1
|
Wang H, Cai Y, Wu W, Zhang M, Dai Y, Wang Q. Exploring the role of gut microbiome in autoimmune diseases: A comprehensive review. Autoimmun Rev 2024; 23:103654. [PMID: 39384149 DOI: 10.1016/j.autrev.2024.103654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
As the industrialized society advances, there has been a gradual increase in the prevalence of autoimmune disorders. A probe into the fundamental causes has disclosed several factors in modern society that have an influence on the gut microbiome. These dramatic shifts in the gut microbiome are likely to be one of the reasons for the disarray in the immune system, and the relationship between the immune system and the gut microbiome emerging as a perennial hot topic of research. This review enumerates the findings from sequencing studies of gut microbiota on seven autoimmune diseases (ADs): Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), Ankylosing Spondylitis (AS), Systemic Sclerosis (SSc), Sjögren's Syndrome (SjS), Juvenile Idiopathic Arthritis (JIA), and Behçet's Disease (BD). It aims to identify commonalities in changes in the gut microbiome within the autoimmune disease cohort and characteristics specific to each disease. The dysregulation of the gut microbiome involves a disruption of the internal balance and the balance between the external environment and the host. This dysregulation impacts the host's immune system, potentially playing a role in the development of ADs. Damage to the gut epithelial barrier allows potential pathogens to translocate to the mucosal layer, contacting epithelial cells, disrupting tight junctions, and being recognized by antigen-presenting cells, which triggers an immune response. Primed T-cells assist B-cells in producing antibodies against pathogens; if antigen mimicry occurs, an immune response is generated in extraintestinal organs during immune cell circulation, clinically manifesting as ADs. However, current research is limited; advancements in sequencing technology, large-scale cohort studies, and fecal microbiota transplantation (FMT) research are expected to propel this field to new peaks.
Collapse
Affiliation(s)
- Hongli Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Yueshu Cai
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Wenqi Wu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Miaomiao Zhang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Yong Dai
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; The Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China.
| |
Collapse
|
2
|
Mucientes A, Lisbona-Montañez JM, Mena-Vázquez N, Ruiz-Limón P, Manrique-Arija S, García-Studer A, Ortiz-Márquez F, Fernández-Nebro A. Intestinal Dysbiosis, Tight Junction Proteins, and Inflammation in Rheumatoid Arthritis Patients: A Cross-Sectional Study. Int J Mol Sci 2024; 25:8649. [PMID: 39201334 PMCID: PMC11354395 DOI: 10.3390/ijms25168649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Recent studies point to intestinal permeability as an important factor in the establishment and development of rheumatoid arthritis (RA). Tight junctions (TJs) play a major role in intestinal homeostasis. The alteration of this homeostasis is related to RA. Furthermore, RA patients present dysbiosis and a lower microbiota diversity compared to healthy individuals. A cross-sectional study including RA patients and sex- and age-matched healthy controls was performed. The quantification of TJ proteins was carried out by ELISA. Gut microbiota was evaluated by NGS platform Ion Torrent S. The inflammatory variables included were DAS28, CRP, inflammatory cytokines (IL-6, IL-1, TNF-α) and oxidised LDL. Claudin-1 levels showed significant differences between groups. Results evidenced a correlation between claudin-1 values and age (r: -0.293; p < 0.05), IL6 (r: -0.290; p < 0.05) and CRP (r: -0.327; p < 0.05), and between zonulin values and both age (r: 0.267; p < 0.05) and TNFα (r: 0.266; p < 0.05). Moreover, claudin-1 and CRP levels are related in RA patients (β: -0.619; p: 0.045), and in patients with high inflammatory activity, the abundance of the genus Veillonella is positively associated with claudin-1 levels (β: 39.000; p: 0.004).
Collapse
Affiliation(s)
- Arkaitz Mucientes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - José Manuel Lisbona-Montañez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Natalia Mena-Vázquez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Patricia Ruiz-Limón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Sara Manrique-Arija
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Aimara García-Studer
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Fernando Ortiz-Márquez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Antonio Fernández-Nebro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
3
|
Li SZ, Wu QY, Fan Y, Guo F, Hu XM, Zuo YG. Gut Microbiome Dysbiosis in Patients with Pemphigus and Correlation with Pathogenic Autoantibodies. Biomolecules 2024; 14:880. [PMID: 39062594 PMCID: PMC11274803 DOI: 10.3390/biom14070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Pemphigus is a group of potentially life-threatening autoimmune bullous diseases induced by pathogenic autoantibodies binding to the surface of epidermal cells. The role of the gut microbiota (GM) has been described in various autoimmune diseases. However, the impact of the GM on pemphigus is less understood. This study aimed to investigate whether there was alterations in the composition and function of the GM in pemphigus patients compared to healthy controls (HCs). METHODS Fecal samples were collected from 20 patients with active pemphigus (AP), 11 patients with remission pemphigus (PR), and 47 HCs. To sequence the fecal samples, 16S rRNA was applied, and bioinformatic analyses were performed. RESULTS We found differences in the abundance of certain bacterial taxa among the three groups. At the family level, the abundance of Prevotellaceae and Coriobacteriaceae positively correlated with pathogenic autoantibodies. At the genus level, the abundance of Klebsiella, Akkermansia, Bifidobacterium, Collinsella, Gemmiger, and Prevotella positively correlated with pathogenic autoantibodies. Meanwhile, the abundance of Veillonella and Clostridium_XlVa negatively correlated with pathogenic autoantibodies. A BugBase analysis revealed that the sum of potentially pathogenic bacteria was elevated in the AP group in comparison to the PR group. Additionally, the proportion of Gram-negative bacteria in the PR group was statistically significantly lower in comparison to the HC group. CONCLUSION The differences in GM composition among the three groups, and the correlation between certain bacterial taxa and pathogenic autoantibodies of pemphigus, support a linkage between the GM and pemphigus.
Collapse
Affiliation(s)
- Si-Zhe Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| | - Qing-Yang Wu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.-Y.W.); (Y.F.)
| | - Yue Fan
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (Q.-Y.W.); (Y.F.)
| | - Feng Guo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| | - Xiao-Min Hu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ya-Gang Zuo
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (S.-Z.L.); (F.G.)
| |
Collapse
|
4
|
Zeng L, Yang K, He Q, Zhu X, Long Z, Wu Y, Chen J, Li Y, Zeng J, Cui G, Xiang W, Hao W, Sun L. Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: a systematic review and meta-analysis of 80 randomized controlled trials. BMC Med 2024; 22:110. [PMID: 38475833 PMCID: PMC10935932 DOI: 10.1186/s12916-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Previous randomized controlled trials (RCTs) suggested that gut microbiota-based therapies may be effective in treating autoimmune diseases, but a systematic summary is lacking. METHODS Pubmed, EMbase, Sinomed, and other databases were searched for RCTs related to the treatment of autoimmune diseases with probiotics from inception to June 2022. RevMan 5.4 software was used for meta-analysis after 2 investigators independently screened literature, extracted data, and assessed the risk of bias of included studies. RESULTS A total of 80 RCTs and 14 types of autoimmune disease [celiac sprue, SLE, and lupus nephritis (LN), RA, juvenile idiopathic arthritis (JIA), spondyloarthritis, psoriasis, fibromyalgia syndrome, MS, systemic sclerosis, type 1 diabetes mellitus (T1DM), oral lichen planus (OLP), Crohn's disease, ulcerative colitis] were included. The results showed that gut microbiota-based therapies may improve the symptoms and/or inflammatory factor of celiac sprue, SLE and LN, JIA, psoriasis, PSS, MS, systemic sclerosis, Crohn's disease, and ulcerative colitis. However, gut microbiota-based therapies may not improve the symptoms and/or inflammatory factor of spondyloarthritis and RA. Gut microbiota-based therapies may relieve the pain of fibromyalgia syndrome, but the effect on fibromyalgia impact questionnaire score is not significant. Gut microbiota-based therapies may improve HbA1c in T1DM, but its effect on total insulin requirement does not seem to be significant. These RCTs showed that probiotics did not increase the incidence of adverse events. CONCLUSIONS Gut microbiota-based therapies may improve several autoimmune diseases (celiac sprue, SLE and LN, JIA, psoriasis, fibromyalgia syndrome, PSS, MS, T1DM, Crohn's disease, and ulcerative colitis).
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | | | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Jinsong Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ge Cui
- Department of Epidemiology and Statistics, School of Public Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Liu Y, Tang S, Feng Y, Xue B, Cheng C, Su Y, Wei W, Zhang L, Huang Z, Shi X, Fang Y, Yang J, Zhang Y, Deng X, Wang L, Ren H, Wang C, Yuan H. Alteration in gut microbiota is associated with immune imbalance in Graves' disease. Front Cell Infect Microbiol 2024; 14:1349397. [PMID: 38533382 PMCID: PMC10963416 DOI: 10.3389/fcimb.2024.1349397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Background Graves' disease (GD), characterized by immune aberration, is associated with gut dysbiosis. Despite the growing interest, substantial evidence detailing the precise impact of gut microbiota on GD's autoimmune processes remains exceedingly rare. Objective This study was designed to investigate the influence of gut microbiota on immune dysregulation in GD. Methods It encompassed 52 GD patients and 45 healthy controls (HCs), employing flow cytometry and enzyme-linked immunosorbent assay to examine lymphocyte and cytokine profiles, alongside lipopolysaccharide (LPS) levels. Gut microbiota profiles and metabolic features were assessed using 16S rRNA gene sequencing and targeted metabolomics. Results Our observations revealed a disturbed B-cell distribution and elevated LPS and pro-inflammatory cytokines in GD patients compared to HCs. Significant differences in gut microbiota composition and a marked deficit in short-chain fatty acid (SCFA)-producing bacteria, including ASV263(Bacteroides), ASV1451(Dialister), and ASV503(Coprococcus), were observed in GD patients. These specific bacteria and SCFAs showed correlations with thyroid autoantibodies, B-cell subsets, and cytokine levels. In vitro studies further showed that LPS notably caused B-cell subsets imbalance, reducing conventional memory B cells while increasing naïve B cells. Additionally, acetate combined with propionate and butyrate showcased immunoregulatory functions, diminishing cytokine production in LPS-stimulated cells. Conclusion Overall, our results highlight the role of gut dysbiosis in contributing to immune dysregulation in GD by affecting lymphocyte status and cytokine production.
Collapse
Affiliation(s)
- Yalei Liu
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Tang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Feng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Binghua Xue
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaofei Cheng
- Stem Cell Research Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Su
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wei
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhoufeng Huang
- Institution of Hematology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyang Shi
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanyuan Fang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junpeng Yang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinru Deng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Corporation Limited, Shanghai, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Gilbert BTP, Tadeo RYT, Lamacchia C, Studer O, Courvoisier D, Raes J, Finckh A. Gut microbiome and intestinal inflammation in preclinical stages of rheumatoid arthritis. RMD Open 2024; 10:e003589. [PMID: 38296308 PMCID: PMC10836359 DOI: 10.1136/rmdopen-2023-003589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Faecal Prevotellaceae, and other microbes, have been associated with rheumatoid arthritis (RA) and preclinical RA. We have performed a quantitative microbiome profiling study in preclinical stages of RA. METHODS First-degree relatives of patients with RA (RA-FDRs) from the SCREEN-RA cohort were categorised into four groups: controls, healthy asymptomatic RA-FDRs; high genetic risk, asymptomatic RA-FDRs with two copies of the shared epitope; autoimmunity, asymptomatic RA-FDRs with RA-associated autoimmunity; and symptomatic, clinically suspect arthralgias or untreated new-onset RA.Faecal samples were collected and frozen. 16S sequencing was performed, processed with DADA2 pipeline and Silva database. Cell counts (cytometry) and faecal calprotectin (enzyme-linked immunosorbent assay, ELISA) were also obtained. Microbial community analyses were conducted using non-parametric tests, such as permutational multivariate analysis of variance (PERMANOVA), Wilcoxon and Kruskal-Wallis, or Aldex2. RESULTS A total of 371 individuals were included and categorised according to their preclinical stage of the disease. Groups had similar age, gender and body mass index. We found no significant differences in the quantitative microbiome profiles by preclinical stages (PERMANOVA, R2=0.00798, p=0.56) and, in particular, no group differences in Prevotellaceae abundance. Results were similar when using relative microbiome profiling data (PERMANOVA, R2=0.0073, p=0.83) or Aldex2 on 16S sequence counts. Regarding faecal calprotectin, we found no differences between groups (p=0.3). CONCLUSIONS We could not identify microbiome profiles associated with preclinical stages of RA. Only in a subgroup of individuals with the most pronounced phenotypes did we modestly retrieve the previously reported associations.
Collapse
Affiliation(s)
- Benoît Thomas P Gilbert
- Division of Rheumatology, HUG, Geneva, Switzerland
- Geneva Centre for Inflammation Research, UNIGE, Geneva, Switzerland
| | - Raul Yhossef Tito Tadeo
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, B-3000 Leuven, Belgium
- VIB, Center for Microbiology, B-3000 Leuven, Belgium
| | - Celine Lamacchia
- Division of Rheumatology, HUG, Geneva, Switzerland
- Geneva Centre for Inflammation Research, UNIGE, Geneva, Switzerland
| | - Olivia Studer
- Division of Rheumatology, HUG, Geneva, Switzerland
- Geneva Centre for Inflammation Research, UNIGE, Geneva, Switzerland
| | - Delphine Courvoisier
- Division of Rheumatology, HUG, Geneva, Switzerland
- Geneva Centre for Inflammation Research, UNIGE, Geneva, Switzerland
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, B-3000 Leuven, Belgium
- VIB, Center for Microbiology, B-3000 Leuven, Belgium
| | - Axel Finckh
- Division of Rheumatology, HUG, Geneva, Switzerland
- Geneva Centre for Inflammation Research, UNIGE, Geneva, Switzerland
| |
Collapse
|
7
|
Mena-Vázquez N, Redondo-Rodriguez R, Cabezudo-García P, Garcia-Studer A, Ortiz-Márquez F, Borregón-Garrido P, Martín-Valverde M, Ureña-Garnica I, Manrique-Arija S, Cano-García L, Fernández-Nebro A. Interstitial Lung Disease Is Associated with Sleep Disorders in Rheumatoid Arthritis Patients. Clocks Sleep 2023; 5:755-769. [PMID: 38131748 PMCID: PMC10742867 DOI: 10.3390/clockssleep5040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE To evaluate sleep disorders and associated factors in patients with rheumatoid-arthritis-associated interstitial lung disease (RA-ILD). METHODS We performed an observational study of 35 patients with RA-ILD (cases) and 35 age- and sex-matched RA patients without ILD (controls). We evaluated sleep disorders (Oviedo Sleep Questionnaire), positive psychological factors (resilience using the Wagnild and Young Resilience Scale, emotional intelligence using the 24-item Trait Meta-Mood Scale), anxiety and depression (Hospital Anxiety and Depression Scale), quality of life (36-item short-form survey), and fatigue (Functional Assessment of Chronic Illness Therapy Questionnaire). Other variables studied included the Charlson Comorbidity Index (CCI) and RA activity according to the DAS28-ESR. RESULTS Compared to the controls, the cases were characterized by poorer sleep quality with a higher prevalence of insomnia (42% vs. 20%; p = 0.039), greater severity of insomnia (p = 0.001), and lower sleep satisfaction (p = 0.033). They also had poorer resilience and emotional recovery and more severe anxiety and depression. A diagnosis of ILD was the only factor independently associated with the three dimensions of sleep quality. The predictors of poorer sleep satisfaction in patients with RA-ILD were age (β = -0.379), DAS28-ESR (β = -0.331), and usual interstitial pneumonia pattern (β = -0.438). The predictors of insomnia were DAS28-ESR (β = 0.294), resilience (β = -0.352), and CCI (β = 0.377). CONCLUSIONS RA-ILD is associated with significant sleep disorders. RA-ILD seems to be an independent risk factor for sleep alterations, with a greater impact on insomnia. Age, disease activity, and comorbidity also play a role in sleep disorders in patients with RA-ILD.
Collapse
Affiliation(s)
- Natalia Mena-Vázquez
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, 29010 Malaga, Spain; (R.R.-R.); (P.C.-G.); (A.G.-S.); (F.O.-M.); (P.B.-G.); (I.U.-G.); (S.M.-A.); (L.C.-G.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain
| | - Rocío Redondo-Rodriguez
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, 29010 Malaga, Spain; (R.R.-R.); (P.C.-G.); (A.G.-S.); (F.O.-M.); (P.B.-G.); (I.U.-G.); (S.M.-A.); (L.C.-G.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Malaga, Spain;
| | - Pablo Cabezudo-García
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, 29010 Malaga, Spain; (R.R.-R.); (P.C.-G.); (A.G.-S.); (F.O.-M.); (P.B.-G.); (I.U.-G.); (S.M.-A.); (L.C.-G.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain
- UGC Neurociencia, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain
| | - Aimara Garcia-Studer
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, 29010 Malaga, Spain; (R.R.-R.); (P.C.-G.); (A.G.-S.); (F.O.-M.); (P.B.-G.); (I.U.-G.); (S.M.-A.); (L.C.-G.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Malaga, Spain;
| | - Fernando Ortiz-Márquez
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, 29010 Malaga, Spain; (R.R.-R.); (P.C.-G.); (A.G.-S.); (F.O.-M.); (P.B.-G.); (I.U.-G.); (S.M.-A.); (L.C.-G.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Malaga, Spain;
| | - Paula Borregón-Garrido
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, 29010 Malaga, Spain; (R.R.-R.); (P.C.-G.); (A.G.-S.); (F.O.-M.); (P.B.-G.); (I.U.-G.); (S.M.-A.); (L.C.-G.); (A.F.-N.)
| | | | - Inmaculada Ureña-Garnica
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, 29010 Malaga, Spain; (R.R.-R.); (P.C.-G.); (A.G.-S.); (F.O.-M.); (P.B.-G.); (I.U.-G.); (S.M.-A.); (L.C.-G.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain
| | - Sara Manrique-Arija
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, 29010 Malaga, Spain; (R.R.-R.); (P.C.-G.); (A.G.-S.); (F.O.-M.); (P.B.-G.); (I.U.-G.); (S.M.-A.); (L.C.-G.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Malaga, Spain;
| | - Laura Cano-García
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, 29010 Malaga, Spain; (R.R.-R.); (P.C.-G.); (A.G.-S.); (F.O.-M.); (P.B.-G.); (I.U.-G.); (S.M.-A.); (L.C.-G.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain
| | - Antonio Fernández-Nebro
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, 29010 Malaga, Spain; (R.R.-R.); (P.C.-G.); (A.G.-S.); (F.O.-M.); (P.B.-G.); (I.U.-G.); (S.M.-A.); (L.C.-G.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain
- UGC Neurociencia, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain
| |
Collapse
|
8
|
Yang J, He Y, Liao X, Hu J, Li K. Does postoperative pulmonary infection correlate with intestinal flora following gastric cancer surgery? - a nested case-control study. Front Microbiol 2023; 14:1267750. [PMID: 38029086 PMCID: PMC10658784 DOI: 10.3389/fmicb.2023.1267750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The primary objective of this study was to investigate the potential correlation between gut microbes and postoperative pulmonary infection in gastric cancer patients. Additionally, we aimed to deduce the mechanism of differential functional genes in disease progression to gain a better understanding of the underlying pathophysiology. Methods A nested case-control study design was utilized to enroll patients with gastric cancer scheduled for surgery at West China Hospital of Sichuan University. Patients were categorized into two groups, namely, the pulmonary infection group and the control group, based on the development of postoperative pulmonary infection. Both groups were subjected to identical perioperative management protocols. Fecal samples were collected 24 h postoperatively and upon pulmonary infection diagnosis, along with matched controls. The collected samples were subjected to 16S rDNA and metagenomic analyses, and clinical data and blood samples were obtained for further analysis. Results A total of 180 fecal specimens were collected from 30 patients in both the pulmonary infection and control groups for 16S rDNA analysis, and 3 fecal samples from each group were selected for metagenomic analysis. The study revealed significant alterations in the functional genes of the intestinal microbiome in patients with postoperative pulmonary infection in gastric cancer, primarily involving Klebsiella, Enterobacter, Ruminococcus, and Collinsella. During postoperative pulmonary infection, gut flora and inflammatory factors were found to be associated with the lipopolysaccharide synthesis pathway and short-chain fatty acid (SCFA) synthesis pathway. Discussion The study identified enriched populations of Klebsiella, Escherella, and intestinal bacteria during pulmonary infection following gastric cancer surgery. These bacteria were found to regulate the lipopolysaccharide synthesis pathway, contributing to the initiation and progression of pulmonary infections. Inflammation modulation in patients with postoperative pulmonary infection may be mediated by short-chain fatty acids. The study also revealed that SCFA synthesis pathways were disrupted, affecting inflammation-related immunosuppression pathways. By controlling and maintaining intestinal barrier function, SCFAs may potentially reduce the occurrence of pulmonary infections after gastric cancer surgery. These findings suggest that targeting the gut microbiome and SCFA synthesis pathways may be a promising approach for preventing postoperative pulmonary infections in gastric cancer patients.
Collapse
Affiliation(s)
- Jie Yang
- Colorectal Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuhua He
- Colorectal Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xi Liao
- Colorectal Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Jiankun Hu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ka Li
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Nitzan Z, Staun-Ram E, Volkowich A, Miller A. Multiple Sclerosis-Associated Gut Microbiome in the Israeli Diverse Populations: Associations with Ethnicity, Gender, Disability Status, Vitamin D Levels, and Mediterranean Diet. Int J Mol Sci 2023; 24:15024. [PMID: 37834472 PMCID: PMC10573818 DOI: 10.3390/ijms241915024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Microbiome dysbiosis is increasingly being recognized as implicated in immune-mediated disorders including multiple sclerosis (MS). The microbiome is modulated by genetic and environmental factors including lifestyle, diet, and drug intake. This study aimed to characterize the MS-associated gut microbiome in the Israeli populations and to identify associations with demographic, dietary, and clinical features. The microbiota from 57 treatment-naive patients with MS (PwMS) and 43 age- and gender-matched healthy controls (HCs) was sequenced and abundance compared. Associations between differential microbes with demographic or clinical characteristics, as well as diet and nutrient intake, were assessed. While there was no difference in α- or β-diversity of the microbiome, we identified 40 microbes from different taxonomic levels that differ in abundance between PwMS and HCs, including Barnesiella, Collinsella, Egerthella, Mitsuokella, Olsenella Romboutsia, and Succinivibrio, all enhanced in PwMS, while several members of Lacnospira were reduced. Additional MS-differential microbes specific to ethnicity were identified. Several MS-specific microbial patterns were associated with gender, vitamin D level, Mediterranean diet, nutrient intake, or disability status. Thus, PwMS have altered microbiota composition, with distinctive patterns related to geographic locations and population. Microbiome dysbiosis seem to be implicated in disease progression, gender-related differences, and vitamin D-mediated immunological effects recognized in MS. Dietary interventions may be beneficial in restoring a "healthy microbiota" as part of applying comprehensive personalized therapeutic strategies for PwMS.
Collapse
Affiliation(s)
- Zehavit Nitzan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
| | - Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| | - Anat Volkowich
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel (E.S.-R.)
- Neuroimmunology Unit & Multiple Sclerosis Center, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
- Department of Neurology, Lady Davis Carmel Medical Center, Haifa 3436212, Israel
| |
Collapse
|
10
|
Fan J, Jiang T, He D. Advances in the implications of the gut microbiota on the treatment efficacy of disease-modifying anti-rheumatic drugs in rheumatoid arthritis. Front Immunol 2023; 14:1189036. [PMID: 37841256 PMCID: PMC10568326 DOI: 10.3389/fimmu.2023.1189036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Alterations in the composition or function of the gut microbiota are associated with the etiology of human diseases. Drug-microbiota interactions can affect drug bioavailability, effectiveness, and toxicity through various routes. For instance, the direct effect of microbial enzymes on drugs can either boost or diminish their efficacy. Thus, considering its wide range of metabolic capabilities, the gut microbiota is a promising target for pharmacological modulation. Furthermore, drugs can alter the microbiota and the mechanisms by which they interact with their host. Individual variances in microbial profiles can also contribute to the different host responses to various drugs. However, the influence of interactions between the gut microbiota and drugs on treatment efficacy remains poorly elucidated. In this review, we will discuss the impact of microbiota dysbiosis in the pathogenesis of rheumatoid arthritis (RA), and we will attempt to elucidate the crosstalk between the gut microbiota and disease-modifying anti-rheumatic drugs (DMARDs), with an emphasis on how drug-microbiota interactions affect the treatment efficacy in RA. We speculate that improved knowledge of these critical interactions will facilitate the development of novel therapeutic options that use microbial markers for predicting or optimizing treatment outcomes.
Collapse
Affiliation(s)
- Junyu Fan
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Ting Jiang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Kwon J, Bae M, Szamosvári D, Cassilly CD, Bolze AS, Jackson DR, Xavier RJ, Clardy J. Collinsella aerofaciens Produces a pH-Responsive Lipid Immunogen. J Am Chem Soc 2023; 145:7071-7074. [PMID: 36952265 PMCID: PMC10080676 DOI: 10.1021/jacs.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Indexed: 03/24/2023]
Abstract
Some members of the human gut microbiota profoundly influence their host's physiology, health, and therapeutic responses, but the responsible molecules and mechanisms are largely unknown. As part of a project to identify immunomodulators produced by gut microbes, we analyzed the metabolome of Collinsella aerofaciens, an actinomycete that figures prominently in numerous association studies. The associations are typically positive correlations of C. aerofaciens with pro-inflammatory responses and undesirable outcomes, but an association with favorable responses to PD-1/PD-L1 cancer immunotherapy is a notable exception. A phenotypic assay-guided screen using dendritic cells (mBMDCs) and cytokine readouts identified the active compound, which was structurally characterized as a lysoglycoglycerolipid with an acetal-bearing β-galactofuranose head group (CaLGL-1, 1). The structural assignment was confirmed through total synthesis. Assays with tlr2-/-, tlr4-/-, and wt mBMDCs revealed TLR2-dependent signaling. CaLGL-1 is produced by a conversion of a bacterially biosynthesized plasmalogen (CaPlsM, 3) to CaLGL-1 (1) in a low-pH environment.
Collapse
Affiliation(s)
- Jaeyoung Kwon
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
- Natural
Product Informatics Research Center, Korea
Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Munhyung Bae
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
- College of
Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Dávid Szamosvári
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Chelsi D. Cassilly
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Andrew S. Bolze
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - David R. Jackson
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Ramnik J. Xavier
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Center
for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jon Clardy
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Tsetseri MN, Silman AJ, Keene DJ, Dakin SG. The role of the microbiome in rheumatoid arthritis: a review. Rheumatol Adv Pract 2023; 7:rkad034. [PMID: 38606003 PMCID: PMC11007908 DOI: 10.1093/rap/rkad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/26/2023] [Indexed: 04/13/2024] Open
Abstract
The close bidirectional relationship between the microbiome and the immune system is well supported, and a role of gut dysbiosis has been implied in many systemic autoimmune diseases. This review aims to provide a critical summary and appraisal of 6 murine studies and 16 clinical studies. The findings of the literature review suggest that gut dysbiosis precedes arthritis and that local intestinal inflammation leads to systemic inflammation in genetically predisposed individuals. However, the exact mechanism by which microorganisms provoke immune responses at distal sites remains to be elucidated. Although a characteristic RA microbiome was not identified, there were some common findings among studies: overabundance of Prevotella copri in early RA patients, and proliferation of the genus Collinsela and some Lactobacillus species. Three mechanisms by which microbiota might contribute to RA pathogenesis were proposed: inflammatory responses (P. copri and Lactobacillus), molecular mimicry (P. copri) and loss of intestinal barrier integrity (Collinsella). Larger longitudinal studies are required in order to shed light on the mechanisms involved and unravel the therapeutic potential of the microbiome, and clinical trials are needed to evaluate the safety and efficacy of the implied therapeutic interventions.
Collapse
Affiliation(s)
- Maria-Nefeli Tsetseri
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alan J Silman
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - David J Keene
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Stephanie G Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Mena-Vázquez N, Ruiz-Limón P, Moreno-Indias I, Manrique-Arija S, Lisbona-Montañez JM, Rioja J, Mucientes A, Martin-Núñez GM, Cano-García L, Tinahones FJ, Fernández-Nebro A. Adiposity is associated with expansion of the genus Dialister in rheumatoid arthritis patients. Biomed Pharmacother 2023; 160:114388. [PMID: 36773522 DOI: 10.1016/j.biopha.2023.114388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE To analyze the intestinal microbiota of patients with rheumatoid arthritis (RA) and obesity and a higher percentage of fatty tissue. METHODS Nested case-control study of 80 RA patients and 80 age and sex-matched controls. Obesity was defined as a body mass index ≥ 30, and body composition using dual-energy x-ray absorptiometry. The gut microbiota was analyzed using 16 S rRNA gene sequencing; bioinformatics analysis was performed using QIIME2 and PICRUSt. Other variables included averaged 28-joint Disease Activity Score (DAS28-ESR), cytokines and adipokines. Two multivariate were constructed with obesity and fat mass index (FMI). RESULTS Obesity was more frequent in RA patients than in controls (36.3 % vs 25.1 %; p = 0.026), as was a higher FMI value (mean [SE]=11.6 [3.9] vs 10.2 [3.9]; p = 0.032). Alpha and beta diversity analysis revealed differences in gut microbiota between RA patients with and without obesity. Dialister and Odoribacter were more abundant in RA patients with obesity than in RA patients without obesity, while the genus Clostridium was more abundant in RA patients without obesity. The factors associated with obesity in RA patients were age (OR [95 % CI], 1.09 [1.02-1.17]), mean DAS28-ESR (OR [95 % CI], 1.46 [1.12-1.67]), leptin levels (OR [95 % CI], 1.06 [1.01-1.10]), the genus Dialister (OR [95 % CI], 1.03 [1.01-1.07]), and the genus Clostridium (OR [95 % CI], 0.013 [0.00-0.36]). The associations observed for FMI were similar. CONCLUSIONS In patients with RA, obesity, and a higher percentage of fatty tissue, intestinal microbiota differed from that of controls and of the other patients. The genus Dialister was associated with obesity and FMI.
Collapse
Affiliation(s)
- Natalia Mena-Vázquez
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Patricia Ruiz-Limón
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Moreno-Indias
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Sara Manrique-Arija
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Jose Manuel Lisbona-Montañez
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - José Rioja
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Arkaitz Mucientes
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Gracia María Martin-Núñez
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Laura Cano-García
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Francisco J Tinahones
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, 29010 Málaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Antonio Fernández-Nebro
- The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), 29590 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
14
|
Mena-Vázquez N, Rojas-Gimenez M, Romero-Barco CM, Gandía-Martínez M, Perez-Gómez N, Godoy-Navarrete FJ, Manrique-Arija S, Garcia-Studer A, Calvo-Gutiérrez J, Varela CF, Morales-Garrido P, Pérez PC, Mouriño-Rodriguez C, Añón-Oñate I, Espildora F, Aguilar-Hurtado MC, Redondo R, Conde AH, de Los Ríos RAD, César EC, Velloso-Feijoo ML, Fernández-Nebro A. Analysis of comorbidity in rheumatoid arthritis-associated interstitial lung disease: a nested case-cohort study. Biomed Pharmacother 2023; 157:114049. [PMID: 36459713 DOI: 10.1016/j.biopha.2022.114049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVES To describe comorbid conditions in patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) and to analyze factors associated with multimorbidity. METHODS Nested case-cohort study of 2 prospective cohorts: one with RA-ILD (cases) and another with RA but not ILD (controls). The cohorts were matched for age, sex, and time since diagnosis. Multimorbidity was defined as the co-occurrence of 2 or more chronic diseases, in addition to RA and ILD. We evaluated the comorbid conditions included in the Charlson Comorbidity Index, cardiovascular risk factors, neuropsychiatric conditions, and other frequent conditions in RA. We also recorded clinical-laboratory variables, inflammatory activity according to the 28-joint Disease Activity Score, C-reactive protein (CRP), physical function, and pulmonary function. We performed 2 multivariate analyses to identify factors associated with multimorbidity in RA and RA-ILD. RESULTS The final study population comprised 110 cases and 104 controls. Multimorbidity was more frequent among cases than controls (80 [72.7] vs 60 [57.7]; p = 0.021). In both groups, multimorbidity was associated with ILD (OR [95% CI] 1.92 [1.03-3.59]; p = 0.039), age (OR [95% CI] 1.05 [1.01-1.08]; p = 0.004), CRP (OR [95% CI] 1.16 [1.05-1.29]; p = 0.003), and erosions (OR [95% CI] 1.05 [1.01-1.08]; p = 0.004); in the cases, it was associated with CRP (OR [95% CI] 1.17 [1.01-1.35]; p = 0.027), anti-citrullinated peptide antibody (OR [95% CI] 1.23 [1.14-13.02]; p = 0.049), and forced vital capacity (OR [95% CI] 0.79 [0.96-0.99]; p = 0.036). CONCLUSION In patients with RA, multimorbidity was associated with ILD, systemic inflammation, and advanced age.
Collapse
Affiliation(s)
- Natalia Mena-Vázquez
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain.
| | - Marta Rojas-Gimenez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; UGC de Reumatología, Hospital Universitario Reina Sofía de Córdoba, 14004 Córdoba, Spain
| | - Carmen María Romero-Barco
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; UGC de Reumatología, Hospital Clínico Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | | | - Nair Perez-Gómez
- UGC de Reumatología, Complejo Hospitalario Universitario de Vigo, 36214 Vigo, Spain
| | | | - Sara Manrique-Arija
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Aimara Garcia-Studer
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Jerusalem Calvo-Gutiérrez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain; UGC de Reumatología, Hospital Universitario Reina Sofía de Córdoba, 14004 Córdoba, Spain
| | - Clara Fuego Varela
- UGC de Reumatología, Hospital Universitario de Jerez, 11407 Cádiz, Spain
| | - Pilar Morales-Garrido
- UGC de Reumatología, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | | | | | | | - Francisco Espildora
- UGC de Neumología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | | | - Rocío Redondo
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Ana Hidalgo Conde
- Servicio de Medicina Interna, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | | | - Eva Cabrera César
- UGC Neumología, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | | | - Antonio Fernández-Nebro
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain; Departamento de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
15
|
miRNA-Mediated Epigenetic Regulation of Treatment Response in RA Patients—A Systematic Review. Int J Mol Sci 2022; 23:ijms232112989. [PMID: 36361779 PMCID: PMC9657910 DOI: 10.3390/ijms232112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate the role of microRNAs (miRNA) as biomarkers of treatment response in rheumatoid arthritis (RA) patients through a systematic review of the literature. The MEDLINE and Embase databases were searched for studies including RA-diagnosed patients treated with disease-modifying antirheumatic drugs (DMARDs) that identify miRNAs as response predictors. Review inclusion criteria were met by 10 studies. The main outcome of the study was the response to treatment, defined according to EULAR criteria. A total of 839 RA patients and 67 healthy donors were included in the selected studies. RA patients presented seropositivity for the rheumatoid factor of 74.7% and anti-citrullinated C-peptide antibodies of 63.6%. After revision, 15 miRNAs were described as treatment response biomarkers for methotrexate, anti-tumour necrosis factor (TNF), and rituximab. Among treatments, methotrexate presented the highest number of predictor miRNAs: miR-16, miR-22, miR-132, miR-146a and miR-155. The most polyvalent miRNAs were miR-146a, predicting response to methotrexate and anti-TNF, and miR-125b, which predicts response to infliximab and rituximab. Our data support the role of miRNAs as biomarkers of treatment response in RA and point to DMARDs modifying the miRNAs expression. Nevertheless, further studies are needed since a meta-analysis that allows definitive conclusions is not possible due to the lack of studies in this field.
Collapse
|
16
|
Importance of Microbiome of Fecal Samples Obtained from Adolescents with Different Weight Conditions on Resistance Gene Transfer. Microorganisms 2022; 10:microorganisms10101995. [PMID: 36296271 PMCID: PMC9611664 DOI: 10.3390/microorganisms10101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Antimicrobial resistance (AMR) is a relevant public health problem worldwide, and microbiome bacteria may contribute to the horizontal gene transfer associated with antimicrobial resistance. The microbiome of fecal samples from Mexican adolescents were analyzed and correlated with eating habits, and the presence of AMR genes on bacteria in the microbiome was evaluated. Fecal samples from adolescents were collected and processed to extract genomic DNA. An Illumina HiSeq 1500 system was used to determine resistance genes and the microbiome of adolescents through the amplification of gene resistance and the V3–V4 regions of RNA, respectively. Analysis of the microbiome from fecal samples taken from 18 obese, overweight, and normal-weight adolescents revealed that the Firmicutes was the most frequent phylum, followed by Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia. The following species were detected as the most frequent in the samples: F. prausnitzii, P. cori, B. adolescentis, E. coli and A. muciniphila. The presence of Bacteroides, Prevotella and Ruminococcus was used to establish the enterotype; enterotype 1 was more common in women and enterotype 2 was more common in men. Twenty-nine AMR genes were found for β-lactamases, fluoroquinolones, aminoglycosides, macrolide, lincosamides, streptogramin (MLS), tetracyclines and sulfonamides. The presence of microorganisms in fecal samples that harbor AMR genes that work against antimicrobials frequently used for the treatment of microbial infections such as b-lactams, macrolides, aminoglycosides, MLS, and tetracyclines is of great concern, as these organisms may be an important reservoir for horizontal AMR gene transfer.
Collapse
|
17
|
Zeng L, Deng Y, He Q, Yang K, Li J, Xiang W, Liu H, Zhu X, Chen H. Safety and efficacy of probiotic supplementation in 8 types of inflammatory arthritis: A systematic review and meta-analysis of 34 randomized controlled trials. Front Immunol 2022; 13:961325. [PMID: 36217542 PMCID: PMC9547048 DOI: 10.3389/fimmu.2022.961325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate Safety and efficacy of probiotic supplementation in inflammatory arthritis. Methods The literature on the treatment of inflammatory arthritis with probiotics has been collected in databases such as CNKI, Pubmed, Cochrane library, Embase, etc. The search time is for them to build the database until May 2022. The included literatures are randomized controlled trials (RCTs) of probiotics in the treatment of hyperuricemia and gout. The Cochrane risk assessment tool was used for quality evaluation, and the Rev Man5.3 software was used for meta-analysis. Results A total of 37 records were finally included, involving 34 RCTs and 8 types of autoimmune disease (Hyperuricemia and gout, Inflammatory bowel disease arthritis, juvenile idiopathic arthritis [JIA], Osteoarthritis [OA], Osteoporosis and Osteopenia, Psoriasis, rheumatoid arthritis (RA), Spondyloarthritis). RA involved 10 RCTs (632 participants) whose results showed that probiotic intervention reduced CRP. Psoriasis involved 4 RCTs (214 participants) whose results showed that probiotic intervention could reduce PASI scores. Spondyloarthritis involved 2 RCTs (197 participants) whose results showed that probiotic intervention improved symptoms in patients. Osteoporosis and Ostepenia involving 10 RCTs (1156 participants) showed that probiotic intervention improved bone mineral density in patients. Hyperuricemia and gout involving 4 RCTs (294 participants) showed that probiotic intervention improved serum uric acid in patients. OA involving 1 RCTs (433 participants) showed that probiotic intervention improved symptoms in patients. JIA involving 2 RCTs (72 participants) showed that probiotic intervention improved symptoms in patients. Inflammatory bowel disease arthritis involving 1 RCTs (120 participants) showed that probiotic intervention improved symptoms in patients. All of the above RCTs showed that probiotics did not increase the incidence of adverse events. Conclusion Probiotic supplements may improve Hyperuricemia and gout, Inflammatory bowel disease arthritis, JIA, OA, Osteoporosis and Osteopenia, Psoriasis, RA, Spondyloarthritis. However, more randomized controlled trials are needed in the future to determine the efficacy and optimal dosing design of probiotics. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021286425, identifier CRD42021286425.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Ying Deng
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Qi He
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jun Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Huiping Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
18
|
Finckh A, Gilbert B, Hodkinson B, Bae SC, Thomas R, Deane KD, Alpizar-Rodriguez D, Lauper K. Global epidemiology of rheumatoid arthritis. Nat Rev Rheumatol 2022; 18:591-602. [PMID: 36068354 DOI: 10.1038/s41584-022-00827-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that predominantly affects the joints. The prevalence of RA varies globally, with generally a higher prevalence in industrialized countries, which may be explained by exposures to environmental risk factors, but also by genetic factors, differing demographics and under-reporting in other parts of the world. Over the past three decades, strong trends of the declining severity of RA probably reflect changes in treatment paradigms and overall better management of the disease. Other trends include increasing RA prevalence. Common risk factors for RA include both modifiable lifestyle-associated variables and non-modifiable features, such as genetics and sex. A better understanding of the natural history of RA, and of the factors that contribute to the development of RA in specific populations, might lead to the introduction of specific prevention strategies for this debilitating disease.
Collapse
Affiliation(s)
- Axel Finckh
- Division of Rheumatology, Department of Medicine, Geneva University Hospital (HUG), Geneva, Switzerland.
| | - Benoît Gilbert
- Division of Rheumatology, Department of Medicine, Geneva University Hospital (HUG), Geneva, Switzerland
| | - Bridget Hodkinson
- Division of Rheumatology, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Hanyang University Institute for Rheumatology and Hanyang University Institute of Bioscience and Biotechnology, Seoul, Republic of Korea
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Kevin D Deane
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Kim Lauper
- Division of Rheumatology, Department of Medicine, Geneva University Hospital (HUG), Geneva, Switzerland.,Centre for Epidemiology versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Ruiz-Limón P, Mena-Vázquez N, Moreno-Indias I, Manrique-Arija S, Lisbona-Montañez JM, Cano-García L, Tinahones FJ, Fernández-Nebro A. Collinsella is associated with cumulative inflammatory burden in an established rheumatoid arthritis cohort. Biomed Pharmacother 2022; 153:113518. [DOI: 10.1016/j.biopha.2022.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/11/2022] Open
|
20
|
Sha Y, Wu H, Guo Y, Liu X, Mo Y, Yang Q, Wei S, Long K, Lu D, Xia Y, Zheng W, Su Z, Wei X. Effects of iodoacetic acid drinking water disinfection byproduct on the gut microbiota and its metabolism in rats. J Environ Sci (China) 2022; 117:91-104. [PMID: 35725093 DOI: 10.1016/j.jes.2022.02.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 06/15/2023]
Abstract
Iodoacetic acid (IAA) is an unregulated disinfection byproduct in drinking water and has been shown to exert cytotoxicity, genotoxicity, tumorigenicity, and reproductive and developmental toxicity. However, the effects of IAA on gut microbiota and its metabolism are still unknown, especially the association between gut microbiota and the metabolism and toxicity of IAA. In this study, female and male Sprague-Dawley rats were exposed to IAA at 0 and 16 mg/kg bw/day daily for 8 weeks by oral gavage. Results of 16S rRNA gene sequencing showed that IAA could alter the diversity, relative abundance and function of gut microbiota in female and male rats. IAA also increased the abundance of genes related to steroid hormone biosynthesis in the gut microbiota of male rats. Moreover, metabolomics profiling revealed that IAA could significantly disturb 6 and 13 metabolites in the feces of female and male rats, respectively. In female rats, the level of androstanediol increased in the IAA treatment group. These results were consistent with our previous findings, where IAA was identified as an androgen disruptor. Additionally, the perturbed gut microbiota and altered metabolites were correlated with each other. The results of this study indicated that IAA could disturb gut microbiota and its metabolism. These changes in gut microbiota and its metabolism were associated with the reproductive and developmental toxicity of IAA.
Collapse
Affiliation(s)
- Yujie Sha
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Huan Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yue Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Xi Liu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Yan Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qiyuan Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shumao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Du Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ying Xia
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
21
|
You K, Yang L, Shen J, Liu B, Guo Y, Chen T, Li G, Lu H. Relationship between Gut Microbiota and Bone Health. Mini Rev Med Chem 2022; 22:2406-2418. [PMID: 35249483 DOI: 10.2174/1389557522666220304230920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Gut microbiota (GM) are microorganisms that live in the host gastrointestinal tract, and their abundance varies throughout the host's life. With the development of sequencing technology, the role of GM in various diseases has been increasingly elucidated. Unlike earlier studies on orthopedic diseases, this review elucidates the correlation between GM health and bone health, and discusses the potential mechanism of GM effects on host metabolism, inflammation, and ability to induce or aggravate some common orthopedic diseases such as osteoarthritis, osteoporosis, rheumatoid arthritis, etc. Finally, the prospective methods of GM manipulation and evaluation of potential GM-targeting strategies in the diagnosis and treatment of orthopedic diseases are reviewed.
Collapse
Affiliation(s)
- Ke You
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Lianjun Yang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Jun Shen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Bin Liu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Yuanqing Guo
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Tao Chen
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Guowei Li
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Hai Lu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
22
|
Piccioni A, Cicchinelli S, Valletta F, De Luca G, Longhitano Y, Candelli M, Ojetti V, Sardeo F, Navarra S, Covino M, Franceschi F. Gut Microbiota and Autoimmune Diseases: A Charming Real World Together with Probiotics. Curr Med Chem 2022; 29:3147-3159. [PMID: 34551690 DOI: 10.2174/0929867328666210922161913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The role of gut microbiota in human disease is fascinating for hundreds of researchers worldwide. Many works have highlighted that gut microbiota modulates the immune system and that its disruption can trigger autoimmune and inflammatory immune-mediated diseases. Probiotics are able to positively modify microbiota composition. OBJECTIVE The aim of this review is to report the most important findings regarding the effects of probiotics administration in the most common autoimmune disease and inflammatory immune-mediated diseases. METHODS Literature research was performed in PubMed, Google Scholar, and Medline, as well as in specific journal websites using the keywords: "autoimmunity", "microbiota", and "probiotics". The article selection has been made independently by three authors, and controversies have been solved by a fourth researcher. Only English-language articles were included and preference was given to clinical trials, meta-analysis, and case series. After the review process, 68 articles have been considered. RESULTS Relying on this evidence, many studies have investigated the potential of probiotics in restoring gut eubiosis, thus affecting pathogenesis, clinical manifestations, and course of these pathologies. Even in the light of few and sometimes contradictory studies, physicians should start to consider these preliminary findings when approaching patients suffering from autoimmune disease. After an accurate case-by-case evaluation of potential candidates, probiotics might be introduced besides the standard therapeutic plan as supportive measures.
Collapse
Affiliation(s)
- Andrea Piccioni
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sara Cicchinelli
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federico Valletta
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulio De Luca
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Yaroslava Longhitano
- Department of Internal Medicine, University of Genoa - Dietetics and Clinical Nutrition Unit, IRCCS Polyclinic Hospital San Martino, 16132 Genoa, Italy
| | - Marcello Candelli
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Veronica Ojetti
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Sardeo
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simone Navarra
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marcello Covino
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Franceschi
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
23
|
Microbiome Analysis of Mucosal Ileoanal Pouch in Ulcerative Colitis Patients Revealed Impairment of the Pouches Immunometabolites. Cells 2021; 10:cells10113243. [PMID: 34831464 PMCID: PMC8624401 DOI: 10.3390/cells10113243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
The pathogenesis of ulcerative colitis (UC) is unknown, although genetic loci and altered gut microbiota have been implicated. Up to a third of patients with moderate to severe UC require proctocolectomy with ileal pouch ano-anastomosis (IPAA). We aimed to explore the mucosal microbiota of UC patients who underwent IPAA. METHODS For microbiome analysis, mucosal specimens were collected from 34 IPAA individuals. Endoscopic and histological examinations of IPAA were normal in 21 cases, while pouchitis was in 13 patients. 19 specimens from the healthy control (10 from colonic and 9 from ileum) were also analyzed. Data were analyzed using an ensemble of software packages: QIIME2, coda-lasso, clr-lasso, PICRUSt2, and ALDEx2. RESULTS IPAA specimens had significantly lower bacterial diversity as compared to normal. The microbial composition of the normal pouch was also decreased also when compared to pouchitis. Faecalibacterium prausnitzii, Gemmiger formicilis, Blautia obeum, Ruminococcus torques, Dorea formicigenerans, and an unknown species from Roseburia were the most uncommon in pouch/pouchitis, while an unknown species from Enterobacteriaceae was over-represented. Propionibacterium acnes and Enterobacteriaceae were the species most abundant in the pouchitis and in the normal pouch, respectively. Predicted metabolic pathways among the IPAA bacterial communities revealed an important role of immunometabolites such as SCFA, butyrate, and amino acids. CONCLUSIONS Our findings showed specific bacterial signature hallmarks of dysbiosis and could represent bacterial biomarkers in IPAA patients useful to develop novel treatments in the future by modulating the gut microbiota through the administration of probiotic immunometabolites-producing bacterial strains and the addition of specific prebiotics and the faecal microbiota transplantation.
Collapse
|
24
|
Houtz JL, Sanders JG, Denice A, Moeller AH. Predictable and host-species specific humanization of the gut microbiota in captive primates. Mol Ecol 2021; 30:3677-3687. [PMID: 34013536 PMCID: PMC10039810 DOI: 10.1111/mec.15994] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Humans and nonhuman primates (NHPs) harbor complex gut microbial communities that affect phenotypes and fitness. The gut microbiotas of wild NHPs reflect their hosts' phylogenetic histories and are compositionally distinct from those of humans, but in captivity the endogenous gut microbial lineages of NHPs can be lost or replaced by lineages found in humans. Despite its potential contributions to gastrointestinal dysfunction, this humanization of the gut microbiota has not been investigated systematically across captive NHP species. Here, we show through comparisons of well-sampled wild and captive populations of apes and monkeys that the fraction of the gut microbiota humanized by captivity varies significantly between NHP species but is remarkably reproducible between captive populations of the same NHP species. Conspecific captive populations displayed significantly greater than expected overlap in the sets of bacterial 16S rRNA gene variants that were differentially abundant between captivity and the wild. This overlap was evident even between captive populations residing on different continents but was never observed between heterospecific captive populations. In addition, we developed an approach incorporating human gut microbiota data to rank NHPs' gut microbial clades based on the propensity of their lineages to be lost or replaced in captivity by lineages found in humans. Relatively few microbial genera displayed reproducible degrees of humanization in different captive host species, but most microbial genera were reproducibly humanized or retained from the wild in conspecific pairs of captive populations. These results demonstrate that the gut microbiotas of captive NHPs display predictable, host-species specific responses to captivity.
Collapse
Affiliation(s)
- Jennifer L. Houtz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Jon G. Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Anthony Denice
- Project Chimps, Blue Ridge, GA, USA
- Chimpanzee Sanctuary Northwest, Cle Elum, WA, USA
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
Chu XJ, Cao NW, Zhou HY, Meng X, Guo B, Zhang HY, Li BZ. The oral and gut microbiome in rheumatoid arthritis patients: a systematic review. Rheumatology (Oxford) 2021; 60:1054-1066. [PMID: 33450018 DOI: 10.1093/rheumatology/keaa835] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recently, researchers have proposed a possible relationship between RA and the microbiome of the oral cavity and gut. However, this relation has not been systematically established. Herein, we conducted a comprehensive review of the pertinent literature to describe this possible association. METHODS We systematically performed searches in databases, namely EMBASE, the Cochrane Library, and PubMed, from inception to 7 June 2020 to identify case-control studies that compared the oral and gut microbiome in adult RA patients with those of controls. The primary outcome was specific bacterial changes between RA and controls. The secondary outcome was microbial diversity changes between RA and controls. RESULTS In total, 26 articles were considered eligible for inclusion and reported some differences. Therein, ≥3 articles reported decreased Faecalibacterium in the gut of early-RA (ERA)/RA patients compared with healthy controls (HCs). Also, ≥3 articles reported decreased Streptococcus and Haemophilus and increased Prevotella in the oral cavity of ERA/RA patients compared with HCs. In addition, some Prevotella species, including P. histicola and P. oulorum, showed increased trends in RA patients' oral cavity, compared with HCs. The α-diversity of the microbiome was either increased or not changed in the oral cavity of RA patients, but it was more commonly either decreased or not changed in the gut of RA patients. CONCLUSIONS In this systematic review, we identified the microbiome associated with RA patients in comparison with controls. More research is needed in the future to find the deep relationship between RA and the microbiome.
Collapse
Affiliation(s)
- Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Hefei, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Hefei, China
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Hefei, China
| | - Xiang Meng
- School of Stomatology, Anhui Medical University, Anhui Hefei, China
| | - Biao Guo
- Department of Human Resource, The Second Affiliated Hospital of Anhui Medical University, Anhui Hefei, China
| | - Hai-Yan Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Anhui Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Hefei, China
| |
Collapse
|
26
|
Alpízar-Rodríguez D, Finckh A, Gilbert B. The Role of Nutritional Factors and Intestinal Microbiota in Rheumatoid Arthritis Development. Nutrients 2020; 13:nu13010096. [PMID: 33396685 PMCID: PMC7823566 DOI: 10.3390/nu13010096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence about the role of nutritional factors and microbiota in autoimmune diseases, and in rheumatoid arthritis (RA) in particular, has grown in recent years, however many controversies remain. The aim of this review is to summarize the role of nutrition and of the intestinal microbiota in the development of RA. We will focus on selected dietary patterns, individual foods and beverages that have been most consistently associated with RA or with the occurrence of systemic autoimmunity associated with RA. We will also review the evidence for a role of the intestinal microbiota in RA development. We propose that diet and digestive microbiota should be considered together in research, as they interact and may both be the target for future preventive interventions in RA.
Collapse
Affiliation(s)
- Deshiré Alpízar-Rodríguez
- Research Unit, Colegio Mexicano de Reumatología, Mexico City 04318, Mexico
- Correspondence: ; Tel.: +52-55-2525-1853
| | - Axel Finckh
- Department of Rheumatology, Geneva University Hospitals, 1206 Geneva, Switzerland; (A.F.); (B.G.)
| | - Benoît Gilbert
- Department of Rheumatology, Geneva University Hospitals, 1206 Geneva, Switzerland; (A.F.); (B.G.)
| |
Collapse
|
27
|
Differential Microbial Pattern Description in Subjects with Autoimmune-Based Thyroid Diseases: A Pilot Study. J Pers Med 2020; 10:jpm10040192. [PMID: 33114469 PMCID: PMC7712884 DOI: 10.3390/jpm10040192] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
The interaction between genetic susceptibility, epigenetic, endogenous, and environmental factors play a key role in the initiation and progression of autoimmune thyroid diseases (AITDs). Studies have shown that gut microbiota alterations take part in the development of autoimmune diseases. We have investigated the possible relationship between gut microbiota composition and the most frequent AITDs. A total of nine Hashimoto's thyroiditis (HT), nine Graves-Basedow's disease (GD), and 11 otherwise healthy donors (HDs) were evaluated. 16S rRNA pyrosequencing and bioinformatics analysis by Quantitative Insights into Microbial Ecology and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) were used to analyze the gut microbiota. Beta diversity analysis showed that gut microbiota from our groups was different. We observed an increase in bacterial richness in HT and a lower evenness in GD in comparison to the HDs. GD showed a significant increase of Fusobacteriaceae, Fusobacterium and Sutterella compared to HDs and the core microbiome features showed that Prevotellaceae and Prevotella characterized this group. Victivallaceae was increased in HT and was part of their core microbiome. Streptococcaceae, Streptococcus and Rikenellaceae were greater in HT compared to GD. Core microbiome features of HT were represented by Streptococcus, Alistipes, Anaerostipes, Dorea and Haemophilus. Faecalibacterium decreased in both AITDs compared to HDs. PICRUSt analysis demonstrated enrichment in the xenobiotics degradation, metabolism, and the metabolism of cofactors and vitamins in GD patients compared to HDs. Moreover, correlation studies showed that some bacteria were widely correlated with autoimmunity parameters. A prediction model evaluated a possible relationship between predominant concrete bacteria such as an unclassified genus of Ruminococcaceae, Sutterella and Faecalibacterium in AITDs. AITD patients present altered gut microbiota compared to HDs. These alterations could be related to the immune system development in AITD patients and the loss of tolerance to self-antigens.
Collapse
|
28
|
DMARDs-Gut Microbiota Feedback: Implications in the Response to Therapy. Biomolecules 2020; 10:biom10111479. [PMID: 33114390 PMCID: PMC7692063 DOI: 10.3390/biom10111479] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Due to its immunomodulatory effects and the limitation in the radiological damage progression, disease-modifying antirheumatic drugs (DMARDs) work as first-line rheumatoid arthritis (RA) treatment. In recent years, numerous research projects have suggested that the metabolism of DMARDs could have a role in gut dysbiosis, which indicates that the microbiota variability could modify the employment of direct and indirect mechanisms in the response to treatment. The main objective of this review was to understand the gut microbiota bacterial variability in patients with RA, pre and post-treatment with DMARDs, and to identify the possible mechanisms through which microbiota can regulate the response to pharmacological therapy.
Collapse
|