1
|
Bychkova S, Bychkov M, Dordević D, Rittmann SKMR, Vítězová M, Kushkevych I. The impact of 3-sulfo-taurolithocholic acid on ATPase activity in patients' colorectal cancer and normal colon tissues, and its hepatic effects in rodents. Front Vet Sci 2024; 11:1480122. [PMID: 39703405 PMCID: PMC11656593 DOI: 10.3389/fvets.2024.1480122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024] Open
Abstract
Colorectal cancer is influenced by genetic mutations, lifestyle factors, and diet, particularly high fat intake, which raises bile acid levels in the intestinal lumen. This study hypothesized that bile acids contribute to tumorigenesis by disrupting ion transport and ATPase activity in the intestinal mucosa. The effects of 3-sulfo-taurolithocholic acid (TLC-S) on ATPase activity were investigated in colorectal cancer samples from 10 patients, using adjacent healthy tissue as controls, and in rodent liver function. ATPase activity was measured spectrophotometrically by determining inorganic phosphorus (Pi) in postmitochondrial fractions. Ca2+ dynamics were assessed in isolated mouse hepatocytes with fluorescence imaging, and rat liver mitochondria were studied using polarographic methods to evaluate respiration and oxidative phosphorylation. TLC-S increased Na+/K+ ATPase activity by 1.5 times in colorectal cancer samples compared to controls (p ≤ 0.05). In healthy mucosa, TLC-S decreased Mg2+ ATPase activity by 3.6 times (p ≤ 0.05), while Mg2+ ATPase activity in cancer tissue remained unchanged. TLC-S had no significant effect on Ca2+ ATPase activity in healthy colon mucosa but showed a trend toward decreased activity in cancer tissue. In rat liver, TLC-S decreased Ca2+ ATPase and Na+/K+ ATPase activities while increasing basal Mg2+ ATPase activity (p ≤ 0.05). Additionally, TLC-S induced cytosolic Ca2+ signals in mouse hepatocytes, partially attenuated by NED-19, an NAADP antagonist (p ≤ 0.05). TLC-S also reduced the V3 respiration rate of isolated rat liver mitochondria during α-ketoglutarate oxidation. These findings suggest that TLC-S modulates ATPase activity differently in cancerous and healthy colon tissues, playing a role in colorectal cancer development. In rat liver, TLC-S affects mitochondrial activity and ATPase function, contributing to altered cytosolic calcium levels, providing insight into the mechanistic effects of bile acids on colorectal cancer and liver function.
Collapse
Affiliation(s)
- Solomiia Bychkova
- Department of Human and Animal Physiology, Faculty of Biology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Mykola Bychkov
- Department of Therapy No. 1, Medical Diagnostic and Hematology and Transfusiology of Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Dani Dordević
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Leibovitzh H, Sarbagili Shabat C, Hirsch A, Zittan E, Mentella MC, Petito V, Cohen NA, Ron Y, Fliss Isakov N, Pfeffer J, Yaakov M, Fanali C, Turchini L, Masucci L, Quaranta G, Kolonimos N, Godneva A, Weinberger A, Scaldaferri F, Maharshak N. Faecal Transplantation for Ulcerative Colitis From Diet Conditioned Donors Followed by Dietary Intervention Results in Favourable Gut Microbial Profile Compared to Faecal Transplantation Alone. J Crohns Colitis 2024; 18:1606-1614. [PMID: 38720628 DOI: 10.1093/ecco-jcc/jjae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
BACKGROUND AND AIMS Several faecal microbial transplantation [FMT] approaches for ulcerative colitis [UC] have been investigated with conflicting results. We have recently published the clinical outcomes from the CRAFT UC Trial using FMT with the UC Exclusion Diet [UCED], compared with FMT alone. Here we aimed to compare the two FMT strategies in terms of microbial profile and function. METHODS Subjects recruited to the CRAFT UC study with available pre- and post-intervention faecal samples were included. Donors received diet conditioning for 14 days based on the UCED principles. Group 1 received single FMT by colonoscopy [Day 1] and enemas [Days 2 and 14] without donors' dietary conditioning [N = 11]. Group 2 received FMT but with donors' dietary pre-conditioning and UCED for the patients [N = 10]. Faecal samples were assessed by DNA shotgun metagenomic sequencing. RESULTS Following diet conditioning, donors showed depletion in metabolic pathways involved in biosynthesis of sulphur-containing amino acids. Only Group 2 showed significant shifts towards the donors' microbial composition [ADONIS: R2 = 0.15, p = 0.008] and significantly increased Eubacterium_sp_AF228LB post-intervention [β-coefficient 2.66, 95% confidence interval 2.1-3.3, q < 0.05] which was inversely correlated with faecal calprotectin [rho = -0.52, p = 0.035]. Moreover, pathways involved in gut inflammation and barrier function including branched chain amino acids were enriched post-intervention in Group 2 and were significantly inversely correlated with faecal calprotectin. CONCLUSION FMT from diet conditioned donors followed by the UCED led to microbial alterations associated with favourable microbial profiles which correlated with decreased faecal calprotectin. Our findings support further exploration of the additive benefit of dietary intervention for both donors and patients undergoing FMT as a potential treatment of UC.
Collapse
Affiliation(s)
- Haim Leibovitzh
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Chen Sarbagili Shabat
- Pediatric Gastroenterology Unit, PIBD Research Center, Wolfson Medical Center, Holon, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ayal Hirsch
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Zittan
- Gastroenterology Institute, IBD Unit, Haemek Medical Center, Afula, Israel
| | - Maria Chiara Mentella
- UOC di Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Petito
- Cemad [CENTER for Digestive Disease], UOC Medicina Internae Gastroenterologia, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
| | - Nathaniel Aviv Cohen
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Ron
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Fliss Isakov
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Health, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jorge Pfeffer
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michal Yaakov
- Pediatric Gastroenterology Unit, PIBD Research Center, Wolfson Medical Center, Holon, Israel
| | - Caterina Fanali
- Cemad [CENTER for Digestive Disease], UOC Medicina Internae Gastroenterologia, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
| | - Laura Turchini
- Cemad [CENTER for Digestive Disease], UOC Medicina Internae Gastroenterologia, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
| | - Luca Masucci
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore - Fondazione Policlinico 'A. Gemelli' IRCSS, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianluca Quaranta
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore - Fondazione Policlinico 'A. Gemelli' IRCSS, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nitzan Kolonimos
- Gastroenterology Institute, IBD Unit, Haemek Medical Center, Afula, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Franco Scaldaferri
- Cemad [CENTER for Digestive Disease], UOC Medicina Internae Gastroenterologia, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore- Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
| | - Nitsan Maharshak
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Arturo Tozzi, Minella R. Dynamics and metabolic effects of intestinal gases in healthy humans. Biochimie 2024; 221:81-90. [PMID: 38325747 DOI: 10.1016/j.biochi.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/06/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Many living beings use exogenous and/or endogenous gases to attain evolutionary benefits. We make a comprehensive assessment of one of the major gaseous reservoirs in the human body, i.e., the bowel, providing extensive data that may serve as reference for future studies. We assess the intestinal gases in healthy humans, including their volume, composition, source and local distribution in proximal as well as distal gut. We analyse each one of the most abundant intestinal gases including nitrogen, oxygen, nitric oxide, carbon dioxide, methane, hydrogen, hydrogen sulfide, sulfur dioxide and cyanide. For every gas, we describe diffusive patterns, active trans-barrier transport dynamics, chemical properties, intra-/extra-intestinal metabolic effects mediated by intracellular, extracellular, paracrine and distant actions. Further, we highlight the local and systemic roles of gasotransmitters, i.e., signalling gaseous molecules that can freely diffuse through the intestinal cellular membranes. Yet, we provide testable hypotheses concerning the still unknown effects of some intestinal gases on the myenteric and submucosal neurons.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, Department of Physics, University of North Texas, 1155 Union Circle, #311427, Denton, TX, 76203-5017, USA.
| | | |
Collapse
|
4
|
Awarun OD, Olufunke Olojede A, Olaniran AF, Osarenkhoe Osemwegie O, Thomas R, Oluwagbenga OS. The Role of Enteric Bacteria in Elemental Sulfur Therapy. 2024 INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND BUSINESS FOR DRIVING SUSTAINABLE DEVELOPMENT GOALS (SEB4SDG) 2024:1-6. [DOI: 10.1109/seb4sdg60871.2024.10629850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Olorunfemi Dapo Awarun
- Landmark University,Department of Food Science and Microbiology,Omu-Aran,Kwara State,Nigeria
| | | | | | | | - Remileku Thomas
- Landmark University,Department of Food Science and Microbiology,Omu-Aran,Kwara State,Nigeria
| | - Owa Stephen Oluwagbenga
- Landmark University,Department of Food Science and Microbiology,Omu-Aran,Kwara State,Nigeria
| |
Collapse
|
5
|
Üstüntürk-Onan M, Tüccar T, Ilhan-Sungur E. Occurrence of sulfate-reducing bacteria in well water: identification of anaerobic sulfidogenic bacterial enrichment cultures. JOURNAL OF WATER AND HEALTH 2024; 22:746-756. [PMID: 38678427 DOI: 10.2166/wh.2024.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/15/2024] [Indexed: 04/30/2024]
Abstract
Bacteriological studies of well water mainly focus on aerobic and facultative aerobic coliform bacteria. However, the presence of obligate anaerobic bacteria in well water, especially sulfate-reducing bacteria (SRB), possible causative agents of some diseases, is often ignored. In this study, the presence of SRB and coexisting anaerobic bacteria with SRB in sulfate-reducing enrichment cultures obtained from 10 well water samples in Istanbul was investigated. A nested polymerase chain reaction-denaturing gradient gel electrophoresis strategy was performed to characterize the bacterial community structure of the enrichments. The most probable number method was used to determine SRB number. Out of 10, SRB growth was observed in only one (10%) enrichment culture and the SRB number was low (<10 cells/mL). Community members were identified as Desulfolutivibrio sulfodismutans and Anaerosinus sp. The results show that SRB coexist with Anaerosinus sp., and this may indicate poor water quality, posing a risk to public health. Furthermore, Anaerosinus sp., found in the human intestinal tract, may be used as an alternative anaerobic fecal indicator. It is worth noting that the detection of bacteria using molecular analyzes following enrichment culture techniques can bring new perspectives to determine the possible origin and presence of alternative microbial indicators in aquatic environments.
Collapse
Affiliation(s)
- Miray Üstüntürk-Onan
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul 34134, Türkiye
| | - Tuğçe Tüccar
- Medical Laboratory Techniques Program, Vocational School, Istanbul Arel University, Cevizlibağ, Istanbul 34010, Türkiye E-mail:
| | - Esra Ilhan-Sungur
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul 34134, Türkiye
| |
Collapse
|
6
|
Zhang ZL, Meng YQ, Li JJ, Zhang XX, Li JT, Xu JR, Zheng PH, Xian JA, Lu YP. Effects of antimicrobial peptides from dietary Hermetia illucens larvae on the growth, immunity, gene expression, intestinal microbiota and resistance to Aeromonas hydrophila of juvenile red claw crayfish (Cherax quadricarinatus). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109437. [PMID: 38360192 DOI: 10.1016/j.fsi.2024.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Antimicrobial peptides (AMPs), which are widely present in animals and plants, have a broad distribution, strong broad-spectrum antibacterial activity, low likelihood of developing drug resistance, high thermal stability and antiviral properties. The present study investigated the effects of adding AMPs from Hermetia illucens larvae on the growth performance, muscle composition, antioxidant capacity, immune response, gene expression, antibacterial ability and intestinal microbiota of Cherax quadricarinatus (red claw crayfish). Five experimental diets were prepared by adding 50 (M1), 100 (M2), 150 (M3) and 200 (M4) mg/kg of crude AMP extract from H. illucens larvae to the basal diet feed, which was also used as the control (M0). After an eight-week feeding experiment, it was discovered that the addition of 100-150 mg/kg of H. illucens larvae AMPs to the feed significantly improved the weight gain rate and specific growth rate of C. quadricarinatus. Furthermore, the addition of H. illucens larvae AMPs to the feed had no significant effect on the moisture content, crude protein, crude fat and ash content of the C. quadricarinatus muscle. The addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed also increased the antioxidant capacity, nonspecific immune enzyme activity and related gene expression levels in C. quadricarinatus, thereby enhancing their antioxidant capacity and immune function. The H. illucens larvae AMPs improved the structure and composition of the intestinal microbiota of C. quadricarinatus, increasing the microbial community diversity of the crayfish gut. Finally, the addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed enhanced the resistance of C. quadricarinatus against Aeromonas hydrophila, improving the survival rate of the crayfish. Based on the aforementioned findings, it is recommended that H. illucens larvae AMPs be incorporated into the C. quadricarinatus feed at a concentration of 100-150 mg/kg.
Collapse
Affiliation(s)
- Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Ocean College, Hainan University, Haikou, 570228, China
| | - Yong-Qi Meng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Ocean College, Hainan University, Haikou, 570228, China
| | - Jia-Jun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jia-Rui Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Ocean College, Hainan University, Haikou, 570228, China.
| | - Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China.
| |
Collapse
|
7
|
Kushkevych I, Dordević D, Alberfkani MI, Gajdács M, Ostorházi E, Vítězová M, Rittmann SKMR. NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria. Sci Rep 2023; 13:13922. [PMID: 37626119 PMCID: PMC10457377 DOI: 10.1038/s41598-023-41185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
Animal and human feces typically include intestinal sulfate-reducing bacteria (SRB). Hydrogen sulfide and acetate are the end products of their dissimilatory sulfate reduction and may create a synergistic effect. Here, we report NADH and NADPH peroxidase activities from intestinal SRB Desulfomicrobium orale and Desulfovibrio piger. We sought to compare enzymatic activities under the influence of various temperature and pH regimes, as well as to carry out kinetic analyses of enzymatic reaction rates, maximum amounts of the reaction product, reaction times, maximum rates of the enzyme reactions, and Michaelis constants in cell-free extracts of intestinal SRB, D. piger Vib-7, and D. orale Rod-9, collected from exponential and stationary growth phases. The optimal temperature (35 °C) and pH (7.0) for both enzyme's activity were determined. The difference in trends of Michaelis constants (Km) during exponential and stationary phases are noticeable between D. piger Vib-7 and D. orale Rod-9; D. orale Rod-9 showed much higher Km (the exception is NADH peroxidase of D. piger Vib-7: 1.42 ± 0.11 mM) during the both monitored phases. Studies of the NADH and NADPH peroxidases-as putative antioxidant defense systems of intestinal SRB and detailed data on the kinetic properties of this enzyme, as expressed by the decomposition of hydrogen peroxide-could be important for clarifying evolutionary mechanisms of antioxidant defense systems, their etiological role in the process of dissimilatory sulfate reduction, and their possible role in the development of bowel diseases.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| | - Dani Dordević
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Mohammad I Alberfkani
- Department of Medical Laboratory Technology, College of Health and Medical Techniques, Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos Krt. 64-66., 6720, Szeged, Hungary
| | - Eszter Ostorházi
- Faculty of Medicine, Institute of Medical Microbiology, Semmelweis University, Nagyvárad Tér 4, 1089, Budapest, Hungary
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090, Wien, Austria.
| |
Collapse
|
8
|
Zhou S, Chai P, Dong X, Liang Z, Yang Z, Li J, Teng G, Sun S, Xu M, Zheng ZJ, Wang J, Zhang Z, Chen K. Drinking water quality and inflammatory bowel disease: a prospective cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27460-w. [PMID: 37160856 DOI: 10.1007/s11356-023-27460-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Environmental factors, such as drinking water and diets, play an important role in the development of inflammatory bowel disease (IBD). This study aimed to investigate the associations of metal elements and disinfectants in drinking water with the risk of inflammatory bowel disease (IBD) and to assess whether diet influences these associations. We conducted a prospective cohort study including 22,824 participants free from IBD from the Yinzhou cohort study in the 2016-2022 period with an average follow-up of 5.24 years. The metal and disinfectant concentrations were measured in local pipeline terminal tap water samples. Cox regression models adjusted for multi-level covariates were used to estimate adjusted hazard ratios (aHRs) and 95% confidence intervals (95% CIs). During an average follow-up period of 5.24 years, 46 cases of IBD were identified. For every 1 standard deviation (SD) increase in the concentration of manganese, mercury, selenium, sulfur tetraoxide (SO4), chlorine, and nitrate nitrogen (NO3_N) were associated with a higher risk of IBD with the HRs of 1.45 (95% CI: 1.14 to 1.84), 1.51 (95% CI: 1.24-1.82), 1.29 (95% CI: 1.03-1.61), 1.52 (95% CI: 1.26-1.83), 1.26 (95% CI: 1.18-1.34), and 1.66 (95% CI: 1.32-2.09), whereas zinc and fluorine were inversely associated with IBD with the HRs of 0.42 (95% CI: 0.24 to 0.73) and 0.68 (95% CI: 0.54-0.84), respectively. Stronger associations were observed in females, higher income groups, low education groups, former drinkers, and participants who never drink tea. Diets have a moderating effect on the associations of metal and nonmetal elements with the risk of IBD. We found significant associations between exposure to metals and disinfectants and IBD. Diets regulated the associations to some extent.
Collapse
Affiliation(s)
- Shuduo Zhou
- Department of Global Health, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Pengfei Chai
- The Center for Disease Control and Prevention of Yinzhou District, Ningbo, Zhejiang, China
| | - Xuejie Dong
- Department of Global Health, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Zhisheng Liang
- Department of Global Health, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
| | - Zongming Yang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, China
| | - Junxia Li
- Department of Gastroenterology, Peking University First Hospital, Beijing, 100034, China
| | - Guigen Teng
- Department of Gastroenterology, Peking University First Hospital, Beijing, 100034, China
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ming Xu
- Department of Global Health, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Zhi-Jie Zheng
- Department of Global Health, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Jianbing Wang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, China
- Department of Epidemiology and Biostatistics, and National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenyu Zhang
- Department of Global Health, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China.
- Institute for Global Health and Development, Peking University, Beijing, China.
| | - Kun Chen
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, China
- Department of Epidemiology and Biostatistics, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
9
|
Aparicio A, Gold DR, Weiss ST, Litonjua AA, Lee-Sarwar K, Liu YY. Association of Vitamin D Level and Maternal Gut Microbiome during Pregnancy: Findings from a Randomized Controlled Trial of Antenatal Vitamin D Supplementation. Nutrients 2023; 15:2059. [PMID: 37432235 DOI: 10.3390/nu15092059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 07/12/2023] Open
Abstract
Shifts in the maternal gut microbiome and vitamin D deficiency during pregnancy have been associated, separately, with health problems for both the mother and the child. Yet, they have rarely been studied simultaneously. Here, we analyzed the gut microbiome (from stool samples obtained in late pregnancy) and vitamin D level (from blood samples obtained both in early and late pregnancy) data of pregnant women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), a randomized controlled trial of vitamin D supplementation during pregnancy, to investigate the association of vitamin D status on the pregnant women's microbiome. To find associations, we ran linear regressions on alpha diversity measures, PERMANOVA tests on beta diversity distances, and used the ANCOM-BC and Maaslin2 algorithms to find differentially abundant taxa. Analyses were deemed significant using a cut-off p-value of 0.05. We found that gut microbiome composition is associated with the vitamin D level in early pregnancy (baseline), the maternal gut microbiome does not show a shift in response to vitamin D supplementation during pregnancy, and that the genus Desulfovibrio is enriched in women without a substantial increase in vitamin D level between the first and the third trimesters of pregnancy. We conclude that increasing the vitamin D level during pregnancy could be protective against the growth of sulfate-reducing bacteria such as Desulfovibrio, which has been associated with chronic intestinal inflammatory disorders. More in-depth investigations are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Andrea Aparicio
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| |
Collapse
|
10
|
Aparicio A, Gold DR, Weiss ST, Litonjua AA, Lee-Sarwar K, Liu YY. Association of vitamin D level and maternal gut microbiome during pregnancy: Findings from a randomized controlled trial of antenatal vitamin D supplementation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.04.23288136. [PMID: 37066333 PMCID: PMC10104212 DOI: 10.1101/2023.04.04.23288136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Shifts in the maternal gut microbiome and vitamin D deficiency during pregnancy have been associated, separately, with health problems for both the mother and the child. Yet, they have rarely been studied simultaneously. Here, we analyzed gut microbiome (from stool samples obtained in late pregnancy) and vitamin D level (from blood samples obtained both in early and late pregnancy) data of pregnant women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART), a randomized controlled trial of vitamin D supplementation during pregnancy, to investigate the association of vitamin D status on the pregnant women’s microbiome. To find associations we ran linear regressions on alpha diversity measures, PERMANOVA tests on beta diversity distances, and used the ANCOM-BS and Maaslin2 algorithms to find differentially abundant taxa. Analyses were deemed significant using a cut-off p-value of 0.05. We found that gut microbiome composition is associated with the vitamin D level in early pregnancy (baseline), the maternal gut microbiome does not show a shift in response to vitamin D supplementation during pregnancy, and that the genus Desulfovibrio is enriched in women without a substantial increase in vitamin D level between the first and the third trimesters of pregnancy. We conclude that increasing the vitamin D level during pregnancy could be protective against the growth of sulfate-reducing bacteria such as Desulfovibrio , which has been associated with chronic intestinal inflammatory disorders. More in-depth investigations are needed to confirm this hypothesis.
Collapse
|
11
|
Trindade LM, Torres L, Matos ID, Miranda VC, de Jesus LCL, Cavalcante G, de Souza Oliveira JJ, Cassali GD, Mancha-Agresti P, de Carvalho Azevedo VA, Maioli TU, Cardoso VN, Martins FDS, de Vasconcelos Generoso S. Paraprobiotic Lacticaseibacillus rhamnosus Protects Intestinal Damage in an Experimental Murine Model of Mucositis. Probiotics Antimicrob Proteins 2023; 15:338-350. [PMID: 34524605 DOI: 10.1007/s12602-021-09842-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
Intestinal mucositis (IM) is a common side effect resulting from cancer treatment. However, the management so far has not been very effective. In the last years, the role of the gut microbiota in the development and severity of mucositis has been studied. Therefore, the use of probiotics and paraprobiotics could have a potential therapeutic effect on IM. The aim of our study was to investigate the impact of the administration of Lacticaseibacillus rhamnosus (L. rhamnosus) CGMCC1.3724 and the paraprobiotic on IM in mice. For 13 days, male Balb/c mice were divided into six groups: control (CTL) and mucositis (MUC)/0.1 mL of saline; CTL LrV and MUC LrV/0.1 mL of 108 CFU of viable Lr; CTL LrI and MUC LrI/0.1 mL of 108 CFU of inactivated Lr. On the 10th day, mice from the MUC, MUC LrV, and MUC LrI groups received an intraperitoneal injection (300 mg/kg) of 5-fluorouracil to induce mucositis. The results showed that the administration of the chemotherapeutic agent increased the weight loss and intestinal permeability of the animals in the MUC and MUC LrV groups. However, administration of paraprobiotic reduced weight loss and maintained PI at physiological levels. The paraprobiotic also preserved the villi and intestinal crypts, reduced the inflammatory infiltrate, and increased the mucus secretion, Muc2 gene expression, and Treg cells frequency.
Collapse
Affiliation(s)
- Luísa Martins Trindade
- Programa de Pós-Graduação Em Ciência de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lícia Torres
- Programa de Pós-Graduação Em Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabel David Matos
- Programa de Pós-Graduação Em Nutrição E Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Correia Miranda
- Programa de Pós-Graduação Em Microbiologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Programa de Pós-Graduação Em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gregório Cavalcante
- Programa de Pós-Graduação Em Bioquímica E Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Geovanni Dantas Cassali
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Programa de Pós-Graduação Em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Programa de Pós-Graduação Em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Programa de Pós-Graduação Em Nutrição E Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviano Dos Santos Martins
- Programa de Pós-Graduação Em Microbiologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Simone de Vasconcelos Generoso
- Programa de Pós-Graduação Em Nutrição E Saúde, Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
12
|
Dordevic D, Capikova J, Dordevic S, Tremlová B, Gajdács M, Kushkevych I. Sulfur content in foods and beverages and its role in human and animal metabolism: A scoping review of recent studies. Heliyon 2023; 9:e15452. [PMID: 37123936 PMCID: PMC10130226 DOI: 10.1016/j.heliyon.2023.e15452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Sulfur is a vital element that all living things require, being a component of proteins and other bio-organic substances. The various kinds and varieties of microbes in nature allow for the transformation of this element. It also should be emphasized that volatile sulfur compounds are typically present in food in trace amounts. Life cannot exist without sulfur, yet it also poses a potential health risk. The colon's sulfur metabolism, which is managed by eukaryotic cells, is much better understood than the S metabolism in gastrointestinal bacteria. Numerous additional microbial processes are anticipated to have an impact on the content and availability of sulfated compounds, as well as intestinal S metabolism. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in relation to colonic health, but it is still unclear whether it is beneficial or harmful. Several lines of evidence suggest that sulfate-reducing bacteria or exogenous hydrogen sulfide may be the root cause of intestinal ailments, including inflammatory bowel diseases and colon cancer. Taurine serves a variety of biological and physiological purposes, including roles in inflammation and protection, additionally, low levels of taurine can be found in bodily fluids, and taurine is the primary sulfur component present in muscle tissue (serum and urine). The aim of this scoping review was to compile data from the most pertinent scientific works about S compounds' existence in food and their metabolic processes. The importance of S compounds in various food products and how these compounds can impact metabolic processes are both stressed in this paper.
Collapse
Affiliation(s)
- Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Jana Capikova
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Simona Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Bohuslava Tremlová
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64-66, 6720, Szeged, Hungary
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
- Corresponding author.
| |
Collapse
|
13
|
Singh SB, Coffman CN, Varga MG, Carroll-Portillo A, Braun CA, Lin HC. Intestinal Alkaline Phosphatase Prevents Sulfate Reducing Bacteria-Induced Increased Tight Junction Permeability by Inhibiting Snail Pathway. Front Cell Infect Microbiol 2022; 12:882498. [PMID: 35694541 PMCID: PMC9177943 DOI: 10.3389/fcimb.2022.882498] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Tight junctions (TJs) are essential components of intestinal barrier integrity and protect the epithelium against passive paracellular flux and microbial translocation. Dysfunctional TJ leads to leaky gut, a condition associated with diseases including inflammatory bowel disease (IBD). Sulfate-Reducing Bacteria (SRB) are minor residents of the gut. An increased number of Desulfovibrio, the most predominant SRB, is observed in IBD and other diseases associated with leaky gut. However, it is not known whether Desulfovibrio contributes to leaky gut. We tested the hypothesis that Desulfovibrio vulgaris (DSV) may induce intestinal permeability in vitro. Snail, a transcription factor, disrupts barrier function by affecting TJ proteins such as occludin. Intestinal alkaline phosphatase (IAP), a host defense protein, protects epithelial barrier integrity. We tested whether DSV induced permeability in polarized Caco-2 cells via snail and if this effect was inhibited by IAP. Barrier integrity was assessed by measuring transepithelial electric resistance (TEER) and by 4kDa FITC-Dextran flux to determine paracellular permeability. We found that DSV reduced TEER, increased FITC-flux, upregulated snail protein expression, caused nuclear translocation of snail, and disrupted occludin staining at the junctions. DSV-induced permeability effects were inhibited in cells knocked down for snail. Pre-treatment of cells with IAP inhibited DSV-induced FITC flux and snail expression and DSV-mediated disruption of occludin staining. These data show that DSV, a resident commensal bacterium, can contribute to leaky gut and that snail may serve as a novel therapeutic target to mitigate DSV-induced effects. Taken together, our study suggests a novel underlying mechanism of association of Desulfovibrio bloom with diseases with increased intestinal permeability. Our study also underscores IAP as a novel therapeutic intervention for correcting SRB-induced leaky gut via inhibition of snail.
Collapse
Affiliation(s)
- Sudha B. Singh
- Biomedical Research Institute of New Mexico, New Mexico Veterans Affairs (VA) Health Care System, Albuquerque, NM, United States
| | - Cristina N. Coffman
- Biomedical Research Institute of New Mexico, New Mexico Veterans Affairs (VA) Health Care System, Albuquerque, NM, United States
| | - Matthew G. Varga
- Biomedical Research Institute of New Mexico, New Mexico Veterans Affairs (VA) Health Care System, Albuquerque, NM, United States
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, Department of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Cody A. Braun
- Biomedical Research Institute of New Mexico, New Mexico Veterans Affairs (VA) Health Care System, Albuquerque, NM, United States
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, University of New Mexico, Albuquerque, NM, United States
- Medicine Service, New Mexico Veterans Affairs (VA) Health Care System, Albuquerque, NM, United States
- *Correspondence: Henry C. Lin,
| |
Collapse
|
14
|
Arulmani SRB, Dai J, Li H, Chen Z, Sun W, Zhang H, Yan J, Kandasamy S, Xiao T. Antimony reduction by a non-conventional sulfate reducer with simultaneous bioenergy production in microbial fuel cells. CHEMOSPHERE 2022; 291:132754. [PMID: 34798109 DOI: 10.1016/j.chemosphere.2021.132754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Environmental toxicity of antimony (Sb) is significantly increased through the widespread industrial application. The extended release of Sb above the regulatory level became a risk to humans habituated in the ecosystem. Conventional methods to remediate Sb demand high energy or resource input, which further leads to secondary pollution. The bio-electrochemical system offers a promising bioremediation strategy to remove or reduce toxic heavy metals. Thus, this research explores the possibilities of simultaneous metal sulfide (MeS) precipitation and electricity production using a full biological Microbial fuel cell (MFC). A non-conventional sulfate-reducing bacteria (SRB) Citrobacter freundii SR10 was used for this investigation, where the MFC was operated for lactate utilization in the bio-anode and Sb reduction at the bio-cathode. This study observed 81% of coulombic efficiency (bio-anode) and 97% of sulfate reduction with 99.3% Sb (V) reduction (bio-cathode), and it was concluded that the MeS precipitation entirely depends on sulfide concentration via SR10 sulfate reduction. The MFC-SR10 offers a maximum power density of 1652.9 ± 32.1 mW/m3, and their performance was depicted using cyclic voltammetry and electrochemical impedance spectroscopy. The Sb reduction was evaluated through fluorescence spectroscopy, and the Sb (V) MeS precipitation was confirmed as stibnite (Sb2S3) by Raman spectroscopy and X-ray photoelectron spectroscopy. Furthermore, the matured anodic and cathodic biofilm formation was confirmed by Scanning electron microscopy with Energy-dispersive X-ray spectroscopy. Thus the MFC with SRB bio-cathode can be used as an alternative to simultaneously remove sulfate and Sb from the wastewater with electricity production.
Collapse
Affiliation(s)
- Samuel Raj Babu Arulmani
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Junxi Dai
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Han Li
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhenxin Chen
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Hongguo Zhang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, PR China.
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Sabariswaran Kandasamy
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 602105, Tamil Nadu, India
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, PR China
| |
Collapse
|
15
|
Biassoni R, Di Marco E, Squillario M, Ugolotti E, Mosconi M, Faticato MG, Mattioli G, Avanzini S, Pini Prato A. Pathways and microbiome modifications related to surgery and enterocolitis in Hirschsprung disease. Pediatr Surg Int 2022; 38:83-98. [PMID: 34677676 DOI: 10.1007/s00383-021-05012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a congenital anomaly of the enteric nervous system. Abnormal microbiome composition was reported in HSCR patients. In this study, we addressed and analyzed microbiome modifications with relation tosurgery and HSCR associated enterocolitis (HAEC). METHODS The faecal microbiome of 31 HSCR patients (overall 64 samples) was analyzed. HAEC was diagnosed and classified according to a combination of Pastor's and Elhalabi's criteria. Stool samples were analyzed by 16S sequencing (7 out of 9 polymorphic regions). Compositional and relative abundance profiles, as well as the functional potentials of the microbial community, were analyzed with the marker gene sequencing profiles using PICRUSt. RESULTS The relative abundance of Bacteroidetes showed a severe decrease with slow recovery after surgery. Conversely, Proteobacteria transiently increased their abundance. Noteworthy, a strong linkage has been found between Proteobacteria descendants and HAEC occurrences. The inferred functional analysis indicated that virulence factors and fimbriae or pili might be associated with HAEC. CONCLUSIONS Our study, addressing microbiome dynamics, demonstrated relevant changes after surgical manipulation. Alpha-diversity analyses indicated that surgery deeply affects microbiome composition. Proteobacteria and Enterobacteriaceae seem to play a pivotal role in HAEC occurrences. Several virulence factors, such as fimbriae or pili, might explain the HAEC-predisposing potential of selected microbiomes. These results suggest some innovative therapeutic approaches that deserve to be tested in appropriate clinical trials.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Genova, Italy. .,Dipartimento Ricerca Traslazionale, Medicina Di Laboratorio, Diagnostica E Servizi, U.O.C. Laboratorio Analisi- U.O.S. Diagnostica Molecolare, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genova, Italy.
| | | | | | | | | | - Maria Grazia Faticato
- Umberto Bosio Center for Digestive Diseases, The Children Hospital, Azienda Ospedaliera SS Antonio E Biagio E Cesare Arrigo, Alessandria, Italy
| | - Girolamo Mattioli
- Umberto Bosio Center for Digestive Diseases, The Children Hospital, Azienda Ospedaliera SS Antonio E Biagio E Cesare Arrigo, Alessandria, Italy
| | | | - Alessio Pini Prato
- Umberto Bosio Center for Digestive Diseases, The Children Hospital, Azienda Ospedaliera SS Antonio E Biagio E Cesare Arrigo, Alessandria, Italy
| |
Collapse
|
16
|
Kushkevych I, Bychkov M, Bychkova S, Gajdács M, Merza R, Vítězová M. ATPase Activity of the Subcellular Fractions of Colorectal Cancer Samples under the Action of Nicotinic Acid Adenine Dinucleotide Phosphate. Biomedicines 2021; 9:biomedicines9121805. [PMID: 34944620 PMCID: PMC8698369 DOI: 10.3390/biomedicines9121805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
In tumor cells with defects in apoptosis, autophagy allows prolonged survival. Autophagy leads to an accumulation of damaged mitochondria by autophagosomes. An acidic environment is maintained in compartments of cells, such as autophagosomes, late endosomes, and lysosomes; these organelles belong to the “acid store” of the cells. Nicotinic acid adenine dinucleotide phosphate (NAADP) may affect the release of Ca2+ from these organelles and affect the activity of Ca2+ ATPases and other ion transport proteins. Recently, a growing amount of evidence has shown that the variations in the expression of calcium channels or pumps are associated with the occurrence, disease-presentation, and the prognosis of colorectal cancer. We hypothesized that activity of ATPases in cancer tissue is higher because of intensive energy metabolism of tumor cells. The aim of our study was to ascertain the effect of NAADP on ATPase activity on tissue samples of colorectal cancer patients’ and healthy individuals. We tested the effect of NAADP on the activity of Na+/K+ ATPase; Ca2+ ATPase of endoplasmic reticulum (EPR) and plasma membrane (PM) and basal ATPase activity. Patients’ colon mucus cancer samples were obtained during endoscopy from cancer and healthy areas (control) of colorectal mucosa of the same patients. Results. The mean activity of Na+/K+ pump in samples of colorectal cancer patients (n = 5) was 4.66 ± 1.20 μmol Pi/mg of protein per hour, while in control samples from healthy tissues of the same patient (n = 5) this value was 3.88 ± 2.03 μmol Pi/mg of protein per hour. The activity of Ca2+ ATPase PM in control samples was 6.42 ± 0.63 μmol Pi/mg of protein per hour and in cancer −8.50 ± 1.40 μmol Pi/mg of protein per hour (n = 5 pts). The mean activity of Ca2+ ATPase of EPR in control samples was 7.59 ± 1.21 μmol Pi/mg versus 7.76 ± 0.24 μmol Pi/mg in cancer (n = 5 pts). Basal ATPase activity was 3.19 ± 0.87 in control samples versus 4.79 ± 1.86 μmol Pi/mg in cancer (n = 5 pts). In cancer samples, NAADP reduced the activity of Na+/K+ ATPase by 9-times (p < 0.01) and the activity of Ca2+ ATPase EPR about 2-times (p < 0.05). NAADP caused a tendency to decrease the activity of Ca2+ ATPase of PM, but increased basal ATPase activity by 2-fold vs. the mean of this index in cancer samples without the addition of NAADP. In control samples NAADP caused only a tendency to decrease the activities of Na+/K+ ATPase and Ca2+ ATPase EPR, but statistically decreased the activity of Ca2+ ATPase of PM (p < 0.05). In addition, NAADP caused a strong increase in basal ATPase activity in control samples (p < 0.01). Conclusions: We found that the activity of Na+/K+ pump, Ca2+ ATPase of PM and basal ATPase activity in cancer tissues had a strong tendency to be higher than in the controls. NAADP caused a decrease in the activities of Na+/K+ ATPase and Ca2+ ATPase EPR in cancer samples and increased basal ATPase activity. In control samples, NAADP decreased Ca2+ ATPase of PM and increased basal ATPase activity. These data confirmed different roles of NAADP-sensitive “acidic store” (autophagosomes, late endosomes, and lysosomes) in control and cancer tissue, which hypothetically may be connected with autophagy role in cancer development. The effect of NAADP on decreasing the activity of Na+/K+ pump in cancer samples was the most pronounced, both numerically and statistically. Our data shows promising possibilities for the modulation of ion-transport through the membrane of cancer cells by influence on the “acidic store” (autophagosomes, late endosomes and lysosomes) as a new approach to the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.K.); (M.V.); Tel.: +420-549-495-315 (I.K.)
| | - Mykola Bychkov
- Department of Therapy No 1, Medical Diagnostic and Hematology and Transfusiology of Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Solomiia Bychkova
- Department of Human and Animal Physiology, Faculty of Biology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary;
- Faculty of Medicine, Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Romana Merza
- Department of Anesthesiology and Intensive Care, Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.K.); (M.V.); Tel.: +420-549-495-315 (I.K.)
| |
Collapse
|
17
|
Wang YJ, Su J, Yu JJ, Yan MQ, Shi ML, Huang QD, Li B, Wu WY, Xia RS, Li SF, Chen SH, Lv GY. Buddleoside-Rich Chrysanthemum indicum L. Extract has a Beneficial Effect on Metabolic Hypertensive Rats by Inhibiting the Enteric-Origin LPS/TLR4 Pathway. Front Pharmacol 2021; 12:755140. [PMID: 34690786 PMCID: PMC8532163 DOI: 10.3389/fphar.2021.755140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/24/2021] [Indexed: 01/22/2023] Open
Abstract
As the number of patients with metabolic hypertension (MH) is increasing, there is an essential require for global measures to prevent and treat MH. Flavonoids such as buddleoside (BUD) from Chrysanthemum indicum L. are the main pharmacological components of cardiovascular activities. Previous studies have suggested that the buddleoside-rich Chrysanthemum indicum L. extract (BUDE) can reduce blood pressure in spontaneously hypertensive rats (SHR). However, its effect on MH and how it works remains to be researched. In this study, it was observed that BUDE could lower blood pressure, improve dyslipidemia, and decrease the level of plasma LPS in MH rats. Moreover, BUDE improved intestinal flora and increased the expression of occludin and claudin-1 in the colon, and improved the pathological injury of the colon. Western bolt and qRT-PCR experiments showed that BUDE could down-regulate TLR4 and MyD88 protein and mRNA expression and inhibit phosphorylation of IKKβ, IκBα and NF-κB p65 in vessels of MH rats. These results showed that BUDE could regulate intestinal flora, improve intestinal barrier function, reduce the production and penetration of LPS, thereby inhibiting the vascular TLR4/MyD88 pathway, improving vascular endothelial function, and ultimately lowering blood pressure in MH rats. This study provides a new mechanism of BUDE against MH by inhibiting the enteric-origin LPS/TLR4 pathway.
Collapse
Affiliation(s)
- Ya-Jun Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Jing Yu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mei-Qiu Yan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng-Lin Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi-Di Huang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Wen-Yan Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong-Shuang Xia
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Si-Fan Li
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Gui-Yuan Lv
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Distribution of Sulfate-Reducing Bacteria in the Environment: Cryopreservation Techniques and Their Potential Storage Application. Processes (Basel) 2021. [DOI: 10.3390/pr9101843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) are a heterogeneous group of anaerobic microorganisms that play an important role in producing hydrogen sulfide not only in the natural environment, but also in the gastrointestinal tract and oral cavity of animals and humans. The present review was written with the inclusion of 110 references including the time period from 1951 to 2021. The following databases were evaluated: Web of Science, Scopus and Google Scholar. The articles chosen to be included in the review were written mainly in the English and Czech languages. The molecular mechanisms of microbial cryoprotection differ depending on the environment where microorganisms were initially isolated. It was observed that the viability of microorganisms after cryopreservation is dependent on a number of factors, primarily colony age, amount of inoculum, cell size or rate of cooling, and their molecular inventory. Therefore, this paper is devoted to assessing the performance and suitability of various cryopreservation methods of intestinal bacteria, including molecular mechanisms of their protection. In order to successfully complete the cryopreservation process, selecting the correct laboratory equipment and cryopreservation methodology is important. Our analysis revealed that SRB should be stored in glass vials to help mitigate the corrosive nature of hydrogen sulfide, which can affect their physiology on a molecular level. Furthermore, it is recommended that their storage be performed in distilled water or in a suspension with a low salt concentration. From a molecular biological and bioengineering perspective, this contribution emphasizes the need to consider the potential impact associated with SRB in the medical, construction, and environmental sectors.
Collapse
|
19
|
Chen YR, Jing QL, Chen FL, Zheng H, Chen LD, Yang ZC. Desulfovibrio is not always associated with adverse health effects in the Guangdong Gut Microbiome Project. PeerJ 2021; 9:e12033. [PMID: 34466295 PMCID: PMC8380029 DOI: 10.7717/peerj.12033] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Desulfovibrio (DSV) is frequently found in the human intestine but limited knowledge is available regarding the relationship between DSV and host health. In this study, we analyzed large-scale cohort data from the Guangdong Gut Microbiome Project to study the ecology of DSV and the associations of DSV and host health parameters. Phylogenetic analysis showed that Desulfovibrio piger might be the most common and abundant DSV species in the GGMP. Predominant sub-OTUs of DSV were positively associated with bacterial community diversity. The relative abundance of DSV was positively correlated with beneficial genera, including Oscillospira, Coprococcus,Ruminococcus,Akkermansia, Roseburia,Faecalibacterium, andBacteroides, and was negatively associated with harmful genera, such as Clostridium,Escherichia,Klebsiella, and Ralstonia. Moreover, the relative abundance of DSV was negatively correlated with body mass index, waist size, triglyceride levels, and uric acid levels. This suggests that DSV is associated with healthy hosts in some human populations.
Collapse
Affiliation(s)
- Yi-Ran Chen
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qin-Long Jing
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Fang-Lan Chen
- Department of Intensive Care Unit, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Huimin Zheng
- Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Dan Chen
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China
| | - Zhi-Cong Yang
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Singh SB, Coffman CN, Carroll-Portillo A, Varga MG, Lin HC. Notch Signaling Pathway Is Activated by Sulfate Reducing Bacteria. Front Cell Infect Microbiol 2021; 11:695299. [PMID: 34336718 PMCID: PMC8319767 DOI: 10.3389/fcimb.2021.695299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/28/2021] [Indexed: 12/05/2022] Open
Abstract
Sulfate Reducing Bacteria (SRB), usually rare residents of the gut, are often found in increased numbers (called a SRB bloom) in inflammatory conditions such as Inflammatory Bowel Disease (IBD), pouchitis, and periodontitis. However, the underlying mechanisms of this association remain largely unknown. Notch signaling, a conserved cell-cell communication pathway, is usually involved in tissue development and differentiation. Dysregulated Notch signaling is observed in inflammatory conditions such as IBD. Lipolysaccharide and pathogens also activate Notch pathway in macrophages. In this study, we tested whether Desulfovibrio, the most dominant SRB genus in the gut, may activate Notch signaling. RAW 264.7 macrophages were infected with Desulfovibrio vulgaris (DSV) and analyzed for the expression of Notch signaling pathway-related proteins. We found that DSV induced protein expression of Notch1 receptor, Notch intracellular domain (NICD) and p21, a downstream Notch target, in a dose-and time-dependent manner. DSV also induced the expression of pro-IL1β, a precursor of IL-1β, and SOCS3, a regulator of cytokine signaling. The gamma secretase inhibitor DAPT or Notch siRNA dampened DSV-induced Notch-related protein expression as well the expression of pro-IL1β and SOCS3. Induction of Notch-related proteins by DSV was not affected by TLR4 -IN -C34(C34), a TLR4 receptor antagonist. Additionally, cell-free supernatant of DSV-infected macrophages induced NICD expression in uninfected macrophages. DSV also activated Notch pathway in the human epithelial cell line HCT116 and in mouse small intestine. Thus, our study uncovers a novel mechanism by which SRB interact with host cells by activating Notch signaling pathway. Our study lays a framework for examining whether the Notch pathway induced by SRB contributes to inflammation in conditions associated with SRB bloom and whether it can be targeted as a therapeutic approach to treat these conditions.
Collapse
Affiliation(s)
- Sudha B Singh
- Biomedical Research Institute of New Mexico, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Cristina N Coffman
- Biomedical Research Institute of New Mexico, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, Department of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Matthew G Varga
- Biomedical Research Institute of New Mexico, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Henry C Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, University of New Mexico, Albuquerque, NM, United States.,Medicine Service, New Mexico VA Health Care System, Albuquerque, NM, United States
| |
Collapse
|
21
|
Arulmani SRB, Dai J, Li H, Chen Z, Zhang H, Yan J, Xiao T, Sun W. Efficient reduction of antimony by sulfate-reducer enriched bio-cathode with hydrogen production in a microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145733. [PMID: 33609841 DOI: 10.1016/j.scitotenv.2021.145733] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Bio-cathode Microbial electrolysis cell (MEC) is a promising and eco-friendly technology for concurrent hydrogen production and heavy metal reduction. However, the bioreduction of Antimony (Sb) in a bio-electrochemical system with H2 production is not explored. In this study, two efficient sulfate-reducing bacterial (SRB) strains were used to investigate the enhanced bioreduction of sulfate and Sb with H2 production in the MEC. SRB Bio-cathode MEC was developed from the microbial fuel cell (MFC) and operated with an applied voltage of 0.8 V. The performance of the SRB bio-cathode was confirmed by cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy. SRB strains of BY7 and SR10 supported the synergy reduction of sulfate and Sb by sulfide metal precipitation reaction. Hydrogen gas was the main product of SRB bio-cathode, with 86.9%, and 83.6% of H2 is produced by SR10 and BY7, respectively. Sb removal efficiency reached up to 88.2% in BY7 and 96.3% in SR10 with a sulfate reduction rate of 92.3 ± 2.6 and 98.4 ± 1.6 gm-3d-1 in BY7 and SR10, respectively. The conversion efficiency of Sb (V) to Sb (III) reached up to 70.1% in BY7 and 89.2% in SR10. It was concluded that the total removal efficiency of Sb relies on the amount of sulfide concentration produced by the sulfate reduction reaction. The hydrogen production rate was increased up to 1.25 ± 0.06 (BY7) and 1.36 ± 0.02 m3 H2/(m3·d) (SR10) before addition of Sb and produced up to 0.893 ± 0.03 and 0.981 ± 0.02 m3H2/(m3·d) after addition of Sb. The precipitates were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, which confirmed Sb (V) was reduced to Sb2S3.
Collapse
Affiliation(s)
- Samuel Raj Babu Arulmani
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Junxi Dai
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Han Li
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhenxin Chen
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongguo Zhang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China.
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| |
Collapse
|
22
|
Raghav N, Sharma MR. Usage of nanocrystalline cellulose phosphate as novel sustained release system for anti-inflammatory drugs. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Epigenetic DNA Methylation of EBI3 Modulates Human Interleukin-35 Formation via NFkB Signaling: A Promising Therapeutic Option in Ulcerative Colitis. Int J Mol Sci 2021; 22:ijms22105329. [PMID: 34069352 PMCID: PMC8158689 DOI: 10.3390/ijms22105329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC), a severe chronic disease with unclear etiology that is associated with increased risk for colorectal cancer, is accompanied by dysregulation of cytokines. Epstein–Barr virus-induced gene 3 (EBI3) encodes a subunit in the unique heterodimeric IL-12 cytokine family of either pro- or anti-inflammatory function. After having recently demonstrated that upregulation of EBI3 by histone acetylation alleviates disease symptoms in a dextran sulfate sodium (DSS)-treated mouse model of chronic colitis, we now aimed to examine a possible further epigenetic regulation of EBI3 by DNA methylation under inflammatory conditions. Treatment with the DNA methyltransferase inhibitor (DNMTi) decitabine (DAC) and TNFα led to synergistic upregulation of EBI3 in human colon epithelial cells (HCEC). Use of different signaling pathway inhibitors indicated NFκB signaling was necessary and proportional to the synergistic EBI3 induction. MALDI-TOF/MS and HPLC-ESI-MS/MS analysis of DAC/TNFα-treated HCEC identified IL-12p35 as the most probable binding partner to form a functional protein. EBI3/IL-12p35 heterodimers (IL-35) induce their own gene upregulation, something that was indeed observed in HCEC cultured with media from previously DAC/TNFα-treated HCEC. These results suggest that under inflammatory and demethylating conditions the upregulation of EBI3 results in the formation of anti-inflammatory IL-35, which might be considered as a therapeutic target in colitis.
Collapse
|
24
|
Kushkevych I, Hýžová B, Vítězová M, Rittmann SKMR. Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats. Int J Mol Sci 2021; 22:4007. [PMID: 33924516 PMCID: PMC8069399 DOI: 10.3390/ijms22084007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/01/2022] Open
Abstract
This paper is devoted to microscopic methods for the identification of sulfate-reducing bacteria (SRB). In this context, it describes various habitats, morphology and techniques used for the detection and identification of this very heterogeneous group of anaerobic microorganisms. SRB are present in almost every habitat on Earth, including freshwater and marine water, soils, sediments or animals. In the oil, water and gas industries, they can cause considerable economic losses due to their hydrogen sulfide production; in periodontal lesions and the colon of humans, they can cause health complications. Although the role of these bacteria in inflammatory bowel diseases is not entirely known yet, their presence is increased in patients and produced hydrogen sulfide has a cytotoxic effect. For these reasons, methods for the detection of these microorganisms were described. Apart from selected molecular techniques, including metagenomics, fluorescence microscopy was one of the applied methods. Especially fluorescence in situ hybridization (FISH) in various modifications was described. This method enables visual identification of SRB, determining their abundance and spatial distribution in environmental biofilms and gut samples.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (B.H.); (M.V.)
| | - Blanka Hýžová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (B.H.); (M.V.)
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (B.H.); (M.V.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Wien, Austria
| |
Collapse
|
25
|
Kushkevych I, Martínková K, Vítězová M, Rittmann SKMR. Intestinal Microbiota and Perspectives of the Use of Meta-Analysis for Comparison of Ulcerative Colitis Studies. J Clin Med 2021; 10:462. [PMID: 33530381 PMCID: PMC7865400 DOI: 10.3390/jcm10030462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Meta-analysis is a statistical process summarizing comparable data from a number of scientific papers. The use of meta-analysis in microbiology allows decision-making that has an impact on public health policy. It can happen that the primary researches come to different conclusions, although these are targeted with the same research question. It is, therefore, inevitable to have the means to systematically evaluate information and compare research results. Ulcerative colitis together with Crohn's disease are among the two main inflammatory bowel diseases. This chronic disease of the gastrointestinal tract, with an as yet unclear etiology, is presented by an uncontrolled inflammatory immune response in genetically predisposed individuals to as yet undefined environmental factors in interaction with the intestinal microbiota itself. In patients with ulcerative colitis (UC), changes in the composition and relative abundance of microorganisms could be observed. Sulfate-reducing bacteria (SRB), which commonly occur in the large intestine as part of the commensal microbiota of animals and humans involved in the pathogenesis of the disease, have been shown to occur. SRB are anaerobic organisms affecting short-chain fatty acid metabolism. This work outlines the perspectives of the use of meta-analysis for UC and changes in the representation of intestinal organisms in these patients.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (K.M.); (M.V.)
| | - Kristýna Martínková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (K.M.); (M.V.)
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (K.M.); (M.V.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology and Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria
| |
Collapse
|
26
|
Environmental Impact of Sulfate-Reducing Bacteria, Their Role in Intestinal Bowel Diseases, and Possible Control by Bacteriophages. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sulfate-reducing bacteria (SRB) represent a group of prokaryotic microorganisms that are widely spread in the anoxic environment (seabed, riverbed and lakebed sediments, mud, intestinal tract of humans and animals, metal surfaces). SRB species also have an impact on processes occurring in the intestinal tract of humans and animals, including the connections between their presence and inflammatory bowel disease (IBD). Since these SRB can develop antimicrobial resistance toward the drugs, including antibiotics and antimicrobial agents, bacteriophages could represent an additional potential effective treatment. The main objectives of the review were as follows: (a) to review SRB (both from intestinal and environmental sources) regarding their role in intestinal diseases as well as their influence in environmental processes; and (b) to review, according to literature data, the influence of bacteriophages on SRB and their possible applications. Since SRB can have a significant adverse influence on industry as well as on humans and animals health, phage treatment of SRB can be seen as a possible effective method of SRB inhibition. However, there are relatively few studies concerning the influence of phages on SRB strains. Siphoviridae and Myoviridae families represent the main sulfide-producing bacteria phages. The most recent studies induced, by UV light, bacteriophages from Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans ATCC 13541. Notwithstanding costly and medically significant negative impacts of phages on SRB, they have been the subject of relatively few studies. The current search for alternatives to chemical biocides and antibiotics has led to the renewed interest in phages as antibacterial biocontrol and therapeutic agents, including their use against SRB. Hence, phages might represent a promising treatment against SRB in the future.
Collapse
|
27
|
Dordević D, Jančíková S, Vítězová M, Kushkevych I. Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J Adv Res 2021; 27:55-69. [PMID: 33318866 PMCID: PMC7728594 DOI: 10.1016/j.jare.2020.03.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hydrogen sulfide is the final product of sulfate-reducing bacteria metabolism. Its high concentration in the gut can affect adversely bowel environment and intestinal microbiota by toxicity and pH lowering. AIM OF REVIEW The aim of the review was to give observations related to the properties of bacterial communities inhabiting the gut, with the emphasis on sulfate-reducing bacteria and lactic acid bacteria. KEY SCIENTIFIC CONCEPTS OF REVIEW The conduction of meta-analysis was another goal, since it gave statistical observation of the relevant studies. The review literature consisted of more than 160 studies, published from 1945 to 2019. Meta-analysis included 16 studies and they were chosen from the Web of Science database. The systematic review gave important information about the development of gut inflammation, with emphasis on sulfate-reducing and lactic acid bacteria. Oppositely from sulfate-reducing bacteria, probiotic properties of lactic acid bacteria are effective inhibitors against inflammatory bowel disease development, including ulcerative colitis. These facts were confirmed by the conducted meta-analysis. The results and observations gained from the systematic review represent the emphasized importance of gut microbiota for bowel inflammation. On the other side, it should be stated that more studies in the future will provide even better confirmations.
Collapse
Affiliation(s)
- Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Simona Jančíková
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
28
|
Kharroubi S, Nasser NA, El-Harakeh MD, Sulaiman AA, Kassem II. First Nation-Wide Analysis of Food Safety and Acceptability Data in Lebanon. Foods 2020; 9:foods9111717. [PMID: 33266478 PMCID: PMC7700422 DOI: 10.3390/foods9111717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
The challenges to food safety in Lebanon are numerous and have coalesced to pose a serious public health concern. This is evident in well-documented food poisoning outbreaks and adulteration cases. In response, the Lebanese government initiated an unprecedented food safety campaign (2015–2017) that aimed to test food samples that were randomly collected from foodservices and industries across the country. The data were made available publicly, but they were never analyzed to prioritize and determine high risk foods and most prevalent contaminants nationally or across governorates. To answer these questions, we performed an in-depth statistical analysis of the data, which included 11,625 individual food samples. Our analysis showed that water (55% of tested water samples), spices (49.3%), red meat (34.4%), poultry (30.9%) and dairy (28.3%) were the main foods associated with the highest rejection rates. The most common biological contaminants detected in rejected foods were sulfate-reducing bacteria (34.7%), Escherichia coli (32.1%), coliforms (19.6%), Staphylococcus aureus (12.8%), and Salmonella (11.6%). We conclude that Lebanon needs rigorous and sustainable programs to monitor the quality and safety of foods. Given the lack of resources, we recommend putting emphasis on extensive outreach programs that aim at enhancing food safety knowledge from farm to fork.
Collapse
Affiliation(s)
- Samer Kharroubi
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut (AUB), Beirut 1107 2020, Lebanon; (S.K.); (M.D.E.-H.); (A.A.S.)
| | - Nivin A. Nasser
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223-1797, USA;
| | - Marwa Diab El-Harakeh
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut (AUB), Beirut 1107 2020, Lebanon; (S.K.); (M.D.E.-H.); (A.A.S.)
| | - Abdallah Alhaj Sulaiman
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut (AUB), Beirut 1107 2020, Lebanon; (S.K.); (M.D.E.-H.); (A.A.S.)
| | - Issmat I. Kassem
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut (AUB), Beirut 1107 2020, Lebanon; (S.K.); (M.D.E.-H.); (A.A.S.)
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223-1797, USA;
- Correspondence: or
| |
Collapse
|
29
|
Effects of Different Laying Hen Species on Odour Emissions. Animals (Basel) 2020; 10:ani10112172. [PMID: 33233353 PMCID: PMC7700304 DOI: 10.3390/ani10112172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/24/2023] Open
Abstract
Odour is one of the main environmental concerns in the laying hen industry and may also influence animal health and production performance. Previous studies showed that odours from the laying hen body are primarily produced from the microbial fermentation (breakdown) of organic materials in the caecum, and different laying hen species may have different odour production potentials. This study was conducted to evaluate the emissions of two primary odorous gases, ammonia (NH3) and hydrogen sulphide (H2S), from six different laying hen species (Hyline, Lohmann, Nongda, Jingfen, Xinghua and Zhusi). An in vitro fermentation technique was adopted in this study, which has been reported to be an appropriate method for simulating gas production from the microbial fermentation of organic materials in the caecum. The results of this study show that Jingfen produced the greatest volume of gas after 12 h of fermentation (p < 0.05). Hyline had the highest, while Lohmann had the lowest, total NH3 emissions (p < 0.05). The total H2S emissions of Zhusi and Hyline were higher than those of Lohmann, Jingfen and Xinghua (p < 0.05), while Xinghua exhibited the lowest total H2S emissions (p < 0.05). Of the six laying hen species, Xinghua was identified as the best species because it produced the lowest total amount of NH3 + H2S (39.94 µg). The results for the biochemical indicators showed that the concentration of volatile fatty acids (VFAs) from Zhusi was higher than that for the other five species, while the pH in Zhusi was lower (p < 0.01), and the concentrations of ammonium nitrogen (NH4+), uric acid and urea in Xinghua were lower than those in the other species (p < 0.01). Hyline had the highest change in SO42- concentration during the fermentation processes (p < 0.05). In addition, the results of the correlation analysis suggested that NH3 emission is positively related to urease activities but is not significantly related to the ureC gene number. Furthermore, H2S emission was observed to be significantly related to the reduction of SO42- but showed no connection with the aprA gene number. Overall, our findings provide a reference for future feeding programmes attempting to reduce odour pollution in the laying hen industry.
Collapse
|
30
|
Microbial Communities and Sulfate-Reducing Microorganisms Abundance and Diversity in Municipal Anaerobic Sewage Sludge Digesters from a Wastewater Treatment Plant (Marrakech, Morocco). Processes (Basel) 2020. [DOI: 10.3390/pr8101284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Both molecular analyses and culture-dependent isolation were combined to investigate the diversity of sulfate-reducing prokaryotes and explore their role in sulfides production in full-scale anaerobic digesters (Marrakech, Morocco). At global scale, using 16S rRNA gene sequencing, Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Synergistetes, and Euryarchaeota were the most dominant phyla. The abundance of Archaea (3.1–5.7%) was linked with temperature. The mcrA gene ranged from 2.18 × 105 to 1.47 × 107 gene copies.g−1 of sludge. The sulfate-reducing prokaryotes, representing 5% of total sequences, involved in sulfides production were Peptococcaceae, Syntrophaceae, Desulfobulbaceae, Desulfovibrionaceae, Syntrophobacteraceae, Desulfurellaceae, and Desulfobacteraceae. Furthermore, dsrB gene ranged from 2.18 × 105 to 1.92 × 107 gene copies.g−1 of sludge. The results revealed that exploration of diversity and function of sulfate-reducing bacteria may play a key role in decreasing sulfide production, an undesirable by-product, during anaerobic digestion.
Collapse
|
31
|
Kushkevych I, Coufalová M, Vítězová M, Rittmann SKMR. Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances. J Clin Med 2020; 9:E2347. [PMID: 32717883 PMCID: PMC7464432 DOI: 10.3390/jcm9082347] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 01/14/2023] Open
Abstract
The number of cases of oral cavity inflammation in the population has been recently increasing, with periodontitis being the most common disease. It is caused by a change in the microbial composition of the biofilm in the periodontal pockets. In this context, an increased incidence of sulfate-reducing bacteria (SRB) in the oral cavity has been found, which are a part of the common microbiome of the mouth. This work is devoted to the description of the diversity of SRB isolated from the oral cavity. It also deals with the general description of periodontitis in terms of manifestations and origin. It describes the ability of SRB to participate in its development, although their effect on periodontal inflammation is not fully understood. The production of hydrogen sulfide as a cytochrome oxidase inhibitor may play a role in the etiology. A meta-analysis was conducted based on studies of the occurrence of SRB in humans.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (M.C.); (M.V.)
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 61242 Brno, Czech Republic
| | - Martina Coufalová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (M.C.); (M.V.)
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (M.C.); (M.V.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
32
|
Kushkevych I, Castro Sangrador J, Dordević D, Rozehnalová M, Černý M, Fafula R, Vítězová M, Rittmann SKMR. Evaluation of Physiological Parameters of Intestinal Sulfate-Reducing Bacteria Isolated from Patients Suffering from IBD and Healthy People. J Clin Med 2020; 9:E1920. [PMID: 32575467 PMCID: PMC7357025 DOI: 10.3390/jcm9061920] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) are multifactorial illnesses of the intestine, to which microorganisms are contributing. Among the contributing microorganisms, sulfate-reducing bacteria (SRB) are suggested to be involved in the process of bowel inflammation due to the production of hydrogen sulfide (H2S) by dissimilatory sulfate reduction. The aims of our research were to physiologically examine SRB in fecal samples of patients with IBD and a control group, their identification, the study of the process of dissimilatory sulfate reduction (sulfate consumption and H2S production) and biomass accumulation. Determination of biogenic elements of the SRB and evaluation of obtained parameters by using statistical methods were also included in the research. The material for the research consisted of 14 fecal samples, which was obtained from patients and control subjects. METHODS Microscopic techniques, microbiological, biochemical, biophysical methods and statistical analysis were included. RESULTS Colonies of SRB were isolated from all the fecal samples, and subsequently, 35 strains were obtained. Vibrio-shaped cells stained Gram-negative were dominant in all purified studied strains. All strains had a high percentage of similarity by the 16S rRNA gene with deposited sequences in GenBank of Desulfovibrio vulgaris. Cluster analysis of sulfate reduction parameters allowed the grouping of SRB strains. Significant (p < 0.05) differences were not observed between healthy individuals and patients with IBD with regard to sulfate reduction parameters (sulfate consumption, H2S and biomass accumulation). Moreover, we found that manganese and iron contents in the cell extracts are higher among healthy individuals in comparison to unhealthy individuals that have an intestinal bowel disease, especially ulcerative colitis. CONCLUSIONS The observations obtained from studying SRB emphasize differences in the intestinal microbial processes of healthy and unhealthy people.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.S.); (M.C.); (M.V.)
| | - Jorge Castro Sangrador
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.S.); (M.C.); (M.V.)
- Faculty of Biology, University of Salamanca, Campus Miguel de Unamuno C/Donantes de sangre, s/n 37007 Salamanca, Spain
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Monika Rozehnalová
- Centre of Region Hana for Biotechnological an Agricultural Research, Central Laboratories and Research Support, Faculty of Science, Palacky University Olomouc, 77900 Olomouc, Czech Republic;
| | - Martin Černý
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.S.); (M.C.); (M.V.)
| | - Roman Fafula
- Department of Medical Biophysics, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.S.); (M.C.); (M.V.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
33
|
Kushkevych I, Abdulina D, Kováč J, Dordević D, Vítězová M, Iutynska G, Rittmann SKMR. Adenosine-5'-Phosphosulfate- and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments. Biomolecules 2020; 10:E921. [PMID: 32560561 PMCID: PMC7357011 DOI: 10.3390/biom10060921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
A comparative study of the kinetic characteristics (specific activity, initial and maximum rate, and affinity for substrates) of key enzymes of assimilatory sulfate reduction (APS reductase and dissimilatory sulfite reductase) in cell-free extracts of sulphate-reducing bacteria (SRB) from various biotopes was performed. The material for the study represented different strains of SRB from various ecotopes. Microbiological (isolation and cultivation), biochemical (free cell extract preparation) and chemical (enzyme activity determination) methods served in defining kinetic characteristics of SRB enzymes. The determined affinity data for substrates (i.e., sulfite) were 10 times higher for SRB strains isolated from environmental (soil) ecotopes than for strains from the human intestine. The maximum rate of APS reductase reached 0.282-0.862 µmol/min×mg-1 of protein that is only 10 to 28% higher than similar initial values. The maximum rate of sulfite reductase for corrosive relevant collection strains and SRB strains isolated from heating systems were increased by 3 to 10 times. A completely different picture was found for the intestinal SRB Vmax in the strains Desulfovibrio piger Vib-7 (0.67 µmol/min × mg-1 protein) and Desulfomicrobium orale Rod-9 (0.45 µmol/min × mg-1 protein). The determinant in the cluster distribution of SRB strains is the activity of the terminal enzyme of dissimilatory sulfate reduction-sulfite reductase, but not APS reductase. The data obtained from the activity of sulfate reduction enzymes indicated the adaptive plasticity of SRB strains that is manifested in the change in enzymatic activity.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (M.V.)
- Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic
| | - Daryna Abdulina
- Department of General and Soil Microbiology, D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Acad. Zabolotnogo str. 154, 03143 Kyiv, Ukraine; (D.A.); (G.I.)
| | - Jozef Kováč
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (M.V.)
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (M.V.)
| | - Galyna Iutynska
- Department of General and Soil Microbiology, D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Acad. Zabolotnogo str. 154, 03143 Kyiv, Ukraine; (D.A.); (G.I.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
34
|
Li S, Takasu C, Lau H, Robles L, Vo K, Farzaneh T, Vaziri ND, Stamos MJ, Ichii H. Dimethyl Fumarate Alleviates Dextran Sulfate Sodium-Induced Colitis, through the Activation of Nrf2-Mediated Antioxidant and Anti-inflammatory Pathways. Antioxidants (Basel) 2020; 9:antiox9040354. [PMID: 32344663 PMCID: PMC7222424 DOI: 10.3390/antiox9040354] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress and chronic inflammation play critical roles in the pathogenesis of ulcerative colitis (UC) and inflammatory bowel diseases (IBD). A previous study has demonstrated that dimethyl fumarate (DMF) protects mice from dextran sulfate sodium (DSS)-induced colitis via its potential antioxidant capacity, and by inhibiting the activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome. This study aims to clarify the nuclear factor erythroid 2-related factor 2/antioxidant responsive element (Nrf2/ARE) pathway pharmacological activation and anti-inflammatory effect by DMF, through focusing on other crucial antioxidant enzymes and inflammatory mediator, including glutamate-cysteine ligase catalytic subunit (GCLC), glutathione peroxidase (GPX) and cyclooxygenase-2 (COX-2), in a DSS-induced colitis mouse model. The oral administration of DMF attenuated the shortening of colons and alleviated colonic inflammation. Furthermore, the expression of key antioxidant enzymes, including GCLC and GPX, in the colonic tissue were significantly increased by DMF administration. In addition, protein expression of the inflammatory mediator, COX-2, was reduced by DMF administration. Our results suggest that DMF alleviates DSS-induced colonic inflammatory damage, likely via up-regulating GCLC and GPX and down-regulating COX-2 protein expression in colonic tissue.
Collapse
Affiliation(s)
- Shiri Li
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
| | - Chie Takasu
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
| | - Hien Lau
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
| | - Lourdes Robles
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
| | - Kelly Vo
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
| | - Ted Farzaneh
- Department of Pathology, University of California, Irvine, CA 92868, USA;
| | | | - Michael J. Stamos
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92868, USA; (S.L.); (C.T.); (H.L.); (L.R.); (K.V.); (M.J.S.)
- Correspondence: ; Tel.: +1-714-456-8590; Fax: +1-714-456-8796
| |
Collapse
|
35
|
Kushkevych I, Cejnar J, Treml J, Dordević D, Kollar P, Vítězová M. Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria. Cells 2020; 9:E698. [PMID: 32178484 PMCID: PMC7140700 DOI: 10.3390/cells9030698] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023] Open
Abstract
Sulfate is present in foods, beverages, and drinking water. Its reduction and concentration in the gut depend on the intestinal microbiome activity, especially sulfate-reducing bacteria (SRB), which can be involved in inflammatory bowel disease (IBD). Assimilatory sulfate reduction (ASR) is present in all living organisms. In this process, sulfate is reduced to hydrogen sulfide and then included in cysteine and methionine biosynthesis. In contrast to assimilatory sulfate reduction, the dissimilatory process is typical for SRB. A terminal product of this metabolism pathway is hydrogen sulfide, which can be involved in gut inflammation and also causes problems in industries (due to corrosion effects). The aim of the review was to compare assimilatory and dissimilatory sulfate reduction (DSR). These processes occur in some species of intestinal bacteria (e.g., Escherichia and Desulfovibrio genera). The main attention was focused on the description of genes and their location in selected strains. Their coding expression of the enzymes is associated with anabolic processes in various intestinal bacteria. These analyzed recent advances can be important factors for proposing possibilities of metabolic pathway extension from hydrogen sulfide to cysteine in intestinal SRB. The switch from the DSR metabolic pathway to the ASR metabolic pathway is important since toxic sulfide is not produced as a final product.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.); (M.V.)
- Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Jiří Cejnar
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.); (M.V.)
| | - Jakub Treml
- Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Peter Kollar
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.C.); (M.V.)
| |
Collapse
|
36
|
Rabah H, do Carmo FLR, Carvalho RDDO, Cordeiro BF, da Silva SH, Oliveira ER, Lemos L, Cara DC, Faria AMC, Garric G, Harel-Oger M, Le Loir Y, Azevedo V, Bouguen G, Jan G. Beneficial Propionibacteria within a Probiotic Emmental Cheese: Impact on Dextran Sodium Sulphate-Induced Colitis in Mice. Microorganisms 2020; 8:E380. [PMID: 32156075 PMCID: PMC7142753 DOI: 10.3390/microorganisms8030380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUNDS AND AIMS Inflammatory Bowel Diseases (IBD), including Ulcerative Colitis (UC), coincide with alterations in the gut microbiota. Consumption of immunomodulatory strains of probiotic bacteria may induce or prolong remission in UC patients. Fermented foods, including cheeses, constitute major vectors for bacteria consumption. New evidences revealed anti-inflammatory effects in selected strains of Propionibacterium freudenreichii. We thus hypothesized that consumption of a functional cheese, fermented by such a strain, may exert a positive effect on IBD. METHODS We investigated the impact of cheese fermented by P. freudenreichii on gut inflammation. We developed an experimental single-strain cheese solely fermented by a selected immunomodulatory strain of P. freudenreichii, CIRM-BIA 129. We moreover produced, in industrial conditions, an Emmental cheese using the same strain, in combination with Lactobacillus delbrueckii CNRZ327 and Streptococcus thermophilus LMD-9, as starters. Consumption of both cheeses was investigated with respect to prevention of Dextran Sodium Sulphate (DSS)-induced colitis in mice. RESULTS Consumption of the single-strain experimental cheese, or of the industrial Emmental, both fermented by P. freudenreichii CIRM-BIA 129, reduced severity of subsequent DSS-induced colitis, weight loss, disease activity index and histological score. Both treatments, in a preventive way, reduced small bowel Immunoglobulin A (IgA) secretion, restored occludin gene expression and prevented induction of Tumor Necrosis Factor α (TNFα), Interferon γ (IFNγ) and Interleukin-17 (IL-17). CONCLUSIONS A combination of immunomodulatory strains of starter bacteria can be used to manufacture an anti-inflammatory cheese, as revealed in an animal model of colitis. This opens new perspectives for personalised nutrition in the context of IBD.
Collapse
Affiliation(s)
- Houem Rabah
- STLO, INRA, Agrocampus Ouest, 35 000 Rennes, France
- Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, F-35 042 Rennes, France
| | - Fillipe Luiz Rosa do Carmo
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | | | - Barbara Fernandes Cordeiro
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Sara Heloisa da Silva
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Emiliano Rosa Oliveira
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Luisa Lemos
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Denise Carmona Cara
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | | | | | - Yves Le Loir
- STLO, INRA, Agrocampus Ouest, 35 000 Rennes, France
| | - Vasco Azevedo
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Guillaume Bouguen
- CHU Rennes, Univ Rennes, INSERM, CIC1414, Institut NUMECAN (Nutrition Metabolism and Cancer), F-35000 Rennes, France
| | - Gwénaël Jan
- STLO, INRA, Agrocampus Ouest, 35 000 Rennes, France
| |
Collapse
|