1
|
Sun Q, Lei X, Yang X. The crosstalk between non-coding RNAs and oxidative stress in cancer progression. Genes Dis 2025; 12:101286. [PMID: 40028033 PMCID: PMC11870203 DOI: 10.1016/j.gendis.2024.101286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2025] Open
Abstract
As living standards elevate, cancers are appearing in growing numbers among younger individuals globally and these risks escalate with advancing years. One of the reasons is that instability in the cancer genome reduces the effectiveness of conventional drug treatments and chemotherapy, compared with more targeted therapies. Previous research has discovered non-coding RNAs' crucial role in shaping genetic networks involved in cancer cell growth and invasion through their influence on messenger RNA production or protein binding. Additionally, the interaction between non-coding RNAs and oxidative stress, a crucial process in cancer advancement, cannot be overlooked. Essentially, oxidative stress results from the negative effects of radicals within the body and ties directly to cancer gene expression and signaling. Therefore, this review focuses on the mechanism between non-coding RNAs and oxidative stress in cancer progression, which is conducive to finding new cancer treatment strategies.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
2
|
Setti A, Pasha A, Makani VKK, Bhadra MP, Pawar SC. Type IV collagen derived non-collagenous domain α6 (IV) NC1 and its derivative fragments inhibit endothelial cell proliferation and attenuates in-vivo chorioallantoic membrane angiogenesis. Cytotechnology 2025; 77:47. [PMID: 39867830 PMCID: PMC11759748 DOI: 10.1007/s10616-025-00709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect. In the present study, full length α6(IV)NC1(Hexastatin) and its three subfragments α6S1(IV)NC1, α6S2(IV)NC1, and α6S3(IV)NC1 were validated for their pro-apoptotic and angio-inhibitory property. In order to construct the coding sequence of hexastatin and its three derivative partial peptide fragments were constructed with our proposed method, where the corresponding exons were amplified from the genomic DNA and then assembled together. Coding sequences were cloned and expressed using pLATE31 vector and recombinant proteins were purified with C-terminal His tag. The endogenous NC protein fragments of collagen IV were evaluated in vitro for their role in cytotoxicity on human umbilical vein endothelial cells (HUVECs). The results showed that the NC1 domain and its fragments inhibited the HUVECs cell proliferation, migration, invasion and induced apoptosis. The neovascularization inhibition was studied in in-vitro, via tube formation assay and in-vivo via the CAM Assay. The results showed that blood vessels and inter capillary network were inhibited in endothelial cells and also, in chick embryo treated with recombinant α6(IV)NC1 and its derivatives, except for α6S1(IV)NC1 and these endogenous protein inhibitors act as bio-therapeutics in inhibition of angiogenesis.
Collapse
Affiliation(s)
- Aravind Setti
- Department of Genetics, Osmania University, Hyderabad, Telangana State India
| | - Akbar Pasha
- Department of Genetics, Osmania University, Hyderabad, Telangana State India
| | | | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State India
| | - Smita C. Pawar
- Department of Genetics, Osmania University, Hyderabad, Telangana State India
| |
Collapse
|
3
|
Endo R, Ueda T, Nagaoki T, Sato Y, Maishi N, Hida K, Harashima H, Nakamura T. Selective vascular disrupting therapy by lipid nanoparticle-mediated Fas ligand silencing and stimulation of STING. Biomaterials 2025; 321:123297. [PMID: 40158445 DOI: 10.1016/j.biomaterials.2025.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Although recent therapeutic developments have greatly improved the outcomes of patients with cancer, it remains on ongoing problem, particularly in relation to acquired drug resistance. Vascular disrupting agents (VDAs) directly damage tumor blood vessels, thus promoting drug efficacy and reducing the development of drug resistance; however, their low molecular weight and resulting lack of selectivity for tumor endothelial cells (TECs) lead to side effects that can hinder their practical use. Here, we report a novel tumor vascular disrupting therapy using nucleic acid-loaded lipid nanoparticles (LNPs). We prepared two LNPs: a small interfering RNA (siRNA) against Fas ligand (FasL)-loaded cyclic RGD modified LNP (cRGD-LNP) to knock down FasL in TECs and a stimulator of interferon genes (STING) agonist-loaded LNP to induce systemic type I interferon (IFN) production. The combination therapy disrupted the tumor vasculature and induced broad tumor cell apoptosis within 48 h, leading to rapid and strong therapeutic effects in various tumor models. T cells were not involved in these antitumor effects. Furthermore, the combination therapy demonstrated a significantly superior therapeutic efficacy compared with conventional anti-angiogenic agents and VDAs. RNA sequencing analysis suggested that reduced collagen levels may have been responsible for TEC apoptosis. These findings demonstrated a potential therapeutic method for targeting the tumor vasculature, which may contribute to the development of a new class of anti-cancer drugs.
Collapse
Affiliation(s)
- Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Tomoki Ueda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Takumi Nagaoki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, 060-8586, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, 060-8586, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
4
|
Xiao Y, Hassani M, Moghaddam MB, Fazilat A, Ojarudi M, Valilo M. Contribution of tumor microenvironment (TME) to tumor apoptosis, angiogenesis, metastasis, and drug resistance. Med Oncol 2025; 42:108. [PMID: 40087196 DOI: 10.1007/s12032-025-02675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
The tumor microenvironment (TME) contains tumor cells, surrounding cells, and secreted factors. It provides a favorable environment for the maintenance of cancer stem cells (CSCs), the spread of cancer cells to metastatic sites, angiogenesis, and apoptosis, as well as the growth, proliferation, invasion, and drug resistance of cancer cells. Cancer cells rely on the activation of oncogenes, inactivation of tumor suppressors, and the support of a normal stroma for their growth, proliferation, and survival, all of which are provided by the TME. The TME is characterized by the presence of various cells, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), CD8 + cytotoxic T cells (CTLs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), mesenchymal stem cells (MSCs), endothelial cells, adipocytes, and neuroendocrine (NE) cells. The high expression of inflammatory cytokines, angiogenic factors, and anti-apoptotic factors, as well as drug resistance mechanisms in the TME, contributes to the poor therapeutic efficacy of anticancer drugs and tumor progression. Hence, this review describes the mechanisms through which the TME is involved in apoptosis, angiogenesis, metastasis, and drug resistance in tumor cells.
Collapse
Affiliation(s)
- Yanhong Xiao
- Harbin Medical University Cancer Hospital, Harbin, 150006, Heilongjiang Province, China
| | - Mahan Hassani
- Faculty of Pharmacy, Near East University, Nicosia, North Cyprus
| | | | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | - Masoud Ojarudi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Anakha J, Prasad YR, Pande AH. Endostatin in disease modulation: From cancer to beyond. Vascul Pharmacol 2025; 158:107459. [PMID: 39708990 DOI: 10.1016/j.vph.2024.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Angiogenesis plays a pivotal role in various pathological conditions, making it a key target in therapeutic development. Anti-angiogenic therapies are gaining traction for their potential in treating a range of angiogenesis-dependent diseases. Among these, endogenous angiogenesis inhibitors, particularly endostatin, have garnered significant attention for their therapeutic potential. While extensively studied for its anti-angiogenic effects in cancer, endostatin also exhibits anti-atherosclerotic and anti-fibrotic properties, broadening its therapeutic scope. Despite the successful clinical use of recombinant human endostatin in China for nearly two decades, its broader therapeutic potential remains underexplored. Thus, this review delves into the multifaceted applications of endostatin, examining its role in ocular diseases, inflammation, reproductive disorders, and tumor angiogenesis. Furthermore, it provides a comprehensive overview of its emerging roles beyond angiogenesis, particularly in the context of atherosclerosis and fibroproliferative conditions.
Collapse
Affiliation(s)
- J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| | - Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
6
|
Panja P, Manne U, Awasthi V, Bhattacharya R, Mukherjee P. Interrogation of the tumor microenvironment by nanoparticles. Cancer Lett 2025; 612:217454. [PMID: 39805387 DOI: 10.1016/j.canlet.2025.217454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer progression by fostering intricate multicellular crosstalk among cancer cells, stromal cells, and immune cells. This review explores the emerging paradigm of utilizing nanoparticles to disrupt this crosstalk within the TME as a therapeutic strategy. Nanoparticles are engineered with precise physicochemical properties to target specific cell types and deliver therapeutic payloads, thereby inhibiting critical signaling pathways involved in tumor growth, invasion, and metastasis. The mechanisms involved include modulation of the immune response, interference with growth factor signaling, and induction of programmed cell death in cancer cells. Challenges such as biocompatibility, efficient delivery, and potential development of resistance are discussed alongside promising advancements in nanoparticle design. Moving forward, integration of nanoparticle-based therapies with existing treatment modalities holds great potential for enhancing therapeutic efficacy and personalized medicine in cancer therapy.
Collapse
Affiliation(s)
- Prasanta Panja
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Suite 309, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
7
|
Liu Y, Liu Y, Li X, Li S, Zhang X, Si L, Jiang S, Hu J, Chen J. Versatile Nanomaterials That Interfere with Ferroptosis in the Tumor Microenvironment. Int J Nanomedicine 2025; 20:2461-2473. [PMID: 40027870 PMCID: PMC11871933 DOI: 10.2147/ijn.s508767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Ferroptosis is a type of iron-dependent programmed cell death characterized by a depletion of glutathione. Although generally less harmful to normal cells, in tumor cells, the high demand for iron ions provides conditions conducive to ferroptosis. In this review, we provide an overview of recent progress in research on the regulation of ferroptosis in tumor cells, summarizing and assessing the current state, trends, and applications of nanomaterials in the regulation of ferroptosis in tumor cells. Given the advantages of nanomaterials in terms of targeting, safety, improved drug efficacy, and reduced side effects, these materials are considered to have potential therapeutic value in modulating ferroptosis in tumor cells via different mechanisms. In this respect, we describe methods for modifying the regulation of iron ions and interfering with glutathione activity and lipid peroxidation. The development of nanomaterials that can be applied to induce or inhibit ferroptosis is anticipated to provide new therapeutic options for the treatment of a diverse range of diseases.
Collapse
Affiliation(s)
- Yurong Liu
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Yunheng Liu
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Xinting Li
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Song Li
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Xiaokang Zhang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Longqing Si
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Shaojing Jiang
- Yantai Engineering Research Center for Digital Technology of Stomatology, Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Institute of Stomatology, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Jinghui Hu
- Yantai Engineering Research Center for Digital Technology of Stomatology, Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Institute of Stomatology, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Jing Chen
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| |
Collapse
|
8
|
Melo Ferreira D, Oliveira MBPP, Alves RC. A Comprehensive Review of the Antitumor Activity of Olive Compounds: The Case of Olive Oil, Pomace, and Leaf Extracts, Phenolic Alcohols, Secoiridoids, and Triterpenes. Antioxidants (Basel) 2025; 14:237. [PMID: 40002421 PMCID: PMC11852221 DOI: 10.3390/antiox14020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Olive oil is widely recognized for its cancer-prevention properties, and its by-products, such as pomace and leaves, offer an opportunity for compound extraction. This study comprehensively reviews the antitumor activities of olive extracts and compounds in both in vitro and in vivo studies. Key compounds, including hydroxytyrosol (HT), oleuropein (OL), oleocanthal (OC), and maslinic acid (MA), demonstrated significant antiproliferative, apoptotic, antimigratory, and anti-invasive effects, along with selective cytotoxicity, particularly against breast and colorectal cancer. HT, OC, and MA showed anti-angiogenic effects, while HT and OC showed antimetastatic effects. Moreover, HT, OL, and OC also presented synergistic effects when combined with anticancer drugs, improving their efficacy. Additionally, HT, OL, and MA exhibited protective effects against several side effects of chemotherapy. These compounds are able to modulate important signaling pathways such as the mammalian target of rapamycin, regulate oxidative stress through reactive oxygen species production, modulate angiogenic factors, and induce autophagy. Interestingly, the synergistic effects of the compounds within olive extracts appear to be stronger than their individual action. There is a need for dose optimization, further mechanistic studies to clarify the precise mechanisms of action, and future studies using olive pomace extracts with animal models.
Collapse
Affiliation(s)
| | | | - Rita Carneiro Alves
- REQUIMTE/LAQV (Rede de Química e Tecnologia/Laboratório Associado para a Química Verde), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Street of Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal (M.B.P.P.O.)
| |
Collapse
|
9
|
Principe G, Lezcano V, Tiburzi S, Miravalles AB, García BN, Gumilar F, González-Pardo V. In vitro and in vivo evidence of the antineoplastic activity of quercetin against endothelial cells transformed by Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Biochimie 2025; 229:30-41. [PMID: 39369938 DOI: 10.1016/j.biochi.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Quercetin (QUE) is a natural flavonoid with well-known anticancer capabilities, although its effect on viral-induced cancers is less studied. Kaposi's sarcoma (KS) is a viral cancer caused by the human herpesvirus-8, which, during its lytic phase, expresses a constitutively activated viral G protein-coupled receptor (vGPCR) able to induce oncogenic modifications that lead to tumor development. The aim of this work was to investigate the potential effect of QUE on in vitro and in vivo models of Kaposi's sarcoma, developed by transforming endothelial cells with the vGPCR of Kaposi's sarcoma-associated herpesvirus. Initially, the antiproliferative effect of QUE was determined in endothelial cells stably expressing the vGPCR (vGPCR cells), with an IC50 of 30 μM. Additionally, QUE provoked a decrease in vGPCR cell viability, interfered with the cell cycle progression, and induced apoptosis, as revealed by annexin V/PI analysis and caspase-3 activity. The presence of apoptotic bodies and disorganized actin filaments was observed by SEM and phalloidin staining. Furthermore, tumors from vGPCR cells were induced in nude mice, which were treated with QUE (50 or 100 mg/kg/d) resulting in retarded tumor progression and reduced tumor weight. Notably, neither kidney nor liver damage was observed, as indicated by biochemical parameters in serum. In conclusion, this study suggests for the first time that QUE exhibits antineoplastic activity in both in vitro and in vivo models of KS, marking a starting point for further investigations and protocols for therapeutic purpose.
Collapse
Affiliation(s)
- Gabriel Principe
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Virginia Lezcano
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina.
| | - Silvina Tiburzi
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Alicia B Miravalles
- Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Betina N García
- Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina; Bioquímica Austral, Laboratorio de Análisis Clínicos y Gestión, 25 de Mayo 1007, 8000, Bahía Blanca, Argentina
| | - Fernanda Gumilar
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Verónica González-Pardo
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
10
|
Shahbaz S, Rezaeifar M, Syed H, Redmond D, Terveart JWC, Osman M, Elahi S. Upregulation of olfactory receptors and neuronal-associated genes highlights complex immune and neuronal dysregulation in Long COVID patients. Brain Behav Immun 2025; 124:97-114. [PMID: 39615603 DOI: 10.1016/j.bbi.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 01/20/2025] Open
Abstract
A substantial portion of patients infected with SARS-CoV-2 experience prolonged complications, known as Long COVID (LC). A subset of these patients exhibits the most debilitating symptoms, similar to those defined in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We performed bulk RNA sequencing (RNAseq) on the whole blood of LC with ME/CFS, at least 12 months post-onset of the acute disease, and compared them with controls. We found that LC patients had a distinct transcriptional profile compared to controls. Key findings include the upregulation of genes involved in immune dysregulation and neuronal development, such as Fezf2, BRINP2, HOXC12, MEIS2, ZFHX3, and RELN. These genes are linked to neuroinflammatory responses, cognitive impairments, and hematopoietic disturbances, suggesting ongoing neurological and immune disturbances in LC patients. RELN, encoding the Reelin protein, was notably elevated in LC patients, potentially serving as a biomarker for LC pathogenesis due to its role in inflammation and neuronal function. Immune cell analysis showed altered profiles in LC patients, with increased activated memory CD4 + T cells and neutrophils, and decreased regulatory T cells and NK cells, reflecting immune dysregulation. Changes in cytokine and chemokine expression further underscore the chronic inflammatory state in LC patients. Notably, a unique upregulation of olfactory receptors (ORs) suggest alternative roles for ORs in non-olfactory tissues. Pathway analysis revealed upregulation in ribosomal RNA processing, amino acid metabolism, protein synthesis, cell proliferation, DNA repair, and mitochondrial pathways, indicating heightened metabolic and immune demands. Conversely, downregulated pathways, such as VEGF signaling and TP53 activity, point to impaired tissue repair and cellular stress responses. Overall, our study underscores the complex interplay between immune and neuronal dysfunction in LC patients, providing insights into potential diagnostic biomarkers and therapeutic targets. Future research is needed to fully understand the roles and interactions of these genes in LC pathophysiology.
Collapse
Affiliation(s)
- Shima Shahbaz
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Maryam Rezaeifar
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Hussein Syed
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Jan Willem Cohen Terveart
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Shokrollah Elahi
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2E1, AB, Canada; Glycomics Institute of Alberta, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| |
Collapse
|
11
|
Peng BY, Wu CY, Lee CJ, Chang TM, Tsao YT, Liu JF. Nimbolide Induces Cell Apoptosis via Mediating ER Stress-Regulated Apoptotic Signaling in Human Oral Squamous Cell Carcinoma. ENVIRONMENTAL TOXICOLOGY 2025; 40:347-356. [PMID: 39462890 DOI: 10.1002/tox.24436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/29/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Human oral squamous cell carcinoma (OSCC) poses a significant health challenge in Asia, with current therapeutic strategies failing to improve the survival rates for OSCC patients sufficiently. To elucidate the effects of Nimbolide on OSCC cell proliferation and apoptosis, we performed a series of experiments, including cell proliferation assays, annexin V/PI assays, and cell cycle analysis. We further investigated nimbolide's role in modulating endoplasmic reticulum (ER) stress, reactive oxygen species (ROS) production, and mitochondrial dysfunction using flow cytometry. Additionally, Western blotting was used to detect apoptosis-related protein expression. Our findings reveal that nimbolide exerts its anti-proliferative effects on OSCC cells by inducing apoptosis. The nimbolide increased intracellular ROS levels and acceleration of cellular calcium accumulation, respectively promoting endoplasmic reticulum stress and cancer cell apoptosis. Furthermore, nimbolide activates the caspase cascade by altering the mitochondrial membrane potential and apoptotic protein expression, thereby inhibiting the viability of tumor cells. Our data show that Nimbolide suppresses tumor growth through the induction of ROS production, ER stress, and mitochondrial dysfunction, resulting in apoptosis in OSCC cells. Overall, our study highlights nimbolide as a potential natural compound for OSCC therapy.
Collapse
Affiliation(s)
- Bou-Yue Peng
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yu Wu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Chia-Jung Lee
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan, ROC
| | - Tsung-Ming Chang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ya-Ting Tsao
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
12
|
Famta P, Shah S, Vambhurkar G, Pandey G, Bagasariya D, Kumar KC, Prasad SB, Shinde A, Wagh S, Srinivasarao DA, Kumar R, Khatri DK, Asthana A, Srivastava S. Amelioration of breast cancer therapies through normalization of tumor vessels and microenvironment: paradigm shift to improve drug perfusion and nanocarrier permeation. Drug Deliv Transl Res 2025; 15:389-406. [PMID: 39009931 DOI: 10.1007/s13346-024-01669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women. Chemo-, immune- and photothermal therapies are employed to manage BC. However, the tumor microenvironment (TME) prevents free drugs and nanocarriers (NCs) from entering the tumor premises. Formulation scientists rely on enhanced permeation and retention (EPR) to extravasate NCs in the TME. However, recent research has demonstrated the inconsistent nature of EPR among different patients and tumor types. In addition, angiogenesis, high intra-tumor fluid pressure, desmoplasia, and high cell and extracellular matrix density resist the accumulation of NCs in the TME. In this review, we discuss TME normalization as an approach to improve the penetration of drugs and NCSs in the tumor premises. Strategies such as normalization of tumor vessels, reversal of hypoxia, alleviation of high intra-tumor pressure, and infiltration of lymphocytes for the reversal of therapy failure have been discussed in this manuscript. Strategies to promote the infiltration of anticancer immune cells in the TME after vascular normalization have been discussed. Studies strategizing time points to administer TME-normalizing agents are highlighted. Mechanistic pathways controlling the angiogenesis and normalization processes are discussed along with the studies. This review will provide greater tumor-targeting insights to the formulation scientists.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Sajja Bhanu Prasad
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Akshay Shinde
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Suraj Wagh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Molecular and Cellular Biology Laboratory, Department of Pharmacology, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
13
|
Dai H, Yan C, Huang W, Pan Y, Pan F, Liu Y, Wang S, Wang H, Ye R, Li Y. A Nomogram Based on MRI Visual Decision Tree to Evaluate Vascular Endothelial Growth Factor in Hepatocellular Carcinoma. J Magn Reson Imaging 2025; 61:970-982. [PMID: 39777758 PMCID: PMC11706310 DOI: 10.1002/jmri.29491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUNDS Anti-vascular endothelial growth factor (VEGF) therapy has been developed and recognized as an effective treatment for hepatocellular carcinoma (HCC). However, there remains a lack of noninvasive methods in precisely evaluating VEGF expression in HCC. PURPOSE To establish a visual noninvasive model based on clinical indicators and MRI features to evaluate VEGF expression in HCC. STUDY TYPE Retrospective. POPULATION One hundred forty HCC patients were randomly divided into a training (N = 98) and a test cohort (N = 42). FIELD STRENGTH/SEQUENCE 3.0 T, T2WI, T1WI including pre-contrast, dynamic, and hepatobiliary phases. ASSESSMENT The fusion model constructed by history of smoking, albumin-to-globulin ratio (AGR) and the Radio-Tree model was visualized by a nomogram. STATISTICAL TESTS Performances of models were assessed by receiver operating characteristic (ROC) curves. Student's t-test, Mann-Whitney U-test, chi-square test, Fisher's exact test, univariable and multivariable logistic regression analysis, DeLong's test, integrated discrimination improvement (IDI), Hosmer-Lemeshow test, and decision curve analysis were performed. P < 0.05 was considered statistically significant. RESULTS History of smoking and AGR ≤1.5 were clinical independent risk factors of the VEGF expression. In training cohorts, values of area under the curve (AUCs) of Radio-Tree model, Clinical-Radiological (C-R) model, fusion model which combined history of smoking and AGR with Radio-Tree model were 0.821, 0.748, and 0.871. In test cohort, the fusion model showed highest AUC (0.844) than Radio-Tree and C-R models (0.819, 0.616, respectively). DeLong's test indicated that the fusion model significantly differed in performance from the C-R model in training cohort (P = 0.015) and test cohort (P = 0.007). DATA CONCLUSION The fusion model combining history of smoking, AGR and Radio-Tree model established with ML algorithm showed the highest AUC value than others. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Hanting Dai
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of RadiologyNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Chuan Yan
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of RadiologyNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Wanrong Huang
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Yifan Pan
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Feng Pan
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Yamei Liu
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Shunli Wang
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Huifang Wang
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Rongping Ye
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Yueming Li
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of RadiologyNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouFujianChina
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
14
|
Polloni L, Costa TR, Morais LP, Borges BC, Teixeira SC, de Melo Fernandes TA, Correia LIV, Bastos LM, Soares AM, Silva MJB, Amália Vieira Ferro E, Lopes DS, Ávila VDMR. Pollonein-LAAO unveiling anti-angiogenic effects through oxidative stress: Insights from mimetic tumor angiogenesis environment in a 3D co-culture model. Chem Biol Interact 2025; 406:111361. [PMID: 39716533 DOI: 10.1016/j.cbi.2024.111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Affiliation(s)
- Lorena Polloni
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil.
| | - Tássia Rafaella Costa
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Lorena Pinheiro Morais
- Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | | | | | - Luciana Machado Bastos
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Andreimar Martins Soares
- Oswaldo Cruz Foundation (FIOCRUZ) Rondônia, Federal University of Rondônia (UNIR), National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT-EPIAMO), Porto Velho-RO, Brazil; Network of Research and Knowledge of Excellence in the Western/Eastern Amazon (RED-CONEXAO), Brazil
| | | | | | - Daiana Silva Lopes
- Multidisciplinary Institute for Health, Federal University of Bahia - UFBA, Vitoria da Conquista, BA, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil; Network of Research and Knowledge of Excellence in the Western/Eastern Amazon (RED-CONEXAO), Brazil.
| |
Collapse
|
15
|
Sel FA, Oğuz FS. Cancer and Secretomes: HLA-G and Cancer Puzzle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 39841384 DOI: 10.1007/5584_2024_843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Among the mechanisms, cancer cells develop to elude immune system, immune regulation and the use of molecules that play important roles in immune escape stand out. One of these molecules, the human leukocyte antigen G (HLA-G), plays an important role in the maintenance of immune tolerance and contributes to the progression of cancer by exerting an immunosuppressive effect. By creating an immunosuppressive field in the microscopic environment of the tumor, the aberrant expression of HLA-G facilitates the evading of cancer cells from the immune system and contributes to the progression of the disease. It is important to study how HLA-Gs interact with secretome components, especially at the level of specific components, to develop treatment strategies that prevent cancer cells evading the immune system. Cancer cells may be recognized and targeted by the immune system by reducing the inhibitory effect of HLA-G on immune cells and by neutralizing tumor-promoting components of the secretome. This review focuses on the interaction of specific cancer cell secretomes and HLA-G. Here we also investigate the role of this interaction in tumor immune escape strategies.
Collapse
Affiliation(s)
- Figen Abatay Sel
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Fatma Savran Oğuz
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
16
|
Jin S, Feng C, Wang X. DNA or not DNA -that is the question determining the design of platinum anticancer drugs. Eur J Med Chem 2025; 282:117077. [PMID: 39579471 DOI: 10.1016/j.ejmech.2024.117077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/20/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Platinum drugs are the most widely used chemotherapeutics to treat various tumors. Their primary mode of action is supposed to be inducing apoptosis of cancer cells via covalent binding to DNA. This mechanism has shackled the design of new platinum drugs for many years. Mounting evidence shows that many platinum complexes form non-covalent adducts with DNA or interact with proteins to exhibit significant antitumor activity, thus implying some distinct mechanisms from that of traditional platinum drugs. These unconventional examples indicate that covalent DNA binding is not the precondition for the antitumor activity of platinum complexes, and diversified reactions or interactions with biomolecules, organelles, signal pathways, or immune system could lead to the antitumor activity of platinum complexes. The atypical mechanisms break the classical DNA-only paradigm and structure-activity relationships, thus opening a wide avenue for the design of innovative platinum anticancer drugs.
Collapse
Affiliation(s)
- Suxing Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Chenyao Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
17
|
Hassan HM, Hassan R, Elmagzoub RM, Al-Emam A, Kossenas K, Abdel-Samea AS, Khalifa HO, Akocak S, Bräse S, Hashem H. From Infection to Tumor: Exploring the Therapeutic Potential of Ciprofloxacin Derivatives as Anticancer Agents. Pharmaceuticals (Basel) 2025; 18:72. [PMID: 39861135 PMCID: PMC11768150 DOI: 10.3390/ph18010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Ciprofloxacin, a widely used second-generation fluoroquinolone for treating bacterial infections, has recently shown notable anticancer properties. This review explores progress in developing ciprofloxacin derivatives with anticancer properties, emphasizing key structural changes that improve their therapeutic effectiveness by modifying the basic group at position 7, the carboxylic acid group at position 3, or both. It further investigates the mechanisms by which these derivatives fight cancer, such as inducing apoptosis, arresting the cell cycle, inhibiting topoisomerase I and II, preventing tubulin polymerization, suppressing interleukin 6, blocking thymidine phosphorylase, inhibiting multidrug resistance proteins, and hindering angiogenesis. Additionally, it outlines their future directions, such as enhancing their efficacy, selectivity, and investigating potential synergy with other chemotherapeutic agents, offering a promising avenue for developing new therapies for cancer.
Collapse
Affiliation(s)
- Hesham M. Hassan
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut 71111, Egypt
| | - Roket Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Ranya Mohammed Elmagzoub
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 73311, Saudi Arabia
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Konstantinos Kossenas
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, P.O. Box 24005, 21 Ilia Papakyriakou, 2414 Engomi, CY-1700 Nicosia, Cyprus
| | - Ahmed S. Abdel-Samea
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Hazim O. Khalifa
- Department of Pharmacology, Faculty of Veterinary Medicinea, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Türkiye
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
18
|
Shaker FH, Sanad EF, Elghazaly H, Hsia SM, Hamdy NM. piR-823 tale as emerging cancer-hallmark molecular marker in different cancer types: a step-toward ncRNA-precision. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:47-68. [PMID: 39102033 PMCID: PMC11787197 DOI: 10.1007/s00210-024-03308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
PIWI-interacting RNAs (piRNAs) have received a lot of attention for their functions in cancer research. This class of short non-coding RNAs (ncRNA) has roles in genomic stability, chromatin remodeling, messenger RNA (mRNA) integrity, and genome structure. We summarized the mechanisms underlying the biogenesis and regulatory molecular functions of piRNAs. Among all piRNAs studied in cancer, this review offers a comprehensive analysis of the emerging roles of piR-823 in various types of cancer, including colorectal, gastric, liver, breast, and renal cancers, as well as multiple myeloma. piR-823 has emerged as a crucial modulator of various cancer hallmarks through regulating multiple pathways. In the current review, we analyzed several databases and conducted an extensive literature search to explore the influence of piR-823 in carcinogenesis in addition to describing the potential application of piR-823 as prognostic and diagnostic markers as well as the therapeutic potential toward ncRNA precision.
Collapse
Affiliation(s)
- Fatma H Shaker
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Eman F Sanad
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Hesham Elghazaly
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Shih-Min Hsia
- School of Food and Safety, Nutrition Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 110301, Taiwan
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt.
| |
Collapse
|
19
|
Chiappetta C, Della Rocca C, Di Cristofano C. Whole-Exome Analysis and Osteosarcoma: A Game Still Open. Int J Mol Sci 2024; 25:13657. [PMID: 39769419 PMCID: PMC11728052 DOI: 10.3390/ijms252413657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Osteosarcoma (OS) is the most prevalent malignant bone tumor in adolescents and young adults. OS cells grow in a permissive local microenvironment which modulates their behavior and facilitates all steps in tumor development (e.g., proliferation/quiescence, invasion/migration, and drug resistance) and contributes to their intrinsic heterogeneity. The lung parenchyma is the most common metastatic site in OS, and metastatic foci are frequently associated with a poor clinical outcome. Although multiple factors may be responsible for the disease, including genetic mutations (e.g., Rb and p53), the molecular mechanism of development of OS remains unclear, and the conventional treatment for OS is still based on a sequential approach that combines chemotherapy and surgery. Also, despite the increase in clinical trials, the survival rates for OS have not improved. Non-specific targeting therapies thus show poor therapeutic effects, along with side effects at high doses. For these reasons, many efforts have been made to characterize the complex genome of OS thanks to the whole-exome analysis, with the aim of identifying predictive biomarkers to give these patients a better therapeutic option. This review aims to summarize and discuss the main recent advances in OS molecular research for precision medicine.
Collapse
Affiliation(s)
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| | - Claudio Di Cristofano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| |
Collapse
|
20
|
Hassan HM, Hamdan AM, Alattar A, Alshaman R, Bahattab O, Al-Gayyar MMH. Evaluating anticancer activity of emodin by enhancing antioxidant activities and affecting PKC/ADAMTS4 pathway in thioacetamide-induced hepatocellular carcinoma in rats. Redox Rep 2024; 29:2365590. [PMID: 38861483 PMCID: PMC11168332 DOI: 10.1080/13510002.2024.2365590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Emodin is a naturally occurring anthraquinone derivative with a wide range of pharmacological activities, including neuroprotective and anti-inflammatory activities. We aim to assess the anticancer activity of emodin against hepatocellular carcinoma (HCC) in rat models using the proliferation, invasion, and angiogenesis biomarkers. After induction of HCC, assessment of the liver impairment and the histopathology of liver sections were investigated. Hepatic expression of both mRNA and protein of the oxidative stress biomarkers, HO-1, Nrf2; the mitogenic activation biomarkers, ERK5, PKCδ; the tissue destruction biomarker, ADAMTS4; the tissue homeostasis biomarker, aggregan; the cellular fibrinolytic biomarker, MMP3; and of the cellular angiogenesis biomarker, VEGF were measured. Emodin increased the survival percentage and reduced the number of hepatic nodules compared to the HCC group. Besides, emodin reduced the elevated expression of both mRNA and proteins of all PKC, ERK5, ADAMTS4, MMP3, and VEGF compared with the HCC group. On the other hand, emodin increased the expression of mRNA and proteins of Nrf2, HO-1, and aggrecan compared with the HCC group. Therefore, emodin is a promising anticancer agent against HCC preventing the cancer prognosis and infiltration. It works through many mechanisms of action, such as blocking oxidative stress, proliferation, invasion, and angiogenesis.
Collapse
Affiliation(s)
- Hanan M. Hassan
- Dept. of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed M. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed M. H. Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
21
|
Seyedi S, Harris VK, Kapsetaki SE, Narayanan S, Saha D, Compton Z, Yousefi R, May A, Fakir E, Boddy AM, Gerlinger M, Wu C, Mina L, Huijben S, Gouge DH, Cisneros L, Ellsworth PC, Maley CC. Resistance Management for Cancer: Lessons from Farmers. Cancer Res 2024; 84:3715-3727. [PMID: 39356625 PMCID: PMC11565176 DOI: 10.1158/0008-5472.can-23-3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/29/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
One of the main reasons we have not been able to cure cancers is that treatments select for drug-resistant cells. Pest managers face similar challenges with pesticides selecting for pesticide-resistant insects, resulting in similar mechanisms of resistance. Pest managers have developed 10 principles that could be translated to controlling cancers: (i) prevent onset, (ii) monitor continuously, (iii) identify thresholds below which there will be no intervention, (iv) change interventions in response to burden, (v) preferentially select nonchemical control methods, (vi) use target-specific drugs, (vii) use the lowest effective dose, (viii) reduce cross-resistance, (ix) evaluate success based on long-term management, and (x) forecast growth and response. These principles are general to all cancers and cancer drugs and so could be employed broadly to improve oncology. Here, we review the parallel difficulties in controlling drug resistance in pests and cancer cells. We show how the principles of resistance management in pests might be applied to cancer. Integrated pest management inspired the development of adaptive therapy in oncology to increase progression-free survival and quality of life in patients with cancers where cures are unlikely. These pest management principles have the potential to inform clinical trial design.
Collapse
Affiliation(s)
- Sareh Seyedi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Valerie K. Harris
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shrinath Narayanan
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Daniel Saha
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Zachary Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- University of Arizona Cancer Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Rezvan Yousefi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona
| | - Alexander May
- Research Casting International, Quinte West, Ontario, Canada
| | - Efe Fakir
- Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, North Carolina
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Christina Wu
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona
| | | | - Silvie Huijben
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Dawn H. Gouge
- Department of Entomology, University of Arizona, Tucson, Arizona
| | - Luis Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| |
Collapse
|
22
|
Ren W, Liang H, Sun J, Cheng Z, Liu W, Wu Y, Shi Y, Zhou Z, Chen C. TNFAIP2 promotes HIF1α transcription and breast cancer angiogenesis by activating the Rac1-ERK-AP1 signaling axis. Cell Death Dis 2024; 15:821. [PMID: 39532855 PMCID: PMC11557851 DOI: 10.1038/s41419-024-07223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Angiogenesis is well known to play a critical role in breast cancer. We previously reported that TNFAIP2 activates Rac1 to promote triple-negative breast cancer (TNBC) cell proliferation, migration, and chemoresistance. However, the potential contribution of TNFAIP2 to tumor angiogenesis remains unknown. In this study, we demonstrated that TNFAIP2 promotes TNBC angiogenesis by activating the Rac1-ERK-AP1-HIF1α signaling axis. Under hypoxia, TNFAIP2 activates Rac1 and ERK sequentially. Following that, ERK activates the AP-1 (c-Jun/Fra1) transcription factor. By employing chromatin immunoprecipitation and luciferase reporter assays, we showed that AP-1 directly interacts with the HIF1α gene promoter, thereby enhancing its transcription. The combined application of ERK inhibitors, U0126 or trametinib, with the VEGFR inhibitor Apatinib, additively suppresses angiogenesis and tumor growth of HCC1806 in nude mice. These findings provide new therapeutic strategies for TNBC.
Collapse
MESH Headings
- Humans
- Animals
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- rac1 GTP-Binding Protein/metabolism
- rac1 GTP-Binding Protein/genetics
- Female
- Cell Line, Tumor
- Mice, Nude
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/drug therapy
- Mice
- Signal Transduction
- Transcription Factor AP-1/metabolism
- Pyrimidinones/pharmacology
- Pyridines/pharmacology
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Transcription, Genetic/drug effects
- Pyridones/pharmacology
- Mice, Inbred BALB C
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Nitriles/pharmacology
- MAP Kinase Signaling System/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Angiogenesis
Collapse
Affiliation(s)
- Wenlong Ren
- School of Life Science, University of Science & Technology of China, Hefei, Anhui, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Huichun Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jian Sun
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Zhuo Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenjing Liu
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Yingying Wu
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yujie Shi
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongmei Zhou
- The School of Continuing Education, Kunming Medical University, Kunming, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China.
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, ChinaAcademy of Biomedical Engineering, Kunming Medical University, Kunming, China.
| |
Collapse
|
23
|
Lorenc P, Sikorska A, Molenda S, Guzniczak N, Dams-Kozlowska H, Florczak A. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed Pharmacother 2024; 180:117585. [PMID: 39442237 DOI: 10.1016/j.biopha.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is one of the cancer hallmarks and is a critical process in tumor growth and metastasis. The pivotal role of angiogenesis in cancer development has made antiangiogenic treatment a promising strategy for cancer therapy. To develop an effective therapy, it is essential to understand the basics of the physiological and tumor angiogenesis process. This review presents the primary factors related to physiological and tumor angiogenesis and the mechanisms of angiogenesis in tumors. We summarize potential molecular targets for cancer treatment by focusing on the vasculature, with the VEGF/VEGFR pathway being one of the most important and well-studied. Additionally, we present the advantages and limitations of currently used clinical protocols for cancer treatment targeting the VEGF/VEGFR pathway.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Agata Sikorska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Sara Molenda
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Anna Florczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland.
| |
Collapse
|
24
|
Lidonnici J, Oberkersch RE. Reciprocal Dynamics of Metabolism and mRNA Translation in Tumor Angiogenesis. Int J Mol Sci 2024; 25:11284. [PMID: 39457064 PMCID: PMC11508371 DOI: 10.3390/ijms252011284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Angiogenesis, the process of formation of new blood vessels from pre-existing vasculature, is essential for tumor growth and metastasis. Anti-angiogenic treatment targeting vascular endothelial growth factor (VEGF) signaling is a powerful tool to combat tumor growth; however, anti-tumor angiogenesis therapy has shown limited efficacy, with survival benefits ranging from only a few weeks to months. Compensation by upregulation of complementary growth factors and switches to different modes of vascularization have made these types of therapies less effective. Recent evidence suggests that targeting specific players in endothelial metabolism is a valuable therapeutic strategy against tumor angiogenesis. Although it is clear that metabolism can modulate the translational machinery, the reciprocal relationship between metabolism and mRNA translational control during tumor angiogenesis is not fully understood. In this review, we explore emerging examples of how endothelial cell metabolism affects mRNA translation during the formation of blood vessels. A deeper comprehension of these mechanisms could lead to the development of innovative therapeutic strategies for both physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Jacopo Lidonnici
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy;
| | | |
Collapse
|
25
|
Deng Z, Zhang L, Sun C, Liu Y, Li B. Identification of molecular subtypes, prognostic status and immunotherapy response in cervical cancer based on angiogenic signature genes. Heliyon 2024; 10:e38488. [PMID: 39391470 PMCID: PMC11466623 DOI: 10.1016/j.heliyon.2024.e38488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Background Cervical cancer, as one of the most common malignancies in women, is closely related to the mechanism of angiogenesis, which needs further exploration. Methods The squamous cell carcinoma of the cervix and cervical adenocarcinoma (CESC) data from The Cancer Genome Atlas (TCGA) database. CESC subtypes based on 48 angiogenesis-related genes were identified using consistent cluster analysis, and the limma package were adopted to screen the differentially expressed genes (DEGs) associated with prognosis. Further compress the DEGs through univariate and Least Absolute Shrinkage and Selection Operator (LASSO) COX analysis to identify the key genes. Calculate immune scores using the GSVA package and predict immunotherapy response with TIDE. For in vitro analysis, the expressions of these key genes were additionally tested via reverse-transcription quantitative PCR, and the migration and invasion of Hela cells were determined in scratch and transwell assays, respectively. Results 3 CESC subtypes were identified, with the best survival advantage in the C2 subtype and the worst in C1 subtype. A risk model was established utilizing seven key genes (MMP3, DLL4, CAP2, PDIA6, TCN2, PAPSS2, and VCAM1), showcases an Area Under the Curve (AUC) exceeding 0.7, underlining its robust performance. The risk score model showed a trend of poorer survival for patients in the high-risk score group and good agreement across different datasets. A nomogram was constructed, and calibration curves indicated robust predictive performance. Immunological analysis revealed heightened sensitivity to immunotherapy in the low-risk group. Besides, the elevated expressions of all 7 genes were seen in Hela cells, and the specific target-mediated DLL4 knockdown diminished the migration and invasion of Hela cells in vitro. Conclusion This research provides fresh insights and a valuable tool to guide therapeutic decision-making for CESC.
Collapse
Affiliation(s)
- Zhuo Deng
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, 710000, China
| | - Lu Zhang
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, 710000, China
| | - Chenyang Sun
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, 710000, China
| | - Yiping Liu
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, 710000, China
| | - Bin Li
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, 710000, China
| |
Collapse
|
26
|
Li S, Xiong Q, Shen Y, Lin J, Zhang L, Wu Y, Jin J, Luan X. Toosendanin: upgrade of an old agent in cancer treatment. Chin J Nat Med 2024; 22:887-899. [PMID: 39428181 DOI: 10.1016/s1875-5364(24)60693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Toosendanin (TSN), a tetracyclic triterpenoid derived from Melia toosendan and M. azedarach, demonstrates broad application prospects in cancer treatment. Although previously employed as a pesticide, recent studies have revealed its potential therapeutic value in treating various types of cancer. TSN exerts an anticancer effect via mechanisms including proliferation inhibition, apoptosis induction, migration suppression, and angiogenesis inhibition. However, TSN's toxicity, particularly its hepatotoxicity, significantly limits its therapeutic application. This review explored the dual nature of TSN, evaluating both its anticancer potential and toxicological risks, emphasizing the importance of balancing these aspects in therapeutic applications. Furthermore, we investigated the incorporation of TSN into novel therapeutic strategies, such as Proteolysis-targeting chimeras (PROTAC) technology and nanotechnology-based drug delivery systems (DDS), which enhance treatment efficacy while mitigating toxicity in normal tissues.
Collapse
Affiliation(s)
- Shuwei Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiwen Shen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
27
|
Guo M, Ying Y, Chen Y, Miao X, Yu Z. Asiaticoside inhibits breast cancer progression and tumor angiogenesis via YAP1/VEGFA signal pathway. Heliyon 2024; 10:e37169. [PMID: 39309801 PMCID: PMC11416243 DOI: 10.1016/j.heliyon.2024.e37169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Breast cancer poses a major health risk to millions of females globally. Asiaticoside (AC) is a naturally occurring compound derived from Centella asiatica, a widely used medicinal plant in the oriental countries and has potential antitumor properties. The primary aim of this study was to investigate the anti-cancer effects of synthesized AC at the cellular level and assess its ability to inhibit tumor growth and angiogenesis in breast cancer. Methods The proliferative capacities of MCF-7 and MDA-MB-231 cells were determined using CCK-8 assay. To analyze invasion and migration, Transwell assays were conducted on the same cell lines. Additionally, apoptosis was analyzed in vitro using flow cytometry. Real-time RT-PCR was used to examine mRNA expression, and Western-blotting assay was employed to examine protein expression. Subcutaneous injection of MDA-MB-231 cells into female BALB/c nude mice was followed by treatment with AC to study its anti-tumor effects in vivo. Results AC treatment reduced cell proliferation and triggered apoptosis in MCF-7 and MDA-MB-231 cells. The invasive and pro-angiogenesis ability were also impaired upon AC treatment. AC administration also impeded the tumor growth and tumor-associated angiogenesis of MDA-MB-231 cells in nude mice, which was accompanied by the decreased levels of YAP1 and VEGFA. Conclusion Taken together, our results demonstrated the anti-cancer activity of AC in breast cancer. AC is able to suppress the malignancy of breast cancercells via YAP1/VEGFA signal pathway.
Collapse
Affiliation(s)
- Mengmeng Guo
- General Surgery Department, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No.41, Jianshe Road, Chongchuan District, Nantong, 220000, Jiangsu, China
| | - Yu Ying
- Breast Disease Department, Jiangsu Provincial Hospital of Traditional Chinese Medicine, No. 155, Hanzhong Road, Qinhuai District, Nanjing, Jiangsu, China
| | - Yun Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital, No. 42, Baizi Pavilion, Kunlun Road, Xuanwu District, Nanjing, Jiangsu, China
| | - Xian Miao
- Oncology Department, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, No.41, Jianshe Road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Zhenghong Yu
- Rheumatology and Immunology Department, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, No. 278, Central Road, Nanjing City, China
| |
Collapse
|
28
|
Zhang K, Shi Y, Jin Z, He J. Advances in tumor vascular growth inhibition. Clin Transl Oncol 2024; 26:2084-2096. [PMID: 38504070 DOI: 10.1007/s12094-024-03432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Tumor growth and metastasis require neovascularization, which is dependent on a complex array of factors, such as the production of various pro-angiogenic factors by tumor cells, intercellular signaling, and stromal remodeling. The hypoxic, acidic tumor microenvironment is not only conducive to tumor cell proliferation, but also disrupts the equilibrium of angiogenic factors, leading to vascular heterogeneity, which further promotes tumor development and metastasis. Anti-angiogenic strategies to inhibit tumor angiogenesis has, therefore, become an important focus for anti-tumor therapy. The traditional approach involves the use of anti-angiogenic drugs to inhibit tumor neovascularization by targeting upstream and downstream angiogenesis-related pathways or pro-angiogenic factors, thereby inhibiting tumor growth and metastasis. This review explores the mechanisms involved in tumor angiogenesis and summarizes currently used anti-angiogenic drugs, including monoclonal antibody, and small-molecule inhibitors, as well as the progress and challenges associated with their use in anti-tumor therapy. It also outlines the opportunities and challenges of treating tumors using more advanced anti-angiogenic strategies, such as immunotherapy and nanomaterials.
Collapse
Affiliation(s)
- Keyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuanyuan Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ze Jin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
29
|
Yang S, Raza F, Li K, Qiu Y, Su J, Qiu M. Maximizing arsenic trioxide's anticancer potential: Targeted nanocarriers for solid tumor therapy. Colloids Surf B Biointerfaces 2024; 241:114014. [PMID: 38850742 DOI: 10.1016/j.colsurfb.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Arsenic trioxide (ATO) has gained significant attention due to its promising therapeutic effects in treating different diseases, particularly acute promyelocytic leukemia (APL). Its potent anticancer mechanisms have been extensively studied. Despite the great efficacy ATO shows in fighting cancers, drawbacks in the clinical use are obvious, especially for solid tumors, which include rapid renal clearance and short half-life, severe adverse effects, and high toxicity to normal cells. Recently, the emergence of nanomedicine offers a potential solution to these limitations. The enhanced biocompatibility, excellent targeting capability, and desirable effectiveness have attracted much interest. Therefore, we summarized various nanocarriers for targeted delivery of ATO to solid tumors. We also provided detailed anticancer mechanisms of ATO in treating cancers, its clinical trials and shortcomings as well as the combination therapy of ATO and other chemotherapeutic agents for reduced drug resistance and synergistic effects. Finally, the future study direction and prospects were also presented.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujiao Qiu
- The Wharton School and School of Nursing, University of Pennsylvania, Philadelphia 19104, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
30
|
Yousefi T, Mohammadi Jobani B, Taebi R, Qujeq D. Innovating Cancer Treatment Through Cell Cycle, Telomerase, Angiogenesis, and Metastasis. DNA Cell Biol 2024; 43:438-451. [PMID: 39018567 DOI: 10.1089/dna.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Cancer remains a formidable challenge in the field of medicine, necessitating innovative therapeutic strategies to combat its relentless progression. The cell cycle, a tightly regulated process governing cell growth and division, plays a pivotal role in cancer development. Dysregulation of the cell cycle allows cancer cells to proliferate uncontrollably. Therapeutic interventions designed to disrupt the cell cycle offer promise in restraining tumor growth and progression. Telomerase, an enzyme responsible for maintaining telomere length, is often overactive in cancer cells, conferring them with immortality. Targeting telomerase presents an opportunity to limit the replicative potential of cancer cells and hinder tumor growth. Angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. Strategies aimed at inhibiting angiogenesis seek to deprive tumors of their vital blood supply, thereby impeding their progression. Metastasis, the spread of cancer cells from the primary tumor to distant sites, is a major challenge in cancer therapy. Research efforts are focused on understanding the underlying mechanisms of metastasis and developing interventions to disrupt this deadly process. This review provides a glimpse into the multifaceted approach to cancer therapy, addressing critical aspects of cancer biology-cell cycle regulation, telomerase activity, angiogenesis, and metastasis. Through ongoing research and innovative strategies, the field of oncology continues to advance, offering new hope for improved treatment outcomes and enhanced quality of life for cancer patients.
Collapse
Affiliation(s)
- Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohammadi Jobani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
31
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
32
|
Sun P, Zhang Y, Tian S, Cui K, Zhong J, Zhang C, Wang D, Zhang B, Shi X, Li Z. Analysis of efficacy and safety for the combination of tislelizumab and regorafenib in advanced hepatocellular carcinoma: A prospective clinical study. J Cancer Res Ther 2024; 20:1344-1349. [PMID: 39206997 DOI: 10.4103/jcrt.jcrt_2376_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUNDS Programmed death receptor 1 (PD-1) monoclonal antibody has been approved for the first and second-line treatments of hepatocellular carcinoma (HCC). This study aimed to evaluate the efficacy and safety of tislelizumab + regorafenib as a second-line treatment option for advanced HCC. METHODS Treatment-related adverse events (TRAEs) were the primary endpoints in this clinical trial comprising 28 patients with advanced HCC. The secondary endpoints included objective response rate (ORR), disease control rate (DCR), and progression-free survival (PFS). RESULTS According to the mRECIST 1.1 evaluation criteria, the ORR was 28.6%. Complete and partial response were observed in 3 and 5 patients, respectively; stable disease was observed in 12 patients (DCR, 71.4%). The median PFS was 6.4 months. The incidence of grade 1-2 and 3-4 TRAEs was 57.1% and 39.3%, respectively. CONCLUSION This study suggests that tislelizumab + regorafenib can be used as a second-line treatment for advanced HCC.
Collapse
Affiliation(s)
- Pengfei Sun
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Huaiyin District, Jinan, China
| | - Ying Zhang
- Department of Nephrology, People's Hospital of Shizhong District, Shizhong District, Jinan, China
| | - Shilin Tian
- Department of Intervention Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Huaiyin District, Jinan, China
| | - Kai Cui
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Huaiyin District, Jinan, China
| | - Jingtao Zhong
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Huaiyin District, Jinan, China
| | - Chengsheng Zhang
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Huaiyin District, Jinan, China
| | - Dongxu Wang
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Lixia District, Jinan, China
| | - Bo Zhang
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Huaiyin District, Jinan, China
| | - Xuetao Shi
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Huaiyin District, Jinan, China
| | - Zhongchao Li
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Huaiyin District, Jinan, China
| |
Collapse
|
33
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors against Ovarian Cancer. Int J Mol Sci 2024; 25:8304. [PMID: 39125873 PMCID: PMC11312858 DOI: 10.3390/ijms25158304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| |
Collapse
|
34
|
Li C, Che S, Gong H, Ding Y, Luo Y, Xi J, Qi L, Zhang G. PI-YOLO: dynamic sparse attention and lightweight convolutional based YOLO for vessel detection in pathological images. Front Oncol 2024; 14:1347123. [PMID: 39184041 PMCID: PMC11341990 DOI: 10.3389/fonc.2024.1347123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
Vessel density within tumor tissues strongly correlates with tumor proliferation and serves as a critical marker for tumor grading. Recognition of vessel density by pathologists is subject to a strong inter-rater bias, thus limiting its prognostic value. There are many challenges in the task of object detection in pathological images, including complex image backgrounds, dense distribution of small targets, and insignificant differences between the features of the target to be detected and the image background. To address these problems and thus help physicians quantify blood vessels in pathology images, we propose Pathological Images-YOLO (PI-YOLO), an enhanced detection network based on YOLOv7. PI-YOLO incorporates the BiFormer attention mechanism, enhancing global feature extraction and accelerating processing for regions with subtle differences. Additionally, it introduces the CARAFE upsampling module, which optimizes feature utilization and information retention for small targets. Furthermore, the GSConv module improves the ELAN module, reducing model parameters and enhancing inference speed while preserving detection accuracy. Experimental results show that our proposed PI-YOLO network has higher detection accuracy compared to Faster-RCNN, SSD, RetinaNet, YOLOv5 network, and the latest YOLOv7 network, with a mAP value of 87.48%, which is 2.83% higher than the original model. We also validated the performance of this network on the ICPR 2012 mitotic dataset with an F1 value of 0.8678, outperforming other methods, demonstrating the advantages of our network in the task of target detection in complex pathology images.
Collapse
Affiliation(s)
- Cong Li
- The Affiliated Qingyuan Hospital (Qingyuan Peoples’s Hospital), Guangzhou Medical University, Qingyuan, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Shuanlong Che
- Department of Pathology, Guangzhou KingMed Center for Clinical Laboratory, Guangzhou, China
| | - Haotian Gong
- School of Health Management, Guangzhou Medical University, Guangzhou, China
| | - Youde Ding
- The Affiliated Qingyuan Hospital (Qingyuan Peoples’s Hospital), Guangzhou Medical University, Qingyuan, China
| | - Yizhou Luo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Jianing Xi
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Ling Qi
- The Affiliated Qingyuan Hospital (Qingyuan Peoples’s Hospital), Guangzhou Medical University, Qingyuan, China
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan Peoples’s Hospital), Guangzhou Medical University, Qingyuan, China
| | - Guiying Zhang
- The Affiliated Qingyuan Hospital (Qingyuan Peoples’s Hospital), Guangzhou Medical University, Qingyuan, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
You H, Zhao P, Zhao X, Zheng Q, Ma W, Cheng K, Li M, Kou J, Feng W. Promotion of tumor angiogenesis and growth induced by low-dose antineoplastic agents via bone-marrow-derived cells in tumor tissues. Front Pharmacol 2024; 15:1414832. [PMID: 39119610 PMCID: PMC11306047 DOI: 10.3389/fphar.2024.1414832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Background More research is needed to solidify the basis for reasonable metronomic chemotherapy regimens due to the inconsistent clinical outcomes from studies on metronomic chemotherapy with antineoplastic agents, along with signs of a nonlinear dose-response relationship at low doses. The present study therefore explored the dose-response relationships of representative antineoplastic agents in low dose ranges and their underlying mechanisms. Methods Cyclophosphamide (CPA) and 5-fluorouracil (5-Fu) were employed to observe the effects of the frequent administration of low-dose antineoplastic agents on tumor growth, tumor angiogenesis, and bone-marrow-derived cell (BMDC) mobilization in mouse models. The effects of antineoplastic agents on tumor and endothelial cell functions with or without BMDCs were analyzed in vitro. Results Tumor growth and metastasis were significantly promoted after the administration of CPA or 5-Fu at certain low dose ranges, and were accompanied by enhanced tumor angiogenesis and proangiogenic factor expression in tumor tissues, increased proangiogenic BMDC release in the circulating blood, and augmented proangiogenic BMDC retention in tumor tissues. Low concentrations of CPA or 5-Fu were found to significantly promote tumor cell migration and invasion, and enhance BMDC adhesion to endothelial cells in vitro. Conclusion These results suggest that there are risks in empirical metronomic chemotherapy using low-dose antineoplastic agents and the optimal dosage and administration schedule of antineoplastic agents need to be determined through further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiyi Feng
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
36
|
Liu Z, Fan H, Liu X, Liu C. Angiogenesis related genes based prognostic model of glioma patients developed by multi-omics approach. Discov Oncol 2024; 15:296. [PMID: 39033204 PMCID: PMC11264614 DOI: 10.1007/s12672-024-01126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION Glioma, particularly glioblastoma (GBM), is a highly malignant brain tumor with poor prognosis despite current therapeutic approaches. The tumor microenvironment (TME), plays a crucial role in glioma progression by promoting invasion and drug resistance. Angiogenesis, the formation of new blood vessels, is a tightly regulated process involving endothelial cell activation, proliferation, and migration. In cancer, angiogenesis becomes dysregulated, leading to excessive blood vessel formation. METHODS We enrolled bulk data of TCGA-LGG/GBM, CGGA-693, and CGGA-325 cohorts, scRNA data of GSE162631, GSE84465, and GSE138794 cohorts. Identification of malignant cells was conducted by "copycat" R package. The "AUCell" R package scored the activity of target gene set of each single cell. Consensus clustering was applied using the "ConsensusClusterPlus" R package, while tumor-infiltrating immune cells were determined using "IOBR" R package. To construct a prognostic model, we used LASSO and multiCOX algorithms based on the expression levels of the 15 hub genes, the efficacy of which was verified by KM and ROC analysis. RESULTS We identified 4 different malignant cell subclusters in glioma and disclosed their distinct gene expression patterns and interactions within TME. We identified differentially expressed immune-related genes (DE-ARGs) in glioma and found 15 genes that were specifically expressed in the malignant glioma cell populations. Glioma cells with higher expression of these DE-ARGs were associated with gliogenesis, glial cell development, and vasculature development. We found that tumor-infiltrating monocytes were the main interacting cell type within glioma TME. Using the expression patterns of the 15 screened DE-ARGs, we categorized glioma samples into 2 molecular clusters with distinct immune features, suggesting a possible relationship between angiogenesis and immune activation and recruitment. We constructed a prognostic model based on the expression levels of the 15 DE-ARGs and evaluated its predictive ability for glioma patient outcomes, which displayed exceedingly high efficacy. CONCLUSION We characterized different malignant cell subclusters in glioma and investigate their gene expression patterns and interactions within TME. We constructed a prognostic model based on the expression levels of the 15 DE-ARGs and evaluated its predictive ability for glioma patient outcomes, which displayed exceedingly high efficacy.
Collapse
Affiliation(s)
- Zhimin Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - Hongjun Fan
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - XuKai Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, Hunan, China.
| |
Collapse
|
37
|
Deng L, Wei T, Zhang Y, Shen A, He X, Gao S, Li X, He W, Haleem A, Hu R, Cheng H, Chen S. Ultra-pH-sensitive nanoparticle of gambogenic acid for tumor targeting therapy via anti-vascular strategy plus immunotherapy. Int J Pharm 2024; 660:124303. [PMID: 38848801 DOI: 10.1016/j.ijpharm.2024.124303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Although the combination of anti-vascular strategy plus immunotherapy has emerged as the optimal first-line treatment of hepatocellular carcinoma, lack of tumor targeting leads to low antitumor efficacy and serious side effect. Here, we report an ultra-pH-sensitive nanoparticle of gambogenic acid (GNA) encapsulated by poly(ethylene glycol)-poly(2-azepane ethyl methacrylate) (PEG-PAEMA) for tumor-targeting combined therapy of anti-vascular strategy plus immunotherapy. PEG-PAEMA-GNA nanoparticle was quite stable at pH 7.4 for 30 d. In contrast, it exerted size shrinkage, charge reversal and the release of GNA at pH 6.7 within 24 h. Moreover, PEG-PAEMA-GNA significantly enhanced the anti-vascular activity, membrane-disruptive capability and pro-apoptosis when pH changed from 7.4 to 6.7. Western blot analysis exhibits that PEG-PAEMA and its GNA nanoparticle facilitated the phosphorylation of STING protein. In vivo assays show that PEG-PAEMA-GNA not only displayed much higher tumor inhibition of 92 % than 37 % of free GNA, but also inhibited tumor vasculature, promoted the maturation of dendritic cells and recruited more cytotoxic t-lymphocytes for sufficient anti-vascular therapy and immunotherapy. All these results demonstrate that PEG-PAEMA-GNA displayed tumor-targeting combined treatment of anti-vascular therapy and immunotherapy. This study offers a simple and novel method for the combination of anti-vascular therapy and immunotherapy with high selectivity towards tumor.
Collapse
Affiliation(s)
- Linliang Deng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Taotian Wei
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Yue Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Anqi Shen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Xiangyong He
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Song Gao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Xiaopeng Li
- Department of Radiation Oncology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui 230011, China.
| | - Weidong He
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rongfeng Hu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Hui Cheng
- Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| | - Shengqi Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.
| |
Collapse
|
38
|
Wang K, Zhang R, Li C, Chen H, Lu J, Zhao H, Zhuo X. Construction and assessment of an angiogenesis-related gene signature for prognosis of head and neck squamous cell carcinoma. Discov Oncol 2024; 15:284. [PMID: 39012409 PMCID: PMC11252106 DOI: 10.1007/s12672-024-01084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE Angiogenesis-associated genes (AAGs) play a critical role in cancer patient survival. However, there are insufficient reports on the prognostic value of AAGs in head and neck squamous cell carcinoma (HNSC). Therefore, this study aimed to investigate the correlation between AAG expression levels and survival in HNSC patients, explore the predictive value of signature genes and lay the groundwork for future in-depth research. METHODS Relevant data for HNSC were obtained from the databases. AAGs-associated signature genes linked to prognosis were screened to construct a predictive model. Further analysis was conducted to determine the functional correlation of the signature genes. RESULTS The signature genes (STC1, SERPINA5, APP, OLR1, and PDGFA) were used to construct prognostic models. Patients were divided into high-risk and low-risk groups based on the calculated risk scores. Survival analysis showed that patients in the high-risk group had a significantly lower overall survival than those in the low-risk group (P < 0.05). Therefore, this prognostic model was an independent prognostic factor for predicting HNSC. In addition, patients in the low-risk group were more sensitive to multiple anti-cancer drugs. Functional correlation analysis showed a good correlation between the characteristic genes and HNSC metastasis, invasion, and angiogenesis. CONCLUSION This study established a new prognostic model for AAGs and may guide the selection of therapeutic agents for HNSC. These genes have important functions in the tumor microenvironment; it also provides a valuable resource for the future clinical trials investigating the relationship between HNSC and AAGs.
Collapse
Affiliation(s)
- Kaiqin Wang
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruizhe Zhang
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Changya Li
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Huarong Chen
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiafeng Lu
- Department of Otolaryngology, Anshun People's Hospital, Anshun, Guizhou, China
| | - Houyu Zhao
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Xianlu Zhuo
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
39
|
Wang Y, Wu J, Feng J, Xu B, Niu Y, Zheng Y. From Bone Remodeling to Wound Healing: An miR-146a-5p-Loaded Nanocarrier Targets Endothelial Cells to Promote Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32992-33004. [PMID: 38887990 DOI: 10.1021/acsami.4c03598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Wound healing is a complex challenge that demands urgent attention in the clinical realm. Efficient angiogenesis is a pivotal factor in promoting wound healing. microRNA-146a (miR-146a) inhibitor has angiogenic potential in the periodontal ligament. However, free microRNAs (miRNAs) are poorly delivered into cells due to their limited tissue specificity and low intracellular delivery efficiency. To address this hurdle, we developed a nanocarrier for targeted delivery of the miR-146a inhibitor into endothelial cells. It is composed of a polyethylenimine (PEI)-modified mesoporous silica nanoparticle (MSN) core and a pentapeptide (YIGSR) layer that recognizes endothelial cells. In vitro, we defined that the miR-146a inhibitor and adiponectin (ADP) can modulate angiogenesis and the remodeling of periodontal tissues by activating the ERK and Akt signaling pathways. Then, we confirm the specificity of YIGSR to endothelial cells, and importantly, the nanocarrier effectively delivers the miR-146a inhibitor into endothelial cells, promoting angiogenesis. In a C57 mouse skin wound model, the miR-146a inhibitor is successfully delivered into endothelial cells at the wound site using the nanocarrier, resulting in the formation of new blood vessels with strong CD31 expression. Additionally, no significant differences are found in the expression levels of inflammatory markers interleukin-6 and tumor necrosis factor-α. This outcome not only brings new strategies for angiogenesis but also exhibits broader implications for bone remodeling and wound healing. The breakthrough holds significance for future research and clinical interventions.
Collapse
Affiliation(s)
- Yue Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Jinjin Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| | - Jingjing Feng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| | - Baohua Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Yuting Niu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| |
Collapse
|
40
|
Garlisi B, Lauks S, Aitken C, Ogilvie LM, Lockington C, Petrik D, Eichhorn JS, Petrik J. The Complex Tumor Microenvironment in Ovarian Cancer: Therapeutic Challenges and Opportunities. Curr Oncol 2024; 31:3826-3844. [PMID: 39057155 PMCID: PMC11275383 DOI: 10.3390/curroncol31070283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) in ovarian cancer (OC) has much greater complexity than previously understood. In response to aggressive pro-angiogenic stimulus, blood vessels form rapidly and are dysfunctional, resulting in poor perfusion, tissue hypoxia, and leakiness, which leads to increased interstitial fluid pressure (IFP). Decreased perfusion and high IFP significantly inhibit the uptake of therapies into the tumor. Within the TME, there are numerous inhibitor cells, such as myeloid-derived suppressor cells (MDSCs), tumor association macrophages (TAMs), regulatory T cells (Tregs), and cancer-associated fibroblasts (CAFs) that secrete high numbers of immunosuppressive cytokines. This immunosuppressive environment is thought to contribute to the lack of success of immunotherapies such as immune checkpoint inhibitor (ICI) treatment. This review discusses the components of the TME in OC, how these characteristics impede therapeutic efficacy, and some strategies to alleviate this inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (B.G.); (S.L.); (C.A.); (L.M.O.); (C.L.); (D.P.); (J.S.E.)
| |
Collapse
|
41
|
Li YB, Rukhlova M, Zhang D, Nhan J, Sodja C, Bedford E, St-Pierre JP, Jezierski A. Single-Step 3D Bioprinting of Alginate-Collagen Type I Hydrogel Fiber Rings to Promote Angiogenic Network Formation. Tissue Eng Part C Methods 2024; 30:289-306. [PMID: 38946589 DOI: 10.1089/ten.tec.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
In the advent of tissue engineering and regenerative medicine, the demand for innovative approaches to biofabricate complex vascular structures is increasing. We describe a single-step 3D bioprinting method leveraging Aspect Biosystems RX1 technology, which integrates the crosslinking step at a flow-focusing junction, to biofabricate immortalized adult rat brain endothelial cell (SV-ARBEC)-encapsulated alginate-collagen type I hydrogel rings. This single-step biofabrication process involves the strategic layer-by-layer assembly of hydrogel rings, encapsulating SV-ARBECs in a spatially controlled manner while optimizing access to media and nutrients. The spatial arrangement of the SV-ARBECs within the rings promotes spontaneous angiogenic network formation and the constrained deposition of cells within the hydrogel matrix facilitates tissue-like organized vascular-like network development. This approach provides a platform that can be adapted to many different endothelial cell types and leveraged to better understand the mechanisms driving angiogenesis and vascular-network formation in 3D bioprinted constructs supporting the development of more complex tissue and disease models for advancing drug discovery, tissue engineering, and regenerative medicine applications.
Collapse
Affiliation(s)
- Ying Betty Li
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University, Ottawa, Canada
| | - Marina Rukhlova
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Dongling Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Jordan Nhan
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
| | | | - Jean-Philippe St-Pierre
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
| | - Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Canada
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada
| |
Collapse
|
42
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C, Zhuang J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother 2024; 176:116783. [PMID: 38796970 DOI: 10.1016/j.biopha.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Mengrui Yang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yufeng Mu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Dandan Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
43
|
NEIJENHUIS LISANNEK, NAUMANN LEUTAL, FERKEL SONIAA, RUBIN SAMUELJ, ROGALLA STEPHAN. Exploring the effects of taurolidine on tumor weight and microvessel density in a murine model of osteosarcoma. Oncol Res 2024; 32:1163-1172. [PMID: 38948019 PMCID: PMC11209741 DOI: 10.32604/or.2024.050907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Background Osteosarcoma is the most common malignant primary bone tumor. The prognosis for patients with disseminated disease remains very poor despite recent advancements in chemotherapy. Moreover, current treatment regimens bear a significant risk of serious side effects. Thus, there is an unmet clinical need for effective therapies with improved safety profiles. Taurolidine is an antibacterial agent that has been shown to induce cell death in different types of cancer cell lines. Methods In this study, we examined both the antineoplastic and antiangiogenic effects of taurolidine in animal models of osteosarcoma. K7M2 murine osteosarcoma cells were injected, both intramuscular and intraperitoneal, into 60 BALB/c mice on day zero. Animals were then randomized to receive treatment with taurolidine 2% (800 mg/kg), taurolidine 1% (400 mg/kg), or NaCl 0.9% control for seven days by intravenous or intraperitoneal administration. Results After 35 days, mice were euthanized, and the tumors were harvested for analysis. Eighteen mice were excluded from the analysis due to complications. Body weight was significantly lower in the 2% taurolidine intraperitoneal treatment group from day 9 to 21, consistent with elevated mortality in this group. Intraperitoneal tumor weight was significantly lower in the 1% (p = 0.003) and 2% (p = 0.006) intraperitoneal taurolidine treatment groups compared to the control. No antineoplastic effects were observed on intramuscular tumors or for intravenous administration of taurolidine. There were no significant differences in microvessel density or mitotic rate between treatment groups. Reduced body weight and elevated mortality in the 2% taurolidine intraperitoneal group suggest that the lower 1% dose is preferable. Conclusions In conclusion, there is no evidence of antiangiogenic activity, and the antitumor effects of taurolidine on osteosarcoma observed in this study are limited. Moreover, its toxic profile grants further evaluation. Given these observations, further research is necessary to refine the use of taurolidine in osteosarcoma treatment.
Collapse
Affiliation(s)
- LISANNE K.A. NEIJENHUIS
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Stanford University, Stanford, 94305, USA
- Department of Surgery, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Centre for Human Drug Research, Leiden, 2333 CL, The Netherlands
| | - LEUTA L. NAUMANN
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité University Medicine Berlin, Berlin, 10117, Germany
| | - SONIA A.M. FERKEL
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Stanford University, Stanford, 94305, USA
| | - SAMUEL J.S. RUBIN
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Stanford University, Stanford, 94305, USA
| | - STEPHAN ROGALLA
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Stanford University, Stanford, 94305, USA
| |
Collapse
|
44
|
Acharya SS, Kundu CN. Havoc in harmony: Unravelling the intricacies of angiogenesis orchestrated by the tumor microenvironment. Cancer Treat Rev 2024; 127:102749. [PMID: 38714074 DOI: 10.1016/j.ctrv.2024.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Cancer cells merely exist in isolation; rather, they exist in an intricate microenvironment composed of blood vessels, signalling molecules, immune cells, stroma, fibroblasts, and the ECM. The TME provides a setting that is favourable for the successful growth and survivance of tumors. Angiogenesis is a multifaceted process that is essential for the growth, invasion, and metastasis of tumors. TME can be visualized as a "concert hall," where various cellular and non-cellular factors perform in a "symphony" to orchestrate tumor angiogenesis and create "Havoc" instead of "Harmony". In this review, we comprehensively summarized the involvement of TME in regulating tumor angiogenesis. Especially, we have focused on immune cells and their secreted factors, inflammatory cytokines and chemokines, and their role in altering the TME. We have also deciphered the crosstalk among various cell types that further aids the process of tumor angiogenesis. Additionally, we have highlighted the limitations of existing anti-angiogenic therapy and discussed various potential strategies that could be used to overcome these challenges and improve the efficacy of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Sushree Subhadra Acharya
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University (Institute of Eminence), Campus-11, Patia, Bhubaneswar, Odisha Pin-751024, India.
| |
Collapse
|
45
|
Wang KN, Zhou K, Zhong NN, Cao LM, Li ZZ, Xiao Y, Wang GR, Huo FY, Zhou JJ, Liu B, Bu LL. Enhancing cancer therapy: The role of drug delivery systems in STAT3 inhibitor efficacy and safety. Life Sci 2024; 346:122635. [PMID: 38615745 DOI: 10.1016/j.lfs.2024.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, resides in the nucleus to regulate genes essential for vital cellular functions, including survival, proliferation, self-renewal, angiogenesis, and immune response. However, continuous STAT3 activation in tumor cells promotes their initiation, progression, and metastasis, rendering STAT3 pathway inhibitors a promising avenue for cancer therapy. Nonetheless, these inhibitors frequently encounter challenges such as cytotoxicity and suboptimal biocompatibility in clinical trials. A viable strategy to mitigate these issues involves delivering STAT3 inhibitors via drug delivery systems (DDSs). This review delineates the regulatory mechanisms of the STAT3 signaling pathway and its association with cancer. It offers a comprehensive overview of the current application of DDSs for anti-STAT3 inhibitors and investigates the role of DDSs in cancer treatment. The conclusion posits that DDSs for anti-STAT3 inhibitors exhibit enhanced efficacy and reduced adverse effects in tumor therapy compared to anti-STAT3 inhibitors alone. This paper aims to provide an outline of the ongoing research and future prospects of DDSs for STAT3 inhibitors. Additionally, it presents our insights on the merits and future outlook of DDSs in cancer treatment.
Collapse
Affiliation(s)
- Kang-Ning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jun-Jie Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial, Anyang Sixth People's Hospital, Anyang 45500, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
46
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
47
|
Yadav P, Rana K, Chakraborty R, Khan A, Mehta D, Jain D, Aggarwal B, Jha SK, Dasgupta U, Bajaj A. Engineered nanomicelles targeting proliferation and angiogenesis inhibit tumour progression by impairing the synthesis of ceramide-1-phosphate. NANOSCALE 2024; 16:10350-10365. [PMID: 38739006 DOI: 10.1039/d3nr04806c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Tumour cells secrete various proangiogenic factors like VEGF, PDGF, and EGF that result in the formation of highly vascularized tumours with an immunosuppressive tumour microenvironment. As tumour growth and metastasis are highly dependent on angiogenesis, targeting tumour vasculature along with rapidly dividing tumour cells is a potential approach for cancer treatment. Here, we specifically engineered sub-100 sized nanomicelles (DTX-CA4 NMs) targeting proliferation and angiogenesis using an esterase-sensitive phosphocholine-tethered docetaxel conjugate of lithocholic acid (LCA) (PC-LCA-DTX) and a poly(ethylene glycol) (PEG) derivative of an LCA-combretastatin A4 conjugate (PEG-LCA-CA4). DTX-CA4 NMs effectively inhibit the tumour growth in syngeneic (CT26) and xenograft (HCT116) colorectal cancer models, inhibit tumour recurrence, and enhance the percentage survival in comparison with individual drug-loaded NMs. DTX-CA4 NMs enhance the T cell-mediated anti-tumour immune response and DTX-CA4 NMs in combination with an immune checkpoint inhibitor, anti-PDL1 antibody, enhance the anti-tumour response. We additionally showed that DTX-CA4 NMs effectively attenuate the production of ceramide-1-phosphate, a key metabolite of the sphingolipid pathway, by downregulating the expression of ceramide kinase at both transcriptional and translational levels. Therefore, this study presents the engineering of effective DTX-CA4 NMs for targeting the tumour microenvironment that can be explored further for clinical applications.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ruchira Chakraborty
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ali Khan
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Devashish Mehta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Bharti Aggarwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Somesh K Jha
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
48
|
Xie Y, Zhou F. Efficacy and safety of anti-angiogenic drug monotherapy and combination therapy for ovarian cancer: a meta-analysis and trial sequential analysis of randomized controlled trials. Front Pharmacol 2024; 15:1423891. [PMID: 38860165 PMCID: PMC11163095 DOI: 10.3389/fphar.2024.1423891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
Background As the development of novel anti-angiogenic drugs and the continuous evolution of guideline recommendations, the efficacy and safety of anti-angiogenic agents in ovarian cancer (OC) remains unclear. Consequently, a meta-analysis was carried out to assess the efficacy and safety of anti-angiogenic drug monotherapy and combination therapy for OC. Methods An exhaustive literature review was performed across multiple databases, including PubMed, Embase, Web of Science, and Cochrane, encompassing all relevant randomized controlled trials (RCTs) up until 6 April 2024. The evaluation of efficacy outcomes incorporated progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). Safety was assessed through the occurrence of any grade adverse events (AEs) and grade ≥3 AEs. Synthesis of the data involved the calculation of hazard ratios (HRs), relative risks (RRs), and their corresponding 95% confidence intervals (CIs) and prediction intervals (PIs). Trial sequential analysis was executed employing TSA v0.9.5.10 Beta software, STATA 12.0, and R software 4.3.1. Results In this meta-analysis, 35 RCTs were included, encompassing 16,199 subjects in total. The overall analysis indicated that anti-angiogenic drug combination therapy significantly improved PFS (HR [95% CI] = 0.678 [0.606-0.759], 95% PI: 0.415-1.108), OS (HR [95% CI] = 0.917 [0.870-0.966], 95% PI: 0.851-0.984), and ORR (RR [95% CI] = 1.441 [1.287-1.614], 95% PI: 1.032-2.014), but also increased the incidence of grade ≥3 AEs (RR [95% CI] = 1.137 [1.099-1.177], 95% PI: 1.011-1.252). The analysis did not corroborate any benefit of anti-angiogenic monotherapy over placebo concerning PFS (HR [95% CI] = 0.956 [0.709-1.288], 95% PI: 0.345-2.645) and OS (HR [95% CI] = 1.039 [0.921-1.173], 95% PI: 0.824-1.331). However, it was observed that monotherapy with anti-angiogenic drugs did increase the incidence of any grade AEs (RR [95% CI] = 1.072 [1.036-1.109], 95% PI: 0.709-1.592). Conclusion Our study confirmed the PFS, OS, and ORR benefits of anti-angiogenic drug combination therapy for OC patients. The efficacy results of anti-angiogenic monotherapy necessitates further evaluation as more RCTs become available. Clinicians should be vigilant of AEs when administering anti-angiogenic agents in a clinical setting.
Collapse
Affiliation(s)
| | - Fei Zhou
- Department of Obstetrics and Gynaecology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
49
|
Senchukova MA, Kalinin EA, Volchenko NN. Different types of tumor microvessels in stage I-IIIA squamous cell lung cancer and their clinical significance. World J Clin Oncol 2024; 15:614-634. [PMID: 38835849 PMCID: PMC11145955 DOI: 10.5306/wjco.v15.i5.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/12/2024] [Accepted: 03/28/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Lung cancer (LC) is the leading cause of morbidity and mortality among malignant neoplasms. Improving the diagnosis and treatment of LC remains an urgent task of modern oncology. Previously, we established that in gastric, breast and cervical cancer, tumor microvessels (MVs) differ in morphology and have different prognostic significance. The connection between different types of tumor MVs and the progression of LC is not well understood. AIM To evaluate the morphological features and clinical significance of tumor MVs in lung squamous cell carcinoma (LUSC). METHODS A single-center retrospective cohort study examined medical records and archival paraffin blocks of 62 and 180 patients with stage I-IIIA LUSC in the training and main cohorts, respectively. All patients underwent radical surgery (R0) at the Orenburg Regional Cancer Clinic from May/20/2009 to December/14/2021. Tumor sections were routinely processed, and routine Mayer's hematoxylin and eosin staining and immunohistochemical staining for cluster of differentiation 34 (CD34), podoplanin, Snail and hypoxia-inducible factor-1 alpha were performed. The morphological features of different types of tumor MVs, tumor parenchyma and stroma were studied according to clinicopathological characteristics and LUSC prognosis. Statistical analysis was performed using Statistica 10.0 software. Univariate and multivariate logistic regression analyses were performed to identify potential risk factors for LUSC metastasis to regional lymph nodes (RLNs) and disease recurrence. Receiver operating characteristic curves were constructed to discriminate between patients with and without metastases in RLNs and those with and without disease recurrence. The effectiveness of the predictive models was assessed by the area under the curve. Survival was analyzed using the Kaplan-Meier method. The log-rank test was used to compare survival curves between patient subgroups. A value of P < 0.05 was considered to indicate statistical significance. RESULTS Depending on the morphology, we classified tumor vessels into the following types: normal MVs, dilated capillaries (DCs), atypical DCs, DCs with weak expression of CD34, "contact-type" DCs, structures with partial endothelial linings, capillaries in the tumor solid component and lymphatic vessels in lymphoid and polymorphocellular infiltrates. We also evaluated the presence of loose, fine fibrous connective tissue (LFFCT) and retraction clefts in the tumor stroma, tumor spread into the alveolar air spaces (AASs) and fragmentation of the tumor solid component. According to multivariate analysis, the independent predictors of LUSC metastasis in RLNs were central tumor location (P < 0.00001), the presence of retraction clefts (P = 0.003), capillaries in the tumor solid component (P = 0.023) and fragmentation in the tumor solid component (P = 0.009), whereas the independent predictors of LUSC recurrence were tumor grade 3 (G3) (P = 0.001), stage N2 (P = 0.016), the presence of LFFCT in the tumor stroma (P < 0.00001), fragmentation of the tumor solid component (P = 0.0001), and the absence of tumor spread through the AASs (P = 0.0083). CONCLUSION The results obtained confirm the correctness of our previously proposed classification of different types of tumor vessels and may contribute to improving the diagnosis and treatment of LUSC.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| | - Evgeniy A Kalinin
- Department of Thoracic Surgery, Orenburg Regional Cancer Clinic, Orenburg 460021, Russia
| | - Nadezhda N Volchenko
- Department of Pathology, PA Hertzen Moscow Oncology Research Centre, Branch of National Medical Research Radiological Center, Moscow 125284, Russia
| |
Collapse
|
50
|
Shukla AK, Yoon S, Oh SO, Lee D, Ahn M, Kim BS. Advancement in Cancer Vasculogenesis Modeling through 3D Bioprinting Technology. Biomimetics (Basel) 2024; 9:306. [PMID: 38786516 PMCID: PMC11118135 DOI: 10.3390/biomimetics9050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer vasculogenesis is a pivotal focus of cancer research and treatment given its critical role in tumor development, metastasis, and the formation of vasculogenic microenvironments. Traditional approaches to investigating cancer vasculogenesis face significant challenges in accurately modeling intricate microenvironments. Recent advancements in three-dimensional (3D) bioprinting technology present promising solutions to these challenges. This review provides an overview of cancer vasculogenesis and underscores the importance of precise modeling. It juxtaposes traditional techniques with 3D bioprinting technologies, elucidating the advantages of the latter in developing cancer vasculogenesis models. Furthermore, it explores applications in pathological investigations, preclinical medication screening for personalized treatment and cancer diagnostics, and envisages future prospects for 3D bioprinted cancer vasculogenesis models. Despite notable advancements, current 3D bioprinting techniques for cancer vasculogenesis modeling have several limitations. Nonetheless, by overcoming these challenges and with technological advances, 3D bioprinting exhibits immense potential for revolutionizing the understanding of cancer vasculogenesis and augmenting treatment modalities.
Collapse
Affiliation(s)
- Arvind Kumar Shukla
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
| | - Sae-Ock Oh
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea
| | - Minjun Ahn
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|