazyad
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Prethish Sreenivas
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Diego Cruz
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Haiyan Jiang
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Division of Diabetes, UT Health San Antonio, San Antonio, TX, USA
| | - Peng Zhao
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Xiaoli Sun
- Department of Pharmacology, Mays Cancer Center, Transplant Center, UT Health San Antonio, San Antonio, TX, USA
| | - Erik D. Marchant
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Blake B. Rasmussen
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Guannan Li
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Sakie Katsumura
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Masahiro Morita
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka 565-0871, Japan
| | - Erin Munkácsy
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - E. Sandra Chocron
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
15
|
Sztolsztener K, Chabowski A. Hepatic-Metabolic Activity of α-Lipoic Acid-Its Influence on Sphingolipid Metabolism and PI3K/Akt/mTOR Pathway in a Rat Model of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:1501. [PMID: 38794739 PMCID: PMC11124255 DOI: 10.3390/nu16101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Excessive lipid deposition affects hepatic homeostasis and contributes to the development of insulin resistance as a crucial factor for the deterioration of simple steatosis to steatohepatitis. So, it is essential to search for an effective agent for a new therapy for hepatic steatosis development before it progresses to the more advanced stages. Our study aimed to evaluate the potential protective effect of α-lipoic acid (α-LA) administration on the intrahepatic metabolism of sphingolipid and insulin signaling transduction in rats with metabolic dysfunction-associated steatotic liver disease (MASLD). The experiment was conducted on male Wistar rats subjected to a standard diet or a high-fat diet (HFD) and an intragastrically α-LA administration for eight weeks. High-performance liquid chromatography (HPLC) was used to determine sphingolipid content. Immunoblotting was used to measure the expression of selected proteins from sphingolipid and insulin signaling pathways. Multiplex assay kit was used to assess the level of the phosphorylated form of proteins from PI3K/Akt/mTOR transduction. The results revealed that α-LA decreased sphinganine, dihydroceramide, and sphingosine levels and increased ceramide level. We also observed an increased the concentration of phosphorylated forms of sphingosine and sphinganine. Changes in the expression of proteins from sphingolipid metabolism were consistent with changes in sphingolipid pools. Treatment with α-LA activated the PI3K/Akt/mTOR pathway, which enhanced the hepatic phosphorylation of Akt and mTOR. Based on these data, we concluded that α-lipoic acid may alleviate glucose intolerance and may have a protective influence on the sphingolipid metabolism under HFD; thus, this antioxidant appears to protect from MASLD development and steatosis deterioration.
Collapse
Affiliation(s)
- Klaudia Sztolsztener
- Department of Physiology, Medical University of Bialystok, Mickiewicz 2C Str., 15-222 Bialystok, Poland;
| | | |
Collapse
|
16
|
Jin H, Xia P, Deng Z, Hou T, Li J, Li B. Effects of Konjac Glucomannan on Weight Management and Liver Health: Insights from Liver Lipidomics in Obese and Nonobese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7906-7918. [PMID: 38530902 DOI: 10.1021/acs.jafc.3c09540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Konjac glucomannan (KGM) is a water-soluble dietary fiber and is used for weight management. However, there is a lack of research on KGM for weight management in nonobese groups and the effects of high-dose KGM supplementation on liver function. This study investigated the metabolic responses to KGM intervention in obese and nonobese mice and explored the underlying mechanisms based on lipidomics. The findings demonstrated that KGM supplementation decreased body weight and mitigated lipid metabolism disorders at the mRNA and protein levels in obese mice. In contrast, no significant impact on these parameters was observed in nonobese mice. Interestingly, KGM had a more significant impact on remodeling hepatic lipid composition in obese mice compared to nonobese mice, leading to reducing harmful lipids and increasing beneficial lipids. However, high-dose KGM increased the risk of hepatocyte bile acid toxicity in obese mice and did not promote liver antioxidant status in nonobese mice. In summary, this study identified distinct metabolic responses to KGM intervention between obese and nonobese mice, providing insights for weight management using KGM.
Collapse
Affiliation(s)
- Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhichang Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Shalaby YM, Al-Zohily B, Raj A, Yasin J, Al Hamad S, Antoniades C, Akawi N, Aburawi EH. Circulating ceramide levels and ratios in Emirati youth under 18 years: associations with cardiometabolic risk factors. Lipids Health Dis 2024; 23:93. [PMID: 38561799 PMCID: PMC10983633 DOI: 10.1186/s12944-024-02080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Circulating ceramide (Cer) drives various pathological processes associated with cardiovascular diseases, liver illness, and diabetes mellitus. Although recognized as predictors of cardiometabolic diseases (CMD) in research and clinical settings, their potential for predicting CMD risk in individuals under 18 remains unexplored. OBJECTIVES This study was designed to utilize Liquid Chromatography-Mass Spectrometry (LC-MS/MS) methodology to determine the biological reference ranges for Cer in plasma samples of Emirati children and develop a risk assessment score (CERT-1) based on Cer concentrations. METHODS Using LC-MS/MS, we developed a method to measure five Cer species in plasma samples of 582 Emirati participants aged 5-17. We used the circulating concentrations of these Cer to determine their reference intervals in this population. We employed traditional statistical analyses to develop a risk score (CERT-1) and assess the association between Cer levels and conventional biomarkers of CMD. RESULTS We validated a high-throughput methodology using LC-MS/MS to quantify five Cer species in human plasma. Reference values for this population (n = 582) were quantified: CerC16:0 (0.12-0.29 µmol/L), CerC18:0 (0.019-0.067 µmol/L), CerC22:0 (0.102-0.525 µmol/L), CerC24:0 (0.65-1.54 µmol/L) and CerC24:1 (0.212-0.945 µmol/L). We devised a risk assessment score (CERT-1) based on plasma Cer content in the study participants, showing that 72.5% have low to moderate risk and 9.3% are at a higher risk of developing CMD. Our analyses also revealed a significant correlation (P < 0.05) between this score and the conventional risk factors linked to CMD, indicating its potential clinical implication. CONCLUSION This study presents a clinical-scaled LC-MS/MS methodology for assessing clinically relevant Cer, setting reference ranges, and developing a risk score (CERT-1) for young Emirati individuals. Our findings can enhance primary risk prediction and inform the management and follow-up of CMD from an early age.
Collapse
Affiliation(s)
- Youssef M Shalaby
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Bashar Al-Zohily
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anjana Raj
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sania Al Hamad
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Division of Cardiovascular Medicine, University of Oxford, Oxford, UK.
| | - Elhadi H Aburawi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
18
|
Huneault HE, Chen CY, Cohen CC, Liu X, Jarrell ZR, He Z, DeSantos KE, Welsh JA, Maner-Smith KM, Ortlund EA, Schwimmer JB, Vos MB. Lipidome Changes Associated with a Diet-Induced Reduction in Hepatic Fat among Adolescent Boys with Metabolic Dysfunction-Associated Steatotic Liver Disease. Metabolites 2024; 14:191. [PMID: 38668319 PMCID: PMC11052520 DOI: 10.3390/metabo14040191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Little is known about lipid changes that occur in the setting of metabolic-dysfunction-associated steatotic liver disease (MASLD) regression. We previously reported improvements in hepatic steatosis, de novo lipogenesis (DNL), and metabolomic profiles associated with oxidative stress, inflammation, and selected lipid metabolism in 40 adolescent boys (11-16 y) with hepatic steatosis ≥5% (98% meeting the definition of MASLD). Participants were randomized to a low-free-sugar diet (LFSD) (n = 20) or usual diet (n = 20) for 8 weeks. Here, we employed untargeted/targeted lipidomics to examine lipid adaptations associated with the LFSD and improvement of hepatic steatosis. Our LC-MS/MS analysis revealed decreased triglycerides (TGs), diacylglycerols (DGs), cholesteryl esters (ChE), lysophosphatidylcholine (LPC), and phosphatidylcholine (PC) species with the diet intervention (p < 0.05). Network analysis demonstrated significantly lower levels of palmitate-enriched TG species post-intervention, mirroring the previously shown reduction in DNL in response to the LFSD. Targeted oxylipins analysis revealed a decrease in the abundance of 8-isoprostane and 14,15-DiHET and an increase in 8,9-DiHET (p < 0.05). Overall, we observed reductions in TGs, DGs, ChE, PC, and LPC species among participants in the LFSD group. These same lipids have been associated with MASLD progression; therefore, our findings may indicate normalization of key biological processes, including lipid metabolism, insulin resistance, and lipotoxicity. Additionally, our targeted oxylipins assay revealed novel changes in eicosanoids, suggesting improvements in oxidative stress. Future studies are needed to elucidate the mechanisms of these findings and prospects of these lipids as biomarkers of MASLD regression.
Collapse
Affiliation(s)
- Helaina E. Huneault
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; (J.A.W.); (M.B.V.)
| | - Chih-Yu Chen
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA; (C.-Y.C.); (X.L.); (E.A.O.)
| | - Catherine C. Cohen
- Section of Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.C.C.); (K.M.M.-S.)
| | - Xueyun Liu
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA; (C.-Y.C.); (X.L.); (E.A.O.)
| | - Zachery R. Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Zhulin He
- Pediatric Biostatistics Core, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Karla E. DeSantos
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA;
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jean A. Welsh
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; (J.A.W.); (M.B.V.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Kristal M. Maner-Smith
- Section of Nutrition, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.C.C.); (K.M.M.-S.)
| | - Eric A. Ortlund
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA; (C.-Y.C.); (X.L.); (E.A.O.)
| | - Jeffrey B. Schwimmer
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA;
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Miriam B. Vos
- Nutrition & Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; (J.A.W.); (M.B.V.)
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA;
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Nojima H, Shimizu H, Murakami T, Shuto K, Koda K. Critical Roles of the Sphingolipid Metabolic Pathway in Liver Regeneration, Hepatocellular Carcinoma Progression and Therapy. Cancers (Basel) 2024; 16:850. [PMID: 38473211 DOI: 10.3390/cancers16050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The sphingolipid metabolic pathway, an important signaling pathway, plays a crucial role in various physiological processes including cell proliferation, survival, apoptosis, and immune regulation. The liver has the unique ability to regenerate using bioactive lipid mediators involving multiple sphingolipids, including ceramide and sphingosine 1-phosphate (S1P). Dysregulation of the balance between sphingomyelin, ceramide, and S1P has been implicated in the regulation of liver regeneration and diseases, including liver fibrosis and hepatocellular carcinoma (HCC). Understanding and modulating this balance may have therapeutic implications for tumor proliferation, progression, and metastasis in HCC. For cancer therapy, several inhibitors and activators of sphingolipid signaling, including ABC294640, SKI-II, and FTY720, have been discussed. Here, we elucidate the critical roles of the sphingolipid pathway in the regulation of liver regeneration, fibrosis, and HCC. Regulation of sphingolipids and their corresponding enzymes may considerably influence new insights into therapies for various liver disorders and diseases.
Collapse
Affiliation(s)
- Hiroyuki Nojima
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Hiroaki Shimizu
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Takashi Murakami
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Kiyohiko Shuto
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| |
Collapse
|
20
|
Li YJ, Chi H, Liu GQ. Preparation and characterization of Antarctic krill oil/quercetin co-loaded liposomes and their protective effect on oleic acid-induced steatosis and oxidative stress in vitro. Food Funct 2024; 15:2103-2114. [PMID: 38305429 DOI: 10.1039/d3fo04291j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
This study aims to introduce a new liposome to co-load Antarctic krill oil (AKO) and quercetin (QC) as a new delivery formulation to enrich the application of AKO and QC. The stability of liposomes could be increased by adding an appropriate quantity of soy lecithin (SL). Changes in the composition of the phospholipid membrane were strongly correlated with the stability and release capacity of loaded nutrients. SL2@QC/AKO-lips displayed a nearly spherical shape with higher oxidative stability and controlled the in vitro release performance of QC in simulated digestion. Moreover, in vitro studies indicated that new liposomes had no adverse effects on cell viability and could combine the physiological functions of AKO and QC to protect the HepG2 cells from oleic acid-induced steatosis and oxidative stress. The findings demonstrated that the AKO and QC co-loaded liposomes prepared with the addition of an appropriate quantity of SL had excellent loading efficiency of AKO/QC and good oxidative stability, security and functional activity.
Collapse
Affiliation(s)
- Yu-Jie Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hai Chi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Guo-Qin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
21
|
Tang S, Liang C, Yu H, Hou W, Hu Z, Chen X, Duan Z, Zheng S. The potential serum sphingolipid biomarkers for distinguishing Wilson disease. Clin Chim Acta 2024; 553:117740. [PMID: 38145643 DOI: 10.1016/j.cca.2023.117740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND The diagnosis of Wilson's disease (WD) remains a challenging endeavor in clinical practice. Serum sphingolipids play a significant role in the development of liver disease. In this study, we examined the serum sphingolipid profile in patients with WD and explored the potential diagnostic utility of serum sphingolipid metabolites. These metabolites may aid in distinguishing WD patients from healthy controls and identifying those with a risk of cirrhosis. METHODS This study consecutively enrolled 26 WD patients and 88 healthy controls. We utilized high-performance liquid chromatography-tandem mass spectrometry to analyze a panel of 88 serum sphingolipid metabolites. The data were analyzed by multivariate statistical methods. RESULTS Among the 88 sphingolipids metabolites analyzed, 17 sphingolipids were observed significant differences between WD and HC groups (all P < 0.05). Notably, five sphingolipids, namely S1P (d18:1), Cer (d18:2/21:0), SM41:2, sph(d18:1), and Cer (d18:2/22:0), each with an AUC exceeding 0.9, emerged as potential biomarkers for WD. Additionally, in the comparison between WD patients with and without cirrhosis, 24 sphingolipid metabolites exhibited significant differences (all P < 0.05). We identified Cer(d18:1/20:0), Cer(d18:2/22:0), Cer(d18:2/24:0), Cer(d18:2/20:0), and Cer(d18:2/18:0), each with an AUC exceeding 0.9, as potential serological markers for WD patients with cirrhosis. CONCLUSION For enhanced clinical applicability, we propose considering Cer (d18:2/22:0) as a predictive marker applicable to both WD patients and their susceptibility to cirrhosis. This particular ceramide has exhibited strong diagnostic and predictive performance. These findings have the potential to facilitate non-invasive WD diagnosis.
Collapse
Affiliation(s)
- Shan Tang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chen Liang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Haitian Yu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Hou
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhongjie Hu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xinyue Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhongping Duan
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Sujun Zheng
- Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
Pilarte KA, Reichert EC, Green YS, Halberg LMT, McFarland SA, Mimche PN, Golkowski M, Kamdem SD, Maguire KM, Summers SA, Maschek JA, Reelitz JW, Cox JE, Evason KJ, Koh MY. HAF Prevents Hepatocyte Apoptosis and Hepatocellular Carcinoma through Transcriptional Regulation of the NF-κB pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574894. [PMID: 38260413 PMCID: PMC10802431 DOI: 10.1101/2024.01.09.574894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Hepatocellular carcinoma (HCC) incidence is increasing worldwide due to the obesity epidemic, which drives metabolic dysfunction-associated steatohepatitis (MASH) that can lead to HCC. However, the molecular pathways that lead to MASH-HCC are poorly understood. We have previously reported that male mice with global haploinsufficiency of hypoxia-associated factor, HAF ( SART1 +/ - ) spontaneously develop MASH/HCC. However, the cell type(s) responsible for HCC associated with HAF loss are unclear. Results SART1 -floxed mice were crossed with mice expressing Cre-recombinase within hepatocytes (Alb-Cre; hepS -/- ) or macrophages (LysM-Cre, macS -/- ). Only hepS -/- mice (both male and female) developed HCC suggesting that HAF protects against HCC primarily within hepatocytes. HAF-deficient macrophages showed decreased P-p65 and P-p50 and in many major components of the NF-κB pathway, which was recapitulated using HAF siRNA in vitro . HAF depletion increased apoptosis both in vitro and in vivo , suggesting that HAF mediates a tumor suppressor role by suppressing hepatocyte apoptosis. We show that HAF regulates NF-κB activity by controlling transcription of TRADD and RIPK1 . Mice fed a high-fat diet (HFD) showed marked suppression of HAF, P-p65 and TRADD within their livers after 26 weeks, but manifest profound upregulation of HAF, P-65 and TRADD within their livers after 40 weeks of HFD, implicating deregulation of the HAF-NF-κB axis in the progression to MASH. In humans, HAF was significantly decreased in livers with simple steatosis but significantly increased in HCC compared to normal liver. Conclusions HAF is novel transcriptional regulator of the NF-κB pathway that protects against hepatocyte apoptosis and is a key determinant of cell fate during progression to MASH and MASH-HCC.
Collapse
|
23
|
Cho BS, Fligor SC, Fell GL, Secor JD, Tsikis ST, Pan A, Yu LJ, Ko VH, Dao DT, Anez-Bustillos L, Hirsch TI, Lund J, Rustan AC, Fraser DA, Gura KM, Puder M. A medium-chain fatty acid analogue prevents hepatosteatosis and decreases inflammatory lipid metabolites in a murine model of parenteral nutrition-induced hepatosteatosis. PLoS One 2023; 18:e0295244. [PMID: 38039287 PMCID: PMC10691711 DOI: 10.1371/journal.pone.0295244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Parenteral (intravenous) nutrition is lifesaving for patients with intestinal failure, but long-term use of parenteral nutrition often leads to liver disease. SEFA-6179 is a synthetic medium-chain fatty acid analogue designed to target multiple fatty acid receptors regulating metabolic and inflammatory pathways. We hypothesized that SEFA-6179 would prevent hepatosteatosis and lipotoxicity in a murine model of parenteral nutrition-induced hepatosteatosis. METHODS Two in vivo experiments were conducted. In the first experiment, six-week-old male mice were provided an ad lib fat-free high carbohydrate diet (HCD) for 19 days with orogastric gavage of either fish oil, medium-chain triglycerides, or SEFA-6179 at a low (0.3mmol/kg) or high dose (0.6mmol/kg). In the second experiment, six-week-old mice were provided an ad lib fat-free high carbohydrate diet for 19 days with every other day tail vein injection of saline, soybean oil lipid emulsion, or fish oil lipid emulsion. Mice then received every other day orogastric gavage of medium-chain triglyceride vehicle or SEFA-6179 (0.6mmol/kg). Hepatosteatosis was assessed by a blinded pathologist using an established rodent steatosis score. Hepatic lipid metabolites were assessed using ultra-high-performance liquid chromatography-mass spectrometry. Effects of SEFA-6179 on fatty acid oxidation, lipogenesis, and fatty acid uptake in human liver cells were assessed in vitro. RESULTS In the first experiment, mice receiving the HCD with either saline or medium-chain triglyceride treatment developed macrovesicular steatosis, while mice receiving fish oil or SEFA-6179 retained normal liver histology. In the second experiment, mice receiving a high carbohydrate diet with intravenous saline or soybean oil lipid emulsion, along with medium chain triglyceride vehicle treatment, developed macrovescular steatosis. Treatment with SEFA-6179 prevented steatosis. In each experiment, SEFA-6179 treatment decreased arachidonic acid metabolites as well as key molecules (diacylglycerol, ceramides) involved in lipotoxicity. SEFA-6179 increased both β- and complete fatty oxidation in human liver cells, while having no impact on lipogenesis or fatty acid uptake. CONCLUSIONS SEFA-6179 treatment prevented hepatosteatosis and decreased toxic lipid metabolites in a murine model of parenteral nutrition-induced hepatosteatosis. An increase in both β- and complete hepatic fatty acid oxidation may underlie the reduction in steatosis.
Collapse
Affiliation(s)
- Bennet S. Cho
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott C. Fligor
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gillian L. Fell
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jordan D. Secor
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Savas T. Tsikis
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Pan
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Lumeng J. Yu
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Victoria H. Ko
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Duy T. Dao
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lorenzo Anez-Bustillos
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas I. Hirsch
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jenny Lund
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Arild C. Rustan
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | | | - Kathleen M. Gura
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pharmacy and the Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Mark Puder
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
24
|
Denimal D, Béland-Bonenfant S, Pais-de-Barros JP, Rouland A, Bouillet B, Duvillard L, Vergès B, Petit JM. Plasma ceramides are associated with MRI-based liver fat content but not with noninvasive scores of liver fibrosis in patients with type 2 diabetes. Cardiovasc Diabetol 2023; 22:310. [PMID: 37940926 PMCID: PMC10634084 DOI: 10.1186/s12933-023-02049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND There is growing evidence that ceramides play a significant role in the onset and progression of non-alcoholic fatty liver disease (NAFLD), a highly prevalent condition in patients with type 2 diabetes associated with hepatic and cardiovascular events. However, the relationship between plasma ceramide levels and NAFLD severity in type 2 diabetes remains unclear. The main purpose of the present study was to investigate whether circulating levels of ceramides in patients with type 2 diabetes are associated with liver steatosis assessed by the highly accurate magnetic resonance imaging proton density fat fraction (MRI-PDFF). The secondary objective was to assess the relationship between plasma ceramides and noninvasive scores of liver fibrosis. METHODS In this cross-sectional single-center study, plasma concentrations of 7 ceramides were measured by liquid chromatography-mass spectrometry in 255 patients with type 2 diabetes (GEPSAD cohort). Liver fat content was assessed by MRI-PDFF, and noninvasive scores of liver fibrosis (i.e. Fibrosis-4 index, NAFLD Fibrosis Score, FibroTest® and Fibrotic NASH Index) were calculated. A validation cohort of 80 patients with type 2 diabetes was also studied (LIRA-NAFLD cohort). RESULTS Liver steatosis, defined as a liver fat content > 5.56%, was found in 62.4 and 82.5% of individuals with type 2 diabetes in the GEPSAD and LIRA-NAFLD cohorts, respectively. In GEPSAD, MRI-PDFF-measured liver fat content was positively associated with plasma levels of total ceramides (r = 0.232, p = 0.0002), and 18:0, 20:0, 22:0 and 24:0 ceramides in univariate analysis (p ≤ 0.0003 for all). In multivariate analysis, liver fat content remained significantly associated with total ceramides (p = 0.001), 18:0 (p = 0.006), 22:0 (p = 0.0009) and 24:0 ceramides (p = 0.0001) in GEPSAD, independently of age, diabetes duration, body mass index and dyslipidemia. Overall, similar relationship between plasma ceramides and liver fat content was observed in the LIRA-NAFLD validation cohort. No significant association was found between plasma ceramides and noninvasive scores of fibrosis after adjustment for age in both cohorts. CONCLUSIONS Plasma ceramide levels are associated with liver steatosis in patients with type 2 diabetes, independently of traditional risk factors for NAFLD. The independent association between plasma ceramides and liver steatosis adds new insights regarding the relationship between ceramides and NAFLD in type 2 diabetes.
Collapse
Affiliation(s)
- Damien Denimal
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France.
- Department of Biochemistry, CHU Dijon Bourgogne, Dijon, F-21079, France.
| | - Sarah Béland-Bonenfant
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | | | - Alexia Rouland
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | - Benjamin Bouillet
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | - Laurence Duvillard
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Biochemistry, CHU Dijon Bourgogne, Dijon, F-21079, France
| | - Bruno Vergès
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| | - Jean-Michel Petit
- University of Burgundy, INSERM LNC UMR1231, Dijon, F-21000, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, Dijon, F-21000, France
| |
Collapse
|
25
|
Yu B, Hu M, Jiang W, Ma Y, Ye J, Wu Q, Guo W, Sun Y, Zhou M, Xu Y, Wu Z, Wang Y, Lam SM, Shui G, Gu J, Li JZ, Fu Z, Gong Y, Zhou H. Ceramide d18:1/24:1 as a potential biomarker to differentiate obesity subtypes with unfavorable health outcomes. Lipids Health Dis 2023; 22:166. [PMID: 37794463 PMCID: PMC10548646 DOI: 10.1186/s12944-023-01921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The criteria for metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) remain controversial. This research aimed to identify a potential biomarker to differentiate the subtypes of obesity. METHODS The study conducted a lipidomic evaluation of ceramide in the serum of 77 Chinese adults who had undergone hyperinsulinemic-euglycemic clamps. These adults were divided into three groups according to the clinical data: normal weight control group (N = 21), MHO (N = 20), and MUO (N = 36). RESULTS The serum Cer d18:1/24:1 level in the MHO group was lower than that in the MUO group. As the Cer d18:1/24:1 level increased, insulin sensitivity decreased, and the unfavorable parameters increased in parallel. Multivariate logistic regression analysis revealed that serum Cer d18:1/24:1 levels were independently correlated with MUO in obesity. Individuals with higher levels of Cer d18:1/24:1 also had an elevated risk of cardiovascular disease. Most ceramide subtype levels increased in obesity compared to normal-weight individuals, but the levels of serum Cer d18:0/18:0 and Cer d18:1/16:0 decreased in obesity. CONCLUSIONS The relationships between ceramide subtypes and metabolic profiles might be heterogeneous in populations with different body weights. Cer d18:1/24:1 could be a biomarker that can be used to differentiate MUO from MHO, and to better predict who will develop unfavorable health outcomes among obese individuals. TRIAL REGISTRATION The First Affiliated Hospital of Nanjing Medical University's Institutional Review Board authorized this study protocol, and all participants provided written informed consent (2014-SR-003) prior to study entry.
Collapse
Affiliation(s)
- Baowen Yu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Moran Hu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanzi Jiang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yizhe Ma
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingya Ye
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinyi Wu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Guo
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Sun
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwen Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhoulu Wu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiwen Wang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sin Man Lam
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jingyu Gu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - John Zhong Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenzhen Fu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yingyun Gong
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Hongwen Zhou
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Dellinger RW, Holmes HE, Hu-Seliger T, Butt RW, Harrison SA, Mozaffarian D, Chen O, Guarente L. Nicotinamide riboside and pterostilbene reduces markers of hepatic inflammation in NAFLD: A double-blind, placebo-controlled clinical trial. Hepatology 2023; 78:863-877. [PMID: 36082508 DOI: 10.1002/hep.32778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The prevalence of NAFLD is increasing globally and on a path to becoming the most frequent cause of chronic liver disease. Strategies for the prevention and treatment of NAFLD are urgently needed. APPROACH AND RESULTS A 6-month prospective, randomized, double-blind, placebo-controlled clinical trial was conducted to assess the efficacy of daily NRPT (commercially known as Basis, a combination of nicotinamide riboside and pterostilbene) supplementation in 111 adults with NAFLD. The study consisted of three arms: placebo, recommended daily dose of NRPT (NRPT 1×), and a double dose of NRPT (NRPT 2×). NRPT appeared safe and well tolerated. At the end of the study, no significant change was seen in the primary endpoint of hepatic fat fraction with respect to placebo. However, among prespecified secondary outcomes, a time-dependent decrease in the circulating levels of the liver enzymes alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) was observed in the NRPT 1× group, and this decrease was significant with respect to placebo. Furthermore, a significant decrease in the circulating levels of the toxic lipid ceramide 14:0 was also observed in the NRPT 1× group versus placebo, and this decrease was associated with a decrease in ALT in individuals of this group. A dose-dependent effect was not observed with respect to ALT, GGT, or ceramide 14:0 in the NRPT 2× group. CONCLUSIONS This study demonstrates that NRPT at the recommended dose is safe and may hold promise in lowering markers of hepatic inflammation in patients with NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy , Tufts University , Boston , Massachusetts , USA
| | - Oliver Chen
- Friedman School of Nutrition Science and Policy , Tufts University , Boston , Massachusetts , USA
- Biofortis Research , Addison , Illinois , USA
| | - Leonard Guarente
- Elysium Health New York , New York , New York , USA
- Department of Biology , MIT , Cambridge , Massachusetts , USA
| |
Collapse
|
27
|
Jiang X, Hu R, Huang Y, Xu Y, Zheng Z, Shi Y, Miao J, Liu Y. Fructose aggravates copper-deficiency-induced non-alcoholic fatty liver disease. J Nutr Biochem 2023; 119:109402. [PMID: 37311490 PMCID: PMC11186518 DOI: 10.1016/j.jnutbio.2023.109402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), is the most common cause of chronic liver disease, affecting 24% of the global population. Accumulating evidence demonstrates that copper deficiency (CuD) is implicated in the development of NAFLD, besides, high fructose consumption by promoting inflammation contributes to NAFLD. However, how CuD and/or fructose (Fru) causes NAFLD is not clearly delineated. The present study aims to investigate the role of CuD and/or fructose supplement on hepatic steatosis and hepatic injury. We established a CuD rat model by feeding weaning male Sprague-Dawley rats for 4 weeks with CuD diet. Fructose was supplemented in drinking water. We found the promoting role of CuD or Fructose (Fru) in the progress of NAFLD, which was aggravated by combination of the two. Furthermore, we presented the alteration of hepatic lipid profiles (including content, composition, and saturation), especially ceramide (Cer), cardiolipin (CL), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) was closely associated with CuD and/or Fru fed induced-NAFLD in rat models. In conclusion, insufficient copper intake or excessive fructose supplement resulted in adverse effects on the hepatic lipid profile, and fructose supplement causes a further hepatic injury in CuD-induced NAFLD, which illuminated a better understanding of NAFLD.
Collapse
Affiliation(s)
- Xin Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ruixiang Hu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Yipu Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yi Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Zhirui Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yuansen Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | - Yun Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China.
| |
Collapse
|
28
|
Ali-Berrada S, Guitton J, Tan-Chen S, Gyulkhandanyan A, Hajduch E, Le Stunff H. Circulating Sphingolipids and Glucose Homeostasis: An Update. Int J Mol Sci 2023; 24:12720. [PMID: 37628901 PMCID: PMC10454113 DOI: 10.3390/ijms241612720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sphingolipids are a family of lipid molecules produced through different pathways in mammals. Sphingolipids are structural components of membranes, but in response to obesity, they are implicated in the regulation of various cellular processes, including inflammation, apoptosis, cell proliferation, autophagy, and insulin resistance which favors dysregulation of glucose metabolism. Of all sphingolipids, two species, ceramides and sphingosine-1-phosphate (S1P), are also found abundantly secreted into the bloodstream and associated with lipoproteins or extracellular vesicles. Plasma concentrations of these sphingolipids can be altered upon metabolic disorders and could serve as predictive biomarkers of these diseases. Recent important advances suggest that circulating sphingolipids not only serve as biomarkers but could also serve as mediators in the dysregulation of glucose homeostasis. In this review, advances of molecular mechanisms involved in the regulation of ceramides and S1P association to lipoproteins or extracellular vesicles and how they could alter glucose metabolism are discussed.
Collapse
Affiliation(s)
- Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Anna Gyulkhandanyan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; (S.A.-B.); (S.T.-C.); (A.G.)
- Institut Hospitalo-Universitaire ICAN, 75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR 9197, 91400 Saclay, France;
| |
Collapse
|
29
|
Mir IH, Thirunavukkarasu C. The relevance of acid sphingomyelinase as a potential target for therapeutic intervention in hepatic disorders: current scenario and anticipated trends. Arch Toxicol 2023; 97:2069-2087. [PMID: 37248308 PMCID: PMC10226719 DOI: 10.1007/s00204-023-03529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Acid sphingomyelinase (ASMase) serves as one of the most remarkable enzymes in sphingolipid biology. ASMase facilitates the hydrolysis of sphingomyelin, yielding ceramide and phosphorylcholine via the phospholipase C signal transduction pathway. Owing to its prominent intervention in apoptosis, ASMase, and its product ceramide is now at the bleeding edge of lipid research due to the coalesced efforts of several research institutions over the past 40 years. ASMase-catalyzed ceramide synthesis profoundly alters the physiological properties of membrane structure in response to a broad range of stimulations, orchestrating signaling cascades for endoplasmic reticulum stress, autophagy, and lysosomal membrane permeabilization, which influences the development of hepatic disorders, such as steatohepatitis, hepatic fibrosis, drug-induced liver injury, and hepatocellular carcinoma. As a result, the potential to modulate the ASMase action with appropriate pharmaceutical antagonists has sparked a lot of curiosity. This article emphasizes the fundamental mechanisms of the systems that govern ASMase aberrations in various hepatic pathologies. Furthermore, we present an insight into the potential therapeutic agents used to mitigate ASMase irregularities and the paramountcy of such inhibitors in drug repurposing.
Collapse
Affiliation(s)
- Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India
| | | |
Collapse
|
30
|
Lallement J, Raho I, Merlen G, Rainteau D, Croyal M, Schiffano M, Kassis N, Doignon I, Soty M, Lachkar F, Krempf M, Van Hul M, Cani PD, Foufelle F, Amouyal C, Le Stunff H, Magnan C, Tordjmann T, Cruciani-Guglielmacci C. Hepatic deletion of serine palmitoyl transferase 2 impairs ceramide/sphingomyelin balance, bile acids homeostasis and leads to liver damage in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159333. [PMID: 37224999 DOI: 10.1016/j.bbalip.2023.159333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/30/2023] [Indexed: 05/26/2023]
Abstract
Ceramides (Cer) have been shown as lipotoxic inducers, which disturb numerous cell-signaling pathways, leading to metabolic disorders such as type 2 diabetes. In this study, we aimed to determine the role of de novo hepatic ceramide synthesis in energy and liver homeostasis in mice. We generated mice lacking serine palmitoyltransferase 2 (Sptlc2), the rate limiting enzyme of ceramide de novo synthesis, in liver under albumin promoter. Liver function, glucose homeostasis, bile acid (BA) metabolism and hepatic sphingolipids content were assessed using metabolic tests and LC-MS. Despite lower expression of hepatic Sptlc2, we observed an increased concentration of hepatic Cer, associated with a 10-fold increase in neutral sphingomyelinase 2 (nSMase2) expression, and a decreased sphingomyelin content in the liver. Sptlc2ΔLiv mice were protected against obesity induced by high fat diet and displayed a defect in lipid absorption. In addition, an important increase in tauro-muricholic acid was associated with a downregulation of the nuclear BA receptor FXR target genes. Sptlc2 deficiency also enhanced glucose tolerance and attenuated hepatic glucose production, while the latter effect was dampened in presence of nSMase2 inhibitor. Finally, Sptlc2 disruption promoted apoptosis, inflammation and progressive development of hepatic fibrosis, worsening with age. Our data suggest a compensatory mechanism to regulate hepatic ceramides content from sphingomyelin hydrolysis, with deleterious impact on liver homeostasis. In addition, our results show the involvement of hepatic sphingolipid modulation in BA metabolism and hepatic glucose production in an insulin-independent manner, which highlight the still under-researched role of ceramides in many metabolic functions.
Collapse
Affiliation(s)
- Justine Lallement
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Ilyès Raho
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Biochemistry Department, Paris, France
| | - Mikael Croyal
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France; Plateforme de Spectrométrie de Masse du CRNH-O, UMR1280, Nantes, France
| | - Melody Schiffano
- Plateforme de Spectrométrie de Masse du CRNH-O, UMR1280, Nantes, France
| | - Nadim Kassis
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | - Maud Soty
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Floriane Lachkar
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, 75006 Paris, France
| | | | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, 75006 Paris, France
| | - Chloé Amouyal
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris Saclay, France
| | - Christophe Magnan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | | |
Collapse
|
31
|
Feng TY, Melchor SJ, Zhao XY, Ghumman H, Kester M, Fox TE, Ewald SE. Tricarboxylic acid (TCA) cycle, sphingolipid, and phosphatidylcholine metabolism are dysregulated in T. gondii infection-induced cachexia. Heliyon 2023; 9:e17411. [PMID: 37456044 PMCID: PMC10344712 DOI: 10.1016/j.heliyon.2023.e17411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Cachexia is a life-threatening disease characterized by chronic, inflammatory muscle wasting and systemic metabolic impairment. Despite its high prevalence, there are no efficacious therapies for cachexia. Mice chronically infected with the protozoan parasite Toxoplasma gondii represent a novel animal model recapitulating the chronic kinetics of cachexia. To understand how perturbations to metabolic tissue homeostasis influence circulating metabolite availability we used mass spectrometry analysis. Despite the significant reduction in circulating triacylglycerides, non-esterified fatty acids, and glycerol, sphingolipid long-chain bases and a subset of phosphatidylcholines (PCs) were significantly increased in the sera of mice with T. gondii infection-induced cachexia. In addition, the TCA cycle intermediates α-ketoglutarate, 2-hydroxyglutarate, succinate, fumarate, and malate were highly depleted in cachectic mouse sera. Sphingolipids and their de novo synthesis precursors PCs are the major components of the mitochondrial membrane and regulate mitochondrial function consistent with a causal relationship in the energy imbalance driving T. gondii-induced chronic cachexia.
Collapse
Affiliation(s)
- Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stephanie J. Melchor
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Haider Ghumman
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mark Kester
- Department of Pharmacology at the University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Todd E. Fox
- Department of Pharmacology at the University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
32
|
Gautam J, Kumari D, Aggarwal H, Gupta SK, Kasarla SS, Sarkar S, Priya MRK, Kamboj P, Kumar Y, Dikshit M. Characterization of lipid signatures in the plasma and insulin-sensitive tissues of the C57BL/6J mice fed on obesogenic diets. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159348. [PMID: 37285928 DOI: 10.1016/j.bbalip.2023.159348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Diet-induced obesity mouse models are widely utilized to investigate the underlying mechanisms of dyslipidemia, glucose intolerance, insulin resistance, hepatic steatosis, and type 2 diabetes mellitus (T2DM), as well as for screening potential drug compounds. However, there is limited knowledge regarding specific signature lipids that accurately reflect dietary disorders. In this study, we aimed to identify key lipid signatures using LC/MS-based untargeted lipidomics in the plasma, liver, adipose tissue (AT), and skeletal muscle tissues (SKM) of male C57BL/6J mice that were fed chow, LFD, or obesogenic diets (HFD, HFHF, and HFCD) for a duration of 20 weeks. Furthermore, we conducted a comprehensive lipid analysis to assess similarities and differences with human lipid profiles. The mice fed obesogenic diets exhibited weight gain, glucose intolerance, elevated BMI, glucose and insulin levels, and a fatty liver, resembling characteristics of T2DM and obesity in humans. In total, we identified approximately 368 lipids in plasma, 433 in the liver, 493 in AT, and 624 in SKM. Glycerolipids displayed distinct patterns across the tissues, differing from human findings. However, changes in sphingolipids, phospholipids, and the expression of inflammatory and fibrotic genes showed similarities to reported human findings. Significantly modulated pathways in the obesogenic diet-fed groups included ceramide de novo synthesis, sphingolipid remodeling, and the carboxylesterase pathway, while lipoprotein-mediated pathways were minimally affected.
Collapse
Affiliation(s)
- Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Siva Swapna Kasarla
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Soumalya Sarkar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - M R Kamla Priya
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Parul Kamboj
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
33
|
Denimal D, Bergas V, Pais-de-Barros JP, Simoneau I, Demizieux L, Passilly-Degrace P, Bouillet B, Petit JM, Rouland A, Bataille A, Duvillard L, Vergès B. Liraglutide reduces plasma dihydroceramide levels in patients with type 2 diabetes. Cardiovasc Diabetol 2023; 22:104. [PMID: 37143040 PMCID: PMC10158384 DOI: 10.1186/s12933-023-01845-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Emerging evidence supports that dihydroceramides (DhCer) and ceramides (Cer) contribute to the pathophysiology of insulin resistance and liver steatosis, and that their circulating concentrations are independently associated with cardiovascular outcomes. Circulating DhCer levels are increased in patients with type 2 diabetes (T2D). On the other hand, the GLP-1 receptor agonist liraglutide reduces major adverse cardiac events, insulin resistance and liver steatosis in T2D patients. The main purpose of the present study was therefore to investigate whether liraglutide decreases circulating levels of DhCer and Cer in T2D patients, which could be a mechanism involved in its cardiometabolic benefits. The secondary purpose was to assess the relationship between liraglutide-induced changes in DhCer/Cer levels and insulin resistance and liver steatosis. METHODS Plasma concentrations of 11 DhCer and 15 Cer species were measured by a highly-sensitive mass spectrometry system in 35 controls and 86 T2D patients before and after 6 months of liraglutide (1.2 mg/day). Insulin resistance was estimated by the triglyceride-glucose (TyG) index. Liver fat content (LFC) was assessed in 53 patients by proton magnetic resonance spectroscopy. RESULTS Plasma levels of total DhCer, 7 DhCer and 7 Cer species were increased in T2D patients compared to controls. Liraglutide decreased total DhCer by 15.1% (p = 0.005), affecting 16:0 (p = 0.037), 18:0 (p < 0.0001), 18:1 (p = 0.0005), 20:0 (p = 0.0003), 23:0 (p = 0.005) and 24:1 (p = 0.04) species. Total plasma Cer did not significantly change after liraglutide (p = 0.18), but 5 Cer species decreased significantly, i.e. 18:0 and 18:1 (both p < 0.0001), 19:0 and 24:1 (both p < 0.01) and 26:1 (p = 0.04). In multivariate analysis, the reduction in DhCer after liraglutide was independently associated with the reduction in LFC (p = 0.0005) and in TyG index (p = 0.05). CONCLUSIONS Liraglutide reduces plasma levels of numerous DhCer and Cer species in T2D patients, which may contribute to the cardiovascular benefit observed in the LEADER trial. The independent association between the decrease in plasma DhCer level with the reduction in LFC and TyG index adds new insights regarding the relationship between DhCer, liver steatosis and insulin resistance. Trial registration ClinicalTrials.gov identifier: NCT02721888.
Collapse
Affiliation(s)
- Damien Denimal
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France.
- Department of Biochemistry, CHU Dijon Bourgogne, 21079, Dijon, France.
| | - Victoria Bergas
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Lipidomic Analytical Platform, University of Burgundy, 21000, Dijon, France
| | - Jean-Paul Pais-de-Barros
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Lipidomic Analytical Platform, University of Burgundy, 21000, Dijon, France
| | - Isabelle Simoneau
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000, Dijon, France
| | | | | | - Benjamin Bouillet
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000, Dijon, France
| | - Jean-Michel Petit
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000, Dijon, France
| | - Alexia Rouland
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000, Dijon, France
| | | | - Laurence Duvillard
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21079, Dijon, France
| | - Bruno Vergès
- University of Burgundy, INSERM LNC UMR1231, 21000, Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000, Dijon, France
| |
Collapse
|
34
|
Brown RDR, Spiegel S. ORMDL in metabolic health and disease. Pharmacol Ther 2023; 245:108401. [PMID: 37003301 PMCID: PMC10148913 DOI: 10.1016/j.pharmthera.2023.108401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Obesity is a key risk factor for the development of metabolic disease. Bioactive sphingolipid metabolites are among the lipids increased in obesity. Obesogenic saturated fatty acids are substrates for serine palmitoyltransferase (SPT) the rate-limiting step in de novo sphingolipid biosynthesis. The mammalian orosomucoid-like protein isoforms ORMDL1-3 negatively regulate SPT activity. Here we summarize evidence that dysregulation of sphingolipid metabolism and SPT activity correlates with pathogenesis of obesity. This review also discusses the current understanding of the function of SPT and ORMDL in obesity and metabolic disease. Gaps and limitations in current knowledge are highlighted together with the need to further understand how ORMDL3, which has been identified as an obesity-related gene, contributes to the pathogenesis of obesity and development of metabolic disease related to its physiological functions. Finally, we point out the needs to move this young field of research forward.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
35
|
Babiy B, Ramos-Molina B, Ocaña L, Sacristán S, Burgos-Santamaría D, Martínez-Botas J, Busto R, Perna C, Frutos MD, Albillos A, Pastor Ó. Dihydrosphingolipids are associated with steatosis and increased fibrosis damage in non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159318. [PMID: 37059386 DOI: 10.1016/j.bbalip.2023.159318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
Dihydrosphingolipids are lipids biosynthetically related to ceramides. An increase in ceramides is associated with enhanced fat storage in the liver and inhibition of their synthesis is reported to prevent the appearance of steatosis in animal models. However, the precise association of dihydrosphingolipids with non-alcoholic fatty liver disease (NAFLD) is yet to be established. We employed a diet induced NAFLD mouse model to study the association between this class of compounds and disease progression. Mice fed a high-fat diet were sacrificed at 22, 30 and 40 weeks to reproduce the full spectrum of histological damage found in human disease, steatosis (NAFL) and steatohepatitis (NASH) with and without significant fibrosis. Blood and liver tissue samples were obtained from patients whose NAFLD severity was assessed histologically. To demonstrate the effect of dihydroceramides over NAFLD progression we treated mice with fenretinide an inhibitor of dihydroceramide desaturse-1 (DEGS1). Lipidomic analyses were performed using liquid chromatography-tandem mass spectrometry. Triglycerides, cholesteryl esters and dihydrosphingolipids were increased in the liver of model mice in association with the degree of steatosis and fibrosis. Dihydroceramides increased with the histological severity observed in liver samples of mice (0.024 ± 0.003 nmol/mg vs 0.049 ± 0.005 nmol/mg, non-NAFLD vs NASH-fibrosis, p < 0.0001) and patients (0.105 ± 0.011 nmol/mg vs 0.165 ± 0.021 nmol/mg, p = 0.0221). Inhibition of DEGS1 induce a four-fold increase in dihydroceramides improving steatosis but increasing the inflammatory activity and fibrosis. In conclusion, the degree of histological damage in NAFLD correlate with dihydroceramide and dihydrosphingolipid accumulation. LAY SUMMARY: Accumulation of triglyceride and cholesteryl ester lipids is the hallmark of non-alcoholic fatty liver disease. Using lipidomics, we examined the role of dihydrosphingolipids in NAFLD progression. Our results demonstrate that de novo dihydrosphingolipid synthesis is an early event in NAFLD and the concentrations of these lipids are correlated with histological severity in both mouse and human disease.
Collapse
Affiliation(s)
- Bohdan Babiy
- Servicio de Bioquímica Clínica, UCA-CCM, HU Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Bruno Ramos-Molina
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Luis Ocaña
- Servicio de Cirugía General, HCU Virgen de la Victoria, Málaga, Spain
| | - Silvia Sacristán
- Servicio de Bioquímica-Investigación, HU Ramón y Cajal-IRYCIS, Madrid, Spain
| | | | | | - Rebeca Busto
- Servicio de Bioquímica-Investigación, HU Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Cristian Perna
- Servicio de Anatomía Patológica, HU Ramón y Cajal-IRYCIS, Madrid, Spain
| | - M Dolores Frutos
- Departamento de Cirugía General y Aparato Digestivo, HU Virgen de la Arraixaca, Murcia, Spain
| | - Agustín Albillos
- Servicio de Gastroenterología, HU Ramón y Cajal-IRYCIS, Madrid, Spain; CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, Spain
| | - Óscar Pastor
- Servicio de Bioquímica Clínica, UCA-CCM, HU Ramón y Cajal-IRYCIS, Madrid, Spain.
| |
Collapse
|
36
|
Rahimi S, Angaji SA, Majd A, Hatami B, Baghaei K. Evaluating the effect of basic fibroblast growth factor on the progression of NASH disease by inhibiting ceramide synthesis and ER stress-related pathways. Eur J Pharmacol 2023; 942:175536. [PMID: 36693552 DOI: 10.1016/j.ejphar.2023.175536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is associated with intrahepatic lipid accumulation, inflammation, and hepatocyte death. Several studies have indicated that high-fat diets increase ceramide synthases-6 (CerS-6) expression and a concomitant elevation of C16-ceramides, which can modulate endoplasmic reticulum (ER) stress and further contribute to the progression of NASH. Ceramide levels have reportedly been impacted by basic fibroblast growth factor (bFGF) in various diseases. This study looked into the role of bFGF on CerS6/C16-ceramide and ER stress-related pathways in a mouse model of NASH. Male C57BL/6J mice were fed a western diet (WD) combined with carbon tetrachloride (CCl4) for eight weeks. Next, bFGF was injected into the NASH mice for seven days of continuous treatment. The effects of bFGF on NASH endpoints (including steatosis, inflammation, ballooning, and fibrosis), ceramide levels and ER-stress-induced inflammation, reactive oxygen species (ROS) production, and apoptosis were evaluated. Treatment with bFGF significantly reduced CerS-6/C16-ceramide. Further, the inflammatory condition was alleviated with reduction of nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) gene expression. ROS level was also reduced. ER stress-related cell death diminished by reducing C/EBP homologous protein (CHOP) mRNA expression and caspase 3 activity. Furthermore, activation of the hepatic stellate cells was inhibited in the bFGF-treated mice by lowering the amount of alpha-smooth muscle actin (α-SMA) at the mRNA and protein level. According to our findings, CerS-6/C16-ceramide alteration impacts ER stress-mediated inflammation, oxidative stress, and apoptosis. The bFGF treatment effectively attenuated the development of NASH by downregulating CerS-6/C16-ceramide and subsequent ER stress-related pathways.
Collapse
Affiliation(s)
- Shahrzad Rahimi
- Department of Genetic, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Seyyed Abdolhamid Angaji
- Department of Genetic, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran; Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, 1571914911, Iran
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran.
| |
Collapse
|
37
|
Gart E, van Duyvenvoorde W, Snabel JM, de Ruiter C, Attema J, Caspers MPM, Lek S, van Heuven BJ, Speksnijder AGCL, Giera M, Menke A, Salic K, Bence KK, Tesz GJ, Keijer J, Kleemann R, Morrison MC. Translational characterization of the temporal dynamics of metabolic dysfunctions in liver, adipose tissue and the gut during diet-induced NASH development in Ldlr-/-.Leiden mice. Heliyon 2023; 9:e13985. [PMID: 36915476 PMCID: PMC10006542 DOI: 10.1016/j.heliyon.2023.e13985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Background NAFLD progression, from steatosis to inflammation and fibrosis, results from an interplay of intra- and extrahepatic mechanisms. Disease drivers likely include signals from white adipose tissue (WAT) and gut. However, the temporal dynamics of disease development remain poorly understood. Methods High-fat-diet (HFD)-fed Ldlr-/-.Leiden mice were compared to chow-fed controls. At t = 0, 8, 16, 28 and 38w mice were euthanized, and liver, WAT depots and gut were analyzed biochemically, histologically and by lipidomics and transcriptomics together with circulating factors to investigate the sequence of pathogenic events and organ cross-talk during NAFLD development. Results HFD-induced obesity was associated with an increase in visceral fat, plasma lipids and hyperinsulinemia at t = 8w, along with increased liver steatosis and circulating liver damage biomarkers. In parallel, upstream regulator analysis predicted that lipid catabolism regulators were deactivated and lipid synthesis regulators were activated. Subsequently, hepatocyte hypertrophy, oxidative stress and hepatic inflammation developed. Hepatic collagen accumulated from t = 16 w and became pronounced at t = 28-38 w. Epididymal WAT was maximally hypertrophic from t = 8 w, which coincided with inflammation development. Mesenteric and subcutaneous WAT hypertrophy developed slower and did not appear to reach a maximum, with minimal inflammation. In gut, HFD significantly increased permeability, induced a shift in microbiota composition from t = 8 w and changed circulating gut-derived metabolites. Conclusion HFD-fed Ldlr-/-.Leiden mice develop obesity, dyslipidemia and insulin resistance, essentially as observed in obese NAFLD patients, underlining their translational value. We demonstrate that marked epididymal-WAT inflammation, and gut permeability and dysbiosis precede the development of NAFLD stressing the importance of a multiple-organ approach in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Eveline Gart
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands.,Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, the Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Jessica M Snabel
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Joline Attema
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - Serene Lek
- Clinnovate Health UK Ltd, Glasgow, United Kingdom
| | | | | | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Aswin Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Kanita Salic
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Kendra K Bence
- Pfizer Worldwide Research, Development & Medical, Internal Medicine Research Unit, Cambridge, MA, USA
| | - Gregory J Tesz
- Pfizer Worldwide Research, Development & Medical, Internal Medicine Research Unit, Cambridge, MA, USA
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), 2333 CK Leiden, the Netherlands
| |
Collapse
|
38
|
Alfadda AA, Almaghamsi AM, Sherbeeni SM, Alqutub AN, Aldosary AS, Isnani AC, Al-Daghri N, Taylor-Robinson SD, Gul R. Alterations in circulating lipidomic profile in patients with type 2 diabetes with or without non-alcoholic fatty liver disease. Front Mol Biosci 2023; 10:1030661. [PMID: 36911526 PMCID: PMC9999296 DOI: 10.3389/fmolb.2023.1030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/07/2023] [Indexed: 02/26/2023] Open
Abstract
Objective: Non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes mellitus (T2DM) often coexist and drive detrimental effects in a synergistic manner. This study was designed to understand the changes in circulating lipid and lipoprotein metabolism in patients with T2DM with or without NAFLD. Methods: Four hundred thirty-four T2DM patients aged 18-60 years were included in this study. Fatty liver was assessed by FibroScan. The comprehensive metabolic lipid profiling of serum samples was assessed by using high-throughput proton NMR metabolomics. Results: Our data revealed a significant association between steatosis and serum total lipids in VLDL and LDL lipoprotein subclasses, while total lipids in HDL subclasses were negatively associated. A significant positive association was found between steatosis and concentration of lipids, phospholipids, cholesterol, and triglycerides in VLDL and LDL subclasses, while HDL subclasses were negatively associated. Furthermore, a significant, association was observed between fibrosis and concentrations of lipids, phospholipids, cholesterol, and triglycerides in very small VLDL, large, and very large HDL subclasses. Subgroup analysis revealed a decrease in the concentrations of lipids, phospholipids, cholesterol, and other lipid biomolecules in patients using antilipemic medications. Conclusion: The metabolomics results provide evidence that patients with T2DM with higher steatosis grades have altered lipid metabolomics compared to patients without steatosis. Increased lipid, phospholipids, cholesterol, and triglycerides concentration of VLDL and LDL subclasses are associated with steatosis in patients with T2DM.
Collapse
Affiliation(s)
- Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Adel N Alqutub
- Department of Gastroenterology and Hepatology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdullah S Aldosary
- Department of Medical Imaging Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Arthur C Isnani
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Simon D Taylor-Robinson
- Department of Surgery and Cancer, St. Mary's Hospital Campus, Imperial College London, London, United Kingdom
| | - Rukhsana Gul
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Deng P, Durham J, Liu J, Zhang X, Wang C, Li D, Gwag T, Ma M, Hennig B. Metabolomic, Lipidomic, Transcriptomic, and Metagenomic Analyses in Mice Exposed to PFOS and Fed Soluble and Insoluble Dietary Fibers. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:117003. [PMID: 36331819 PMCID: PMC9635512 DOI: 10.1289/ehp11360] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Perfluorooctane sulfonate (PFOS) is a persistent environmental pollutant that has become a significant concern around the world. Exposure to PFOS may alter gut microbiota and liver metabolic homeostasis in mammals, thereby increasing the risk of cardiometabolic diseases. Diets high in soluble fibers can ameliorate metabolic disease risks. OBJECTIVES We aimed to test the hypothesis that soluble fibers (inulin or pectin) could modulate the adverse metabolic effects of PFOS by affecting microbe-liver metabolism and interactions. METHODS Male C57BL/6J mice were fed an isocaloric diet containing different fibers: a) inulin (soluble), b) pectin (soluble), or c) cellulose (control, insoluble). The mice were exposed to PFOS in drinking water (3 μ g / g per day ) for 7 wk. Multi-omics was used to analyze mouse liver and cecum contents. RESULTS In PFOS-exposed mice, the number of differentially expressed genes associated with atherogenesis and hepatic hyperlipidemia were lower in those that were fed soluble fiber than those fed insoluble fiber. Shotgun metagenomics showed that inulin and pectin protected against differences in microbiome community in PFOS-exposed vs. control mice. It was found that the plasma PFOS levels were lower in inulin-fed mice, and there was a trend of lower liver accumulation of PFOS in soluble fiber-fed mice compared with the control group. Soluble fiber intake ameliorated the effects of PFOS on host hepatic metabolism gene expression and cecal content microbiome structure. DISCUSSIONS Results from metabolomic, lipidomic, and transcriptomic studies suggest that inulin- and pectin-fed mice were less susceptible to PFOS-induced liver metabolic disturbance, hepatic lipid accumulation, and transcriptional changes compared with control diet-fed mice. Our study advances the understanding of interaction between microbes and host under the influences of environmental pollutants and nutrients. The results provide new insights into the microbe-liver metabolic network and the protection against environmental pollutant-induced metabolic diseases by high-fiber diets. https://doi.org/10.1289/EHP11360.
Collapse
Affiliation(s)
- Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Superfund Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Jerika Durham
- Superfund Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaofei Zhang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Dong Li
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Taesik Gwag
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Murong Ma
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
40
|
O’Farrell M, Duke G, Crowley R, Buckley D, Martins EB, Bhattacharya D, Friedman SL, Kemble G. FASN inhibition targets multiple drivers of NASH by reducing steatosis, inflammation and fibrosis in preclinical models. Sci Rep 2022; 12:15661. [PMID: 36123383 PMCID: PMC9485253 DOI: 10.1038/s41598-022-19459-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023] Open
Abstract
Fatty acid synthase (FASN) is an attractive therapeutic target in non-alcoholic steatohepatitis (NASH) because it drives de novo lipogenesis and mediates pro-inflammatory and fibrogenic signaling. We therefore tested pharmacological inhibition of FASN in human cell culture and in three diet induced mouse models of NASH. Three related FASN inhibitors were used; TVB-3664, TVB-3166 and clinical stage TVB-2640 (denifanstat). In human primary liver microtissues, FASN inhibiton (FASNi) decreased triglyceride (TG) content, consistent with direct anti-steatotic activity. In human hepatic stellate cells, FASNi reduced markers of fibrosis including collagen1α (COL1α1) and α-smooth muscle actin (αSMA). In CD4+ T cells exposed to NASH-related cytokines, FASNi decreased production of Th17 cells, and reduced IL-1β release in LPS-stimulated PBMCs. In mice with diet induced NASH l, FASNi prevented development of hepatic steatosis and fibrosis, and reduced circulating IL-1β. In mice with established diet-induced NASH, FASNi reduced NAFLD activity score, fibrosis score, ALT and TG levels. In the CCl4-induced FAT-NASH mouse model, FASN inhibition decreased hepatic fibrosis and fibrosis markers, and development of hepatocellular carcinoma (HCC) tumors by 85%. These results demonstrate that FASN inhibition attenuates inflammatory and fibrotic drivers of NASH by direct inhibition of immune and stellate cells, beyond decreasing fat accumulation in hepatocytes. FASN inhibition therefore provides an opportunity to target three key hallmarks of NASH.
Collapse
Affiliation(s)
- Marie O’Farrell
- Sagimet Biosciences Inc., 155 Bovet Rd, San Mateo, CA 94402 USA
| | - Greg Duke
- Sagimet Biosciences Inc., 155 Bovet Rd, San Mateo, CA 94402 USA
| | - Richard Crowley
- Sagimet Biosciences Inc., 155 Bovet Rd, San Mateo, CA 94402 USA
| | - Douglas Buckley
- Sagimet Biosciences Inc., 155 Bovet Rd, San Mateo, CA 94402 USA
| | | | - Dipankar Bhattacharya
- grid.59734.3c0000 0001 0670 2351Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Scott L. Friedman
- grid.59734.3c0000 0001 0670 2351Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - George Kemble
- Sagimet Biosciences Inc., 155 Bovet Rd, San Mateo, CA 94402 USA
| |
Collapse
|
41
|
Höring M, Peschel G, Grimm J, Krautbauer S, Müller M, Weigand K, Liebisch G, Buechler C. Serum Ceramide Species Are Associated with Liver Cirrhosis and Viral Genotype in Patients with Hepatitis C Infection. Int J Mol Sci 2022; 23:ijms23179806. [PMID: 36077197 PMCID: PMC9456360 DOI: 10.3390/ijms23179806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis C virus (HCV) infection affects ceramide metabolism, and, here, we have evaluated associations of eight serum ceramide species with viral load, viral genotype, and disease markers in 178 patients with chronic HCV. In this cohort, ceramide d18:1;O2/16:0 was higher in the serum of the 20 diabetic patients compared to the patients without this complication. Moreover, ceramide d18:1;O2/24:0 was negatively correlated with age. Of note, all but ceramide d18:1;O2/16:0 and 26:0 were diminished in the serum of patients with liver cirrhosis and, with the exception of ceramide d18:1;O2/16:0, were negatively correlated with the model for end-stage liver disease (MELD) score. Most of the serum ceramides are carried in low-density lipoprotein (LDL), which rises following effective direct-acting antiviral (DAA) therapy. Ceramide d18:1;O2/24:0 recovered in parallel with LDL, whereas ceramide d18:1;O2/18:0 declined. Genotype-3-infected patients had the lowest ceramide levels, which were comparable to other genotypes after DAA treatment. Notably, ceramide d18:1;O2/23:0 and 24:0 were negatively correlated with the MELD score in patients with liver cirrhosis at the end of DAA therapy. Long-chain (LC) ceramides show adverse effects, whereas very-long-chain (VL) species have protective functions in the liver. The ratio of VL/LC ceramides was higher in non-cirrhosis patients than cirrhosis patients and further increased at the end of therapy in this subgroup. In summary, our study shows that serum ceramide levels are related to liver cirrhosis and viral genotype. Whether the more favorable serum ceramide profile in non-cirrhosis patients, before and after DAA therapy, is of pathophysiological importance needs further investigation.
Collapse
Affiliation(s)
- Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Georg Peschel
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Internal Medicine, Klinikum Fürstenfeldbruck, 82256 Fürstenfeldbruck, Germany
| | - Jonathan Grimm
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Kilian Weigand
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Gastroenterology, Gemeinschaftsklinikum Mittelrhein, 56073 Koblenz, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence: ; Tel.: +49-941-944-7009
| |
Collapse
|
42
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
43
|
Jackson KG, Way GW, Zhou H. Bile acids and sphingolipids in non-alcoholic fatty liver disease. Chin Med J (Engl) 2022; 135:1163-1171. [PMID: 35788089 PMCID: PMC9337250 DOI: 10.1097/cm9.0000000000002156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is one of the fastest-growing diseases, and its global prevalence is estimated to increase >50% by 2030. NAFLD is comorbid with metabolic syndrome, obesity, type 2 diabetes, and insulin resistance. Despite extensive research efforts, there are no pharmacologic or biological therapeutics for the treatment of NAFLD. Bile acids and sphingolipids are well-characterized signaling molecules. Over the last few decades, researchers have uncovered potential mechanisms by which bile acids and sphingolipids regulate hepatic lipid metabolism. Dysregulation of bile acid and sphingolipid metabolism has been linked to steatosis, inflammation, and fibrosis in patients with NAFLD. This clinical observation has been recapitulated in animal models, which are well-accepted by experts in the hepatology field. Recent transcriptomic and lipidomic studies also show that sphingolipids are important players in the pathogenesis of NAFLD. Moreover, the identification of bile acids as activators of sphingolipid-mediated signaling pathways established a novel theory for bile acid and sphingolipid biology. In this review, we summarize the recent advances in the understanding of bile acid and sphingolipid-mediated signaling pathways as potential contributors to NAFLD. A better understanding of the pathologic effects mediated by bile acids and sphingolipids will facilitate the development of new diagnostic and therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Kaitlyn G. Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Grayson W. Way
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
44
|
Torres S, Segalés P, García-Ruiz C, Fernández-Checa JC. Mitochondria and the NLRP3 Inflammasome in Alcoholic and Nonalcoholic Steatohepatitis. Cells 2022; 11:1475. [PMID: 35563780 PMCID: PMC9105698 DOI: 10.3390/cells11091475] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Alcoholic (ASH) and nonalcoholic steatohepatitis (NASH) are advanced stages of fatty liver disease and two of the most prevalent forms of chronic liver disease. ASH and NASH are associated with significant risk of further progression to cirrhosis and hepatocellular carcinoma (HCC), the most common type of liver cancer, and a major cause of cancer-related mortality. Despite extensive research and progress in the last decades to elucidate the mechanisms of the development of ASH and NASH, the pathogenesis of both diseases is still poorly understood. Mitochondrial damage and activation of inflammasome complexes have a role in inducing and sustaining liver damage. Mitochondrial dysfunction produces inflammatory factors that activate the inflammasome complexes. NLRP3 inflammasome (nucleotide-binding oligomerization domain-like receptor protein 3) is a multiprotein complex that activates caspase 1 and the release of pro-inflammatory cytokines, including interleukin-1β (IL-1β) and interleukin-18 (IL-18), and contributes to inflammatory pyroptotic cell death. The present review, which is part of the issue "Mitochondria in Liver Pathobiology", provides an overview of the role of mitochondrial dysfunction and NLRP3 activation in ASH and NASH.
Collapse
Affiliation(s)
- Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (S.T.); (P.S.)
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Paula Segalés
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (S.T.); (P.S.)
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (S.T.); (P.S.)
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - José C. Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (S.T.); (P.S.)
- Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
45
|
Song Q, Liu H, Zhang Y, Qiao C, Ge S. Lipidomics Revealed Alteration of the Sphingolipid Metabolism in the Liver of Nonalcoholic Steatohepatitis Mice Treated with Scoparone. ACS OMEGA 2022; 7:14121-14127. [PMID: 35559132 PMCID: PMC9089391 DOI: 10.1021/acsomega.2c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/24/2022] [Indexed: 05/07/2023]
Abstract
Perturbation in sphingolipid metabolism has been regarded as a risk factor for nonalcoholic steatohepatitis (NASH) development, predisposing to inflammation, insulin resistance, and weight gain. Scoparone can regulate the level of ceramide in primary hepatocytes and effectively ameliorate hepatic inflammation, apoptosis, steatosis, and fibrogenesis in a mice model of NASH. Nevertheless, the potential effects of scoparone in sphingolipid metabolism, which is dysregulated in NASH, have not been explored so far. To uncover the impact of scoparone on sphingolipid metabolism in NASH and potential therapeutic targets for treating NASH, the liver tissue samples were collected and lipidomics analysis based on UPLC-QTRAP-MRM/MS was carried out. The collected raw data was handled with multivariate data treatment to discover the potential biomarkers in sphingolipid metabolism. Compared to the control group, 22 potential sphingolipid biomarkers were discovered in the NASH group, of which 10 were downregulated and 12 were upregulated. Orally administrated scoparone contributed to the reversal of the levels of these potential biomarkers. Ten differential metabolites showed a tendency of recovery compared to the control group and may be potential targets for scoparone to treat NASH. This study indicated that lipidomics can detect the perturbed sphingolipids to unravel the therapeutic effects of scoparone on NASH.
Collapse
Affiliation(s)
- Qi Song
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
| | - Hu Liu
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
| | - Yunqi Zhang
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
| | - Chuanqi Qiao
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
| | - Shaoqin Ge
- College
of Traditional Chinese Medicine, Hebei University, Baoding 071000, P.R. China
- College
of Basic Medical Science, Hebei University, Baoding 071000, P.R. China
- (S.G.). Phone: +86-312-5075644. Fax: +86-312-5075644
| |
Collapse
|
46
|
Techarang T, Jariyapong P, Punsawad C. Role of sphingosine kinase and sphingosine-1-phosphate receptor in the liver pathology of mice infected with Plasmodium berghei ANKA. PLoS One 2022; 17:e0266055. [PMID: 35333897 PMCID: PMC8956183 DOI: 10.1371/journal.pone.0266055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Decreased serum sphingosine 1-phosphate (S1P) has been reported in severe malaria patients, but the expression of receptors and enzymes associated with S1P has not been investigated in the liver of malaria patients. Therefore, this study aimed to investigate the expression of sphingosine kinase (SphK) and S1P receptors (S1PRs) in the liver of malaria-infected mice. C57BL/6 male mice were divided into a control group (n = 10) and a Plasmodium berghei (PbA)-infected group (n = 10). Mice in the malaria group were intraperitoneally injected with 1×106 P. berghei ANKA-infected red blood cells, whereas control mice were intraperitoneally injected with normal saline. Liver tissues were collected on Day 13 of the experiment to evaluate histopathological changes by hematoxylin and eosin staining and to investigate SphK and S1PR expression by immunohistochemistry and real-time PCR. Histological examination of liver tissues from the PbA-infected group revealed sinusoidal dilatation, hemozoin deposition, portal tract inflammation and apoptotic hepatocytes, which were absent in the control group. Immunohistochemical staining showed significant increases in the expression of SphK1 and SphK2 and significant decreases in the expression of S1PR1, S1PR2, and S1PR3 in the endothelium, hepatocytes, and Kupffer cells in liver tissue from the PbA-infected group compared with the control group. Real-time PCR analysis showed the upregulation of SphK1 and the downregulation of S1PR1, S1PR2, and S1PR3 in the liver in the PbA-infected group compared with the control group. In conclusion, this study demonstrates for the first time that SphK1 mRNA expression is upregulated and that S1PR1, S1PR2, and S1PR3 expression is decreased in the liver tissue of PbA-infected mice. Our findings suggest that the decreased levels of S1PR1, S1PR2, and S1PR3 might play an important role in liver injury during malaria infection.
Collapse
Affiliation(s)
- Tachpon Techarang
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Pitchanee Jariyapong
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chuchard Punsawad
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
47
|
Liu Y, Wen M, He Q, Dang X, Feng S, Liu T, Ding X, Li X, He X. Lipid metabolism contribute to the pathogenesis of IgA Vasculitis. Diagn Pathol 2022; 17:28. [PMID: 35148801 PMCID: PMC8840790 DOI: 10.1186/s13000-021-01185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022] Open
Abstract
Background and objectives The underlying mechanism of IgA vasculitis (IgAV) and IgA vasculitis with nephritis (IgAVN) remains unclear. Therefore, there are no accurate diagnostic methods. Lipid metabolism is related to many immune related diseases, so this study set out to explore the relationship of lipids and IgAV and IgAVN. Methods Fifty-eighth patients with IgAV and 28 healthy controls were recruited, which were divided into six separate pools to investigate the alterations of serum lipids according to the clinical characteristics: healthy controls group (HCs) and IgAV group (IgAVs), IgAVN group (IgAV-N) and IgAV without nephritis group (IgAV-C), initial IgAV group (IgAV0) and IgAV in treatment with glucocorticoids group (IgAV1). Results 31 identified lipid ions significantly changed in IgAVs with p < 0.05, variable importance of the projection (VIP) > 1 and fold change (FC) > 1.5. All these 31 lipid ions belong to 6 classes: triacylglycerols (TG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine, ceramide, and lysophosphatidylcholine. TG (16:0/18:1/22:6) +NH4 over 888875609.05, PC (32:1) +H over 905307459.90 and PE (21:4)-H less than 32236196.59 increased the risk of IgAV significantly (OR>1). PC (38:6) +H was significantly decreased (p < 0.05, VIP>1 and FC>1.5) in IgAVN. PC (38:6) less than 4469726623 conferred greater risks of IgAV (OR=45.833, 95%CI: 6.689~341.070). Conclusion We suggest that lipid metabolism may affect the pathogenesis of IgAV via cardiovascular disease, insulin resistance, cell apoptosis, and inflammation. The increase of TG(16:0/18:1/22:6) + NH4, and PC(32:1) + H as well as PE (21:4)-H allow a good prediction of IgAV. PE-to-PC conversion may participate in the damage of kidney in IgAV. PC (38:6) + H may be a potential biomarker for IgAVN. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-021-01185-1.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Wen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqiang Dang
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shipin Feng
- Department of Pediatric Nephrology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Taohua Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Li
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China. .,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
48
|
Fridén M, Rosqvist F, Ahlström H, Niessen HG, Schultheis C, Hockings P, Hulthe J, Gummesson A, Wanders A, Rorsman F, Risérus U, Vessby J. Hepatic Unsaturated Fatty Acids Are Linked to Lower Degree of Fibrosis in Non-alcoholic Fatty Liver Disease. Front Med (Lausanne) 2022; 8:814951. [PMID: 35083257 PMCID: PMC8784562 DOI: 10.3389/fmed.2021.814951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The hepatic lipidome of patients with early stages of non-alcoholic fatty liver disease (NAFLD) has been fairly well-explored. However, studies on more progressive forms of NAFLD, i.e., liver fibrosis, are limited. Materials and methods: Liver fatty acids were determined in cholesteryl esters (CE), phospholipids (PL), and triacylglycerols (TAG) by gas chromatography. Cross-sectional associations between fatty acids and biopsy-proven NAFLD fibrosis (n = 60) were assessed using multivariable logistic regression models. Stages of fibrosis were dichotomized into none-mild (F0–1) or significant fibrosis (F2–4). Models were adjusted for body-mass index (BMI), age and patatin-like phospholipase domain-containing protein 3 (PNPLA3 rs738409) (I148M) genotype. A secondary analysis examined whether associations from the primary analysis could be confirmed in the corresponding plasma lipid fractions. Results: PL behenic acid (22:0) was directly associated [OR (95% CI): 1.86 (1.00, 3.45)] whereas PL docosahexaenoic acid (22:6n-3) [OR (95% CI): 0.45 (0.23, 0.89)], TAG oleic acid (18:1n-9) [OR (95% CI): 0.52 (0.28, 0.95)] and 18:1n-9 and vaccenic acid (18:1n-7) (18:1) [OR (95% CI): 0.52 (0.28, 0.96)] were inversely associated with liver fibrosis. In plasma, TAG 18:1n-9 [OR (95% CI): 0.55 (0.31, 0.99)], TAG 18:1 [OR (95% CI): 0.54 (0.30, 0.97)] and PL 22:0 [OR (95% CI): 0.46 (0.25, 0.86)] were inversely associated with liver fibrosis. Conclusion: Higher TAG 18:1n-9 levels were linked to lower fibrosis in both liver and plasma, possibly reflecting an altered fatty acid metabolism. Whether PL 22:6n-3 has a protective role, together with a potentially adverse effect of hepatic 22:0, on liver fibrosis warrants large-scale studies.
Collapse
Affiliation(s)
- Michael Fridén
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Heiko G Niessen
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Christian Schultheis
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Paul Hockings
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden.,MedTech West, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Anders Gummesson
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alkwin Wanders
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Fredrik Rorsman
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Johan Vessby
- Department of Medical Sciences, Gastroenterology and Hepatology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
49
|
Quercetin Reduces Lipid Accumulation in a Cell Model of NAFLD by Inhibiting De Novo Fatty Acid Synthesis through the Acetyl-CoA Carboxylase 1/AMPK/PP2A Axis. Int J Mol Sci 2022; 23:ijms23031044. [PMID: 35162967 PMCID: PMC8834998 DOI: 10.3390/ijms23031044] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of de novo lipogenesis (DNL) has recently gained strong attention as being one of the critical factors that contribute to the assessment of non-alcoholic fatty liver disease (NAFLD). NAFLD is often diagnosed in patients with dyslipidemias and type 2 diabetes; thus, an interesting correlation can be deduced between high hematic free fatty acids and glucose excess in the DNL dysregulation. In the present study, we report that, in a cellular model of NAFLD, the coexistence of elevated glucose and FFA conditions caused the highest cellular lipid accumulation. Deepening the molecular mechanisms of the DNL dysregulation—RT-qPCR and immunoblot analysis demonstrated increased expression of mitochondrial citrate carrier (CiC), cytosolic acetyl-CoA carboxylase 1 (ACACA), and diacylglycerol acyltransferase 2 (DGAT2) involved in fatty acids and triglycerides synthesis, respectively. XBP-1, an endoplasmic reticulum stress marker, and SREBP-1 were the transcription factors connected to the DNL activation. Quercetin (Que), a flavonoid with strong antioxidant properties, and noticeably reduced the lipid accumulation and the expression of SREBP-1 and XBP-1, as well as of their lipogenic gene targets in steatotic cells. The anti-lipogenic action of Que mainly occurs through a strong phosphorylation of ACACA, which catalyzes the committing step in the DNL pathway. The high level of ACACA phosphorylation in Que-treated cells was explained by the intervention of AMPK together with the reduction of enzymatic activity of PP2A phosphatase. Overall, our findings highlight a direct anti-lipogenic effect of Que exerted through inhibition of the DNL pathway by acting on ACACA/AMPK/PP2A axis; thus, suggesting this flavonoid as a promising molecule for the NAFLD treatment.
Collapse
|
50
|
Ren Y, Zhao J, Xu M, Wang Y, Bai L, Jiang Y, Liu S, Chen Y, Duan Z, Zheng S. Association between serum sphingolipids and necroinflammation of liver tissue pathology in chronic hepatitis B. Int J Med Sci 2022; 19:2080-2086. [PMID: 36483591 PMCID: PMC9724247 DOI: 10.7150/ijms.75820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background & Aims: Accurately identifying liver necroinflammation was essential for the timely implementation of antiviral therapy in chronic hepatitis B(CHB) patients. The sphingolipids were involved in various chronic inflammatory processes. This study aimed to evaluate the association between serum sphingolipids and liver necroinflammation in CHB patients. Methods: The study prospectively enrolled patients with a diagnosis of chronic hepatitis B who were subsequently treated with nucleos(t)ide analogs (NAs). Liver biopsy was performed at baseline and 5-year follow-up, and serum sphingolipid levels were measured by ultra-high-performance liquid chromatography tandem mass spectrometry. Results: A total of 70 CHB patients were enrolled with baseline liver necroinflammation of 27(38.6%) G1, 23(32.9%) G2, and 20(28.6%) G ≥ 3, respectively. A total of 126 liver biopsies were performed on the study population over a 5-year period, of which 80 (63.5%) G<2 and 46 (36.5%) G≥2. Serum ALT, ALP, SM d16:0/16:1, SM d16:0/17:1, SM d18:0/17:0 and Cer d18:2/22:0 showed significant differences between two groups (P<0.01). Multivariate analysis showed that serum ALT (OR 1.006, 95% CI: 1.000-1.011), SM d16:0/16:1 (OR 1.552, 95% CI: 1.150-2.093), Cer d18:2/22:0 (OR 0.003, 95% CI: 0.000-0.173) were associated with G ≥ 2. In the subgroup of patients with normal serum ALT, serum Cer d18:2/22:0 was lower in patients with G ≥ 2 than that with G < 2. After 5 years, alleviated inflammation was accompanied by decreased serum SM d16:0/16:1 and increased serum Cer d18:2/22:0 in patients with baseline G ≥ 2. Conclusions: Lower serum Cer d18:2/22:0 could reflect hepatic necroinflammation (G ≥ 2) in CHB patients including those with normal serum ALT, and its elevation predicts the inflammation improvement after NAs treatment.
Collapse
Affiliation(s)
- Yan Ren
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Jing Zhao
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Manman Xu
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Yang Wang
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Li Bai
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Yingying Jiang
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Shuang Liu
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Yu Chen
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Zhongping Duan
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| | - Sujun Zheng
- Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069.,Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment & Research, Beijing YouAn Hospital, Capital Medical University, Beijing China 100069
| |
Collapse
|