1
|
Ungureanu AM, Matei SC, Malita D. Controversies in the Application of AI in Radiology-Is There Medico-Legal Support? Aspects from Romanian Practice. Diagnostics (Basel) 2025; 15:230. [PMID: 39857113 PMCID: PMC11765423 DOI: 10.3390/diagnostics15020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Artificial intelligence (AI) is gaining an increasing amount of influence in various fields, including medicine. In radiology, where diagnoses are based on collaboration between diagnostic devices and the professional experience of radiologists, AI intervention seems much easier than in other fields, but this is often not the case. Many times, the patients orient themselves according to the doctor, which is not applicable in the case of AI. Another limitation rests in the controversies regarding medico-legal liability. In the field of radio-imaging in Romania, the implementation of AI systems in diagnosis is at its beginning. An important aspect of this is raising awareness among the population about these assistive AI systems and, also, awareness of the technological evolution of AI among medical staff. This narrative review manuscript analyzes the existing literature data regarding the medico-legal aspects of AI application in radiology, highlighting the controversial aspects and the lack of statutory legislative regulations in Romania. Methods: A detailed search was conducted across three electronic databases including MEDLINE/PubMed, Scopus, and Web of Science, with 53 papers serving as the literature corpus of our review. Results: General requirements for artificial intelligence systems used in radiology have been established. In the radiological diagnostic process, there are five levels of AI system implication. Until now, completely autonomous AI systems have not been used. Regarding liability in the case of malpractice, at the currently accepted legislative level, most of the time, the radiologist is liable for their own fault or non-compliant use of diagnostic AI systems. Controversies arise in the case of radio-imaging diagnosis in which AI systems act autonomously. Conclusions: In order for AI diagnostic radio-imaging systems to be implemented, they must meet certain quality standards and be approved. The radiologist must know these systems, accept them, know their limits, and validate them in accordance with their degree of involvement in radiological diagnosis. Considering the evolution of technology in the Romanian medical system, including radiology, in the future, an alignment with the legal standards established/proposed at the European level is desired.
Collapse
Affiliation(s)
- Ana-Maria Ungureanu
- Department XV, Clinic of Radiology and Medical Imaging, “VictorBabes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-M.U.); (D.M.)
- Department of Radiology and Medical Imaging, “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania
| | - Sergiu-Ciprian Matei
- Abdominal Surgery and Phlebology Research Center, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Daniel Malita
- Department XV, Clinic of Radiology and Medical Imaging, “VictorBabes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-M.U.); (D.M.)
| |
Collapse
|
2
|
Xu M, Chen Y, Wu T, Chen Y, Zhuang W, Huang Y, Chen C. Global research trends in the application of artificial intelligence in oncology care: a bibliometric study. Front Oncol 2025; 14:1456144. [PMID: 39839779 PMCID: PMC11746057 DOI: 10.3389/fonc.2024.1456144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Objective To use bibliometric methods to analyze the prospects and development trends of artificial intelligence(AI) in oncology nursing from 1994 to 2024, providing guidance and reference for oncology nursing professionals and researchers. Methods The core set of the Web of Science database was searched for articles from 1994 to 2024. The R package "Bibliometrix" was used to analyze the main bibliometric features, creating a three-domain chart to display relationships among institutions, countries, and keywords. VOSviewer facilitated co-authorship analysis and its visualization was used for co- occurrence analysis. CiteSpace calculated citation bursts and keyword occurrences. Results A total of 517 articles were retrieved, representing 80 countries/regions. The United States had the highest number of publications, with 188 articles (36.4%), followed by China with 79 articles (15.3%). The top 10 institutions in terms of publication output were all U.S.-based universities or cancer research institutes, with Harvard University ranking first. Prominent research teams, such as those led by Repici, Aerts, and Almangush, have made significant contributions to studies on AI in tumor risk factor identification and symptom management. In recent years, the keywords with the highest burst strength were "model" and "human papillomavirus." The most studied tumor type was breast cancer. While Cancers published the highest number of articles, journals such as CA: A Cancer Journal for Clinicians and PLOS ONE had higher impact and citation rates. Conclusion By analyzing the volume of AI literature in oncology nursing, combined with the statistical analysis of institutions, core authors, journals, and keywords, the research hotspots and trends in the application of AI in oncology nursing over the past 30 years are revealed. AI in oncology nursing is entering a stage of rapid development, providing valuable reference for scholars and professionals in the field.
Collapse
Affiliation(s)
- Mianmian Xu
- Department of Urinary Surgery, Jinjiang Municipal Hospital, Quanzhou, China
| | - Yafang Chen
- Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tianen Wu
- Department of Urinary Surgery, Jinjiang Municipal Hospital, Quanzhou, China
| | - Yuyan Chen
- Department of Urinary Surgery, Jinjiang Municipal Hospital, Quanzhou, China
| | - Wanling Zhuang
- Department of Urinary Surgery, Jinjiang Municipal Hospital, Quanzhou, China
| | - Yinhui Huang
- Department of Neurology, Jinjiang Municipal Hospital, Quanzhou, China
| | - Chuanzhen Chen
- Department of Nursing, Jinjiang Municipal Hospital, Quanzhou, China
| |
Collapse
|
3
|
Orcales F, Moctezuma Tan L, Johnson-Hagler M, Suntay JM, Ali J, Recto K, Glenn P, Pennings P. Using genomic data and machine learning to predict antibiotic resistance: A tutorial paper. PLoS Comput Biol 2024; 20:e1012579. [PMID: 39775233 PMCID: PMC11684616 DOI: 10.1371/journal.pcbi.1012579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Antibiotic resistance is a global public health concern. Bacteria have evolved resistance to most antibiotics, which means that for any given bacterial infection, the bacteria may be resistant to one or several antibiotics. It has been suggested that genomic sequencing and machine learning (ML) could make resistance testing more accurate and cost-effective. Given that ML is likely to become an ever more important tool in medicine, we believe that it is important for pre-health students and others in the life sciences to learn to use ML tools. This paper provides a step-by-step tutorial to train 4 different ML models (logistic regression, random forests, extreme gradient-boosted trees, and neural networks) to predict drug resistance for Escherichia coli isolates and to evaluate their performance using different metrics and cross-validation techniques. We also guide the user in how to load and prepare the data used for the ML models. The tutorial is accessible to beginners and does not require any software to be installed as it is based on Google Colab notebooks and provides a basic understanding of the different ML models. The tutorial can be used in undergraduate and graduate classes for students in Biology, Public Health, Computer Science, or related fields.
Collapse
Affiliation(s)
- Faye Orcales
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
| | - Lucy Moctezuma Tan
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- Department of Statistics, California State University East Bay, Hayward, California, United States of America
| | - Meris Johnson-Hagler
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - John Matthew Suntay
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- University of California San Francisco, San Francisco, California, United States of America
| | - Jameel Ali
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Kristiene Recto
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Phelan Glenn
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Pleuni Pennings
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
4
|
Salama V, Godinich B, Geng Y, Humbert-Vidan L, Maule L, Wahid KA, Naser MA, He R, Mohamed ASR, Fuller CD, Moreno AC. Artificial Intelligence and Machine Learning in Cancer Pain: A Systematic Review. J Pain Symptom Manage 2024; 68:e462-e490. [PMID: 39097246 PMCID: PMC11534522 DOI: 10.1016/j.jpainsymman.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND/OBJECTIVES Pain is a challenging multifaceted symptom reported by most cancer patients. This systematic review aims to explore applications of artificial intelligence/machine learning (AI/ML) in predicting pain-related outcomes and pain management in cancer. METHODS A comprehensive search of Ovid MEDLINE, EMBASE and Web of Science databases was conducted using terms: "Cancer," "Pain," "Pain Management," "Analgesics," "Artificial Intelligence," "Machine Learning," and "Neural Networks" published up to September 7, 2023. AI/ML models, their validation and performance were summarized. Quality assessment was conducted using PROBAST risk-of-bias andadherence to TRIPOD guidelines. RESULTS Forty four studies from 2006 to 2023 were included. Nineteen studies used AI/ML for classifying pain after cancer therapy [median AUC 0.80 (range 0.76-0.94)]. Eighteen studies focused on cancer pain research [median AUC 0.86 (range 0.50-0.99)], and 7 focused on applying AI/ML for cancer pain management, [median AUC 0.71 (range 0.47-0.89)]. Median AUC (0.77) of models across all studies. Random forest models demonstrated the highest performance (median AUC 0.81), lasso models had the highest median sensitivity (1), while Support Vector Machine had the highest median specificity (0.74). Overall adherence to TRIPOD guidelines was 70.7%. Overall, high risk-of-bias (77.3%), lack of external validation (14%) and clinical application (23%) was detected. Reporting of model calibration was also missing (5%). CONCLUSION Implementation of AI/ML tools promises significant advances in the classification, risk stratification, and management decisions for cancer pain. Further research focusing on quality improvement, model calibration, rigorous external clinical validation in real healthcare settings is imperative for ensuring its practical and reliable application in clinical practice.
Collapse
Affiliation(s)
- Vivian Salama
- Department of Radiation Oncology (V.S., B.G., L.H.V., L.M., K.A.W., M.A.N., R.H., A.S.R.M., C.D.F., A.C.M), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Brandon Godinich
- Department of Radiation Oncology (V.S., B.G., L.H.V., L.M., K.A.W., M.A.N., R.H., A.S.R.M., C.D.F., A.C.M), The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Medical Education (B.G.), Paul L. Foster School of Medicine, Texas Tech Health Sciences Center, El Paso, TX, USA
| | - Yimin Geng
- Research Medical Library (Y.G.), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laia Humbert-Vidan
- Department of Radiation Oncology (V.S., B.G., L.H.V., L.M., K.A.W., M.A.N., R.H., A.S.R.M., C.D.F., A.C.M), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Maule
- Department of Radiation Oncology (V.S., B.G., L.H.V., L.M., K.A.W., M.A.N., R.H., A.S.R.M., C.D.F., A.C.M), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kareem A Wahid
- Department of Radiation Oncology (V.S., B.G., L.H.V., L.M., K.A.W., M.A.N., R.H., A.S.R.M., C.D.F., A.C.M), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed A Naser
- Department of Radiation Oncology (V.S., B.G., L.H.V., L.M., K.A.W., M.A.N., R.H., A.S.R.M., C.D.F., A.C.M), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renjie He
- Department of Radiation Oncology (V.S., B.G., L.H.V., L.M., K.A.W., M.A.N., R.H., A.S.R.M., C.D.F., A.C.M), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abdallah S R Mohamed
- Department of Radiation Oncology (V.S., B.G., L.H.V., L.M., K.A.W., M.A.N., R.H., A.S.R.M., C.D.F., A.C.M), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clifton D Fuller
- Department of Radiation Oncology (V.S., B.G., L.H.V., L.M., K.A.W., M.A.N., R.H., A.S.R.M., C.D.F., A.C.M), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy C Moreno
- Department of Radiation Oncology (V.S., B.G., L.H.V., L.M., K.A.W., M.A.N., R.H., A.S.R.M., C.D.F., A.C.M), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Wang R, Liu J, Jiang B, Gao B, Luo H, Yang F, Ye Y, Chen Z, Liu H, Cui C, Xu K, Li B, Yang X. A single-cell perspective on immunotherapy for pancreatic cancer: from microenvironment analysis to therapeutic strategy innovation. Front Immunol 2024; 15:1454833. [PMID: 39539544 PMCID: PMC11557317 DOI: 10.3389/fimmu.2024.1454833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal malignancies, with conventional treatment options providing limited efficacy. Recent advancements in immunotherapy have offered new hope, yet the unique tumor microenvironment (TME) of pancreatic cancer poses significant challenges to its successful application. This review explores the transformative impact of single-cell technology on the understanding and treatment of pancreatic cancer. By enabling high-resolution analysis of cellular heterogeneity within the TME, single-cell approaches have elucidated the complex interplay between various immune and tumor cell populations. These insights have led to the identification of predictive biomarkers and the development of innovative, personalized immunotherapeutic strategies. The review discusses the role of single-cell technology in dissecting the intricate immune landscape of pancreatic cancer, highlighting the discovery of T cell exhaustion profiles and macrophage polarization states that influence treatment response. Moreover, it outlines the potential of single-cell data in guiding the selection of immunotherapy drugs and optimizing treatment plans. The review also addresses the challenges and prospects of translating these single-cell-based innovations into clinical practice, emphasizing the need for interdisciplinary research and the integration of artificial intelligence to overcome current limitations. Ultimately, the review underscores the promise of single-cell technology in driving therapeutic strategy innovation and improving patient outcomes in the battle against pancreatic cancer.
Collapse
Affiliation(s)
- Rui Wang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Jie Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Jiang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Benjian Gao
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Honghao Luo
- Department of Radiology, Xichong People’s Hospital, Nanchong, China
| | - Fengyi Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuntao Ye
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhuo Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Cui
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Angkurawaranon S, Inmutto N, Bannangkoon K, Wonghan S, Kham-Ai T, Khumma P, Daengpisut K, Thabarsa P, Angkurawaranon C. Attitudes and perceptions of Thai medical students regarding artificial intelligence in radiology and medicine. BMC MEDICAL EDUCATION 2024; 24:1188. [PMID: 39438874 PMCID: PMC11515691 DOI: 10.1186/s12909-024-06150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Artificial Intelligence (AI) has made a profound impact on the medical sector, particularly in radiology. The integration of AI knowledge into medical education is essential to equip future healthcare professionals with the skills needed to effectively leverage these advancements in their practices. Despite its significance, many medical schools have yet to incorporate AI into their curricula. This study aims to assess the attitudes of medical students in Thailand toward AI and its application in radiology, with the objective of better planning for its inclusion. METHODS Between February and June 2022, we conducted a survey in two Thai medical schools: Chiang Mai University in Northern Thailand and Prince of Songkla University in Southern Thailand. We employed 5-point Likert scale questions (ranging from strongly agree to strongly disagree) to evaluate students' opinions on three main aspects: (1) their understanding of AI, (2) the inclusion of AI in their medical education, and (3) the potential impact of AI on medicine and radiology. RESULTS Our findings revealed that merely 31% of medical students perceived to have a basic understanding of AI. Nevertheless, nearly all students (93.6%) recognized the value of AI training for their careers and strongly advocated for its inclusion in the medical school curriculum. Furthermore, those students who had a better understanding of AI were more likely to believe that AI would revolutionize the field of radiology (p = 0.02), making it more captivating and impactful (p = 0.04). CONCLUSION Our study highlights a noticeable gap in the understanding of AI among medical students in Thailand and its practical applications in healthcare. However, the overwhelming consensus among these students is their readiness to embrace the incorporation of AI training into their medical education. This enthusiasm holds the promise of enhancing AI adoption, ultimately leading to an improvement in the standard of healthcare services in Thailand, aligning with the country's healthcare vision.
Collapse
Affiliation(s)
- Salita Angkurawaranon
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Global Health and Chronic conditions Research Center, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Inmutto
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kittipitch Bannangkoon
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Surapat Wonghan
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanawat Kham-Ai
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Porched Khumma
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Phattanun Thabarsa
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chaisiri Angkurawaranon
- Global Health and Chronic conditions Research Center, Chiang Mai University, Chiang Mai, Thailand.
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
7
|
Muralidharan V, Adewale BA, Huang CJ, Nta MT, Ademiju PO, Pathmarajah P, Hang MK, Adesanya O, Abdullateef RO, Babatunde AO, Ajibade A, Onyeka S, Cai ZR, Daneshjou R, Olatunji T. A scoping review of reporting gaps in FDA-approved AI medical devices. NPJ Digit Med 2024; 7:273. [PMID: 39362934 PMCID: PMC11450195 DOI: 10.1038/s41746-024-01270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Machine learning and artificial intelligence (AI/ML) models in healthcare may exacerbate health biases. Regulatory oversight is critical in evaluating the safety and effectiveness of AI/ML devices in clinical settings. We conducted a scoping review on the 692 FDA-approved AI/ML-enabled medical devices approved from 1995-2023 to examine transparency, safety reporting, and sociodemographic representation. Only 3.6% of approvals reported race/ethnicity, 99.1% provided no socioeconomic data. 81.6% did not report the age of study subjects. Only 46.1% provided comprehensive detailed results of performance studies; only 1.9% included a link to a scientific publication with safety and efficacy data. Only 9.0% contained a prospective study for post-market surveillance. Despite the growing number of market-approved medical devices, our data shows that FDA reporting data remains inconsistent. Demographic and socioeconomic characteristics are underreported, exacerbating the risk of algorithmic bias and health disparity.
Collapse
Affiliation(s)
- Vijaytha Muralidharan
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94304, USA.
| | - Boluwatife Adeleye Adewale
- Babcock University Teaching Hospital, Ilishan-Remo, Ogun State, Nigeria
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Caroline J Huang
- Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Mfon Thelma Nta
- Department of Medicine and Surgery, Afe Babalola University, Ado-Ekiti, Nigeria
| | | | - Pirunthan Pathmarajah
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Man Kien Hang
- Co:Helm, New York, NY, USA
- University College London, London, UK
| | | | - Ridwanullah Olamide Abdullateef
- Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- College Research and Innovation Hub (CRIH), College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Abdulquddus Ajibade
- Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sonia Onyeka
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Zhou Ran Cai
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Roxana Daneshjou
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94304, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | | |
Collapse
|
8
|
Inshutiyimana S, Ramadan N, Razzak RA, Al Maaz Z, Wojtara M, Uwishema O. Pharmacogenomics revolutionizing cardiovascular therapeutics: A narrative review. Health Sci Rep 2024; 7:e70139. [PMID: 39435035 PMCID: PMC11491551 DOI: 10.1002/hsr2.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Background and Aim Among the cardiovascular diseases (CVDs), heart failure, hypertension, and myocardial infarction are associated with the greatest number of disability-adjusted life years due to lifestyle changes and the failure of therapeutic approaches, especially the one-size-fits-all interventions. As a result, there has been advances in defining genetic variants responsible for different responses to cardiovascular drugs such as antiplatelets, anticoagulants, statins, and beta-blockers, which has led to their usage in guiding treatment plans. This study comprehensively reviews the current state-of-the-art potential of pharmacogenomics in dramatically altering CVD treatment. It stresses the applicability of pharmacogenomic technology, the threats associated with its adoption in the clinical setting, and proffers relevant solutions. Methods Literature search strategies were used to retrieve articles from various databases: PubMed, Google Scholar, and EBSCOhost. Articles with information relevant to pharmacogenomics, DNA variants, cardiovascular diseases, sequencing techniques, and drug responses were reviewed and analyzed. Results DNA-based technologies such as next generation sequencing, whole genome sequencing, whole exome sequencing, and targeted segment sequencing can identify variants in the human genome. This has played a substantial role in identifying different genetic variants governing the poor response and adverse effects associated with cardiovascular drugs. Thus, this has reduced patients' number of emergency visits and hospitalization. Conclusion Despite the emergence of pharmacogenomics, its implementation has been threatened by factors including patient compliance and a low adoption rate by clinicians. Education and training programs targeting both healthcare professionals and patients should be established to increase the acceptance and application of the emerging pharmacogenomic technologies in reducing the burden of CVDs.
Collapse
Affiliation(s)
- Samuel Inshutiyimana
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health SciencesUnited States International University‐AfricaNairobiKenya
| | - Nagham Ramadan
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Medicine, Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Rawane Abdul Razzak
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Faculty of Medical SciencesLebanese UniversityBeirutLebanon
| | - Zeina Al Maaz
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Medicine, Faculty of MedicineBeirut Arab University (BAU)BeirutLebanon
| | - Magda Wojtara
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Olivier Uwishema
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
| |
Collapse
|
9
|
Chang JY, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Thoracic Imaging. Diagnostics (Basel) 2024; 14:1456. [PMID: 39001346 PMCID: PMC11240935 DOI: 10.3390/diagnostics14131456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
The advent of artificial intelligence (AI) is revolutionizing medicine, particularly radiology. With the development of newer models, AI applications are demonstrating improved performance and versatile utility in the clinical setting. Thoracic imaging is an area of profound interest, given the prevalence of chest imaging and the significant health implications of thoracic diseases. This review aims to highlight the promising applications of AI within thoracic imaging. It examines the role of AI, including its contributions to improving diagnostic evaluation and interpretation, enhancing workflow, and aiding in invasive procedures. Next, it further highlights the current challenges and limitations faced by AI, such as the necessity of 'big data', ethical and legal considerations, and bias in representation. Lastly, it explores the potential directions for the application of AI in thoracic radiology.
Collapse
Affiliation(s)
- Jin Y Chang
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mina S Makary
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Moraitis A, Küper A, Tran-Gia J, Eberlein U, Chen Y, Seifert R, Shi K, Kim M, Herrmann K, Fragoso Costa P, Kersting D. Future Perspectives of Artificial Intelligence in Bone Marrow Dosimetry and Individualized Radioligand Therapy. Semin Nucl Med 2024; 54:460-469. [PMID: 39013673 DOI: 10.1053/j.semnuclmed.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Radioligand therapy is an emerging and effective treatment option for various types of malignancies, but may be intricately linked to hematological side effects such as anemia, lymphopenia or thrombocytopenia. The safety and efficacy of novel theranostic agents, targeting increasingly complex targets, can be well served by comprehensive dosimetry. However, optimization in patient management and patient selection based on risk-factors predicting adverse events and built upon reliable dose-response relations is still an open demand. In this context, artificial intelligence methods, especially machine learning and deep learning algorithms, may play a crucial role. This review provides an overview of upcoming opportunities for integrating artificial intelligence methods into the field of dosimetry in nuclear medicine by improving bone marrow and blood dosimetry accuracy, enabling early identification of potential hematological risk-factors, and allowing for adaptive treatment planning. It will further exemplify inspirational success stories from neighboring disciplines that may be translated to nuclear medicine practices, and will provide conceptual suggestions for future directions. In the future, we expect artificial intelligence-assisted (predictive) dosimetry combined with clinical parameters to pave the way towards truly personalized theranostics in radioligand therapy.
Collapse
Affiliation(s)
- Alexandros Moraitis
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Alina Küper
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Uta Eberlein
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Yizhou Chen
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert Seifert
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Moon Kim
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Pedro Fragoso Costa
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - David Kersting
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Ning Y, Li S, Ng YY, Chia MYC, Gan HN, Tiah L, Mao DR, Ng WM, Leong BSH, Doctor N, Ong MEH, Liu N. Variable importance analysis with interpretable machine learning for fair risk prediction. PLOS DIGITAL HEALTH 2024; 3:e0000542. [PMID: 38995879 PMCID: PMC11244764 DOI: 10.1371/journal.pdig.0000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/01/2024] [Indexed: 07/14/2024]
Abstract
Machine learning (ML) methods are increasingly used to assess variable importance, but such black box models lack stability when limited in sample sizes, and do not formally indicate non-important factors. The Shapley variable importance cloud (ShapleyVIC) addresses these limitations by assessing variable importance from an ensemble of regression models, which enhances robustness while maintaining interpretability, and estimates uncertainty of overall importance to formally test its significance. In a clinical study, ShapleyVIC reasonably identified important variables when the random forest and XGBoost failed to, and generally reproduced the findings from smaller subsamples (n = 2500 and 500) when statistical power of the logistic regression became attenuated. Moreover, ShapleyVIC reasonably estimated non-significant importance of race to justify its exclusion from the final prediction model, as opposed to the race-dependent model from the conventional stepwise model building. Hence, ShapleyVIC is robust and interpretable for variable importance assessment, with potential contribution to fairer clinical risk prediction.
Collapse
Affiliation(s)
- Yilin Ning
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Siqi Li
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Yih Yng Ng
- Digital and Smart Health Office, Ng Teng Fong Centre for Healthcare Innovation, Singapore, Singapore
- Department of Preventive and Population Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | | | - Han Nee Gan
- Accident & Emergency, Changi General Hospital, Singapore, Singapore
| | - Ling Tiah
- Accident & Emergency, Changi General Hospital, Singapore, Singapore
| | - Desmond Renhao Mao
- Department of Acute and Emergency Care, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Wei Ming Ng
- Emergency Medicine Department, Ng Teng Fong General Hospital, Singapore, Singapore
| | | | - Nausheen Doctor
- Department of Emergency Medicine, Sengkang General Hospital, Singapore, Singapore
| | - Marcus Eng Hock Ong
- Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
- Department of Emergency Medicine, Singapore General Hospital, Singapore, Singapore
- Health Services Research Centre, Singapore Health Services, Singapore, Singapore
| | - Nan Liu
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
- Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
- Institute of Data Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Patrascanu OS, Tutunaru D, Musat CL, Dragostin OM, Fulga A, Nechita L, Ciubara AB, Piraianu AI, Stamate E, Poalelungi DG, Dragostin I, Iancu DCE, Ciubara A, Fulga I. Future Horizons: The Potential Role of Artificial Intelligence in Cardiology. J Pers Med 2024; 14:656. [PMID: 38929877 PMCID: PMC11204977 DOI: 10.3390/jpm14060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature death and disability globally, leading to significant increases in healthcare costs and economic strains. Artificial intelligence (AI) is emerging as a crucial technology in this context, promising to have a significant impact on the management of CVDs. A wide range of methods can be used to develop effective models for medical applications, encompassing everything from predicting and diagnosing diseases to determining the most suitable treatment for individual patients. This literature review synthesizes findings from multiple studies that apply AI technologies such as machine learning algorithms and neural networks to electrocardiograms, echocardiography, coronary angiography, computed tomography, and cardiac magnetic resonance imaging. A narrative review of 127 articles identified 31 papers that were directly relevant to the research, encompassing a broad spectrum of AI applications in cardiology. These applications included AI models for ECG, echocardiography, coronary angiography, computed tomography, and cardiac MRI aimed at diagnosing various cardiovascular diseases such as coronary artery disease, hypertrophic cardiomyopathy, arrhythmias, pulmonary embolism, and valvulopathies. The papers also explored new methods for cardiovascular risk assessment, automated measurements, and optimizing treatment strategies, demonstrating the benefits of AI technologies in cardiology. In conclusion, the integration of artificial intelligence (AI) in cardiology promises substantial advancements in diagnosing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Octavian Stefan Patrascanu
- Department of Cardiology, University Emergency Hospital of Bucharest, 169 Splaiul Independentei St, 050098 Bucharest, Romania; (O.S.P.); (E.S.)
| | - Dana Tutunaru
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AL Cuza St, 800010 Galati, Romania; (D.T.); (C.L.M.); (O.M.D.); (A.B.C.); (A.I.P.); (D.G.P.); (A.C.); (I.F.)
| | - Carmina Liana Musat
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AL Cuza St, 800010 Galati, Romania; (D.T.); (C.L.M.); (O.M.D.); (A.B.C.); (A.I.P.); (D.G.P.); (A.C.); (I.F.)
| | - Oana Maria Dragostin
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AL Cuza St, 800010 Galati, Romania; (D.T.); (C.L.M.); (O.M.D.); (A.B.C.); (A.I.P.); (D.G.P.); (A.C.); (I.F.)
| | - Ana Fulga
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AL Cuza St, 800010 Galati, Romania; (D.T.); (C.L.M.); (O.M.D.); (A.B.C.); (A.I.P.); (D.G.P.); (A.C.); (I.F.)
| | - Luiza Nechita
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AL Cuza St, 800010 Galati, Romania; (D.T.); (C.L.M.); (O.M.D.); (A.B.C.); (A.I.P.); (D.G.P.); (A.C.); (I.F.)
| | - Alexandru Bogdan Ciubara
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AL Cuza St, 800010 Galati, Romania; (D.T.); (C.L.M.); (O.M.D.); (A.B.C.); (A.I.P.); (D.G.P.); (A.C.); (I.F.)
| | - Alin Ionut Piraianu
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AL Cuza St, 800010 Galati, Romania; (D.T.); (C.L.M.); (O.M.D.); (A.B.C.); (A.I.P.); (D.G.P.); (A.C.); (I.F.)
| | - Elena Stamate
- Department of Cardiology, University Emergency Hospital of Bucharest, 169 Splaiul Independentei St, 050098 Bucharest, Romania; (O.S.P.); (E.S.)
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AL Cuza St, 800010 Galati, Romania; (D.T.); (C.L.M.); (O.M.D.); (A.B.C.); (A.I.P.); (D.G.P.); (A.C.); (I.F.)
| | - Diana Gina Poalelungi
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AL Cuza St, 800010 Galati, Romania; (D.T.); (C.L.M.); (O.M.D.); (A.B.C.); (A.I.P.); (D.G.P.); (A.C.); (I.F.)
| | - Ionut Dragostin
- Emergency County Clinical Hospital, 2 Buzaului St, 810325 Braila, Romania;
| | | | - Anamaria Ciubara
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AL Cuza St, 800010 Galati, Romania; (D.T.); (C.L.M.); (O.M.D.); (A.B.C.); (A.I.P.); (D.G.P.); (A.C.); (I.F.)
| | - Iuliu Fulga
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AL Cuza St, 800010 Galati, Romania; (D.T.); (C.L.M.); (O.M.D.); (A.B.C.); (A.I.P.); (D.G.P.); (A.C.); (I.F.)
| |
Collapse
|
13
|
Jain H, Marsool MDM, Odat RM, Noori H, Jain J, Shakhatreh Z, Patel N, Goyal A, Gole S, Passey S. Emergence of Artificial Intelligence and Machine Learning Models in Sudden Cardiac Arrest: A Comprehensive Review of Predictive Performance and Clinical Decision Support. Cardiol Rev 2024:00045415-990000000-00260. [PMID: 38836621 DOI: 10.1097/crd.0000000000000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Sudden cardiac death/sudden cardiac arrest (SCD/SCA) is an increasingly prevalent cause of mortality globally, particularly in individuals with preexisting cardiac conditions. The ambiguous premortem warnings and the restricted interventional window related to SCD account for the complexity of the condition. Current reports suggest SCD to be accountable for 20% of all deaths hence accurately predicting SCD risk is an imminent concern. Traditional approaches for predicting SCA, particularly "track-and-trigger" warning systems have demonstrated considerable inadequacies, including low sensitivity, false alarms, decreased diagnostic liability, reliance on clinician involvement, and human errors. Artificial intelligence (AI) and machine learning (ML) models have demonstrated near-perfect accuracy in predicting SCA risk, allowing clinicians to intervene timely. Given the constraints of current diagnostics, exploring the benefits of AI and ML models in enhancing outcomes for SCA/SCD is imperative. This review article aims to investigate the efficacy of AI and ML models in predicting and managing SCD, particularly targeting accuracy in prediction.
Collapse
Affiliation(s)
- Hritvik Jain
- From the Department of Internal Medicine, All India Institte of Medical Sciences (AIIMS), Jodhpur, India
| | | | - Ramez M Odat
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hamid Noori
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jyoti Jain
- From the Department of Internal Medicine, All India Institte of Medical Sciences (AIIMS), Jodhpur, India
| | - Zaid Shakhatreh
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nandan Patel
- From the Department of Internal Medicine, All India Institte of Medical Sciences (AIIMS), Jodhpur, India
| | - Aman Goyal
- Department of Internal Medicine, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Shrey Gole
- Department of Immunology and Rheumatology, Stanford University, CA; and
| | - Siddhant Passey
- Department of Internal Medicine, University of Connecticut Health Center, CT
| |
Collapse
|
14
|
Nastasa I, Furtunescu FL, Minca DG. Analysis of GDPR Compliance in Utilizing Personal Data for Public Health Purposes in Romania. MAEDICA 2024; 19:298-302. [PMID: 39188846 PMCID: PMC11345071 DOI: 10.26574/maedica.2024.19.2.2982024;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
OBJECTIVE The General Data Protection Regulation (GDPR), which became effective on May 25, 2016, underscored the significance of confidentiality across various economic and social domains. Within the medical sector, confidentiality of patient health information is meticulously governed by laws, e.g., no. 95/2006 and no. 46/2003. While these laws address numerous privacy aspects within the doctor-patient relationship, it becomes necessary to update them to align with the latest advancements in emerging technologies, particularly in the context of telemedicine. MATERIAL AND METHODS Upon reviewing the overview of rules pertaining to health data processing in Romania, as published by the European Data Protection Board (EDPB) in 2021, and comparing it with the current public health and research laws in Romania, it becomes apparent that there is a regulatory gap concerning the secondary use of health data. RESULTS This gap is particularly notable in terms of planning, managing and enhancing the healthcare system, as well as utilizing such data for scientific and historical research purposes, leading to the necessity of developing and regulating the European Health Data Space. CONCLUSION Although steps have been taken to align the GDPR legislation in Romania, there is still a disproportionality in the regulation of privacy and cyber security with the implementation of new technologies that will collect, process and store sensitive medical data.
Collapse
Affiliation(s)
- Iulian Nastasa
- Department of Management & Public Heath, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Florentina-Ligia Furtunescu
- Department of Management & Public Heath, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Dana-Galieta Minca
- Department of Management & Public Heath, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
15
|
Stamate E, Piraianu AI, Ciobotaru OR, Crassas R, Duca O, Fulga A, Grigore I, Vintila V, Fulga I, Ciobotaru OC. Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years. Diagnostics (Basel) 2024; 14:1103. [PMID: 38893630 PMCID: PMC11172021 DOI: 10.3390/diagnostics14111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) can radically change almost every aspect of the human experience. In the medical field, there are numerous applications of AI and subsequently, in a relatively short time, significant progress has been made. Cardiology is not immune to this trend, this fact being supported by the exponential increase in the number of publications in which the algorithms play an important role in data analysis, pattern discovery, identification of anomalies, and therapeutic decision making. Furthermore, with technological development, there have appeared new models of machine learning (ML) and deep learning (DP) that are capable of exploring various applications of AI in cardiology, including areas such as prevention, cardiovascular imaging, electrophysiology, interventional cardiology, and many others. In this sense, the present article aims to provide a general vision of the current state of AI use in cardiology. RESULTS We identified and included a subset of 200 papers directly relevant to the current research covering a wide range of applications. Thus, this paper presents AI applications in cardiovascular imaging, arithmology, clinical or emergency cardiology, cardiovascular prevention, and interventional procedures in a summarized manner. Recent studies from the highly scientific literature demonstrate the feasibility and advantages of using AI in different branches of cardiology. CONCLUSIONS The integration of AI in cardiology offers promising perspectives for increasing accuracy by decreasing the error rate and increasing efficiency in cardiovascular practice. From predicting the risk of sudden death or the ability to respond to cardiac resynchronization therapy to the diagnosis of pulmonary embolism or the early detection of valvular diseases, AI algorithms have shown their potential to mitigate human error and provide feasible solutions. At the same time, limits imposed by the small samples studied are highlighted alongside the challenges presented by ethical implementation; these relate to legal implications regarding responsibility and decision making processes, ensuring patient confidentiality and data security. All these constitute future research directions that will allow the integration of AI in the progress of cardiology.
Collapse
Affiliation(s)
- Elena Stamate
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (E.S.); (V.V.)
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
| | - Alin-Ionut Piraianu
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
| | - Oana Roxana Ciobotaru
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Railway Hospital Galati, 800223 Galati, Romania
| | - Rodica Crassas
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Oana Duca
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Ana Fulga
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei Street, 800578 Galati, Romania
| | - Ionica Grigore
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Vlad Vintila
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (E.S.); (V.V.)
- Clinical Department of Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 37 Dionisie Lupu Street, 4192910 Bucharest, Romania
| | - Iuliu Fulga
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei Street, 800578 Galati, Romania
| | - Octavian Catalin Ciobotaru
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Railway Hospital Galati, 800223 Galati, Romania
| |
Collapse
|
16
|
Khan SD, Hoodbhoy Z, Raja MHR, Kim JY, Hogg HDJ, Manji AAA, Gulamali F, Hasan A, Shaikh A, Tajuddin S, Khan NS, Patel MR, Balu S, Samad Z, Sendak MP. Frameworks for procurement, integration, monitoring, and evaluation of artificial intelligence tools in clinical settings: A systematic review. PLOS DIGITAL HEALTH 2024; 3:e0000514. [PMID: 38809946 PMCID: PMC11135672 DOI: 10.1371/journal.pdig.0000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Research on the applications of artificial intelligence (AI) tools in medicine has increased exponentially over the last few years but its implementation in clinical practice has not seen a commensurate increase with a lack of consensus on implementing and maintaining such tools. This systematic review aims to summarize frameworks focusing on procuring, implementing, monitoring, and evaluating AI tools in clinical practice. A comprehensive literature search, following PRSIMA guidelines was performed on MEDLINE, Wiley Cochrane, Scopus, and EBSCO databases, to identify and include articles recommending practices, frameworks or guidelines for AI procurement, integration, monitoring, and evaluation. From the included articles, data regarding study aim, use of a framework, rationale of the framework, details regarding AI implementation involving procurement, integration, monitoring, and evaluation were extracted. The extracted details were then mapped on to the Donabedian Plan, Do, Study, Act cycle domains. The search yielded 17,537 unique articles, out of which 47 were evaluated for inclusion based on their full texts and 25 articles were included in the review. Common themes extracted included transparency, feasibility of operation within existing workflows, integrating into existing workflows, validation of the tool using predefined performance indicators and improving the algorithm and/or adjusting the tool to improve performance. Among the four domains (Plan, Do, Study, Act) the most common domain was Plan (84%, n = 21), followed by Study (60%, n = 15), Do (52%, n = 13), & Act (24%, n = 6). Among 172 authors, only 1 (0.6%) was from a low-income country (LIC) and 2 (1.2%) were from lower-middle-income countries (LMICs). Healthcare professionals cite the implementation of AI tools within clinical settings as challenging owing to low levels of evidence focusing on integration in the Do and Act domains. The current healthcare AI landscape calls for increased data sharing and knowledge translation to facilitate common goals and reap maximum clinical benefit.
Collapse
Affiliation(s)
- Sarim Dawar Khan
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Zahra Hoodbhoy
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Jee Young Kim
- Duke Institute for Health Innovation, Duke University School of Medicine, Durham, North Carolina, United States
| | - Henry David Jeffry Hogg
- Population Health Science Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Afshan Anwar Ali Manji
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Freya Gulamali
- Duke Institute for Health Innovation, Duke University School of Medicine, Durham, North Carolina, United States
| | - Alifia Hasan
- Duke Institute for Health Innovation, Duke University School of Medicine, Durham, North Carolina, United States
| | - Asim Shaikh
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Salma Tajuddin
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Nida Saddaf Khan
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Manesh R. Patel
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, United States
- Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Suresh Balu
- Duke Institute for Health Innovation, Duke University School of Medicine, Durham, North Carolina, United States
| | - Zainab Samad
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Mark P. Sendak
- Duke Institute for Health Innovation, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
17
|
Fogleman BM, Goldman M, Holland AB, Dyess G, Patel A. Charting Tomorrow's Healthcare: A Traditional Literature Review for an Artificial Intelligence-Driven Future. Cureus 2024; 16:e58032. [PMID: 38738104 PMCID: PMC11088287 DOI: 10.7759/cureus.58032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Electronic health record (EHR) systems have developed over time in parallel with general advancements in mainstream technology. As artificially intelligent (AI) systems rapidly impact multiple societal sectors, it has become apparent that medicine is not immune from the influences of this powerful technology. Particularly appealing is how AI may aid in improving healthcare efficiency with note-writing automation. This literature review explores the current state of EHR technologies in healthcare, specifically focusing on possibilities for addressing EHR challenges through the automation of dictation and note-writing processes with AI integration. This review offers a broad understanding of existing capabilities and potential advancements, emphasizing innovations such as voice-to-text dictation, wearable devices, and AI-assisted procedure note dictation. The primary objective is to provide researchers with valuable insights, enabling them to generate new technologies and advancements within the healthcare landscape. By exploring the benefits, challenges, and future of AI integration, this review encourages the development of innovative solutions, with the goal of enhancing patient care and healthcare delivery efficiency.
Collapse
Affiliation(s)
- Brody M Fogleman
- Internal Medicine, Edward Via College of Osteopathic Medicine - Carolinas, Spartanburg, USA
| | - Matthew Goldman
- Neurological Surgery, Houston Methodist Hospital, Houston, USA
| | - Alexander B Holland
- General Surgery, Edward Via College of Osteopathic Medicine - Carolinas, Spartanburg, USA
| | - Garrett Dyess
- Medicine, University of South Alabama College of Medicine, Mobile, USA
| | - Aashay Patel
- Neurological Surgery, University of Florida College of Medicine, Gainesville, USA
| |
Collapse
|
18
|
Wang Y, Lin W, Zhuang X, Wang X, He Y, Li L, Lyu G. Advances in artificial intelligence for the diagnosis and treatment of ovarian cancer (Review). Oncol Rep 2024; 51:46. [PMID: 38240090 PMCID: PMC10828921 DOI: 10.3892/or.2024.8705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a crucial technique for extracting high‑throughput information from various sources, including medical images, pathological images, and genomics, transcriptomics, proteomics and metabolomics data. AI has been widely used in the field of diagnosis, for the differentiation of benign and malignant ovarian cancer (OC), and for prognostic assessment, with favorable results. Notably, AI‑based radiomics has proven to be a non‑invasive, convenient and economical approach, making it an essential asset in a gynecological setting. The present study reviews the application of AI in the diagnosis, differentiation and prognostic assessment of OC. It is suggested that AI‑based multi‑omics studies have the potential to improve the diagnostic and prognostic predictive ability in patients with OC, thereby facilitating the realization of precision medicine.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Weihong Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xiaoling Zhuang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xiali Wang
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, Fujian 362000, P.R. China
| | - Yifang He
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Luhong Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
19
|
Almansouri NE, Awe M, Rajavelu S, Jahnavi K, Shastry R, Hasan A, Hasan H, Lakkimsetti M, AlAbbasi RK, Gutiérrez BC, Haider A. Early Diagnosis of Cardiovascular Diseases in the Era of Artificial Intelligence: An In-Depth Review. Cureus 2024; 16:e55869. [PMID: 38595869 PMCID: PMC11002715 DOI: 10.7759/cureus.55869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
Cardiovascular diseases (CVDs) are significant health issues that result in high death rates globally. Early detection of cardiovascular events may lower the occurrence of acute myocardial infarction and reduce death rates in people with CVDs. Traditional data analysis is inadequate for managing multidimensional data related to the risk prediction of CVDs, heart attacks, medical image interpretations, therapeutic decision-making, and disease prognosis due to the complex pathological mechanisms and multiple factors involved. Artificial intelligence (AI) is a technology that utilizes advanced computer algorithms to extract information from large databases, and it has been integrated into the medical industry. AI methods have shown the ability to speed up the advancement of diagnosing and treating CVDs such as heart failure, atrial fibrillation, valvular heart disease, hypertrophic cardiomyopathy, congenital heart disease, and more. In clinical settings, AI has shown usefulness in diagnosing cardiovascular illness, improving the efficiency of supporting tools, stratifying and categorizing diseases, and predicting outcomes. Advanced AI algorithms have been intricately designed to analyze intricate relationships within extensive healthcare data, enabling them to tackle more intricate jobs compared to conventional approaches.
Collapse
Affiliation(s)
| | - Mishael Awe
- Internal Medicine, Crimea State Medical University named after S.I Georgievsky, Simferopol, UKR
| | - Selvambigay Rajavelu
- Internal Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Kudapa Jahnavi
- Internal Medicine, Pondicherry Institute of Medical Sciences, Puducherry, IND
| | - Rohan Shastry
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Center, Bengaluru, IND
| | - Ali Hasan
- Internal Medicine, University of Illinois at Chicago, Chicago, USA
| | - Hadi Hasan
- Internal Medicine, University of Illinois, Chicago, USA
| | | | | | - Brian Criollo Gutiérrez
- Health Sciences, Instituto Colombiano de Estudios Superiores de Incolda (ICESI) University, Cali, COL
| | - Ali Haider
- Allied Health Sciences, The University of Lahore, Gujrat, PAK
| |
Collapse
|
20
|
Gala D, Behl H, Shah M, Makaryus AN. The Role of Artificial Intelligence in Improving Patient Outcomes and Future of Healthcare Delivery in Cardiology: A Narrative Review of the Literature. Healthcare (Basel) 2024; 12:481. [PMID: 38391856 PMCID: PMC10887513 DOI: 10.3390/healthcare12040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiovascular diseases exert a significant burden on the healthcare system worldwide. This narrative literature review discusses the role of artificial intelligence (AI) in the field of cardiology. AI has the potential to assist healthcare professionals in several ways, such as diagnosing pathologies, guiding treatments, and monitoring patients, which can lead to improved patient outcomes and a more efficient healthcare system. Moreover, clinical decision support systems in cardiology have improved significantly over the past decade. The addition of AI to these clinical decision support systems can improve patient outcomes by processing large amounts of data, identifying subtle associations, and providing a timely, evidence-based recommendation to healthcare professionals. Lastly, the application of AI allows for personalized care by utilizing predictive models and generating patient-specific treatment plans. However, there are several challenges associated with the use of AI in healthcare. The application of AI in healthcare comes with significant cost and ethical considerations. Despite these challenges, AI will be an integral part of healthcare delivery in the near future, leading to personalized patient care, improved physician efficiency, and anticipated better outcomes.
Collapse
Affiliation(s)
- Dhir Gala
- Department of Clinical Science, American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten, The Netherlands
| | - Haditya Behl
- Department of Clinical Science, American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten, The Netherlands
| | - Mili Shah
- Department of Clinical Science, American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten, The Netherlands
| | - Amgad N Makaryus
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, 500 Hofstra Blvd., Hempstead, NY 11549, USA
- Department of Cardiology, Nassau University Medical Center, Hempstead, NY 11554, USA
| |
Collapse
|
21
|
Panner Selvam MK, Moharana AK, Baskaran S, Finelli R, Hudnall MC, Sikka SC. Current Updates on Involvement of Artificial Intelligence and Machine Learning in Semen Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:279. [PMID: 38399566 PMCID: PMC10890589 DOI: 10.3390/medicina60020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Infertility rates and the number of couples undergoing reproductive care have both increased substantially during the last few decades. Semen analysis is a crucial step in both the diagnosis and the treatment of male infertility. The accuracy of semen analysis results remains quite poor despite years of practice and advancements. Artificial intelligence (AI) algorithms, which can analyze and synthesize large amounts of data, can address the unique challenges involved in semen analysis due to the high objectivity of current methodologies. This review addresses recent AI advancements in semen analysis. Materials and Methods: A systematic literature search was performed in the PubMed database. Non-English articles and studies not related to humans were excluded. We extracted data related to AI algorithms or models used to evaluate semen parameters from the original studies, excluding abstracts, case reports, and meeting reports. Results: Of the 306 articles identified, 225 articles were rejected in the preliminary screening. The evaluation of the full texts of the remaining 81 publications resulted in the exclusion of another 48 articles, with a final inclusion of 33 original articles in this review. Conclusions: AI and machine learning are becoming increasingly popular in biomedical applications. The examination and selection of sperm by andrologists and embryologists may benefit greatly from using these algorithms. Furthermore, when bigger and more reliable datasets become accessible for training, these algorithms may improve over time.
Collapse
Affiliation(s)
- Manesh Kumar Panner Selvam
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.K.M.); (S.B.); (S.C.S.)
| | - Ajaya Kumar Moharana
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.K.M.); (S.B.); (S.C.S.)
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack 753003, Odisha, India
| | - Saradha Baskaran
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.K.M.); (S.B.); (S.C.S.)
| | | | | | - Suresh C. Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.K.M.); (S.B.); (S.C.S.)
| |
Collapse
|
22
|
Sedaghat S. Future Potential Challenges of Using Large Language Models Like ChatGPT in Daily Medical Practice. J Am Coll Radiol 2024; 21:344-345. [PMID: 37922967 DOI: 10.1016/j.jacr.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Sam Sedaghat
- Senior Radiologist and Research Group Lead, Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
23
|
Peptenatu D, Băloi AM, Andronic O, Bolocan A, Cioran N, Gruia AK, Grecu A, Panciu TC, Georgescu L, Munteanu I, Pistol A, Furtunescu F, Strâmbu IR, Ibrahim E, Băiceanu D, Popescu GG, Păduraru D, Jinga V, Mahler B. Spatio-Temporal Pattern of Tuberculosis Distribution in Romania and Particulate Matter Pollution Associated With Risk of Infection. GEOHEALTH 2024; 8:e2023GH000972. [PMID: 38638801 PMCID: PMC11025721 DOI: 10.1029/2023gh000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 04/20/2024]
Abstract
The study proposes a dynamic spatio-temporal profile of the distribution of tuberculosis incidence and air pollution in Romania, where this infectious disease induces more than 8,000 new cases annually. The descriptive analysis for the years 2012-2021 assumes an identification of the structuring patterns of mycobacterium tuberculosis risk in the Romanian population, according to gender and age, exploiting spatial modeling techniques of time series data. Through spatial autocorrelation, the degree of similarity between the analyzed territorial systems was highlighted and the relationships that are built between the analysis units in spatial proximity were investigated. By modeling the geographical distribution of tuberculosis, the spatial correlation with particulate matter (PM2.5) pollution was revealed. The identification of clusters of infected persons is an indispensable step in the construction of efficient tuberculosis management systems. The results highlight the link between the distribution of tuberculosis, air pollution and socio-economic development, which requires a detailed analysis of the epidemiological data obtained in the national tuberculosis surveillance and control program from the perspective of geographical distribution.
Collapse
Affiliation(s)
- D. Peptenatu
- Faculty of GeographyResearch Center for Integrated Analysis and Territorial Management (CAIMT)University of BucharestBucharestRomania
- Graphit Innovation FactoryStr.Constantin BrancoveanuDrobeta Turnu SeverinRomâniaRomânia
| | - A. M. Băloi
- Faculty of GeographyResearch Center for Integrated Analysis and Territorial Management (CAIMT)University of BucharestBucharestRomania
- Graphit Innovation FactoryStr.Constantin BrancoveanuDrobeta Turnu SeverinRomâniaRomânia
- Faculty of Administration and BusinessUniversity of BucharestBucharestRomania
| | - O. Andronic
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - A. Bolocan
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - N. Cioran
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - A. K. Gruia
- Faculty of Administration and BusinessUniversity of BucharestBucharestRomania
| | - A. Grecu
- Faculty of Administration and BusinessUniversity of BucharestBucharestRomania
| | - T. C. Panciu
- Marius Nasta Institute of PneumologyBucharestRomania
| | - L. Georgescu
- Marius Nasta Institute of PneumologyBucharestRomania
| | - I. Munteanu
- Marius Nasta Institute of PneumologyBucharestRomania
| | - A. Pistol
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - F. Furtunescu
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - I. R. Strâmbu
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - E. Ibrahim
- Marius Nasta Institute of PneumologyBucharestRomania
| | - D. Băiceanu
- Marius Nasta Institute of PneumologyBucharestRomania
| | - G. G. Popescu
- Marius Nasta Institute of PneumologyBucharestRomania
| | - D. Păduraru
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - V. Jinga
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - B. Mahler
- Carol Davila University of Medicine and PharmacyBucharestRomania
| |
Collapse
|
24
|
Faerron Guzmán CA. Global health in the age of AI: Safeguarding humanity through collaboration and action. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002778. [PMID: 38206898 PMCID: PMC10783708 DOI: 10.1371/journal.pgph.0002778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This opinion article discusses the impact of artificial intelligence (AI) on global health, addressing its potential risks and benefits to the field. It suggests that, given the existential risks of AI development, the global health community must contribute to AI-related advances, ensuring health equity and the wellbeing of vulnerable populations. Through transdisciplinary collaborations, robust AI governance, and an emphasis on equity, strategies are proposed to harness the potential of AI to reduce health inequalities and improve wellbeing at global and local levels.
Collapse
|
25
|
Issaiy M, Zarei D, Saghazadeh A. Artificial Intelligence and Acute Appendicitis: A Systematic Review of Diagnostic and Prognostic Models. World J Emerg Surg 2023; 18:59. [PMID: 38114983 PMCID: PMC10729387 DOI: 10.1186/s13017-023-00527-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND To assess the efficacy of artificial intelligence (AI) models in diagnosing and prognosticating acute appendicitis (AA) in adult patients compared to traditional methods. AA is a common cause of emergency department visits and abdominal surgeries. It is typically diagnosed through clinical assessments, laboratory tests, and imaging studies. However, traditional diagnostic methods can be time-consuming and inaccurate. Machine learning models have shown promise in improving diagnostic accuracy and predicting outcomes. MAIN BODY A systematic review following the PRISMA guidelines was conducted, searching PubMed, Embase, Scopus, and Web of Science databases. Studies were evaluated for risk of bias using the Prediction Model Risk of Bias Assessment Tool. Data points extracted included model type, input features, validation strategies, and key performance metrics. RESULTS In total, 29 studies were analyzed, out of which 21 focused on diagnosis, seven on prognosis, and one on both. Artificial neural networks (ANNs) were the most commonly employed algorithm for diagnosis. Both ANN and logistic regression were also widely used for categorizing types of AA. ANNs showed high performance in most cases, with accuracy rates often exceeding 80% and AUC values peaking at 0.985. The models also demonstrated promising results in predicting postoperative outcomes such as sepsis risk and ICU admission. Risk of bias was identified in a majority of studies, with selection bias and lack of internal validation being the most common issues. CONCLUSION AI algorithms demonstrate significant promise in diagnosing and prognosticating AA, often surpassing traditional methods and clinical scores such as the Alvarado scoring system in terms of speed and accuracy.
Collapse
Affiliation(s)
- Mahbod Issaiy
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Diana Zarei
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Salama V, Godinich B, Geng Y, Humbert-Vidan L, Maule L, Wahid KA, Naser MA, He R, Mohamed ASR, Fuller CD, Moreno AC. Artificial Intelligence and Machine Learning in Cancer Related Pain: A Systematic Review. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299610. [PMID: 38105979 PMCID: PMC10723503 DOI: 10.1101/2023.12.06.23299610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background/objective Pain is a challenging multifaceted symptom reported by most cancer patients, resulting in a substantial burden on both patients and healthcare systems. This systematic review aims to explore applications of artificial intelligence/machine learning (AI/ML) in predicting pain-related outcomes and supporting decision-making processes in pain management in cancer. Methods A comprehensive search of Ovid MEDLINE, EMBASE and Web of Science databases was conducted using terms including "Cancer", "Pain", "Pain Management", "Analgesics", "Opioids", "Artificial Intelligence", "Machine Learning", "Deep Learning", and "Neural Networks" published up to September 7, 2023. The screening process was performed using the Covidence screening tool. Only original studies conducted in human cohorts were included. AI/ML models, their validation and performance and adherence to TRIPOD guidelines were summarized from the final included studies. Results This systematic review included 44 studies from 2006-2023. Most studies were prospective and uni-institutional. There was an increase in the trend of AI/ML studies in cancer pain in the last 4 years. Nineteen studies used AI/ML for classifying cancer patients' pain development after cancer therapy, with median AUC 0.80 (range 0.76-0.94). Eighteen studies focused on cancer pain research with median AUC 0.86 (range 0.50-0.99), and 7 focused on applying AI/ML for cancer pain management decisions with median AUC 0.71 (range 0.47-0.89). Multiple ML models were investigated with. median AUC across all models in all studies (0.77). Random forest models demonstrated the highest performance (median AUC 0.81), lasso models had the highest median sensitivity (1), while Support Vector Machine had the highest median specificity (0.74). Overall adherence of included studies to TRIPOD guidelines was 70.7%. Lack of external validation (14%) and clinical application (23%) of most included studies was detected. Reporting of model calibration was also missing in the majority of studies (5%). Conclusion Implementation of various novel AI/ML tools promises significant advances in the classification, risk stratification, and management decisions for cancer pain. These advanced tools will integrate big health-related data for personalized pain management in cancer patients. Further research focusing on model calibration and rigorous external clinical validation in real healthcare settings is imperative for ensuring its practical and reliable application in clinical practice.
Collapse
|
27
|
Ng MY, Youssef A, Miner AS, Sarellano D, Long J, Larson DB, Hernandez-Boussard T, Langlotz CP. Perceptions of Data Set Experts on Important Characteristics of Health Data Sets Ready for Machine Learning: A Qualitative Study. JAMA Netw Open 2023; 6:e2345892. [PMID: 38039004 PMCID: PMC10692863 DOI: 10.1001/jamanetworkopen.2023.45892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
Importance The lack of data quality frameworks to guide the development of artificial intelligence (AI)-ready data sets limits their usefulness for machine learning (ML) research in health care and hinders the diagnostic excellence of developed clinical AI applications for patient care. Objective To discern what constitutes high-quality and useful data sets for health and biomedical ML research purposes according to subject matter experts. Design, Setting, and Participants This qualitative study interviewed data set experts, particularly those who are creators and ML researchers. Semistructured interviews were conducted in English and remotely through a secure video conferencing platform between August 23, 2022, and January 5, 2023. A total of 93 experts were invited to participate. Twenty experts were enrolled and interviewed. Using purposive sampling, experts were affiliated with a diverse representation of 16 health data sets/databases across organizational sectors. Content analysis was used to evaluate survey information and thematic analysis was used to analyze interview data. Main Outcomes and Measures Data set experts' perceptions on what makes data sets AI ready. Results Participants included 20 data set experts (11 [55%] men; mean [SD] age, 42 [11] years), of whom all were health data set creators, and 18 of the 20 were also ML researchers. Themes (3 main and 11 subthemes) were identified and integrated into an AI-readiness framework to show their association within the health data ecosystem. Participants partially determined the AI readiness of data sets using priority appraisal elements of accuracy, completeness, consistency, and fitness. Ethical acquisition and societal impact emerged as appraisal considerations in that participant samples have not been described to date in prior data quality frameworks. Factors that drive creation of high-quality health data sets and mitigate risks associated with data reuse in ML research were also relevant to AI readiness. The state of data availability, data quality standards, documentation, team science, and incentivization were associated with elements of AI readiness and the overall perception of data set usefulness. Conclusions and Relevance In this qualitative study of data set experts, participants contributed to the development of a grounded framework for AI data set quality. Data set AI readiness required the concerted appraisal of many elements and the balancing of transparency and ethical reflection against pragmatic constraints. The movement toward more reliable, relevant, and ethical AI and ML applications for patient care will inevitably require strategic updates to data set creation practices.
Collapse
Affiliation(s)
- Madelena Y. Ng
- Department of Medicine (Biomedical Informatics), Stanford University School of Medicine, Stanford, California
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California
| | - Alaa Youssef
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Adam S. Miner
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Daniela Sarellano
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Jin Long
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David B. Larson
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Tina Hernandez-Boussard
- Department of Medicine (Biomedical Informatics), Stanford University School of Medicine, Stanford, California
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California
| | - Curtis P. Langlotz
- Department of Medicine (Biomedical Informatics), Stanford University School of Medicine, Stanford, California
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
28
|
Guillen-Grima F, Guillen-Aguinaga S, Guillen-Aguinaga L, Alas-Brun R, Onambele L, Ortega W, Montejo R, Aguinaga-Ontoso E, Barach P, Aguinaga-Ontoso I. Evaluating the Efficacy of ChatGPT in Navigating the Spanish Medical Residency Entrance Examination (MIR): Promising Horizons for AI in Clinical Medicine. Clin Pract 2023; 13:1460-1487. [PMID: 37987431 PMCID: PMC10660543 DOI: 10.3390/clinpract13060130] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The rapid progress in artificial intelligence, machine learning, and natural language processing has led to increasingly sophisticated large language models (LLMs) for use in healthcare. This study assesses the performance of two LLMs, the GPT-3.5 and GPT-4 models, in passing the MIR medical examination for access to medical specialist training in Spain. Our objectives included gauging the model's overall performance, analyzing discrepancies across different medical specialties, discerning between theoretical and practical questions, estimating error proportions, and assessing the hypothetical severity of errors committed by a physician. MATERIAL AND METHODS We studied the 2022 Spanish MIR examination results after excluding those questions requiring image evaluations or having acknowledged errors. The remaining 182 questions were presented to the LLM GPT-4 and GPT-3.5 in Spanish and English. Logistic regression models analyzed the relationships between question length, sequence, and performance. We also analyzed the 23 questions with images, using GPT-4's new image analysis capability. RESULTS GPT-4 outperformed GPT-3.5, scoring 86.81% in Spanish (p < 0.001). English translations had a slightly enhanced performance. GPT-4 scored 26.1% of the questions with images in English. The results were worse when the questions were in Spanish, 13.0%, although the differences were not statistically significant (p = 0.250). Among medical specialties, GPT-4 achieved a 100% correct response rate in several areas, and the Pharmacology, Critical Care, and Infectious Diseases specialties showed lower performance. The error analysis revealed that while a 13.2% error rate existed, the gravest categories, such as "error requiring intervention to sustain life" and "error resulting in death", had a 0% rate. CONCLUSIONS GPT-4 performs robustly on the Spanish MIR examination, with varying capabilities to discriminate knowledge across specialties. While the model's high success rate is commendable, understanding the error severity is critical, especially when considering AI's potential role in real-world medical practice and its implications for patient safety.
Collapse
Affiliation(s)
- Francisco Guillen-Grima
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
- Healthcare Research Institute of Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Preventive Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, 46980 Madrid, Spain
| | - Sara Guillen-Aguinaga
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
| | - Laura Guillen-Aguinaga
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
- Department of Nursing, Kystad Helse-og Velferdssenter, 7026 Trondheim, Norway
| | - Rosa Alas-Brun
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
| | - Luc Onambele
- School of Health Sciences, Catholic University of Central Africa, Yaoundé 1100, Cameroon;
| | - Wilfrido Ortega
- Department of Surgery, Medical and Social Sciences, University of Alcala de Henares, 28871 Alcalá de Henares, Spain;
| | - Rocio Montejo
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, 413 46 Gothenburg, Sweden;
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| | | | - Paul Barach
- Jefferson College of Population Health, Philadelphia, PA 19107, USA;
- School of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Interdisciplinary Research Institute for Health Law and Science, Sigmund Freud University, 1020 Vienna, Austria
- Department of Surgery, Imperial College, London SW7 2AZ, UK
| | - Ines Aguinaga-Ontoso
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
- Healthcare Research Institute of Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
29
|
Saha PK, Nadeem SA, Comellas AP. A Survey on Artificial Intelligence in Pulmonary Imaging. WILEY INTERDISCIPLINARY REVIEWS. DATA MINING AND KNOWLEDGE DISCOVERY 2023; 13:e1510. [PMID: 38249785 PMCID: PMC10796150 DOI: 10.1002/widm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/21/2023] [Indexed: 01/23/2024]
Abstract
Over the last decade, deep learning (DL) has contributed a paradigm shift in computer vision and image recognition creating widespread opportunities of using artificial intelligence in research as well as industrial applications. DL has been extensively studied in medical imaging applications, including those related to pulmonary diseases. Chronic obstructive pulmonary disease, asthma, lung cancer, pneumonia, and, more recently, COVID-19 are common lung diseases affecting nearly 7.4% of world population. Pulmonary imaging has been widely investigated toward improving our understanding of disease etiologies and early diagnosis and assessment of disease progression and clinical outcomes. DL has been broadly applied to solve various pulmonary image processing challenges including classification, recognition, registration, and segmentation. This paper presents a survey of pulmonary diseases, roles of imaging in translational and clinical pulmonary research, and applications of different DL architectures and methods in pulmonary imaging with emphasis on DL-based segmentation of major pulmonary anatomies such as lung volumes, lung lobes, pulmonary vessels, and airways as well as thoracic musculoskeletal anatomies related to pulmonary diseases.
Collapse
Affiliation(s)
- Punam K Saha
- Departments of Radiology and Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242
| | | | | |
Collapse
|
30
|
Alanzi T, Alanazi F, Mashhour B, Altalhi R, Alghamdi A, Al Shubbar M, Alamro S, Alshammari M, Almusmili L, Alanazi L, Alzahrani S, Alalouni R, Alanzi N, Alsharifa A. Surveying Hematologists' Perceptions and Readiness to Embrace Artificial Intelligence in Diagnosis and Treatment Decision-Making. Cureus 2023; 15:e49462. [PMID: 38152821 PMCID: PMC10751460 DOI: 10.7759/cureus.49462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/29/2023] Open
Abstract
AIM This study aims to explore the critical dimension of assessing the perceptions and readiness of hematologists to embrace artificial intelligence (AI) technologies in their diagnostic and treatment decision-making processes. METHODS This study used a cross-sectional design for collecting data related to the perceptions and readiness of hematologists using a validated online questionnaire-based survey. Both hematologists (MD) and postgraduate MD students in hematology were included in the study. A total of 188 participants, including 35 hematologists (MD) and 153 MD hematology students, completed the survey. RESULTS Major challenges include "AI's level of autonomy" and "the complexity in the field of medicine." Major barriers and risks identified include "lack of trust," "management's level of understanding," "dehumanization of healthcare," and "reduction in physicians' skills." Statistically significant differences in perceptions of benefits including resources (p=0.0326, p<0.05) and knowledge (p=0.0262, p<0.05) were observed between genders. Older physicians were observed to be more concerned about the use of AI compared to younger physicians (p<0.05). CONCLUSION While AI use in hematology diagnosis and treatment decision-making is positively perceived, issues such as lack of trust, transparency, regulations, and poor AI awareness can affect the adoption of AI.
Collapse
Affiliation(s)
- Turki Alanzi
- Department of Health Information Management and Technology, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | - Fehaid Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, SAU
| | | | | | | | | | - Saud Alamro
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | | | | | - Lena Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, SAU
| | | | - Raneem Alalouni
- College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | - Nouf Alanzi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah, SAU
| | | |
Collapse
|
31
|
Larrea-Sebal A, Jebari-Benslaiman S, Galicia-Garcia U, Jose-Urteaga AS, Uribe KB, Benito-Vicente A, Martín C. Predictive Modeling and Structure Analysis of Genetic Variants in Familial Hypercholesterolemia: Implications for Diagnosis and Protein Interaction Studies. Curr Atheroscler Rep 2023; 25:839-859. [PMID: 37847331 PMCID: PMC10618353 DOI: 10.1007/s11883-023-01154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Familial hypercholesterolemia (FH) is a hereditary condition characterized by elevated levels of low-density lipoprotein cholesterol (LDL-C), which increases the risk of cardiovascular disease if left untreated. This review aims to discuss the role of bioinformatics tools in evaluating the pathogenicity of missense variants associated with FH. Specifically, it highlights the use of predictive models based on protein sequence, structure, evolutionary conservation, and other relevant features in identifying genetic variants within LDLR, APOB, and PCSK9 genes that contribute to FH. RECENT FINDINGS In recent years, various bioinformatics tools have emerged as valuable resources for analyzing missense variants in FH-related genes. Tools such as REVEL, Varity, and CADD use diverse computational approaches to predict the impact of genetic variants on protein function. These tools consider factors such as sequence conservation, structural alterations, and receptor binding to aid in interpreting the pathogenicity of identified missense variants. While these predictive models offer valuable insights, the accuracy of predictions can vary, especially for proteins with unique characteristics that might not be well represented in the databases used for training. This review emphasizes the significance of utilizing bioinformatics tools for assessing the pathogenicity of FH-associated missense variants. Despite their contributions, a definitive diagnosis of a genetic variant necessitates functional validation through in vitro characterization or cascade screening. This step ensures the precise identification of FH-related variants, leading to more accurate diagnoses. Integrating genetic data with reliable bioinformatics predictions and functional validation can enhance our understanding of the genetic basis of FH, enabling improved diagnosis, risk stratification, and personalized treatment for affected individuals. The comprehensive approach outlined in this review promises to advance the management of this inherited disorder, potentially leading to better health outcomes for those affected by FH.
Collapse
Affiliation(s)
- Asier Larrea-Sebal
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
- Fundación Biofisika Bizkaia, 48940, Leioa, Spain
| | - Shifa Jebari-Benslaiman
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
| | - Unai Galicia-Garcia
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
| | - Ane San Jose-Urteaga
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
| | - Kepa B Uribe
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
| | - Asier Benito-Vicente
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
| | - César Martín
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain.
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain.
| |
Collapse
|
32
|
Hummelsberger P, Koch TK, Rauh S, Dorn J, Lermer E, Raue M, Hudecek MFC, Schicho A, Colak E, Ghassemi M, Gaube S. Insights on the Current State and Future Outlook of AI in Health Care: Expert Interview Study. JMIR AI 2023; 2:e47353. [PMID: 38875571 PMCID: PMC11041415 DOI: 10.2196/47353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/06/2023] [Accepted: 08/01/2023] [Indexed: 06/16/2024]
Abstract
BACKGROUND Artificial intelligence (AI) is often promoted as a potential solution for many challenges health care systems face worldwide. However, its implementation in clinical practice lags behind its technological development. OBJECTIVE This study aims to gain insights into the current state and prospects of AI technology from the stakeholders most directly involved in its adoption in the health care sector whose perspectives have received limited attention in research to date. METHODS For this purpose, the perspectives of AI researchers and health care IT professionals in North America and Western Europe were collected and compared for profession-specific and regional differences. In this preregistered, mixed methods, cross-sectional study, 23 experts were interviewed using a semistructured guide. Data from the interviews were analyzed using deductive and inductive qualitative methods for the thematic analysis along with topic modeling to identify latent topics. RESULTS Through our thematic analysis, four major categories emerged: (1) the current state of AI systems in health care, (2) the criteria and requirements for implementing AI systems in health care, (3) the challenges in implementing AI systems in health care, and (4) the prospects of the technology. Experts discussed the capabilities and limitations of current AI systems in health care in addition to their prevalence and regional differences. Several criteria and requirements deemed necessary for the successful implementation of AI systems were identified, including the technology's performance and security, smooth system integration and human-AI interaction, costs, stakeholder involvement, and employee training. However, regulatory, logistical, and technical issues were identified as the most critical barriers to an effective technology implementation process. In the future, our experts predicted both various threats and many opportunities related to AI technology in the health care sector. CONCLUSIONS Our work provides new insights into the current state, criteria, challenges, and outlook for implementing AI technology in health care from the perspective of AI researchers and IT professionals in North America and Western Europe. For the full potential of AI-enabled technologies to be exploited and for them to contribute to solving current health care challenges, critical implementation criteria must be met, and all groups involved in the process must work together.
Collapse
Affiliation(s)
- Pia Hummelsberger
- LMU Center for Leadership and People Management, Department of Psychology, LMU Munich, Munich, Germany
| | - Timo K Koch
- LMU Center for Leadership and People Management, Department of Psychology, LMU Munich, Munich, Germany
- Department of Psychology, LMU Munich, Munich, Germany
| | - Sabrina Rauh
- LMU Center for Leadership and People Management, Department of Psychology, LMU Munich, Munich, Germany
| | - Julia Dorn
- LMU Center for Leadership and People Management, Department of Psychology, LMU Munich, Munich, Germany
| | - Eva Lermer
- LMU Center for Leadership and People Management, Department of Psychology, LMU Munich, Munich, Germany
- Department of Business Psychology, Technical University of Applied Sciences Augsburg, Augsburg, Germany
| | - Martina Raue
- MIT AgeLab, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matthias F C Hudecek
- Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Andreas Schicho
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Errol Colak
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Medical Imaging, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Medical Imaging, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Marzyeh Ghassemi
- Electrical Engineering and Computer Science, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Vector Institute, Toronto, ON, Canada
| | - Susanne Gaube
- UCL Global Business School for Health, University College London, London, United Kingdom
| |
Collapse
|
33
|
Avella P, Cappuccio M, Cappuccio T, Rotondo M, Fumarulo D, Guerra G, Sciaudone G, Santone A, Cammilleri F, Bianco P, Brunese MC. Artificial Intelligence to Early Predict Liver Metastases in Patients with Colorectal Cancer: Current Status and Future Prospectives. Life (Basel) 2023; 13:2027. [PMID: 37895409 PMCID: PMC10608483 DOI: 10.3390/life13102027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Artificial Intelligence (AI)-based analysis represents an evolving medical field. In the last few decades, several studies have reported the diagnostic efficiency of AI applied to Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) to early detect liver metastases (LM), mainly from colorectal cancer. Despite the increase in information and the development of different procedures in several radiological fields, an accurate method of predicting LM has not yet been found. This review aims to compare the diagnostic efficiency of different AI methods in the literature according to accuracy, sensibility, precision, and recall to identify early LM. METHODS A narrative review of the literature was conducted on PubMed. A total of 336 studies were screened. RESULTS We selected 17 studies from 2012 to 2022. In total, 14,475 patients were included, and more than 95% were affected by colorectal cancer. The most frequently used imaging tool to early detect LM was found to be CT (58%), while MRI was used in three cases. Four different AI analyses were used: deep learning, radiomics, machine learning, and fuzzy systems in seven (41.18%), five (29.41%), four (23.53%), and one (5.88%) cases, respectively. Four studies achieved an accuracy of more than 90% after MRI and CT scan acquisition, while just two reported a recall rate ≥90% (one method using MRI and CT and one CT). CONCLUSIONS Routinely acquired radiological images could be used for AI-based analysis to early detect LM. Simultaneous use of radiomics and machine learning analysis applied to MRI or CT images should be an effective method considering the better results achieved in the clinical scenario.
Collapse
Affiliation(s)
- Pasquale Avella
- HPB Surgery Unit, Pineta Grande Hospital, Castel Volturno, 81030 Caserta, Italy;
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Micaela Cappuccio
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Teresa Cappuccio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| | - Marco Rotondo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| | - Daniela Fumarulo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| | - Germano Guerra
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| | - Guido Sciaudone
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| | - Antonella Santone
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| | | | - Paolo Bianco
- HPB Surgery Unit, Pineta Grande Hospital, Castel Volturno, 81030 Caserta, Italy;
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (T.C.); (M.R.); (D.F.); (G.G.); (G.S.); (A.S.); (M.C.B.)
| |
Collapse
|
34
|
Peptenatu D, Nedelcu ID, Pop CS, Simion AG, Furtunescu F, Burcea M, Andronache I, Radulovic M, Jelinek HF, Ahammer H, Gruia AK, Grecu A, Popa MC, Militaru V, Drăghici CC, Pintilii RD. The Spatial-Temporal Dimension of Oncological Prevalence and Mortality in Romania. GEOHEALTH 2023; 7:e2023GH000901. [PMID: 37799773 PMCID: PMC10549965 DOI: 10.1029/2023gh000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 10/07/2023]
Abstract
The objective of this study was to identify spatial disparities in the distribution of cancer hotspots within Romania. Additionally, the research aimed to track prevailing trends in cancer prevalence and mortality according to a cancer type. The study covered the timeframe between 2008 and 2017, examining all 3,181 territorial administrative units. The analysis of spatial distribution relied on two key parameters. The first parameter, persistence, measured the duration for which cancer prevalence exceeded the 75th percentile threshold. Cancer prevalence refers to the total number of individuals in a population who have been diagnosed with cancer at a specific time point, including both newly diagnosed cases (occurrence) and existing cases. The second parameter, the time continuity of persistence, calculated the consecutive months during which cancer prevalence consistently surpassed the 75th percentile threshold. Notably, persistence of elevated values was also evident in lowland regions, devoid of any discernible direct connection to environmental conditions. In conclusion, this work bears substantial relevance to regional health policies, by aiding in the formulation of prevention strategies, while also fostering a deeper comprehension of the socioeconomic and environmental factors contributing to cancer.
Collapse
Affiliation(s)
- D. Peptenatu
- Research Center for Integrated Analysis and Territorial Management—CAIMTFaculty of GeographyUniversity of BucharestBucharestRomania
| | - I. D. Nedelcu
- Research Center for Integrated Analysis and Territorial Management—CAIMTFaculty of GeographyUniversity of BucharestBucharestRomania
| | - C. S. Pop
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - A. G. Simion
- Research Center for Integrated Analysis and Territorial Management—CAIMTFaculty of GeographyUniversity of BucharestBucharestRomania
| | - F. Furtunescu
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - M. Burcea
- Faculty of Administration and BusinessUniversity of BucharestBucharestRomania
| | - I. Andronache
- Research Center for Integrated Analysis and Territorial Management—CAIMTFaculty of GeographyUniversity of BucharestBucharestRomania
| | - M. Radulovic
- Department of Experimental OncologyInstitute of Oncology and Radiology of SerbiaBelgradeSerbia
| | - H. F. Jelinek
- Department of Biomedical Engineering and Healthcare Engineering Innovation CenterKhalifa UniversityAbu DhabiUnited Arab Emirates
| | - H. Ahammer
- Division of Medical Physics and BiophysicsGSRCMedical University of GrazGrazAustria
| | - A. K. Gruia
- Faculty of Administration and BusinessUniversity of BucharestBucharestRomania
| | - A. Grecu
- Faculty of Administration and BusinessUniversity of BucharestBucharestRomania
| | - M. C. Popa
- Research Center for Integrated Analysis and Territorial Management—CAIMTFaculty of GeographyUniversity of BucharestBucharestRomania
| | - V. Militaru
- Faculty of MedicineIuliu Haţieganu University of Medicine and Pharmacy Cluj‐NapocaCluj‐NapocaRomania
| | - C. C. Drăghici
- Research Center for Integrated Analysis and Territorial Management—CAIMTFaculty of GeographyUniversity of BucharestBucharestRomania
| | - R. D. Pintilii
- Research Center for Integrated Analysis and Territorial Management—CAIMTFaculty of GeographyUniversity of BucharestBucharestRomania
| |
Collapse
|
35
|
Suárez M, Martínez R, Torres AM, Ramón A, Blasco P, Mateo J. A Machine Learning-Based Method for Detecting Liver Fibrosis. Diagnostics (Basel) 2023; 13:2952. [PMID: 37761319 PMCID: PMC10529519 DOI: 10.3390/diagnostics13182952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Cholecystectomy and Metabolic-associated steatotic liver disease (MASLD) are prevalent conditions in gastroenterology, frequently co-occurring in clinical practice. Cholecystectomy has been shown to have metabolic consequences, sharing similar pathological mechanisms with MASLD. A database of MASLD patients who underwent cholecystectomy was analysed. This study aimed to develop a tool to identify the risk of liver fibrosis after cholecystectomy. For this purpose, the extreme gradient boosting (XGB) algorithm was used to construct an effective predictive model. The factors associated with a better predictive method were platelet level, followed by dyslipidaemia and type-2 diabetes (T2DM). Compared to other ML methods, our proposed method, XGB, achieved higher accuracy values. The XGB method had the highest balanced accuracy (93.16%). XGB outperformed KNN in accuracy (93.16% vs. 84.45%) and AUC (0.92 vs. 0.84). These results demonstrate that the proposed XGB method can be used as an automatic diagnostic aid for MASLD patients based on machine-learning techniques.
Collapse
Affiliation(s)
- Miguel Suárez
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Raquel Martínez
- Gastroenterology Department, Virgen de la Luz Hospital, 16002 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Ana María Torres
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Antonio Ramón
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Pilar Blasco
- Department of Pharmacy, General University Hospital, 46014 Valencia, Spain
| | - Jorge Mateo
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, 16071 Cuenca, Spain
- Medical Analysis Expert Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
36
|
Elsabagh AA, Elhadary M, Elsayed B, Elshoeibi AM, Ferih K, Kaddoura R, Alkindi S, Alshurafa A, Alrasheed M, Alzayed A, Al-Abdulmalek A, Altooq JA, Yassin M. Artificial intelligence in sickle disease. Blood Rev 2023; 61:101102. [PMID: 37355428 DOI: 10.1016/j.blre.2023.101102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Abstract
Artificial intelligence (AI) is rapidly becoming an established arm in medical sciences and clinical practice in numerous medical fields. Its implications have been rising and are being widely used in research, diagnostics, and treatment options for many pathologies, including sickle cell disease (SCD). AI has started new ways to improve risk stratification and diagnosing SCD complications early, allowing rapid intervention and reallocation of resources to high-risk patients. We reviewed the literature for established and new AI applications that may enhance management of SCD through advancements in diagnosing SCD and its complications, risk stratification, and the effect of AI in establishing an individualized approach in managing SCD patients in the future. Aim: to review the benefits and drawbacks of resources utilizing AI in clinical practice for improving the management for SCD cases.
Collapse
Affiliation(s)
| | | | - Basel Elsayed
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Khaled Ferih
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rasha Kaddoura
- Pharmacy Department, Heart Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Salam Alkindi
- Professor of Hematology, Sultan Qaboos University, Oman
| | - Awni Alshurafa
- Department of Hematology, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mona Alrasheed
- Hematology Unit, Department of Medicine, Aladnan Hospital, Ministry of Health, Kuwait
| | | | | | | | - Mohamed Yassin
- Hematology Section, Medical Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar.
| |
Collapse
|
37
|
Lee Y, Choi HJ, Kim H, Kim S, Kim MS, Cha H, Eum YJ, Cho H, Park JE, You SH. Feasibility of artificial intelligence-driven interfractional monitoring of organ changes by mega-voltage computed tomography in intensity-modulated radiotherapy of prostate cancer. Radiat Oncol J 2023; 41:186-198. [PMID: 37793628 PMCID: PMC10556843 DOI: 10.3857/roj.2023.00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
PURPOSE High-dose radiotherapy (RT) for localized prostate cancer requires careful consideration of target position changes and adjacent organs-at-risk (OARs), such as the rectum and bladder. Therefore, daily monitoring of target position and OAR changes is crucial in minimizing interfractional dosimetric uncertainties. For efficient monitoring of the internal condition of patients, we assessed the feasibility of an auto-segmentation of OARs on the daily acquired images, such as megavoltage computed tomography (MVCT), via a commercial artificial intelligence (AI)-based solution in this study. MATERIALS AND METHODS We collected MVCT images weekly during the entire course of RT for 100 prostate cancer patients treated with the helical TomoTherapy system. Based on the manually contoured body outline, the bladder including prostate area, and rectal balloon regions for the 100 MVCT images, we trained the commercially available fully convolutional (FC)-DenseNet model and tested its auto-contouring performance. RESULTS Based on the optimally determined hyperparameters, the FC-DenseNet model successfully auto-contoured all regions of interest showing high dice similarity coefficient (DSC) over 0.8 and a small mean surface distance (MSD) within 1.43 mm in reference to the manually contoured data. With this well-trained AI model, we have efficiently monitored the patient's internal condition through six MVCT scans, analyzing DSC, MSD, centroid, and volume differences. CONCLUSION We have verified the feasibility of utilizing a commercial AI-based model for auto-segmentation with low-quality daily MVCT images. In the future, we will establish a fast and accurate auto-segmentation and internal organ monitoring system for efficiently determining the time for adaptive replanning.
Collapse
Affiliation(s)
- Yohan Lee
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyun Joon Choi
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyemi Kim
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sunghyun Kim
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Mi Sun Kim
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyejung Cha
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Ju Eum
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyosung Cho
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Korea
| | - Jeong Eun Park
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Korea
| | - Sei Hwan You
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
38
|
Dhopte A, Bagde H. Smart Smile: Revolutionizing Dentistry With Artificial Intelligence. Cureus 2023; 15:e41227. [PMID: 37529520 PMCID: PMC10387377 DOI: 10.7759/cureus.41227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Artificial intelligence (AI) has emerged as a transformative technology in various industries, and its potential in dentistry is gaining significant attention. This abstract explores the future prospects of AI in dentistry, highlighting its potential to revolutionize clinical practice, improve patient outcomes, and enhance the overall efficiency of dental care. The application of AI in dentistry encompasses several key areas, including diagnosis, treatment planning, image analysis, patient management, and personalized care. AI algorithms have shown promising results in the automated detection and diagnosis of dental conditions, such as caries, periodontal diseases, and oral cancers, aiding clinicians in early intervention and improving treatment outcomes. Furthermore, AI-powered treatment planning systems leverage machine learning techniques to analyze vast amounts of patient data, considering factors like medical history, anatomical variations, and treatment success rates. These systems provide dentists with valuable insights and support in making evidence-based treatment decisions, ultimately leading to more predictable and tailored treatment approaches. While the potential of AI in dentistry is immense, it is essential to address certain challenges, including data privacy, algorithm bias, and regulatory considerations. Collaborative efforts between dental professionals, AI experts, and policymakers are crucial to developing robust frameworks that ensure the responsible and ethical implementation of AI in dentistry. Moreover, AI-driven robotics has introduced innovative approaches to dental surgery, enabling precise and minimally invasive procedures, and ultimately reducing patient discomfort and recovery time. Virtual reality (VR) and augmented reality (AR) applications further enhance dental education and training, allowing dental professionals to refine their skills in a realistic and immersive environment. AI holds tremendous promise in shaping the future of dentistry. Through its ability to analyze vast amounts of data, provide accurate diagnoses, facilitate treatment planning, improve image analysis, streamline patient management, and enable personalized care, AI has the potential to enhance dental practice and significantly improve patient outcomes. Embracing this technology and its future development will undoubtedly revolutionize the field of dentistry, fostering a more efficient, precise, and patient-centric approach to oral healthcare. Overall, AI represents a powerful tool that has the potential to revolutionize various aspects of society, from improving healthcare outcomes to optimizing business operations. Continued research, development, and responsible implementation of AI technologies will shape our future, unlocking new possibilities and transforming the way we live and work.
Collapse
Affiliation(s)
- Ashwini Dhopte
- Department of Oral Medicine and Radiology, Rama Dental College and Research Centre, Kanpur, IND
| | - Hiroj Bagde
- Department of Periodontology, Rama Dental College and Research Centre, Kanpur, IND
| |
Collapse
|
39
|
Gasciauskaite G, Malorgio A, Castellucci C, Budowski A, Schweiger G, Kolbe M, Grande B, Noethiger CB, Spahn DR, Roche TR, Tscholl DW, Akbas S. User Perceptions of ROTEM-Guided Haemostatic Resuscitation: A Mixed Qualitative-Quantitative Study. Bioengineering (Basel) 2023; 10:bioengineering10030386. [PMID: 36978777 PMCID: PMC10044818 DOI: 10.3390/bioengineering10030386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Viscoelastic point-of-care haemostatic resuscitation methods, such as ROTEM or TEG, are crucial in deciding on time-efficient personalised coagulation interventions. International transfusion guidelines emphasise increased patient safety and reduced treatment costs. We analysed care providers' perceptions of ROTEM to identify perceived strengths and areas for improvement. We conducted a single-centre, mixed qualitative-quantitative study consisting of interviews followed by an online survey. Using a template approach, we first identified themes in the responses given by care providers about ROTEM. Later, the participants rated six statements based on the identified themes on five-point Likert scales in an online questionnaire. Seventy-seven participants were interviewed, and 52 completed the online survey. By analysing user perceptions, we identified ten themes. The most common positive theme was "high accuracy". The most common negative theme was "need for training". In the online survey, 94% of participants agreed that monitoring the real-time ROTEM temograms helps to initiate targeted treatment more quickly and 81% agreed that recurrent ROTEM training would be beneficial. Anaesthesia care providers found ROTEM to be accurate and quickly available to support decision-making in dynamic and complex haemostatic situations. However, clinicians identified that interpreting ROTEM is a complex and cognitively demanding task that requires significant training needs.
Collapse
Affiliation(s)
- Greta Gasciauskaite
- Institute of Anaesthesiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Amos Malorgio
- Institute of Anaesthesiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Clara Castellucci
- Institute of Anaesthesiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Alexandra Budowski
- Institute of Anaesthesiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Giovanna Schweiger
- Institute of Anaesthesiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Michaela Kolbe
- Simulation Center, University Hospital Zurich, Gloriastrasse 19, 8091 Zurich, Switzerland
| | - Bastian Grande
- Institute of Anaesthesiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Christoph B Noethiger
- Institute of Anaesthesiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Donat R Spahn
- Institute of Anaesthesiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Tadzio R Roche
- Institute of Anaesthesiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - David W Tscholl
- Institute of Anaesthesiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Samira Akbas
- Institute of Anaesthesiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| |
Collapse
|
40
|
Akbulut S, Yagin FH, Cicek IB, Koc C, Colak C, Yilmaz S. Prediction of Perforated and Nonperforated Acute Appendicitis Using Machine Learning-Based Explainable Artificial Intelligence. Diagnostics (Basel) 2023; 13:diagnostics13061173. [PMID: 36980481 PMCID: PMC10047288 DOI: 10.3390/diagnostics13061173] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Background: The primary aim of this study was to create a machine learning (ML) model that can predict perforated and nonperforated acute appendicitis (AAp) with high accuracy and to demonstrate the clinical interpretability of the model with explainable artificial intelligence (XAI). Method: A total of 1797 patients who underwent appendectomy with a preliminary diagnosis of AAp between May 2009 and March 2022 were included in the study. Considering the histopathological examination, the patients were divided into two groups as AAp (n = 1465) and non-AAp (NA; n = 332); the non-AAp group is also referred to as negative appendectomy. Subsequently, patients confirmed to have AAp were divided into two subgroups: nonperforated (n = 1161) and perforated AAp (n = 304). The missing values in the data set were assigned using the Random Forest method. The Boruta variable selection method was used to identify the most important variables associated with AAp and perforated AAp. The class imbalance problem in the data set was resolved by the SMOTE method. The CatBoost model was used to classify AAp and non-AAp patients and perforated and nonperforated AAp patients. The performance of the model in the holdout test set was evaluated with accuracy, F1- score, sensitivity, specificity, and area under the receiver operator curve (AUC). The SHAP method, which is one of the XAI methods, was used to interpret the model results. Results: The CatBoost model could distinguish AAp patients from non-AAp individuals with an accuracy of 88.2% (85.6–90.8%), while distinguishing perforated AAp patients from nonperforated AAp individuals with an accuracy of 92% (89.6–94.5%). According to the results of the SHAP method applied to the CatBoost model, it was observed that high total bilirubin, WBC, Netrophil, WLR, NLR, CRP, and WNR values, and low PNR, PDW, and MCV values increased the prediction of AAp biochemically. On the other hand, high CRP, Age, Total Bilirubin, PLT, RDW, WBC, MCV, WLR, NLR, and Neutrophil values, and low Lymphocyte, PDW, MPV, and PNR values were observed to increase the prediction of perforated AAp. Conclusion: For the first time in the literature, a new approach combining ML and XAI methods was tried to predict AAp and perforated AAp, and both clinical conditions were predicted with high accuracy. This new approach proved successful in showing how well which demographic and biochemical parameters could explain the current clinical situation in predicting AAp and perforated AAp.
Collapse
Affiliation(s)
- Sami Akbulut
- Department of Surgery, Liver Transplant Institute, Inonu University Faculty of Medicine, 244280 Malatya, Turkey
- Department of Biostatistics, and Medical Informatics, Inonu University Faculty of Medicine, 44280 Malatya, Turkey
- Correspondence:
| | - Fatma Hilal Yagin
- Department of Biostatistics, and Medical Informatics, Inonu University Faculty of Medicine, 44280 Malatya, Turkey
| | - Ipek Balikci Cicek
- Department of Biostatistics, and Medical Informatics, Inonu University Faculty of Medicine, 44280 Malatya, Turkey
| | - Cemalettin Koc
- Department of Surgery, Liver Transplant Institute, Inonu University Faculty of Medicine, 244280 Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics, and Medical Informatics, Inonu University Faculty of Medicine, 44280 Malatya, Turkey
| | - Sezai Yilmaz
- Department of Surgery, Liver Transplant Institute, Inonu University Faculty of Medicine, 244280 Malatya, Turkey
| |
Collapse
|
41
|
Walter W, Pohlkamp C, Meggendorfer M, Nadarajah N, Kern W, Haferlach C, Haferlach T. Artificial intelligence in hematological diagnostics: Game changer or gadget? Blood Rev 2023; 58:101019. [PMID: 36241586 DOI: 10.1016/j.blre.2022.101019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
Abstract
The future of clinical diagnosis and treatment of hematologic diseases will inevitably involve the integration of artificial intelligence (AI)-based systems into routine practice to support the hematologists' decision making. Several studies have shown that AI-based models can already be used to automatically differentiate cells, reliably detect malignant cell populations, support chromosome banding analysis, and interpret clinical variants, contributing to early disease detection and prognosis. However, even the best tool can become useless if it is misapplied or the results are misinterpreted. Therefore, in order to comprehensively judge and correctly apply newly developed AI-based systems, the hematologist must have a basic understanding of the general concepts of machine learning. In this review, we provide the hematologist with a comprehensive overview of various machine learning techniques, their current implementations and approaches in different diagnostic subfields (e.g., cytogenetics, molecular genetics), and the limitations and unresolved challenges of the systems.
Collapse
Affiliation(s)
- Wencke Walter
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| | - Christian Pohlkamp
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| | - Manja Meggendorfer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| | - Niroshan Nadarajah
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| | - Claudia Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| |
Collapse
|
42
|
Scafa Udriște A, Niculescu AG, Iliuță L, Bajeu T, Georgescu A, Grumezescu AM, Bădilă E. Progress in Biomaterials for Cardiac Tissue Engineering and Regeneration. Polymers (Basel) 2023; 15:polym15051177. [PMID: 36904419 PMCID: PMC10007484 DOI: 10.3390/polym15051177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cardiovascular diseases are one of the leading global causes of morbidity and mortality, posing considerable health and economic burden on patients and medical systems worldwide. This phenomenon is attributed to two main motives: poor regeneration capacity of adult cardiac tissues and insufficient therapeutic options. Thus, the context calls for upgrading treatments to deliver better outcomes. In this respect, recent research has approached the topic from an interdisciplinary perspective. Combining the advances encountered in chemistry, biology, material science, medicine, and nanotechnology, performant biomaterial-based structures have been created to carry different cells and bioactive molecules for repairing and restoring heart tissues. In this regard, this paper aims to present the advantages of biomaterial-based approaches for cardiac tissue engineering and regeneration, focusing on four main strategies: cardiac patches, injectable hydrogels, extracellular vesicles, and scaffolds and reviewing the most recent developments in these fields.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Luminița Iliuță
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Teodor Bajeu
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Adriana Georgescu
- Pathophysiology and Pharmacology Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Elisabeta Bădilă
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cardiology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
43
|
Chen F, Kantagowit P, Nopsopon T, Chuklin A, Pongpirul K. Prediction and diagnosis of chronic kidney disease development and progression using machine-learning: Protocol for a systematic review and meta-analysis of reporting standards and model performance. PLoS One 2023; 18:e0278729. [PMID: 36821539 PMCID: PMC9949618 DOI: 10.1371/journal.pone.0278729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic Kidney disease (CKD) is an important yet under-recognized contributor to morbidity and mortality globally. Machine-learning (ML) based decision support tools have been developed across many aspects of CKD care. Notably, algorithms developed in the prediction and diagnosis of CKD development and progression may help to facilitate early disease prevention, assist with early planning of renal replacement therapy, and offer potential clinical and economic benefits to patients and health systems. Clinical implementation can be affected by the uncertainty surrounding the methodological rigor and performance of ML-based models. This systematic review aims to evaluate the application of prognostic and diagnostic ML tools in CKD development and progression. The protocol has been prepared using the Preferred Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) guidelines. The systematic review protocol for CKD prediction and diagnosis have been registered with the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42022356704, CRD42022372378). A systematic search will be undertaken of PubMed, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), the Web of Science, and the IEEE Xplore digital library. Studies in which ML has been applied to predict and diagnose CKD development and progression will be included. The primary outcome will be the comparison of the performance of ML-based models with non-ML-based models. Secondary analysis will consist of model use cases, model construct, and model reporting quality. This systematic review will offer valuable insight into the performance and reporting quality of ML-based models in CKD diagnosis and prediction. This will inform clinicians and technical specialists of the current development of ML in CKD care, as well as direct future model development and standardization.
Collapse
Affiliation(s)
- Fangyue Chen
- Global Health Partnerships, Health Education England, London, United Kingdom
- School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Tanawin Nopsopon
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Arisa Chuklin
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Krit Pongpirul
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Clinical Research Center, Bumrungrad International Hospital, Bangkok, Thailand
| |
Collapse
|
44
|
A Series-Based Deep Learning Approach to Lung Nodule Image Classification. Cancers (Basel) 2023; 15:cancers15030843. [PMID: 36765801 PMCID: PMC9913559 DOI: 10.3390/cancers15030843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Although many studies have shown that deep learning approaches yield better results than traditional methods based on manual features, CADs methods still have several limitations. These are due to the diversity in imaging modalities and clinical pathologies. This diversity creates difficulties because of variation and similarities between classes. In this context, the new approach from our study is a hybrid method that performs classifications using both medical image analysis and radial scanning series features. Hence, the areas of interest obtained from images are subjected to a radial scan, with their centers as poles, in order to obtain series. A U-shape convolutional neural network model is then used for the 4D data classification problem. We therefore present a novel approach to the classification of 4D data obtained from lung nodule images. With radial scanning, the eigenvalue of nodule images is captured, and a powerful classification is performed. According to our results, an accuracy of 92.84% was obtained and much more efficient classification scores resulted as compared to recent classifiers.
Collapse
|
45
|
Zhukov OB, Chernykh VB. Artificial intelligence in reproductive medicine. ANDROLOGY AND GENITAL SURGERY 2023. [DOI: 10.17650/2070-9781-2022-23-4-15-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- O. B. Zhukov
- Рeoples’ Friendship University of Russia (RUDN University); Association of Vascular Urologists and Reproductologists
| | - V. B. Chernykh
- Research Centre for Medical Genetics; N.I. Pirogov Russian National Research Medical University
| |
Collapse
|
46
|
Busnatu ȘS, Niculescu AG, Bolocan A, Andronic O, Pantea Stoian AM, Scafa-Udriște A, Stănescu AMA, Păduraru DN, Nicolescu MI, Grumezescu AM, Jinga V. A Review of Digital Health and Biotelemetry: Modern Approaches towards Personalized Medicine and Remote Health Assessment. J Pers Med 2022; 12:1656. [PMID: 36294795 PMCID: PMC9604784 DOI: 10.3390/jpm12101656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
With the prevalence of digitalization in all aspects of modern society, health assessment is becoming digital too. Taking advantage of the most recent technological advances and approaching medicine from an interdisciplinary perspective has allowed for important progress in healthcare services. Digital health technologies and biotelemetry devices have been more extensively employed for preventing, detecting, diagnosing, monitoring, and predicting the evolution of various diseases, without requiring wires, invasive procedures, or face-to-face interaction with medical personnel. This paper aims to review the concepts correlated to digital health, classify and describe biotelemetry devices, and present the potential of digitalization for remote health assessment, the transition to personalized medicine, and the streamlining of clinical trials.
Collapse
Affiliation(s)
- Ștefan Sebastian Busnatu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Bolocan
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Octavian Andronic
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | | | - Alexandru Scafa-Udriște
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | | | - Dan Nicolae Păduraru
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Mihnea Ioan Nicolescu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Viorel Jinga
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
47
|
Miranda D, Olivares R, Munoz R, Minonzio JG. Improvement of Patient Classification Using Feature Selection Applied to Bidirectional Axial Transmission. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2663-2671. [PMID: 35914050 DOI: 10.1109/tuffc.2022.3195477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Osteoporosis is still a worldwide problem, particularly due to associated fragility fractures. Patients at risk of fracture are currently detected using the X-Ray gold standard dual-energy X-ray absorptiometry (DXA), based on a calibrated 2-D image. Different alternatives, such as 3-D X-rays, magnetic resonance imaging (MRI) or ultrasound, have been proposed, the latter having advantages of being portable and sensitive to mechanical and geometrical properties. Bidirectional axial transmission (BDAT) has been used to classify between patients with or without nontraumatic fractures using "classical" ultrasonic parameters, such as velocities, as well as cortical thickness and porosity, obtained from an inverse problems. Recently, complementary parameters acquired with structural and textural analysis of guided wave spectrum images (GWSIs) have been introduced. These parameters are not limited by solution ambiguities, as for inverse problem. The aim of the study is to improve the patient classification using a feature selection strategy for all available ultrasound features completed by clinical parameters. To this end, three classical feature ranking methods were considered: analysis of variance (ANOVA), recursive feature elimination (RFE), and extreme gradient boosting importance feature (XGBI). In order to evaluate the performance of the feature selection techniques, three classical classification methods were used: logistic regression (LR), support vector machine (SVM), and extreme gradient boosting (XGB). The database was obtained from a previous clinical study [Minonzio et al., 2019]. Results indicate that the best accuracy of 71 [66-76]% was achieved by using RFE and SVM with 22 (out of 43) ultrasonic and clinical features. This value outperformed the accuracy of 68 [64-73]% reached with 2 (out of 6) DXA and clinical features. These values open promising perspectives toward improved and generalizable classification of patients at risk of fracture.
Collapse
|
48
|
An Updated Overview of Cyclodextrin-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081748. [PMID: 36015374 PMCID: PMC9412332 DOI: 10.3390/pharmaceutics14081748] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 12/18/2022] Open
Abstract
Encompassing a group of complex and heterogeneous diseases, cancer continues to be a challenge for patients and healthcare systems worldwide. Thus, it is of vital importance to develop advanced treatment strategies that could reduce the trends of cancer-associated morbidity and mortality rates. Scientists have focused on creating performant delivery vehicles for anti-cancer agents. Among the possible materials, cyclodextrins (CDs) attracted increasing interest over the past few years, leading to the emergence of promising anti-tumor nanomedicines. Tackling their advantageous chemical structure, ease of modification, natural origin, biocompatibility, low immunogenicity, and commercial availability, researchers investigated CD-based therapeutical formulations against many types of cancer. In this respect, in this paper, we briefly present the properties of interest of CDs for designing performant nanocarriers, further reviewing some of the most recent potential applications of CD-based delivery systems in cancer management.
Collapse
|
49
|
Păduraru DN, Niculescu AG, Bolocan A, Andronic O, Grumezescu AM, Bîrlă R. An Updated Overview of Cyclodextrin-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022. [DOI: https://doi.org/10.3390/pharmaceutics14081748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Encompassing a group of complex and heterogeneous diseases, cancer continues to be a challenge for patients and healthcare systems worldwide. Thus, it is of vital importance to develop advanced treatment strategies that could reduce the trends of cancer-associated morbidity and mortality rates. Scientists have focused on creating performant delivery vehicles for anti-cancer agents. Among the possible materials, cyclodextrins (CDs) attracted increasing interest over the past few years, leading to the emergence of promising anti-tumor nanomedicines. Tackling their advantageous chemical structure, ease of modification, natural origin, biocompatibility, low immunogenicity, and commercial availability, researchers investigated CD-based therapeutical formulations against many types of cancer. In this respect, in this paper, we briefly present the properties of interest of CDs for designing performant nanocarriers, further reviewing some of the most recent potential applications of CD-based delivery systems in cancer management.
Collapse
|
50
|
Special Issue on Big Data for eHealth Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the last few years, the rapid growth in available digitised medical data has opened new challenges for the scientific research community in the healthcare informatics field [...]
Collapse
|