1
|
Zhang L, Liu R, Li M, Zhang G, Wang Z, Qin H. Integrating multiomics sequencing analyses uncover the key mechanisms related to oxidative stress, mitochondria, and immune cells in keloid. Gene 2025; 935:149078. [PMID: 39489224 DOI: 10.1016/j.gene.2024.149078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND This study aimed to investigate the key molecular mechanisms underlying keloid pathogenesis by integrating oxidative stress, mitochondria, and immune cells. METHODS Transcriptome sequencing (mRNA, lncRNA, and circRNA expression data), proteomic sequencing, and small RNA sequencing analyses of lesional and non-lesional skin of patients with keloids and healthy control (normal) skin were conducted. By integrating mRNA and publicly available gene expression data (GSE158395), differentially expressed genes related to oxidative stress and mitochondrial function in keloids were identified. Hub genes were identified using various bioinformatics analyses such as immune infiltration analysis, weighted gene co-expression network analysis, machine learning, and expression validation using proteomics sequencing data. Moreover, a competing endogenous RNA (ceRNA) network of hub genes was constructed by combining miRNA, lncRNA, and circRNA expression data. Five hub genes were identified: MGST1, DHCR24, ALDH3A2, ADH1B, and FKBP5. RESULTS These hub genes had a high diagnostic value for keloids, with an AUC value > 0.8 each. In addition, five hub genes were associated with the infiltration of multiple immune cells. The immune cells with the strongest positive and negative correlations with hub genes were M0 and M1 macrophages. A ceRNA network was constructed, and several ceRNAs, such as AC005062.1/miR-134-5p/FKBP5 and BASP1-AS1/miR-503-5p/ADH1B, were identified. These five hub genes may contribute to keloid pathogenesis. CONCLUSION These genes and their related ceRNAs may serve as diagnostic biomarkers and therapeutic targets for keloids.
Collapse
Affiliation(s)
- Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ruizhu Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingxi Li
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guang Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zichao Wang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haiyan Qin
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Alenazi B, Al Doghaither HA, Al-Ghafari AB, Elmorsy EM. Risperidone-induced bioenergetic disruption in the isolated human peripheral blood monocytes. Toxicol In Vitro 2024; 101:105936. [PMID: 39237056 DOI: 10.1016/j.tiv.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Risperidone (RIS) is a widely used antipsychotic drug with reported alteration in immune response. The current study investigated mitochondrial disruption as the underlying mechanism of RIS-induced immunotoxicity in isolated human peripheral blood monocytes (hPBM). RIS was cytotoxic to hPBM in exposure duration and concentration-dependent patterns. Functionally, RIS was shown to increase the release of IL-6, TNF-α, and IL-8 with a decrease in test particle phagocytosis in concertation and exposure time-based patterns. It was found that RIS decreased ATP production in isolated monocytes' mitochondria, with an estimated EC50 of around 70 μM after 24 h with parallel inhibition of mitochondrial complexes I and III activities and decreased mitochondrial membrane potential and oxygen consumption rates with increased lactate production from by the treated cells in comparison to controls. Structurally, RIS in 100 μM concentration significantly increased the mitochondrial membrane fluidity with significant increase in increased unsaturated/saturated fatty acids ratios of the mitochondrial membranes of the treated cells. Interestingly, water-soluble CoQ10 formulation significantly decreased the cytotoxic effect of RIS and improved the phagocytic activity of RIS-treated cells. To conclude, the current data suggests mitochondrial disruption as the underlying mechanism of RIS-induced immunotoxicity with shown protective effect of water-soluble CoQ10 formulation.
Collapse
Affiliation(s)
- Bandar Alenazi
- Pharmacology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Huda A Al Doghaither
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat B Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ekramy M Elmorsy
- Pathology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia.
| |
Collapse
|
3
|
Alhaddad L, Osipov AN, Leonov S. FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application. Int J Mol Sci 2024; 25:12506. [PMID: 39684218 DOI: 10.3390/ijms252312506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT). The FLASH-RT clinical trials have been designed to examine the UHDR deliverability, the effectiveness of tumor control, the dose tolerance of normal tissue, and the reproducibility of treatment effects across several institutions. Although it is still in its infancy, FLASH-RT has been shown to have potential to rival current RT in terms of safety. Several studies have suggested that the adoption of FLASH-RT is very limited, and the incorporation of this new technique into routine clinical RT will require the use of accurate dosimetry methods and reproducible equipment that enable the reliable and robust measurements of doses and dose rates. The purpose of this review is to highlight the advantages of this technology, the potential mechanisms underpinning the FLASH-RT effect, and the major challenges that need to be tackled in the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Lina Alhaddad
- Department of Environmental Sciences, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| | - Sergey Leonov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
4
|
Phan TYB, Jang B, Kang SK, Seo J, Kim SR, Kim KY, Koh YH. Amelioration of Toll-like Receptor-4 Signaling and Promotion of Mitochondrial Function by Mature Silkworm Extracts in Ex Vivo and in Vitro Macrophages. Nutrients 2024; 16:3932. [PMID: 39599718 PMCID: PMC11597681 DOI: 10.3390/nu16223932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES The unknown immune-enhancing effects of steamed mature silkworms (Bombyx mori L.), known as HongJam (HJ), were investigated. METHODS Supercritical fluid extracts from the White Jade variety of HJ (WJ-SCEs) were applied to in vitro RAW264.7 macrophages (RAWMs) and ex vivo bone marrow-derived macrophages (BMDMs). RESULTS WJ-SCE enhanced the proliferation and viability of both RAWMs and BMDMs. Supplementation with WJ-SCE significantly reduced the lipopolysaccharide (LPS)-induced expression of iNOS mRNA and protein, resulting in decreased nitric oxide (NO) production. Additionally, WJ-SCE lowered the mRNA and protein expression of COX-2 and reduced the levels of pro-inflammatory cytokines. The mitochondrial function, ATP levels, and reactive oxygen species levels in LPS-treated macrophages were restored following WJ-SCE treatment. WJ-SCE modulated LPS-Toll-like receptor-4 (TLR-4) signaling by reducing the levels of phosphorylated (p)-p38, p-ERK1/2, and p-p65. WJ-SCE also restored gene expression related to cytokines, chemokines, glucose transport, mitochondrial metabolism, and TLR-4 signaling, suggesting the inhibition of pro-inflammatory M1 macrophage polarization. Furthermore, WJ-SCE enhanced macrophage phagocytic and pinocytotic activity. CONCLUSIONS WJ-SCE demonstrated anti-inflammatory effects by inhibiting LPS-induced M1 polarization in both macrophage types, potentially suppressing chronic inflammation while enhancing phagocytosis and pinocytosis.
Collapse
Affiliation(s)
- Trinh Yen Binh Phan
- Department of Bio-Medical Gerontology, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Byungki Jang
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Republic of Korea;
| | - Sang-Kuk Kang
- Division of Industrial Insects and Sericulture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (S.-K.K.); (S.-R.K.); (K.-Y.K.)
| | - Jongbok Seo
- Korea Basic Science Institute Seoul Center, Seoul 02841, Republic of Korea;
| | - Seong-Ryul Kim
- Division of Industrial Insects and Sericulture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (S.-K.K.); (S.-R.K.); (K.-Y.K.)
| | - Kee-Young Kim
- Division of Industrial Insects and Sericulture, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (S.-K.K.); (S.-R.K.); (K.-Y.K.)
| | - Young Ho Koh
- Department of Bio-Medical Gerontology, Hallym University, Chuncheon 24252, Republic of Korea;
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Republic of Korea;
| |
Collapse
|
5
|
Rejas-González R, Montero-Calle A, Pastora Salvador N, Crespo Carballés MJ, Ausín-González E, Sánchez-Naves J, Pardo Calderón S, Barderas R, Guzman-Aranguez A. Unraveling the nexus of oxidative stress, ocular diseases, and small extracellular vesicles to identify novel glaucoma biomarkers through in-depth proteomics. Redox Biol 2024; 77:103368. [PMID: 39326071 PMCID: PMC11462071 DOI: 10.1016/j.redox.2024.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic ocular pathologies such as cataracts and glaucoma are emerging as an important problem for public health due to the changes in lifestyle and longevity. These age-related ocular diseases are largely mediated by oxidative stress. Small extracellular vesicles (sEVs) are involved in cell-to-cell communication and transport. There is an increasing interest about the function of small extracellular vesicles (sEVs) in the eye. However, the proteome content and characterization of sEVs released by ocular cells under pathological conditions are not yet well known. Here, we aimed to analyze the protein profile of sEVs and the intracellular protein content from two ocular cell lines (lens epithelial cells and retinal ganglion cells) exposed to oxidative stress to identify altered proteins that could serve as potential diagnostic biomarkers. The protein content was analyzed by quantitative mass spectrometry-based proteomics. Validation was performed by WB and ELISA using cell extracts and aqueous humor from cataract and glaucoma patients. After data analysis, 176 and 7 dysregulated proteins with an expression ratio≥1.5 were identified in lens epithelial cells' protein extract and sEVs, respectively, upon oxidative stress induction. In retinal ganglion cells, oxidative stress induction resulted in the dysregulation of 1033 proteins in cell extracts and 9 proteins in sEVs. In addition, by WB and ELISA, the dysregulation of proteins was mostly confirmed in aqueous humor samples from cataract or glaucoma patients in comparison to ICL individuals, with RAD23B showing high glaucoma diagnostic ability. Importantly, this work expands the knowledge of the proteome characterization of cataracts and glaucoma and provides new potential diagnostic glaucoma biomarkers.
Collapse
Affiliation(s)
- Raquel Rejas-González
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | | | - Emma Ausín-González
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | | | - Sara Pardo Calderón
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), 28029, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| |
Collapse
|
6
|
Hsu CC, Wu KL, Peng JM, Wu YN, Chen HT, Lee MS, Cheng JH. Low-Energy extracorporeal shockwave therapy improves locomotor functions, tissue regeneration and modulating the inflammation induced FGF1 and FGF2 signaling to protect damaged tissue in spinal cord injury of rat model: An experimental animal study. Int J Surg 2024; 110:01279778-990000000-01994. [PMID: 39453843 PMCID: PMC11634128 DOI: 10.1097/js9.0000000000002128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/12/2024] [Indexed: 10/27/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) is a debilitating condition that results in severe motor function impairments. Current therapeutic options remain limited, underscoring the need for novel treatments. Extracorporeal shockwave therapy (ESWT) has emerged as a promising noninvasive approach for treating musculoskeletal disorders and nerve regeneration. METHODS This study explored the effects of low-energy ESWT on locomotor function, tissue regeneration, inflammation, and mitochondrial function in a rat SCI model. Experiments were performed using locomotor function assays, CatWalk gait analysis, histopathological examination, immunohistochemical and immunofluorescence staining. RESULTS The findings demonstrated that low-energy ESWT had a dose-dependent effect, with three treatment sessions (ESWT3) showing superior outcomes compared to a single session. ESWT3 significantly improved motor functions (run patterns, run average speed, and maximum variation, as well as the Basso, Beattie, and Bresnahan (BBB) score) and promoted tissue regeneration while reducing inflammation. ESWT3 significantly decreased levels of IL-1β, IL6 and macrophages (CD68) while increasing leucocyte (CD45) infiltration. Additionally, ESWT3 upregulated NueN and mitofusin 2 (MFN2), suggesting enhanced neuronal health and mitochondrial function. Moreover, ESWT3 modulated the expression of fibroblast growth factor 1 (FGF1), FGF2, their receptor FGFR1 and phosphorylation of ERK, aiding tissue repair and regeneration in SCI. CONCLUSIONS This study highlights the potential of low-energy ESWT as an effective noninvasive treatment for SCI, demonstrating significant improvements in motor recovery, tissue regeneration, anti-inflammatory effects, and mitochondrial protection. These findings provide valuable insights into the mechanisms of ESWT and its therapeutic application for SCI recovery.
Collapse
Affiliation(s)
- Chieh-Cheng Hsu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
- Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
- Department of Surgery, Division of Orthopedics, Kaohsiung Municipal Feng Shan Hospital Under the management of Chang Gung Medical Foundation
| | - Kay L.H. Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Yi-No Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City
| | - Hou-Tsung Chen
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
- Department of Orthopedic Surgery, Sports Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
| | - Meng-Shiou Lee
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Hsueh-Shih Road, Taichung
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine
- Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Lim DW, Lee JE, Lee C, Kim YT. Natural Products and Their Neuroprotective Effects in Degenerative Brain Diseases: A Comprehensive Review. Int J Mol Sci 2024; 25:11223. [PMID: 39457003 PMCID: PMC11508681 DOI: 10.3390/ijms252011223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
As the global population ages, the incidence of neurodegenerative diseases such as Alzheimer's and Parkinson's is rapidly rising. These diseases present a significant public health challenge, as they severely impair cognitive and motor functions, ultimately leading to a substantial reduction in quality of life and placing a heavy burden on healthcare systems worldwide. Although several therapeutic agents have been developed to manage the symptoms of these diseases, their effectiveness is often limited, and there remains an urgent need for preventive strategies. Growing evidence indicates that bioactive compounds from natural products possess neuroprotective properties through antioxidant and anti-inflammatory effects, modulating key pathways such as phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and brain-derived neurotrophic factor-tropomyosin receptor kinase B-cAMP response element-binding protein (BDNF-TrkB-CREB), which are crucial for neuronal survival. These compounds may also reduce amyloid-beta and tau pathology, as well as enhance cholinergic neurotransmission by inhibiting acetylcholinesterase activity. By targeting oxidative stress, neuroinflammation, and neurodegeneration, natural products offer a promising approach for both prevention and treatment. These findings suggest that natural products may be promising for preventing and treating neurodegenerative diseases. This review aims to explore the pathogenesis of neurodegenerative diseases, the limitations of current therapies, and the potential role of natural products as therapeutic agents.
Collapse
Affiliation(s)
| | | | | | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.W.L.); (J.-E.L.); (C.L.)
| |
Collapse
|
8
|
Rouvray S, Drummond RA. The role of lipids in regulating macrophage antifungal immunity. mBio 2024; 15:e0305723. [PMID: 39207168 PMCID: PMC11481918 DOI: 10.1128/mbio.03057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Macrophages are critical components of the antifungal immune response. Disturbance in the number or function of these innate immune cells can significantly increase susceptibility to invasive fungal infections. Pathogenic fungi cause billions of infections every year and have an unmet clinical need, with many infections associated with unacceptably high mortality rates that primarily affect vulnerable patients with underlying immune defects. Lipid metabolism has been increasingly appreciated to significantly influence macrophage function, particularly of macrophages residing in lipid-rich organs, such as the brain, or macrophages specialized at clearing dead cells including alveolar macrophages in the lungs. In this review, we provide an overview of macrophage lipid metabolism, and discuss how lipid recycling and dysregulation affect key macrophage functions relevant for antifungal immunity including phagocytosis, functional polarization, and inflammasome activation. We focus on the fungal pathogen Cryptococcus neoformans, as this is the most common cause of death from fungal infection in humans and because several lines of evidence have already linked lipid metabolism in the regulation of C. neoformans and macrophage interactions.
Collapse
Affiliation(s)
- Sophie Rouvray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Xu K, Saaoud F, Shao Y, Lu Y, Yang Q, Jiang X, Wang H, Yang X. A new paradigm in intracellular immunology: Mitochondria emerging as leading immune organelles. Redox Biol 2024; 76:103331. [PMID: 39216270 PMCID: PMC11402145 DOI: 10.1016/j.redox.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Mitochondria, traditionally recognized as cellular 'powerhouses' due to their pivotal role in energy production, have emerged as multifunctional organelles at the intersection of bioenergetics, metabolic signaling, and immunity. However, the understanding of their exact contributions to immunity and inflammation is still developing. This review first introduces the innovative concept of intracellular immunity, emphasizing how mitochondria serve as critical immune signaling hubs. They are instrumental in recognizing and responding to pathogen and danger signals, and in modulating immune responses. We also propose mitochondria as the leading immune organelles, drawing parallels with the broader immune system in their functions of antigen presentation, immune regulation, and immune response. Our comprehensive review explores mitochondrial immune signaling pathways, their therapeutic potential in managing inflammation and chronic diseases, and discusses cutting-edge methodologies for mitochondrial research. Targeting a broad readership of both experts in mitochondrial functions and newcomers to the field, this review sets forth new directions that could transform our understanding of intracellular immunity and the integrated immune functions of intracellular organelles.
Collapse
Affiliation(s)
- Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | | | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, USA; Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, USA; Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
10
|
Kuretu A, Mothibe M, Ngubane P, Sibiya N. Elucidating the effect of drug-induced mitochondrial dysfunction on insulin signaling and glucose handling in skeletal muscle cell line (C2C12) in vitro. PLoS One 2024; 19:e0310406. [PMID: 39288128 PMCID: PMC11407670 DOI: 10.1371/journal.pone.0310406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Efavirenz, tenofovir, rifampicin, simvastatin, lamotrigine and clarithromycin are known potential mitochondrial toxicants. Mitochondrial toxicity has been reported to disrupt the chain of events in the insulin signalling pathway. Considering the upward trajectory of diabetes mellitus prevalence, studies which seek to uncover probable risk factors for developing diabetes should be encouraged. This study aimed to evaluate the intracellular mechanisms leading to the development of insulin resistance in the presence of various conventional pharmacological agents reported as potential mitochondrial toxicants in skeletal muscle cell line. Differentiated C2C12 preparations were exposed to multiple concentrations of efavirenz, tenofovir, rifampicin, simvastatin, lamotrigine, and clarithromycin, separately. Glucose handling was evaluated by observing the changes in insulin-stimulated glucose uptake and assessing the changes in GLUT4 translocation, GLUT4 expression and Akt expression. The changes in mitochondrial function were evaluated by assessing mitochondrial membrane integrity, cellular ATP production, generation of intracellular reactive oxygen species, expression of tafazzin and quantification of medium malonaldehyde. Insulin stimulated glucose uptake was perturbed in C2C12 pre-treated with potential mitotoxicants. Additionally, ATP synthesis, alterations in mitochondrial membrane potential, excessive accumulation of ROS and malonaldehyde were observed in the presence of potential mitotoxicants. Particularly, we observed suppression of proteins involved in the insulin signalling pathway and maintenance of mitochondrial function namely GLUT4, Akt and tafazzin. Mitochondrial toxicants can potentially induce insulin resistance emanating from mitochondrial dysfunction. These new findings will contribute to the understanding of underlying mechanisms involved in the development of insulin resistance linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Auxiliare Kuretu
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Phikelelani Ngubane
- School of Medical Sciences and Laboratory Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| |
Collapse
|
11
|
Xie W, Koppula S, Kale MB, Ali LS, Wankhede NL, Umare MD, Upaganlawar AB, Abdeen A, Ebrahim EE, El-Sherbiny M, Behl T, Shen B, Singla RK. Unraveling the nexus of age, epilepsy, and mitochondria: exploring the dynamics of cellular energy and excitability. Front Pharmacol 2024; 15:1469053. [PMID: 39309002 PMCID: PMC11413492 DOI: 10.3389/fphar.2024.1469053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Epilepsy, a complex neurological condition marked by recurring seizures, is increasingly recognized for its intricate relationship with mitochondria, the cellular powerhouses responsible for energy production and calcium regulation. This review offers an in-depth examination of the interplay between epilepsy, mitochondrial function, and aging. Many factors might account for the correlation between epilepsy and aging. Mitochondria, integral to cellular energy dynamics and neuronal excitability, perform a critical role in the pathophysiology of epilepsy. The mechanisms linking epilepsy and mitochondria are multifaceted, involving mitochondrial dysfunction, reactive oxygen species (ROS), and mitochondrial dynamics. Mitochondrial dysfunction can trigger seizures by compromising ATP production, increasing glutamate release, and altering ion channel function. ROS, natural byproducts of mitochondrial respiration, contribute to oxidative stress and neuroinflammation, critical factors in epileptogenesis. Mitochondrial dynamics govern fusion and fission processes, influence seizure threshold and calcium buffering, and impact seizure propagation. Energy demands during seizures highlight the critical role of mitochondrial ATP generation in maintaining neuronal membrane potential. Mitochondrial calcium handling dynamically modulates neuronal excitability, affecting synaptic transmission and action potential generation. Dysregulated mitochondrial calcium handling is a hallmark of epilepsy, contributing to excitotoxicity. Epigenetic modifications in epilepsy influence mitochondrial function through histone modifications, DNA methylation, and non-coding RNA expression. Potential therapeutic avenues targeting mitochondria in epilepsy include mitochondria-targeted antioxidants, ketogenic diets, and metabolic therapies. The review concludes by outlining future directions in epilepsy research, emphasizing integrative approaches, advancements in mitochondrial research, and ethical considerations. Mitochondria emerge as central players in the complex narrative of epilepsy, offering profound insights and therapeutic potential for this challenging neurological disorder.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Republic of Korea
| | - Mayur B. Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Mohit D. Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | | | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Elturabi E. Ebrahim
- Medical-Surgical Nursing Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
12
|
Gadhave DG, Sugandhi VV, Jha SK, Nangare SN, Gupta G, Singh SK, Dua K, Cho H, Hansbro PM, Paudel KR. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res Rev 2024; 99:102357. [PMID: 38830548 DOI: 10.1016/j.arr.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Neurodegenerative disorders (NDs) are expected to pose a significant challenge for both medicine and public health in the upcoming years due to global demographic changes. NDs are mainly represented by degeneration/loss of neurons, which is primarily accountable for severe mental illness. This neuronal degeneration leads to many neuropsychiatric problems and permanent disability in an individual. Moreover, the tight junction of the brain, blood-brain barrier (BBB)has a protective feature, functioning as a biological barrier that can prevent medicines, toxins, and foreign substances from entering the brain. However, delivering any medicinal agent to the brain in NDs (i.e., Multiple sclerosis, Alzheimer's, Parkinson's, etc.) is enormously challenging. There are many approved therapies to address NDs, but most of them only help treat the associated manifestations. The available therapies have failed to control the progression of NDs due to certain factors, i.e., BBB and drug-associated undesirable effects. NDs have extremely complex pathology, with many pathogenic mechanisms involved in the initiation and progression; thereby, a limited survival rate has been observed in ND patients. Hence, understanding the exact mechanism behind NDs is crucial to developing alternative approaches for improving ND patients' survival rates. Thus, the present review sheds light on different cellular mechanisms involved in NDs and novel therapeutic approaches with their clinical relevance, which will assist researchers in developing alternate strategies to address the limitations of conventional ND therapies. The current work offers the scope into the near future to improve the therapeutic approach of NDs.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vrashabh V Sugandhi
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sopan N Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun
| | - Hyunah Cho
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| | - Keshav Raj Paudel
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun; Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| |
Collapse
|
13
|
Giallongo S, Ferrigno J, Caltabiano R, Broggi G, Alanazi AM, Distefano A, Tropea E, Tramutola A, Perluigi M, Volti GL, Barone E, Barbagallo IA. Aging exacerbates oxidative stress and liver fibrosis in an animal model of Down Syndrome. Aging (Albany NY) 2024; 16:10203-10215. [PMID: 38942607 PMCID: PMC11236314 DOI: 10.18632/aging.205970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 06/30/2024]
Abstract
Down Syndrome (DS) is a common genetic disorder characterized by an extra copy of chromosome 21, leading to dysregulation of various metabolic pathways. Oxidative stress in DS is associated with neurodevelopmental defects, neuronal dysfunction, and a dementia onset resembling Alzheimer's disease. Additionally, chronic oxidative stress contributes to cardiovascular diseases and certain cancers prevalent in DS individuals. This study investigates the impact of ageing on oxidative stress and liver fibrosis using a DS murine model (Ts2Cje mice). Our results show that DS mice show increased liver oxidative stress and impaired antioxidant defenses, as evidenced by reduced glutathione levels and increased lipid peroxidation. Therefore, DS liver exhibits an altered inflammatory response and mitochondrial fitness as we showed by assaying the expression of HMOX1, CLPP, and the heat shock proteins Hsp90 and Hsp60. DS liver also displays dysregulated lipid metabolism, indicated by altered expression of PPARα, PPARγ, FATP5, and CTP2. Consistently, these changes might contribute to non-alcoholic fatty liver disease development, a condition characterized by liver fat accumulation. Consistently, histological analysis of DS liver reveals increased fibrosis and steatosis, as showed by Col1a1 increased expression, indicative of potential progression to liver cirrhosis. Therefore, our findings suggest an increased risk of liver pathologies in DS individuals, particularly when combined with the higher prevalence of obesity and metabolic dysfunctions in DS patients. These results shed a light on the liver's role in DS-associated pathologies and suggest potential therapeutic strategies targeting oxidative stress and lipid metabolism to prevent or mitigate liver-related complications in DS individuals.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Jessica Ferrigno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Rosario Caltabiano
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, Catania 95124, Italy
| | - Giuseppe Broggi
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, Catania 95124, Italy
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Emanuela Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Roma, RM 00185, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Roma, RM 00185, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Eugenio Barone
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, Catania 95124, Italy
| | | |
Collapse
|
14
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
15
|
Lee J, Han Y, Kim S, Jo H, Wang W, Cho U, Kim SI, Kim B, Song YS. Mitochondrial fission enhances IL-6-induced metastatic potential in ovarian cancer via ERK1/2 activation. Cancer Sci 2024; 115:1536-1550. [PMID: 38433313 PMCID: PMC11093201 DOI: 10.1111/cas.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 03/05/2024] Open
Abstract
Ovarian cancer is a lethal gynecologic cancer mostly diagnosed in an advanced stage with an accumulation of ascites. Interleukin-6 (IL-6), a pro-inflammatory cytokine is highly elevated in malignant ascites and plays a pleiotropic role in cancer progression. Mitochondria are dynamic organelles that undergo fission and fusion in response to external stimuli and dysregulation in their dynamics has been implicated in cancer progression and metastasis. Here, we investigate the effect of IL-6 on mitochondrial dynamics in ovarian cancer cells (OVCs) and its impact on metastatic potential. Treatment with IL-6 on ovarian cancer cell lines (SKOV3 and PA-1) led to an elevation in the metastatic potential of OVCs. Interestingly, a positive association was observed between dynamin-related protein 1 (Drp1), a regulator of mitochondrial fission, and IL-6R in metastatic ovarian cancer tissues. Additionally, IL-6 treatment on OVCs was linked to the activation of Drp1, with a notable increase in the ratio of the inhibitory form p-Drp1(S637) to the active form p-Drp1(S616), indicating enhanced mitochondrial fission. Moreover, IL-6 treatment triggered the activation of ERK1/2, and inhibiting ERK1/2 mitigated IL-6-induced mitochondrial fission. Suppressing mitochondrial fission through siRNA transfection and a pharmacological inhibitor reduced the IL-6-induced migration and invasion of OVCs. This was further supported by 3D invasion assays using patient-derived spheroids. Altogether, our study suggests the role of mitochondrial fission in the metastatic potential of OVCs induced by IL-6. The inhibition of mitochondrial fission could be a potential therapeutic approach to suppress the metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Juwon Lee
- WCU Biomodulation, Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
| | - Youngjin Han
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
| | - Soochi Kim
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Paul F. Glenn Laboratories for the Biology of AgingStanford University School of MedicineStanfordCaliforniaUSA
| | - HyunA Jo
- WCU Biomodulation, Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
| | - Wenyu Wang
- Department of Medical Oncology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Untack Cho
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, College of MedicineSeoul National UniversitySeoulKorea
| | - Boyun Kim
- Department of SmartBio, College of Life and Health ScienceKyungsung UniversityBusanKorea
| | - Yong Sang Song
- WCU Biomodulation, Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
- Department of Obstetrics and Gynecology, College of MedicineSeoul National UniversitySeoulKorea
| |
Collapse
|
16
|
Hart SN, Lenin R, Sturgill J, Kern PA, Nikolajczyk B. MITOCHONDRIA-ASSOCIATED MEMBRANES ARE NOT ALTERED IN IMMUNE CELLS IN T2D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586170. [PMID: 38585802 PMCID: PMC10996535 DOI: 10.1101/2024.03.25.586170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Metabolism research is increasingly recognizing the contributions of organelle crosstalk to metabolic regulation. Mitochondria-associated membranes (MAMs), which are structures connecting the mitochondria and endoplasmic reticulum (ER), are critical in a myriad of cellular functions linked to cellular metabolism. MAMs control calcium signaling, mitochondrial transport, redox balance, protein folding/degradation, and in some studies, metabolic health. The possibility that MAMs drive changes in cellular function in individuals with Type 2 Diabetes (T2D) is controversial. Although disruptions in MAMs that change the distance between the mitochondria and ER, MAM protein composition, or disrupt downstream signaling, can perpetuate inflammation, one key trait of T2D. However, the full scope of this structure's role in immune cell health and thus T2D-associated inflammation remains unknown. We show that human immune cell MAM proteins and their associated functions are not altered by T2D and thus unlikely to contribute to metaflammation.
Collapse
Affiliation(s)
- Samantha N Hart
- Department of Molecular and Cellular Biochemistry, University of Kentucky
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky
| | - Raji Lenin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky
| | - Jamie Sturgill
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky
| | - Philip A Kern
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky
- Department of Internal Medicine, University of Kentucky
| | - Barbara Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, University of Kentucky
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky
| |
Collapse
|
17
|
Lumata JL, Hagge LM, Gaspar MA, Trashi I, Ehrman RN, Koirala S, Chiev AC, Wijesundara YH, Darwin CB, Pena S, Wen X, Wansapura J, Nielsen SO, Kovacs Z, Lumata LL, Gassensmith JJ. TEMPO-conjugated tobacco mosaic virus as a magnetic resonance imaging contrast agent for detection of superoxide production in the inflamed liver. J Mater Chem B 2024; 12:3273-3281. [PMID: 38469725 DOI: 10.1039/d3tb02765a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Superoxide, an anionic dioxygen molecule, plays a crucial role in redox regulation within the body but is implicated in various pathological conditions when produced excessively. Efforts to develop superoxide detection strategies have led to the exploration of organic-based contrast agents for magnetic resonance imaging (MRI). This study compares the effectiveness of two such agents, nTMV-TEMPO and kTMV-TEMPO, for detecting superoxide in a mouse liver model with lipopolysaccharide (LPS)-induced inflammation. The study demonstrates that kTMV-TEMPO, with a strategically positioned lysine residue for TEMPO attachment, outperforms nTMV-TEMPO as an MRI contrast agent. The enhanced sensitivity of kTMV-TEMPO is attributed to its more exposed TEMPO attachment site, facilitating stronger interactions with water protons and superoxide radicals. EPR kinetics experiments confirm kTMV-TEMPO's faster oxidation and reduction rates, making it a promising sensor for superoxide in inflamed liver tissue. In vivo experiments using healthy and LPS-induced inflamed mice reveal that reduced kTMV-TEMPO remains MRI-inactive in healthy mice but becomes MRI-active in inflamed livers. The contrast enhancement in inflamed livers is substantial, validating the potential of kTMV-TEMPO for detecting superoxide in vivo. This research underscores the importance of optimizing contrast agents for in vivo imaging applications. The enhanced sensitivity and biocompatibility of kTMV-TEMPO make it a promising candidate for further studies in the realm of medical imaging, particularly in the context of monitoring oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jenica L Lumata
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Laurel M Hagge
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Miguel A Gaspar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Shailendra Koirala
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Alyssa C Chiev
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Cary B Darwin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Salvador Pena
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Xiaodong Wen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Janaka Wansapura
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
| | - Lloyd L Lumata
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
- Department of Physics, The University of Texas at Dallas, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, USA.
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, USA
- Department of Bioengineering, The University of Texas at Dallas, USA
| |
Collapse
|
18
|
Hoang N, Brooks K, Edwards K. Sex-specific colonic mitochondrial dysfunction in the indomethacin-induced rat model of inflammatory bowel disease. Front Physiol 2024; 15:1341742. [PMID: 38595640 PMCID: PMC11002206 DOI: 10.3389/fphys.2024.1341742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction: Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract and encompasses Crohn's Disease and Ulcerative Colitis. Women appear to have more severe and recurring symptoms of IBD compared to men, most likely due to hormonal fluctuations. Studies have shown that mitochondrial dysfunction plays a role in the development of inflammation and there is evidence of colon mitochondrial alterations in IBD models and patients. In this study we have identified the presence of sex-specific colon mitochondrial dysfunction in a rat model of IBD. Methods: Eight-week-old male and female rats were treated with indomethacin to induce IBD and mitoTEMPO was administered daily either after or before induction of IBD and until euthanasia. Colons were collected for histology and mitochondrial experiments. Intact mitochondrial respiration, reactive oxygen species (mtROS), the activities of the individual electron transport complexes and the activities of the antioxidant enzymes were measured to assess mitochondrial function. Results: IBD male rats showed a decrease in citrate synthase activity, cardiolipin levels, catalase activity and an increase in mtROS production. IBD females show a decrease in intact colon mitochondrial respiration, colon mitochondria respiratory control ratio (RCR), complex I activity, complex IV activity, and an increase in mtROS. Interestingly, control females showed a significantly higher rate of complex I and II-driven intact mitochondrial respiration, MCFA oxidation, complex II activity, complex III activity, and complex IV activity compared to control males. The use of a mitochondrial-targeted therapy, mitoTEMPO, improved the disease and colon mitochondrial function in female IBD rats. However, in the males there was no observed improvement, likely due to the decrease in catalase activity. Conclusion: Our study provides a better understanding of the role mitochondria in the development of IBD and highlights sex differences in colon mitochondrial function. It also opens an avenue for the development of strategies to re-establish normal mitochondrial function that could provide more options for preventive and therapeutic interventions for IBD.
Collapse
Affiliation(s)
| | | | - Kristin Edwards
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
19
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
20
|
Jacques C, Marchand F, Chatelais M, Floris I. Actives from the Micro-Immunotherapy Medicine 2LMIREG ® Reduce the Expression of Cytokines and Immune-Related Markers Including Interleukin-2 and HLA-II While Modulating Oxidative Stress and Mitochondrial Function. J Inflamm Res 2024; 17:1161-1181. [PMID: 38406323 PMCID: PMC10894519 DOI: 10.2147/jir.s445053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Micro-immunotherapy (MI) is a therapeutic option employing low doses (LD) and ultra-low doses (ULD) of cytokines and immune factors to help the organism at modulating the immune responses. In an overpowering inflammatory context, this strategy may support the restoration of the body's homeostasis, as the active ingredients of MI medicines' (MIM) could boost or slow down the physiological functions of the immune cells. The aim of the study is to evaluate for the first time the in vitro anti-inflammatory properties of some actives employed by the MIM of interest in several human immune cell models. Methods In the first part of the study, the effects of the actives from the MIM of interest were assessed from a molecular standpoint: the expression of HLA-II, interleukin (IL)-2, and the secretion of several other cytokines were evaluated. In addition, as mitochondrial metabolism is also involved in the inflammatory processes, the second part of the study aimed at assessing the effects of these actives on the mitochondrial reactive oxygen species (ROS) production and on the mitochondrial membrane potential. Results We showed that the tested actives decreased the expression of HLA-DR and HLA-DP in IFN-γ-stimulated endothelial cells and in LPS-treated-M1-macrophages. The tested MIM slightly reduced the intracellular expression of IL-2 in CD4+ and CD8+ T-cells isolated from PMA/Iono-stimulated human PBMCs. Additionally, while the secretion of IL-2, IL-10, and IFN-γ was diminished, the treatment increased IL-6, IL-9, and IL-17A, which may correspond to a "Th17-like" secretory pattern. Interestingly, in PMA/Iono-treated PBMCs, we reported that the treatment reduced the ROS production in B-cells. Finally, in PMA/Iono-treated human macrophages, we showed that the treatment slightly protected the cells from early cell death/apoptosis. Discussion Overall, these results provide data about the molecular and functional anti-inflammatory effects of several actives contained in the tested MIM in immune-related cells, and their impact on two mitochondria-related processes.
Collapse
Affiliation(s)
- Camille Jacques
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, Moncoutant-sur-Sevre, 79320, France
| | | | | | - Ilaria Floris
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, Moncoutant-sur-Sevre, 79320, France
| |
Collapse
|
21
|
He YJ, Liu JS, Zhang L, Yan JW. A quinolinium-based dual-functional NIR fluorescent probe for the imaging of Aβ aggregation and mitochondrial pH. Talanta 2024; 268:125362. [PMID: 37918242 DOI: 10.1016/j.talanta.2023.125362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Mitochondria are the most important energy supply centers in the cell, the changes in function and structure are implicated in many diseases. Among them, Aβ peptide, one of the targets of Alzheimer's disease, is closely related to mitochondrial autophagy, during the process of mitochondrial autophagy, the mitochondrial matrix will undergo acidification and the pH will be obviously reduced. Herein, a quinolinium-based NIR fluorescent probe QM12 was rationally designed and synthesized for the simultaneous imaging of Aβ aggregates and mitochondrial pH with different emission readout. The probe QM12 exhibited excellent selective toward Aβ aggregates, and can also trace the real-time changes of mitochondrial pH, which could serve as a promising tool for the pathological study of Alzheimer's disease, especially the cross talk between different biomarkers of Alzheimer's disease.
Collapse
Affiliation(s)
- Yi-Jiao He
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Jin-Sheng Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| | - Jin-Wu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
22
|
Yang X, Dai J, Wu C, Liu Z. Alzheimer's Disease and Cancer: Common Targets. Mini Rev Med Chem 2024; 24:983-1000. [PMID: 38037912 DOI: 10.2174/0113895575263108231031132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
There is growing epidemiologic evidence of an inverse association between cancer and AD. In addition, both cell survival and death are regulated by the same signaling pathways, and their abnormal regulation may be implicated in the occurrence and development of cancer and AD. Research shows that there may be a common molecular mechanism between cancer and AD. This review will discuss the role of GSK3, DAPK1, PP2A, P53 and CB2R in the pathogenesis of cancer and AD and describe the current research status of drug development based on these targets.
Collapse
Affiliation(s)
- Xueqing Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jinlian Dai
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chenglong Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zongliang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
23
|
van Rensburg DJ, Lindeque Z, Harvey BH, Steyn SF. Ndufs4 KO mice: A model to study comorbid mood disorders associated with mitochondrial dysfunction. Pharmacol Biochem Behav 2024; 234:173689. [PMID: 38070656 DOI: 10.1016/j.pbb.2023.173689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/01/2024]
Abstract
The Ndufs4 knockout (KO) mouse is a validated and robust preclinical model of mitochondrial diseases (specifically Leigh syndrome), that displays a narrow window of relative phenotypical normality, despite its inherent mitochondrial complex I dysfunction and severe phenotype. Preclinical observations related to psychiatric comorbidities that arise in patients with mitochondrial diseases and indeed in Leigh syndrome are, however, yet to be investigated in this model. Strengthening this narrative is the fact that major depression and bipolar disorder are known to present with deficits in mitochondrial function. We therefore screened the behavioural profile of male and female Ndufs4 KO mice (relative to heterozygous; HET and wildtype; WT mice) between postnatal days 28 and 35 for locomotor, depressive- and anxiety-like alterations and linked it with selected brain biomarkers, viz. serotonin, kynurenine, and redox status in brain areas relevant to psychiatric pathologies (i.e., prefrontal cortex, hippocampus, and striatum). The Ndufs4 KO mice initially displayed depressive-like behaviour in the tail suspension test on PND31 but not on PND35 in the forced swim test. In the mirror box test, increased risk resilience was observed. Serotonin levels of KO mice, compared to HET controls, were increased on PND36, together with increased tryptophan to serotonin and kynurenine turnover. Kynurenine to kynurenic acid turnover was however decreased, while reduced versus oxidized glutathione ratio (GSH/GSSG) was increased. When considering the comorbid psychiatric traits of patients with mitochondrial disorders, this work elaborates on the neuropsychiatric profile of the Ndufs KO mouse. Secondly, despite locomotor differences, Ndufs4 KO mice present with a behavioural profile not unlike rodent models of bipolar disorder, namely variable mood states and risk-taking behaviour. The model may elucidate the bio-energetic mechanisms underlying mood disorders, especially in the presence of mitochondrial disease. Studies are however required to further validate the model's translational relevance.
Collapse
Affiliation(s)
- Daniël J van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
24
|
Mangrulkar SV, Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Anwer MK, Dailah HG, Mohan S, Behl T. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox Res 2023; 41:708-729. [PMID: 37162686 DOI: 10.1007/s12640-023-00647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Neurodegenerative diseases (NDD) are incurable and the most prevalent cognitive and motor disorders of elderly. Mitochondria are essential for a wide range of cellular processes playing a pivotal role in a number of cellular functions like metabolism, intracellular signaling, apoptosis, and immunity. A plethora of evidence indicates the central role of mitochondrial functions in pathogenesis of many aging related NDD. Considering how mitochondria function in neurodegenerative diseases, oxidative stress, and mutations in mtDNA both contribute to aging. Many substantial reports suggested the involvement of numerous contributing factors including, mitochondrial dysfunction, oxidative stress, mitophagy, accumulation of somatic mtDNA mutations, compromised mitochondrial dynamics, and transport within axons in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis. Therapies therefore target fundamental mitochondrial processes such as energy metabolism, free-radical generation, mitochondrial biogenesis, mitochondrial redox state, mitochondrial dynamics, mitochondrial protein synthesis, mitochondrial quality control, and metabolism hold great promise to develop pharmacological based therapies in NDD. By emphasizing the most efficient pharmacological strategies to target dysfunction of mitochondria in the treatment of neurodegenerative diseases, this review serves the scientific community engaged in translational medical science by focusing on the establishment of novel, mitochondria-targeted treatment strategies.
Collapse
Affiliation(s)
| | - Nitu L Wankhede
- Smt. Shantabai Patil College of Diploma in Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| |
Collapse
|
25
|
Radak M, Fallahi H. Zbp1 gene: a modulator of multiple aging hallmarks as potential therapeutic target for age-related diseases. Biogerontology 2023; 24:831-844. [PMID: 37199888 DOI: 10.1007/s10522-023-10039-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
The Zbp1 gene has recently emerged as a potential therapeutic target for age-related diseases. Multiple studies have reported that Zbp1 plays a key role in regulating several aging hallmarks, including cellular senescence, chronic inflammation, DNA damage response, and mitochondrial dysfunction. Regarding cellular senescence, Zbp1 appears to regulate the onset and progression of senescence by controlling the expression of key markers such as p16INK4a and p21CIP1/WAF1. Similarly, evidence suggests that Zbp1 plays a role in regulating inflammation by promoting the production of pro-inflammatory cytokines, such as IL-6 and IL-1β, through activation of the NLRP3 inflammasome. Furthermore, Zbp1 seems to be involved in the DNA damage response, coordinating the cellular response to DNA damage by regulating the expression of genes such as p53 and ATM. Additionally, Zbp1 appears to regulate mitochondrial function, which is crucial for energy production and cellular homeostasis. Given the involvement of Zbp1 in multiple aging hallmarks, targeting this gene represents a potential strategy to prevent or treat age-related diseases. For example, inhibiting Zbp1 activity could be a promising approach to reduce cellular senescence and chronic inflammation, two critical hallmarks of aging associated with various age-related diseases. Similarly, modulating Zbp1 expression or activity could also improve DNA damage response and mitochondrial function, thus delaying or preventing the development of age-related diseases. Overall, the Zbp1 gene appears to be a promising therapeutic target for age-related diseases. In the current review, we have discussed the molecular mechanisms underlying the involvement of Zbp1 in aging hallmarks and proposed to develop effective strategies to target this gene for therapeutic purposes.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Islamic Republic of Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Islamic Republic of Iran.
| |
Collapse
|
26
|
Wellems D, Hu Y, Jennings S, Wang G. Loss of CFTR function in macrophages alters the cell transcriptional program and delays lung resolution of inflammation. Front Immunol 2023; 14:1242381. [PMID: 38035088 PMCID: PMC10687418 DOI: 10.3389/fimmu.2023.1242381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator (CFTR) gene. The most severe pathologies of CF occur in the lung, manifesting as chronic bacterial infection, persistent neutrophilic inflammation, and mucopurulent airway obstruction. Despite increasing knowledge of the CF primary defect and the resulting clinical sequelae, the relationship between the CFTR loss of function and the neutrophilic inflammation remains incompletely understood. Here, we report that loss of CFTR function in macrophages causes extended lung inflammation. After intratracheal inoculation with Pseudomonas aeruginosa, mice with a macrophage-specific Cftr-knockout (Mac-CF) were able to mount an effective host defense to clear the bacterial infection. However, three days post-inoculation, Mac-CF lungs demonstrated significantly more neutrophil infiltration and higher levels of inflammatory cytokines, suggesting that Mac-CF mice had a slower resolution of inflammation. Single-cell RNA sequencing revealed that absence of CFTR in the macrophages altered the cell transcriptional program, affecting the cell inflammatory and immune responses, antioxidant system, and mitochondrial respiration. Thus, loss of CFTR function in macrophages influences cell homeostasis, leading to a dysregulated cellular response to infection that may exacerbate CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
27
|
Hamzeh O, Rabiei F, Shakeri M, Parsian H, Saadat P, Rostami-Mansoor S. Mitochondrial dysfunction and inflammasome activation in neurodegenerative diseases: Mechanisms and therapeutic implications. Mitochondrion 2023; 73:S1567-7249(23)00087-9. [PMID: 39492438 DOI: 10.1016/j.mito.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/28/2023] [Indexed: 11/05/2024]
Abstract
Impaired mitochondrial function is crucial to the pathogenesis of several neurodegenerative diseases. It causes the release of mitochondrial DNA (mtDNA), mitochondrial reactive oxygen species (mtROS), ATP, and cardiolipin, which activate the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. NLRP3 inflammasome is an important innate immune system element contributing to neuroinflammation and neurodegeneration. Therefore, targeting the NLRP3 inflammasome has become an interesting therapeutic approach for treating neurodegenerative diseases. This review describes the role of mitochondrial abnormalities and over-activated inflammasomes in the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Friedrich ataxia (FRDA). We also discuss the therapeutic strategies focusing on signaling pathways associated with inflammasome activation, which potentially alleviate neurodegenerative symptoms and impede disease progression.
Collapse
Affiliation(s)
- Olia Hamzeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Shakeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
28
|
Palumbo L, Carinci M, Guarino A, Asth L, Zucchini S, Missiroli S, Rimessi A, Pinton P, Giorgi C. The NLRP3 Inflammasome in Neurodegenerative Disorders: Insights from Epileptic Models. Biomedicines 2023; 11:2825. [PMID: 37893198 PMCID: PMC10604217 DOI: 10.3390/biomedicines11102825] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Neuroinflammation represents a dynamic process of defense and protection against the harmful action of infectious agents or other detrimental stimuli in the central nervous system (CNS). However, the uncontrolled regulation of this physiological process is strongly associated with serious dysfunctional neuronal issues linked to the progression of CNS disorders. Moreover, it has been widely demonstrated that neuroinflammation is linked to epilepsy, one of the most prevalent and serious brain disorders worldwide. Indeed, NLRP3, one of the most well-studied inflammasomes, is involved in the generation of epileptic seizures, events that characterize this pathological condition. In this context, several pieces of evidence have shown that the NLRP3 inflammasome plays a central role in the pathophysiology of mesial temporal lobe epilepsy (mTLE). Based on an extensive review of the literature on the role of NLRP3-dependent inflammation in epilepsy, in this review we discuss our current understanding of the connection between NLRP3 inflammasome activation and progressive neurodegeneration in epilepsy. The goal of the review is to cover as many of the various known epilepsy models as possible, providing a broad overview of the current literature. Lastly, we also propose some of the present therapeutic strategies targeting NLRP3, aiming to provide potential insights for future studies.
Collapse
Affiliation(s)
- Laura Palumbo
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
| | - Annunziata Guarino
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (A.G.); (L.A.); (S.Z.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (L.P.); (M.C.); (S.M.); (A.R.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
29
|
Kao SH, Shofer FS, Greenwood JC, Alomaja O, Ranganathan A, Piel S, Mesaros C, Shin SS, Ehinger JK, Kilbaugh TJ, Jang DH. Cell-Free DNA as a Biomarker in a Rodent Model of Chlorpyrifos Poisoning Causing Mitochondrial Dysfunction. J Med Toxicol 2023; 19:352-361. [PMID: 37523031 PMCID: PMC10522542 DOI: 10.1007/s13181-023-00956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023] Open
Abstract
INTRODUCTION Organophosphates (OPs) are a major public health problem worldwide due to ease of access and high toxicity lacking effective biomarkers and treatment. Cholinergic agents such as OPs and carbamates are responsible for many pesticide-related deaths. While the inhibition of AChE is thought to be the main mechanism of injury, there are other important pathways that contribute to the overall toxicity of OPs such as mitochondrial dysfunction. An existing gap in OP poisoning are biomarkers to gauge severity and prognosis. Cell-free DNA (cfDNA) are novel biomarkers that have gained increased attention as a sensitive biomarker of disease with novel use in acute poisoning. This study investigates alterations in cerebral mitochondrial function in a rodent model of chlorpyrifos poisoning with the use of cfDNA as a potential biomarker. METHODS Twenty rodents were divided into two groups: Control (n = 10) and Chlorpyrifos (n = 10). Chlorpyrifos was administered through the venous femoral line with a Harvard Apparatus 11 Elite Syringe pump (Holliston, MA, USA) at 2 mg/kg. Animals were randomized to receive chlorpyrifos versus the vehicle (10% DMSO) for 60 min which would realistically present an acute exposure with continued absorption. At the end of the exposure (60 min), isolated mitochondria were measured for mitochondrial respiration along with measures of acetylcholinesterase activity, cfDNA, cytokines and western blot. RESULTS The Chlorpyrifos group showed a significant decrease in heart rate but no change in the blood pressure. There was a significant increase in bulk cfDNA concentrations and overall decrease in mitochondrial respiration from brain tissue obtained from animals in the Chlorpyrifos group when compared to the Control group with no difference in acetylcholinesterase activity. In addition, there was a significant increase in both IL-2 and IL-12 in the Chlorpyrifos group. CONCLUSIONS In our study, we found that the total cfDNA concentration may serve as a more accurate biomarker of OP exposure compared to acetylcholinesterase activity. In addition, there was an overall decrease in cerebral mitochondrial function in the Chlorpyrifos group when compared to the Control group.
Collapse
Affiliation(s)
- Shih-Han Kao
- The Children's Hospital of Philadelphia, The Resuscitation Science Center, Philadelphia, PA, 19104, USA
| | - Frances S Shofer
- Department of Emergency Medicine, Perelman School of Medicine, The Resuscitation Science Center (RSC), Lab 814F, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - John C Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, The Resuscitation Science Center (RSC), Lab 814F, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Oladunni Alomaja
- Department of Emergency Medicine, Perelman School of Medicine, The Resuscitation Science Center (RSC), Lab 814F, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Abhay Ranganathan
- The Children's Hospital of Philadelphia, The Resuscitation Science Center, Philadelphia, PA, 19104, USA
| | - Sarah Piel
- The Children's Hospital of Philadelphia, The Resuscitation Science Center, Philadelphia, PA, 19104, USA
| | - Clementina Mesaros
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel S Shin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Johannes K Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Todd J Kilbaugh
- The Children's Hospital of Philadelphia, The Resuscitation Science Center, Philadelphia, PA, 19104, USA
| | - David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, The Resuscitation Science Center (RSC), Lab 814F, University of Pennsylvania, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 164] [Impact Index Per Article: 164.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
31
|
Javali PS, Sekar M, Kumar A, Thirumurugan K. Dynamics of redox signaling in aging via autophagy, inflammation, and senescence. Biogerontology 2023; 24:663-678. [PMID: 37195483 DOI: 10.1007/s10522-023-10040-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
Review paper attempts to explain the dynamic aspects of redox signaling in aging through autophagy, inflammation, and senescence. It begins with ROS source in the cell, then states redox signaling in autophagy, and regulation of autophagy in aging. Next, we discuss inflammation and redox signaling with various pathways involved: NOX pathway, ROS production via TNF-α, IL-1β, xanthine oxidase pathway, COX pathway, and myeloperoxidase pathway. Also, we emphasize oxidative damage as an aging marker and the contribution of pathophysiological factors to aging. In senescence-associated secretory phenotypes, we link ROS with senescence, aging disorders. Relevant crosstalk between autophagy, inflammation, and senescence using a balanced ROS level might reduce age-related disorders. Transducing the context-dependent signal communication among these three processes at high spatiotemporal resolution demands other tools like multi-omics aging biomarkers, artificial intelligence, machine learning, and deep learning. The bewildering advancement of technology in the above areas might progress age-related disorders diagnostics with precision and accuracy.
Collapse
Affiliation(s)
- Prashanth S Javali
- #412J, Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Mouliganesh Sekar
- #412J, Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ashish Kumar
- #412J, Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Kavitha Thirumurugan
- #412J, Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
32
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
33
|
Aghelan Z, Pashaee S, Abtahi SH, Karima S, Khazaie H, Ezati M, Khodarahmi R. Natural Immunosuppressants as a Treatment for Chronic Insomnia Targeting the Inflammatory Response Induced by NLRP3/caspase-1/IL-1β Axis Activation: A Scooping Review. J Neuroimmune Pharmacol 2023; 18:294-309. [PMID: 37552452 DOI: 10.1007/s11481-023-10078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Chronic insomnia is an inflammatory-related disease with an important pathological basis for various diseases which is a serious threat to a person's physical and mental health. So far, many hypotheses have been proposed to explain the pathogenesis of insomnia, among which inflammatory mechanisms have become the focus of scientific attention. In this regard, the aim of the present scooping review is to evaluate the potential benefits of natural compounds in treatment of chronic insomnia targeting nucleotide-binding oligomerization domain (NOD)-like receptor-pyrin-containing protein 3 (NLRP3)/caspase-1/IL-1β axis as one of the most important activators of inflammatory cascades. The data show that compounds that have the potential to cause inflammation induce sleep disorders, and that inflammatory mediators are key molecules in regulating the sleep-related activity of neurons. In the inflammatory process of insomnia, the role of NLRP3 in the pathogenesis of insomnia has been gradually considered by researchers. NLRP3 is an intracellular sensor that recognizes the widest range of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). After identification and binding to damage factors, NLRP3 inflammasome is assembled to activate the caspase-1 and IL-1β. Increased production and secretion of IL-1β may be involved in central nervous system dysregulation of physiological sleep. The current scooping review reports the potential benefits of natural compounds that target NLRP3 inflammasome pathway activity and highlights the hypothesis which NLRP3 /caspase-1/IL-1β may serve as a potential therapeutic target for managing inflammation and improving symptoms in chronic insomnia.
Collapse
Affiliation(s)
- Zahra Aghelan
- Department of Clinical Biochemistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Somayeh Pashaee
- Department of Clinical Biochemistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hosein Abtahi
- Department of Laboratory Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Behehshti University of Medical Sciences, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Ezati
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Nurse Street, Kermanshah, 6714415185, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Nurse Street, Kermanshah, 6714415185, Iran.
| |
Collapse
|
34
|
Bao P, Gong Y, Wang Y, Xu M, Qian Z, Ni X, Lu J. Hydrogen Sulfide Prevents LPS-Induced Depression-like Behavior through the Suppression of NLRP3 Inflammasome and Pyroptosis and the Improvement of Mitochondrial Function in the Hippocampus of Mice. BIOLOGY 2023; 12:1092. [PMID: 37626978 PMCID: PMC10451782 DOI: 10.3390/biology12081092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Hydrogen sulfide (H2S) has been implicated to have antidepressive effects. We sought to investigate the prevention effects of H2S donor NaHS on depression-like behavior induced by lipopolysaccharide (LPS) in mice and its potential mechanisms. Sucrose preference, force swimming, open field, and elevate zero maze were used to evaluate depression-like behavior. NF-κB and NLRP3 inflammasome activation and mitochondrial function in the hippocampus were determined. It was found that depression-like behavior induced by LPS was prevented by NaHS pretreatment. LPS caused NF-κB and NLRP3 inflammasome activation in the hippocampus as evidenced by increased phosphorylated-p65 levels and increased NLRP3, ASC, caspase-1, and mature IL-1β levels in the hippocampus, which were also blocked by NaHS. LPS increased GSDMD-N levels and TUNEL-positive cells in the hippocampus, which was prevented by NaHS. Abnormal mitochondrial morphology in the hippocampus was found in LPS-treated mice. Mitochondrial membrane potential and ATP production were reduced, and ROS production was increased in the hippocampus of LPS-treated mice. NaHS pretreatment improved impaired mitochondrial morphology and increased membrane potential and ATP production and reduced ROS production in the hippocampus of LPS-treated mice. Our data indicate that H2S prevents LPS-induced depression-like behaviors by inhibiting NLRP3 inflammasome activation and pyroptosis and improving mitochondrial function in the hippocampus.
Collapse
Affiliation(s)
- Peng Bao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yuxiang Gong
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yanjie Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Miaomiao Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Zhenyu Qian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xin Ni
- National Clinical Research Center for Geriatric Disorders, Central South University Xiangya Hospital, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Central South University Xiangya Hospital, Changsha 410008, China
| | - Jianqiang Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
35
|
Lee Y, Han J, Hwang SB, Kang SS, Son HB, Jin C, Kim JE, Lee BH, Kang E. Selection of iPSCs without mtDNA deletion for autologous cell therapy in a patient with Pearson syndrome. BMB Rep 2023; 56:463-468. [PMID: 37156631 PMCID: PMC10471463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/02/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
Screening for genetic defects in the cells should be examined for clinical application. The Pearson syndrome (PS) patient harbored nuclear mutations in the POLG and SSBP1 genes, which could induce systemic large-scale mitochondrial genome (mtDNA) deletion. We investigated iPSCs with mtDNA deletions in PS patient and whether deletion levels could be maintained during differentiation. The iPSC clones derived from skin fibroblasts (9% deletion) and blood mononuclear cells (24% deletion) were measured for mtDNA deletion levels. Of the 13 skin-derived iPSC clones, only 3 were found to be free of mtDNA deletions, whereas all blood-derived iPSC clones were found to be free of deletions. The iPSC clones with (27%) and without mtDNA deletion (0%) were selected and performed in vitro and in vivo differentiation, such as embryonic body (EB) and teratoma formation. After differentiation, the level of deletion was retained or increased in EBs (24%) or teratoma (45%) from deletion iPSC clone, while, the absence of deletions showed in all EBs and teratomas from deletion-free iPSC clones. These results demonstrated that non-deletion in iPSCs was maintained during in vitro and in vivo differentiation, even in the presence of nuclear mutations, suggesting that deletion-free iPSC clones could be candidates for autologous cell therapy in patients. [BMB Reports 2023; 56(8): 463-468].
Collapse
Affiliation(s)
- Yeonmi Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA University, Seongnam 13488, Korea
| | - Jongsuk Han
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Sae-Byeok Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA University, Seongnam 13488, Korea
| | - Soon-Suk Kang
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA University, Seongnam 13488, Korea
| | - Hyeoung-Bin Son
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Chaeyeon Jin
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Jae Eun Kim
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA University, Seongnam 13488, Korea
| | - Beom Hee Lee
- Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eunju Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA University, Seongnam 13488, Korea
| |
Collapse
|
36
|
Shinhmar H, Hogg C, Jeffery G. Exposure to long wavelength light that improves aged mitochondrial function shifts acute cytokine expression in serum and the retina. PLoS One 2023; 18:e0284172. [PMID: 37478072 PMCID: PMC10361513 DOI: 10.1371/journal.pone.0284172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/08/2023] [Indexed: 07/23/2023] Open
Abstract
Aged mitochondrial function can be improved with long wavelength light exposure. This reduces cellular markers of inflammation and can improve system function from fly through to human. We have previously shown that with age there are increases in cytokine expression in mouse serum. Here, we ask what impact 670nm light has on this expression using a 40 cytokine array in blood serum and retina in C57Bl6 mice. 670nm exposure was delivered daily for a week in 12 month old mice. This shifted patterns of cytokine expression in both serum and retina inducing a selective increase. In serum examples of significant increases were found in IL (interleukins) 1α, IL-7, 10, 16, 17 along with TNF-α and CXCL (chemokines) 9 and 10. In retina the increases were again mainly in some IL's and CXCL's. A few cytokines were reduced by light exposure. Changes in serum cytokines implies that long wavelengths impact systemically even to unexposed tissues deep in the body. In the context of wider literature, increased cytokine expression may be protective. However, their upregulation by light merits further analysis as cytokines upregulation can also be negative and there are probably complex patterns of interaction in the dynamics of their expression.
Collapse
Affiliation(s)
- Harpreet Shinhmar
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Chris Hogg
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
37
|
Verbeke J, Fayt Y, Martin L, Yilmaz O, Sedzicki J, Reboul A, Jadot M, Renard P, Dehio C, Renard H, Letesson J, De Bolle X, Arnould T. Host cell egress of Brucella abortus requires BNIP3L-mediated mitophagy. EMBO J 2023; 42:e112817. [PMID: 37232029 PMCID: PMC10350838 DOI: 10.15252/embj.2022112817] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
The facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B. abortus triggers substantive mitochondrial network fragmentation, accompanied by mitophagy and the formation of mitochondrial Brucella-containing vacuoles during the late steps of cellular infection. Brucella-induced expression of the mitophagy receptor BNIP3L is essential for these events and relies on the iron-dependent stabilisation of the hypoxia-inducible factor 1α. Functionally, BNIP3L-mediated mitophagy appears to be advantageous for bacterial exit from the host cell as BNIP3L depletion drastically reduces the number of reinfection events. Altogether, these findings highlight the intricate link between Brucella trafficking and the mitochondria during host cell infection.
Collapse
Affiliation(s)
- Jérémy Verbeke
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Youri Fayt
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Lisa Martin
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Oya Yilmaz
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | | | - Angéline Reboul
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Michel Jadot
- Research Unit in Molecular Physiology (URPhyM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Patricia Renard
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | | | - Henri‐François Renard
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Jean‐Jacques Letesson
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Xavier De Bolle
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Thierry Arnould
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| |
Collapse
|
38
|
Cheng J, Ding C, Tang H, Zhou H, Wu M, Chen Y. An Autophagy-Associated MITF-GAS5-miR-23 Loop Attenuates Vascular Oxidative and Inflammatory Damage in Sepsis. Biomedicines 2023; 11:1811. [PMID: 37509452 PMCID: PMC10376991 DOI: 10.3390/biomedicines11071811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Sepsis induces GAS5 expression in the vascular endothelium, but the molecular mechanism is unclear, as is the role of GAS5 in sepsis. METHODS AND RESULTS We observed that GAS5 expression in the endothelium was significantly upregulated in a sepsis mouse model. ChIP-PCR and EMSA confirmed that the oxidative stress (OS)-activated MiT-TFE transcription factor (MITF, TFE3, and TFEB)-mediated GAS5 transcription. In vitro, GAS5 overexpression attenuated OS and inflammation in endothelial cells (ECs) while maintaining the structural and functional integrity of mitochondria. In vivo, GAS5 reduced tissue ROS levels, maintained vascular barrier function to reduce leakage, and ultimately attenuated sepsis-induced lung injury. Luciferase reporter assays revealed that GAS5 protected MITF from degradation by sponging miR-23, thereby forming a positive feedback loop consisting of MITF, GAS5, and miR-23. Despite the fact that the OS-activated MITF-GAS5-miR-23 loop boosted MITF-mediated p62 transcription, ECs do not need to increase mitophagy to exert mitochondrial quality control since MITF-mediated Nrf2 transcription exists. Compared to mitophagy, MITF-transcribed p62 prefers to facilitate the autophagic degradation of Keap1 through a direct interaction, thereby relieving the inhibition of Nrf2 by Keap1, indicating that MITF can upregulate Nrf2 at both the transcriptional and posttranscriptional levels. Following this, ChIP-PCR demonstrated that Nrf2 can also transcribe MITF, revealing that there is a reciprocal positive regulatory association between MITF and Nrf2. CONCLUSION In sepsis, the ROS-activated MITF-GAS5-miR-23 loop integrated the antioxidant and autophagy systems through MITF-mediated transcription of Nrf2 and p62, which dynamically regulate the level and type of autophagy, as well as exert antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Junning Cheng
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Central Laboratory of School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chang Ding
- Central Laboratory of School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
- Department of Ultrasound, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400013, China
| | - Huying Tang
- Central Laboratory of School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China
| | - Haonan Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mingdong Wu
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yikuan Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
39
|
Viglianisi G, Santonocito S, Polizzi A, Troiano G, Amato M, Zhurakivska K, Pesce P, Isola G. Impact of Circulating Cell-Free DNA (cfDNA) as a Biomarker of the Development and Evolution of Periodontitis. Int J Mol Sci 2023; 24:9981. [PMID: 37373135 DOI: 10.3390/ijms24129981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In the last few decades, circulating cell-free DNA (cfDNA) has been shown to have an important role in cell apoptosis or necrosis, including in the development and evolution of several tumors and inflammatory diseases in humans. In this regard, periodontitis, a chronic inflammatory disease that can induce the destruction of supporting components of the teeth, could represent a chronic inflammatory stimulus linked to a various range of systemic inflammatory diseases. Recently, a possible correlation between periodontal disease and cfDNA has been shown, representing new important diagnostic-therapeutic perspectives. During the development of periodontitis, cfDNA is released in biological fluids such as blood, saliva, urine and other body fluids and represents an important index of inflammation. Due to the possibility of withdrawing some of these liquids in a non-invasive way, cfDNA could be used as a possible biomarker for periodontal disease. In addition, discovering a proportional relationship between cfDNA levels and the severity of periodontitis, expressed through the disease extent, could open the prospect of using cfDNA as a possible therapeutic target. The aim of this article is to report what researchers have discovered in recent years about circulating cfDNA in the development, evolution and therapy of periodontitis. The analyzed literature review shows that cfDNA has considerable potential as a diagnostic, therapeutic biomarker and therapeutic target in periodontal disease; however, further studies are needed for cfDNA to be used in clinical practice.
Collapse
Affiliation(s)
- Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Paolo Pesce
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Ospedale S. Martino, 16148 Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
40
|
Warren EB, Gordon-Lipkin EM, Cheung F, Chen J, Mukherjee A, Apps R, Tsang JS, Jetmore J, Schlein ML, Kruk S, Lei Y, West AP, McGuire PJ. Inflammatory and interferon gene expression signatures in patients with mitochondrial disease. J Transl Med 2023; 21:331. [PMID: 37208779 DOI: 10.1186/s12967-023-04180-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND People with mitochondrial disease (MtD) are susceptible to metabolic decompensation and neurological symptom progression in response to an infection. Increasing evidence suggests that mitochondrial dysfunction may cause chronic inflammation, which may promote hyper-responsiveness to pathogens and neurodegeneration. We sought to examine transcriptional changes between MtD patients and healthy controls to identify common gene signatures of immune dysregulation in MtD. METHODS We collected whole blood from a cohort of MtD patients and healthy controls and performed RNAseq to examine transcriptomic differences. We performed GSEA analyses to compare our findings against existing studies to identify commonly dysregulated pathways. RESULTS Gene sets involved in inflammatory signaling, including type I interferons, interleukin-1β and antiviral responses, are enriched in MtD patients compared to controls. Monocyte and dendritic cell gene clusters are also enriched in MtD patients, while T cell and B cell gene sets are negatively enriched. The enrichment of antiviral response corresponds with an independent set of MELAS patients, and two mouse models of mtDNA dysfunction. CONCLUSIONS Through the convergence of our results, we demonstrate translational evidence of systemic peripheral inflammation arising from MtD, predominantly through antiviral response gene sets. This provides key evidence linking mitochondrial dysfunction to inflammation, which may contribute to the pathogenesis of primary MtD and other chronic inflammatory disorders associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Emily B Warren
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eliza M Gordon-Lipkin
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Foo Cheung
- Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
| | - Jinguo Chen
- Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
| | - Amrita Mukherjee
- Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
| | - Richard Apps
- Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
| | - John S Tsang
- Center for Human Immunology, National Institutes of Health, Bethesda, MD, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Jillian Jetmore
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melissa L Schlein
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shannon Kruk
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Bryan, TX, USA
| | - A Phillip West
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Bryan, TX, USA.
| | - Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
41
|
Ghosh D, Singh G, Mishra P, Singh A, Kumar A, Sinha N. Alteration in mitochondrial dynamics promotes the proinflammatory response of microglia and is involved in cerebellar dysfunction of young and aged mice following LPS exposure. Neurosci Lett 2023; 807:137262. [PMID: 37116576 DOI: 10.1016/j.neulet.2023.137262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Cerebellar dysfunction is implicated in impaired motor coordination and balance, thus disturbing the dynamics of sensorimotor integration. Neuroinflammation and aging could be prominent contributors to cerebellar aberration. Additionally, changes in mitochondrial dynamics may precede microglia activation in several chronic neurodegenerative diseases; however, the underlying mechanism remains largely unknown.Here using LPS (1 mg/kg i.p. for four consecutive days) stimulation in both young (3 months old) and aged (12 months old) mice, followed by molecular analysis on the 21st day, we have explored the correlation between aging and mitochondrial dynamic alteration in the backdrop of chronic neuroinflammation. Following LPS stimulation, we observed microglia activation and subsequent elevation in proinflammatory cytokines (M1; TNF-α, IFN-γ) with NLRP3 activationand a concomitant reduction in the expression of anti-inflammatory markers (M2; YM1, TGF-β1) in the cerebellar tissue of aged mice compared with the young LPS and aged controls. Remarkably, senescence (p21, p27, p53) and epigenetic (HDAC2) markers were found upregulated in the cerebellum tissue of the aged LPS group, suggesting their crucial role in LPS-induced cerebellar deficit. Further, we demonstrated alteration in the antagonistic forces of mitochondrial fusion and fission with increased expression of the mitochondrial fission-related gene [FIS1] and decreased fusion-related genes [MFN1 and MFN2]. We noted increased mtDNA copy number, microglia activation, and inflammatory response of IL1β and IFN-γ post-chronic neuroinflammation in aged LPS group. Our results suggest that the crosstalk between mitochondrial dynamics and altered microglial activation paradigm in chronic neuroinflammatory conditions may be the key to understanding the cerebellar molecular mechanism.
Collapse
Affiliation(s)
- Devlina Ghosh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow 226028, India; Centre of Biomedical Research, SGPGIMS-Campus, Raibareli Road, Lucknow 226014, India.
| | - Gajendra Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Prabhaker Mishra
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226 014, Uttar Pradesh, India
| | - Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow 226028, India
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS-Campus, Raibareli Road, Lucknow 226014, India.
| |
Collapse
|
42
|
Low RN, Low RJ, Akrami A. A review of cytokine-based pathophysiology of Long COVID symptoms. Front Med (Lausanne) 2023; 10:1011936. [PMID: 37064029 PMCID: PMC10103649 DOI: 10.3389/fmed.2023.1011936] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/27/2023] [Indexed: 04/03/2023] Open
Abstract
The Long COVID/Post Acute Sequelae of COVID-19 (PASC) group includes patients with initial mild-to-moderate symptoms during the acute phase of the illness, in whom recovery is prolonged, or new symptoms are developed over months. Here, we propose a description of the pathophysiology of the Long COVID presentation based on inflammatory cytokine cascades and the p38 MAP kinase signaling pathways that regulate cytokine production. In this model, the SARS-CoV-2 viral infection is hypothesized to trigger a dysregulated peripheral immune system activation with subsequent cytokine release. Chronic low-grade inflammation leads to dysregulated brain microglia with an exaggerated release of central cytokines, producing neuroinflammation. Immunothrombosis linked to chronic inflammation with microclot formation leads to decreased tissue perfusion and ischemia. Intermittent fatigue, Post Exertional Malaise (PEM), CNS symptoms with "brain fog," arthralgias, paresthesias, dysautonomia, and GI and ophthalmic problems can consequently arise as result of the elevated peripheral and central cytokines. There are abundant similarities between symptoms in Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). DNA polymorphisms and viral-induced epigenetic changes to cytokine gene expression may lead to chronic inflammation in Long COVID patients, predisposing some to develop autoimmunity, which may be the gateway to ME/CFS.
Collapse
Affiliation(s)
| | - Ryan J. Low
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| | - Athena Akrami
- Sainsbury Wellcome Centre, University College London, London, United Kingdom
| |
Collapse
|
43
|
Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, Lipkowitz S. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel) 2023; 15:cancers15071936. [PMID: 37046596 PMCID: PMC10093243 DOI: 10.3390/cancers15071936] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer mortality in women. Despite the recent development of new therapeutics including targeted therapies and immunotherapy, triple-negative breast cancer remains an aggressive form of breast cancer, and thus improved treatments are needed. In recent decades, it has become increasingly clear that breast cancers harbor metabolic plasticity that is controlled by mitochondria. A myriad of studies provide evidence that mitochondria are essential to breast cancer progression. Mitochondria in breast cancers are widely reprogrammed to enhance energy production and biosynthesis of macromolecules required for tumor growth. In this review, we will discuss the current understanding of mitochondrial roles in breast cancers and elucidate why mitochondria are a rational therapeutic target. We will then outline the status of the use of mitochondria-targeting drugs in breast cancers, and highlight ClpP agonists as emerging mitochondria-targeting drugs with a unique mechanism of action. We also illustrate possible drug combination strategies and challenges in the future breast cancer clinic.
Collapse
Affiliation(s)
- Rohan Wedam
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Wisniewski
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Weltz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Kundu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna Voeller
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Reed KJ, Landry GM. Diglycolic acid inhibits succinate dehydrogenase activity, depletes mitochondrial membrane potential, and induces inflammation in an SH-SY5Y neuroblastoma model of neurotoxicity in vitro. Toxicol Appl Pharmacol 2023; 463:116414. [PMID: 36754214 DOI: 10.1016/j.taap.2023.116414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Diethylene glycol is a toxic industrial solvent resulting in a well-defined toxidrome. Diglycolic acid (DGA) has been identified as the metabolite responsible for the nephrotoxicity and hepatotoxicity. These studies assess the mechanism of DGA-induced neurotoxicity, specifically addressing the known ability of DGA to chelate calcium (Ca2+) in solution and inhibit mitochondrial complex II. SH-SY5Y cells were seeded into 96-well plates to assess intracellular Ca2+ chelation, complex II activity, mitochondrial membrane potential (ΔΨm), ATP production, and release of inflammatory cytokines TNF-α and IL-1β with 2-, 4-, 6-, 24-, and 48-h DGA exposure. Peak Ca2+ chelation occurred at 4 h in cells treated with 6.25-50 mM DGA; however, effects were transient. Complex II activity was significantly decreased at all DGA concentrations tested, with 12.5 mM DGA causing 80% inhibition and 25 and 50 mM DGA causing 97 and 100% inhibition, respectively. Subsequently, 12.5-50 mM DGA concentrations significantly decreased ΔΨm at all time points. 50 mM DGA significantly increased release of TNF-α and IL-1β after 24 and 48 h with significantly decreased ATP production observed at the same time points and concentration. These studies demonstrate that the DGA-induced mechanism of SH-SY5Y cell death involves complex II inhibition leading to mitochondrial depolarization, and subsequent ATP depletion with accompanying inflammatory cytokine release. These results indicate a direct mechanism of DGA-induced neurotoxicity in vitro, similarly observed in other DEG-affected target organs.
Collapse
Affiliation(s)
- Kristi J Reed
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA 02115, United States
| | - Greg M Landry
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA 02115, United States.
| |
Collapse
|
45
|
Rosolen D, Nunes-Souza E, Marchi R, Tofolo MV, Antunes VC, Berti FCB, Fonseca AS, Cavalli LR. MiRNAs Action and Impact on Mitochondria Function, Metabolic Reprogramming and Chemoresistance of Cancer Cells: A Systematic Review. Biomedicines 2023; 11:biomedicines11030693. [PMID: 36979672 PMCID: PMC10045760 DOI: 10.3390/biomedicines11030693] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/30/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in the regulation of mitochondrial function and homeostasis, and in the modulation of cell metabolism, by targeting known oncogenes and tumor suppressor genes of metabolic-related signaling pathways involved in the hallmarks of cancer. This systematic review focuses on articles describing the role, association, and/or involvement of miRNAs in regulating the mitochondrial function and metabolic reprogramming of cancer cells. Following the PRISMA guidelines, the articles reviewed were published from January 2010 to September 2022, with the search terms "mitochondrial microRNA" and its synonyms (mitochondrial microRNA, mitochondrial miRNA, mito microRNA, or mitomiR), "reprogramming metabolism," and "cancer" in the title or abstract). Thirty-six original research articles were selected, revealing 51 miRNAs with altered expression in 12 cancers: bladder, breast, cervical, colon, colorectal, liver, lung, melanoma, osteosarcoma, pancreatic, prostate, and tongue. The actions of miRNAs and their corresponding target genes have been reported mainly in cell metabolic processes, mitochondrial dynamics, mitophagy, apoptosis, redox signaling, and resistance to chemotherapeutic agents. Altogether, these studies support the role of miRNAs in the metabolic reprogramming hallmark of cancer cells and highlight their potential as predictive molecular markers of treatment response and/or targets that can be used for therapeutic intervention.
Collapse
Affiliation(s)
- Daiane Rosolen
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Rafael Marchi
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Maria Vitoria Tofolo
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Valquíria C Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Fernanda C B Berti
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Aline S Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Luciane R Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, WA 20057, USA
| |
Collapse
|
46
|
Karmakar E, Das N, Mukherjee B, Das P, Mukhopadhyay S, Roy SS. Lipid-induced alteration in retinoic acid signaling leads to mitochondrial dysfunction in HepG2 and Huh7 cells. Biochem Cell Biol 2023. [PMID: 36787544 DOI: 10.1139/bcb-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
A surfeit of mitochondrial reactive oxygen species (ROS) and inflammation serve as obligatory mediators of lipid-associated hepatocellular maladies. While retinoid homeostasis is essential in restoring systemic energy balance, its role in hepatic mitochondrial function remains elusive. The role of lecithin-retinol acyltransferase (LRAT) in maintenance of retinoid homeostasis is appreciated earlier; however, its role in modulating retinoic acid (RA) bioavailability upon lipid-imposition is unexplored. We identified LRAT overexpression in high-fat diet (HFD)-fed rats and palmitate-treated hepatoma cells. Elevation in LRAT expression depletes RA production and deregulates RA signaling. This altered RA metabolism enhances fat accumulation, accompanied by inflammation that leads to impaired mitochondrial function through enhanced ROS generation. Hence, LRAT inhibition could be a novel approach preventing lipid-induced mitochondrial dysfunction in hepatoma cells.
Collapse
Affiliation(s)
- Eshani Karmakar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Nabanita Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Bijnor-sisendi Road, Lucknow, Uttar Pradesh, 226002, India
| | - Bidisha Mukherjee
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research, 244, A.J.C. Bose Road, Kolkata, 700020, India
| | - Prosenjit Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Satinath Mukhopadhyay
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research, 244, A.J.C. Bose Road, Kolkata, 700020, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.,Academy of Scientific & Innovative Research (AcSIR), India
| |
Collapse
|
47
|
Gabrielli AP, Weidling I, Ranjan A, Wang X, Novikova L, Chowdhury SR, Menta B, Berkowicz A, Wilkins HM, Peterson KR, Swerdlow RH. Mitochondria Profoundly Influence Apolipoprotein E Biology. J Alzheimers Dis 2023; 92:591-604. [PMID: 36776072 DOI: 10.3233/jad-221177] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND Mitochondria can trigger Alzheimer's disease (AD)-associated molecular phenomena, but how mitochondria impact apolipoprotein E (APOE; apoE) is not well known. OBJECTIVE Consider whether and how mitochondrial biology influences APOE and apoE biology. METHODS We measured APOE expression in human SH-SY5Y neuronal cells with different forms of mitochondrial dysfunction including total, chronic mitochondrial DNA (mtDNA) depletion (ρ0 cells); acute, partial mtDNA depletion; and toxin-induced mitochondrial dysfunction. We further assessed intracellular and secreted apoE protein levels in the ρ0 cells and interrogated the impact of transcription factors and stress signaling pathways known to influence APOE expression. RESULTS SH-SY5Y ρ0 cells exhibited a 65-fold increase in APOE mRNA, an 8-fold increase in secreted apoE protein, and increased intracellular apoE protein. Other models of primary mitochondrial dysfunction including partial mtDNA-depletion, toxin-induced respiratory chain inhibition, and chemical-induced manipulations of the mitochondrial membrane potential similarly increased SH-SY5Y cell APOE mRNA. We explored potential mediators and found in the ρ0 cells knock-down of the C/EBPα and NFE2L2 (Nrf2) transcription factors reduced APOE mRNA. The activity of two mitogen-activated protein kinases, JNK and ERK, also strongly influenced ρ0 cell APOE mRNA levels. CONCLUSION Primary mitochondrial dysfunction either directly or indirectly activates APOE expression in a neuronal cell model by altering transcription factors and stress signaling pathways. These studies demonstrate mitochondrial biology can influence the biology of the APOE gene and apoE protein, which are implicated in AD.
Collapse
Affiliation(s)
- Alexander P Gabrielli
- University of Kansas Alzheimer's Disease Research Center, Kansas City, KS, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ian Weidling
- University of Kansas Alzheimer's Disease Research Center, Kansas City, KS, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Amol Ranjan
- University of Kansas Alzheimer's Disease Research Center, Kansas City, KS, USA
| | - Xiaowan Wang
- University of Kansas Alzheimer's Disease Research Center, Kansas City, KS, USA
| | - Lesya Novikova
- University of Kansas Alzheimer's Disease Research Center, Kansas City, KS, USA
| | - Subir Roy Chowdhury
- University of Kansas Alzheimer's Disease Research Center, Kansas City, KS, USA
| | - Blaise Menta
- University of Kansas Alzheimer's Disease Research Center, Kansas City, KS, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexandra Berkowicz
- University of Kansas Alzheimer's Disease Research Center, Kansas City, KS, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Research Center, Kansas City, KS, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kenneth R Peterson
- University of Kansas Alzheimer's Disease Research Center, Kansas City, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Research Center, Kansas City, KS, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
48
|
Brasil FB, de Almeida FJS, Luckachaki MD, Dall'Oglio EL, de Oliveira MR. The isothiocyanate sulforaphane prevents mitochondrial impairment and neuroinflammation in the human dopaminergic SH-SY5Y and in the mouse microglial BV2 cells: role for heme oxygenase-1. Metab Brain Dis 2023; 38:419-435. [PMID: 35469083 DOI: 10.1007/s11011-022-00990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023]
Abstract
Sulforaphane (SFN) promotes protective effects in different cell types. Nonetheless, it remains to be clarified by which mechanism SFN exerts benefits in mammalian cells. Mitochondria are a major source of adenosine triphosphate (ATP) and reactive species in nucleated cells. Mitochondrial impairment result in cellular redox biology disruption, bioenergetic status collapse, and inflammation. Evidence suggest that mitochondrial dysfunction plays a role in neurological disorders. Since a cure was not discovered yet to some of these diseases, investigating strategies to promote mitochondrial protection is pharmacologically relevant and may improve life quality of patients suffering from these maladies. Natural molecules, such as SFN, are potent inducers of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and, consequently, stimulate the expression of genes whose products, such as heme oxygenase-1 (HO-1), induce cytoprotective actions in mammalian tissues. In this work, we investigated whether SFN (5 µM) would be capable to prevent the dysfunctions caused by chlorpyrifos (CPF) on the human dopaminergic SH-SY5Y cells. Moreover, we examined the effects of a pretreatment with SFN at the same concentration on the mouse microglial BV2 cells stimulated by lipopolysaccharide (LPS) in an experimental model of neuroinflammation. SFN prevented the mitochondrial impairment and the neuroinflammation caused by the chemical stressors in both cell types. Inhibition of heme oxygenase-1 (HO-1) suppressed the mitochondrial protection and anti-inflammatory action afforded by SFN in this experimental model. Overall, SFN promoted cytoprotection by a mechanism dependent on the HO-1 enzyme in the SH-SY5Y and BV2 cells.
Collapse
Affiliation(s)
- Flávia Bittencourt Brasil
- Departamento de Ciências da Natureza, Campus Universitário de Rio das Ostras-Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Programa de Pós-Graduação Em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Matheus Dargesso Luckachaki
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Evandro Luiz Dall'Oglio
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Marcos Roberto de Oliveira
- Grupo de Estudos Em Neuroquímica E Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil.
| |
Collapse
|
49
|
Tie H, Lu X, Yu D, Yang F, Jiang Q, Xu Y, Xia W. Apoptosis Inducing Factors Involved in the Changes of Flesh Quality in Postmortem Grass Carp ( Ctenopharyngodon idella) Muscle. Foods 2022; 12:foods12010140. [PMID: 36613356 PMCID: PMC9818144 DOI: 10.3390/foods12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2022] Open
Abstract
Alterations of apoptosis have notable influences on flesh quality, but the mechanism is still unclear. Thus, apoptotic behaviors and related triggering mechanisms need to be explored. Fish muscle was prepared and stored at 4 °C for 0, 24, 48, 72, 96, and 120 h for apoptosis analysis. Results showed that positive apoptotic nuclei were positively correlated with drop loss and negatively correlated with shear force and water holding capacity (p < 0.05). Results showed that the triggering apoptotic mechanisms were involved with enhanced transcriptional levels of caspase-2, 3, 7, 8, and 9 through mitochondria and death receptor pathways in the muscle of grass carp. The decreased ATP content, changed cytochrome c redox state, increased protein levels of HSP27 and HSP 90, and enhanced activity of cathepsin (B, L, and D), calpain, and serine proteinase were involved in apoptosis activations. Results indicated that caspases, energy metabolism, cytochrome c redox state, heat shock protein expressions, and protease activities played critical roles in apoptosis alterations in carp muscle during refrigerated storage.
Collapse
Affiliation(s)
- Huaimao Tie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xuan Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
50
|
Genovese I, Fornetti E, Ruocco G. Mitochondria inter-organelle relationships in cancer protein aggregation. Front Cell Dev Biol 2022; 10:1062993. [PMID: 36601538 PMCID: PMC9806238 DOI: 10.3389/fcell.2022.1062993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are physically associated with other organelles, such as ER and lysosomes, forming a complex network that is crucial for cell homeostasis regulation. Inter-organelle relationships are finely regulated by both tether systems, which maintain physical proximity, and by signaling cues that induce the exchange of molecular information to regulate metabolism, Ca2+ homeostasis, redox state, nutrient availability, and proteostasis. The coordinated action of the organelles is engaged in the cellular integrated stress response. In any case, pathological conditions alter functional communication and efficient rescue pathway activation, leading to cell distress exacerbation and eventually cell death. Among these detrimental signals, misfolded protein accumulation and aggregation cause major damage to the cells, since defects in protein clearance systems worsen cell toxicity. A cause for protein aggregation is often a defective mitochondrial redox balance, and the ER freshly translated misfolded proteins and/or a deficient lysosome-mediated clearance system. All these features aggravate mitochondrial damage and enhance proteotoxic stress. This review aims to gather the current knowledge about the complex liaison between mitochondria, ER, and lysosomes in facing proteotoxic stress and protein aggregation, highlighting both causes and consequences. Particularly, specific focus will be pointed to cancer, a pathology in which inter-organelle relations in protein aggregation have been poorly investigated.
Collapse
Affiliation(s)
- Ilaria Genovese
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,*Correspondence: Ilaria Genovese,
| | - Ersilia Fornetti
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,Department of Physics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|