1
|
Guo T, Mashhadimoslem H, Choopani L, Salehi MM, Maleki A, Elkamel A, Yu A, Zhang Q, Song J, Jin Y, Rojas OJ. Recent Progress in MOF-Aerogel Fabrication and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402942. [PMID: 38975677 DOI: 10.1002/smll.202402942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Recent advancements in metal-organic frameworks (MOFs) underscore their significant potential in chemical and materials research, owing to their remarkable properties and diverse structures. Despite challenges like intrinsic brittleness, powdered crystalline nature, and limited stability impeding direct applications, MOF-based aerogels have shown superior performance in various areas, particularly in water treatment and contaminant removal. This review highlights the latest progress in MOF-based aerogels, with a focus on hybrid systems incorporating materials like graphene, carbon nanotube, silica, and cellulose in MOF aerogels, which enhance their functional properties. The manifold advantages of MOF-based aerogels in energy storage, adsorption, and catalysis are discussed, with an emphasizing on their improved stability, processability, and ease of handling. This review aims to unlock the potential of MOF-based aerogels and their real-world applications. Aerogels are expected to reshape the technological landscape of MOFs through enhanced stability, adaptability, and efficiency.
Collapse
Affiliation(s)
- Tianyu Guo
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Hossein Mashhadimoslem
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Leila Choopani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Elkamel
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Qi Zhang
- Zhejiang Kaifeng New Material Limited by Share Ltd. Longyou, Kaifeng, 324404, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
2
|
Haikal RR, El Salakawy N, Ibrahim A, Ali SL, Mamdouh W. Synergistic antioxidant and antibacterial effects of a Zn-ascorbate metal-organic framework loaded with marjoram essential oil. NANOSCALE ADVANCES 2024; 6:4664-4671. [PMID: 39263404 PMCID: PMC11386125 DOI: 10.1039/d4na00519h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
Antimicrobial resistance (AMR) has become an immense threat to public health leading to an urgent need for development of new technologies to tackle such a challenge. Plant-based drugs, specifically essential oils (EOs) and plant extracts, have shown significant potential as effective green antimicrobial agents. However, they suffer from high volatility and low thermal stability resulting in their inefficient utilization in commercial settings. Among the various nanoencapsulation technologies reported, metal-organic frameworks (MOFs) have been recently investigated as potential nanocarriers of EOs in attempt to enhance their stability. Herein, we report the utilization of Zn-ascorbate MOF for the encapsulation of marjoram essential oil (MEO) with synergistic antioxidant and antibacterial activities. The prepared composite was thoroughly characterized via a number of techniques and its antibacterial performance was investigated against various strains of Gram-negative and Gram-positive bacteria. The results demonstrated that the antioxidant activity originated from the ascorbic acid ligand (l-Asc), while the antibacterial activity originated from Zn2+ ions as well as encapsulated MEO.
Collapse
Affiliation(s)
- Rana R Haikal
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Noha El Salakawy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Alaa Ibrahim
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Shaimaa L Ali
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| |
Collapse
|
3
|
Wang X, Chen C, Hu J, Liu C, Ning Y, Lu F. Current strategies for monitoring and controlling bacterial biofilm formation on medical surfaces. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116709. [PMID: 39024943 DOI: 10.1016/j.ecoenv.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Biofilms, intricate microbial communities that attach to surfaces, especially medical devices, form an exopolysaccharide matrix, which enables bacteria to resist environmental pressures and conventional antimicrobial agents, leading to the emergence of multi-drug resistance. Biofilm-related infections associated with medical devices are a significant public health threat, compromising device performance. Therefore, developing effective methods for supervising and managing biofilm growth is imperative. This in-depth review presents a systematic overview of strategies for monitoring and controlling bacterial biofilms. We first outline the biofilm creation process and its regulatory mechanisms. The discussion then progresses to advancements in biosensors for biofilm detection and diverse treatment strategies. Lastly, this review examines the obstacles and new perspectives associated with this domain to facilitate the advancement of innovative monitoring and control solutions. These advancements are vital in combating the spread of multi drug-resistant bacteria and mitigating public health risks associated with infections from biofilm formation on medical instruments.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of integrated traditional Chinese and Western Medicine, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Chunjing Chen
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Chang Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.
| |
Collapse
|
4
|
d’Agostino S, Macchietti L, Turner RJ, Grepioni F. From 0D-complex to 3D-MOF: changing the antimicrobial activity of zinc(II) via reaction with aminocinnamic acids. Front Chem 2024; 12:1430457. [PMID: 39040090 PMCID: PMC11260639 DOI: 10.3389/fchem.2024.1430457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Combining zinc nitrate with 3- and/or 4- aminocinnamic acid (3-ACA and 4-ACA, respectively) leads to the formation of the 0D complex [Zn(4-AC)2(H2O)2], the 1D coordination polymer [Zn(3-AC)(4-AC)], and the 2D and 3D MOFs [Zn(3-AC)2]∙2H2O and [Zn(4-AC)2]∙H2O, respectively. These compounds result from the deprotonation of the acid molecules, with the resulting 3- and 4-aminocinnamate anions serving as bidentate terminal or bridging ligands. All solids were fully characterized via single crystal and powder X-ray diffraction and thermal techniques. Given the mild antimicrobial properties of cinnamic acid derivatives and the antibacterial nature of the metal cation, these compounds were assessed and demonstrated very good planktonic cell killing as well as inhibition of biofilm growth against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Simone d’Agostino
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| | - Laura Macchietti
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Fabrizia Grepioni
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Bigham A, Islami N, Khosravi A, Zarepour A, Iravani S, Zarrabi A. MOFs and MOF-Based Composites as Next-Generation Materials for Wound Healing and Dressings. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311903. [PMID: 38453672 DOI: 10.1002/smll.202311903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Indexed: 03/09/2024]
Abstract
In recent years, there has been growing interest in developing innovative materials and therapeutic strategies to enhance wound healing outcomes, especially for chronic wounds and antimicrobial resistance. Metal-organic frameworks (MOFs) represent a promising class of materials for next-generation wound healing and dressings. Their high surface area, pore structures, stimuli-responsiveness, antibacterial properties, biocompatibility, and potential for combination therapies make them suitable for complex wound care challenges. MOF-based composites promote cell proliferation, angiogenesis, and matrix synthesis, acting as carriers for bioactive molecules and promoting tissue regeneration. They also have stimuli-responsivity, enabling photothermal therapies for skin cancer and infections. Herein, a critical analysis of the current state of research on MOFs and MOF-based composites for wound healing and dressings is provided, offering valuable insights into the potential applications, challenges, and future directions in this field. This literature review has targeted the multifunctionality nature of MOFs in wound-disease therapy and healing from different aspects and discussed the most recent advancements made in the field. In this context, the potential reader will find how the MOFs contributed to this field to yield more effective, functional, and innovative dressings and how they lead to the next generation of biomaterials for skin therapy and regeneration.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Negar Islami
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkiye
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| |
Collapse
|
6
|
Zhang X, Li J, Bao G, Qin D, Jin X. Comparison of Lignocellulose Nanofibrils Extracted from Bamboo Fibrous and Parenchymal Tissues and the Properties of Resulting Films. Polymers (Basel) 2024; 16:1829. [PMID: 39000684 PMCID: PMC11243877 DOI: 10.3390/polym16131829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Bamboo is composed of thick-walled fibrous tissue and thin-walled parenchymal tissue. To compare the energy consumption of preparing lignocellulose nanofibrils (LCNF) from these bamboo tissues, the crystallinity, sol. viscosity, morphology and mechanical properties of LCNF at different preparation stages were characterized in detail. It required at least nine homogenization cycles for dissociating the fibrous tissue, but only six cycles for the parenchymal tissue. The average diameter of LCNF isolated from fibrous and parenchymal tissues was 45.1 nm and 36.2 nm, respectively. The tensile strength of the LCNF film prepared from parenchymal tissue reached 142.46 MPa, whereas the film from fibrous tissue reached only 122.82 MPa. Additionally, a metal organic framework (MOF) was used to produce MOF-LCNF film with enhanced UV protection and antibacterial properties. The results indicated that the energy consumption for preparing LCNF from parenchymal tissue is significantly lower than that for preparing LCNF from fibrous tissue. This study offers a low-cost and eco-friendly method for preparing LCNF, promoting the precise utilization of different tissues from bamboo based on their unique characteristics.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Research Institute of Bamboo and Rattan Biomass and New Materials, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Jingpeng Li
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Engineering Technology Research Center for Building and Decorating Materials of Bamboo State Forestry Administration, China National Bamboo Research Center, Hangzhou 310012, China
| | - Gege Bao
- Research Institute of Bamboo and Rattan Biomass and New Materials, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Daochun Qin
- Sanya Research Base, International Centre for Bamboo and Rattan, Sanya 572000, China
| | - Xiaobei Jin
- Research Institute of Bamboo and Rattan Biomass and New Materials, International Centre for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
7
|
Jin H, Zhang X, Ma X, Meng X, Lin Z, Li X, Hu G, Chen Y. Utilization of the Shensheng-Piwen changed medicinal powder extracts combines metal-organic frameworks as an antibacterial agent. Front Cell Infect Microbiol 2024; 14:1376312. [PMID: 38912207 PMCID: PMC11193333 DOI: 10.3389/fcimb.2024.1376312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Widespread opportunistic pathogens pose a serious threat to global health, particularly in susceptible hospital populations. The escalating crisis of antibiotic resistance highlights the urgent need for novel antibacterial agents and alternative treatment approaches. Traditional Chinese Medicine (TCM) and its compounds have deep roots in the treatment of infectious diseases. It has a variety of active ingredients and multi-target properties, opening up new avenues for the discovery and development of antimicrobial drugs. Methods This study focuses on assessing the efficacy of the Shensheng-Piwen changed medicinal powder (SPC) extracts against opportunistic pathogen infections by broth microdilution and agar disc diffusion methods. Additionally, biofilm inhibition and eradication assays were performed to evaluate the antibiofilm effects of SPC extracts. Results Metabolite profiles were analyzed by LC-MS. Furthermore, the potential synergistic effect between SPC and Metal-Organic Framework (MOF) was investigated by bacterial growth curve analysis. The results indicated that the SPC extracts exhibited antibacterial activity against S. aureus, with a minimum inhibitory concentration (MIC) of 7.8 mg/mL (crude drug concentration). Notably, at 1/2 MIC, the SPC extracts significantly inhibited biofilm formation, with over 80% inhibition, which was critical in tackling chronic and hospital-acquired infections. Metabolomic analysis of S. aureus revealed that SPC extracts induced a notable reduction in the levels of various metabolites, including L-proline, L-asparagine. This suggested that the SPC extracts could interfere with the metabolism of S. aureus. Meanwhile, the growth curve experiment proved that SPC extracts and MOFs had a synergistic antibacterial effect. Discussion In conclusion, the present study highlights the potential of SPC extracts as a novel antibacterial agent against S. aureus infections, with promising biofilm inhibition properties. The observed synergistic effect between SPC extracts and MOFs further supports the exploration of this combination as an alternative treatment approach.
Collapse
Affiliation(s)
- Haiqun Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Haihe Laboratory of Synthetic Biology, Tianjin, China
- Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiujun Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Xiaoqing Ma
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhenguang Lin
- Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Xiaoyuan Li
- Department of Traditional Chinese Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
- College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Guojie Hu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Haihe Laboratory of Synthetic Biology, Tianjin, China
- Shandong Academy of Pharmaceutical Sciences, Jinan, China
| |
Collapse
|
8
|
Lalebeigi F, Kashtiaray A, Aghamirza Moghim Aliabadi H, Moghadaskhou F, Pajoum Z, Nokandeh SM, Mahdavi M, Eivazzadeh-Keihan R, Maleki A. Agar-tragacanth/silk fibroin hydrogel containing Zn-based MOF as a novel nanobiocomposite with biological activity. Sci Rep 2024; 14:10508. [PMID: 38714808 PMCID: PMC11076289 DOI: 10.1038/s41598-024-61329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/03/2024] [Indexed: 05/10/2024] Open
Abstract
In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.
Collapse
Affiliation(s)
- Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | | | - Fatemeh Moghadaskhou
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zeinab Pajoum
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Seyede Mehrnoush Nokandeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
9
|
Gomez GE, Hamer M, Regiart MD, Tortella GR, Seabra AB, Soler Illia GJAA, Fernández-Baldo MA. Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health. Antibiotics (Basel) 2024; 13:173. [PMID: 38391559 PMCID: PMC10885969 DOI: 10.3390/antibiotics13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Nanotechnology has emerged as a cornerstone in contemporary research, marked by the advent of advanced technologies aimed at nanoengineering materials with diverse applications, particularly to address challenges in human health. Among these challenges, antimicrobial resistance (AMR) has risen as a significant and pressing threat to public health, creating obstacles in preventing and treating persistent diseases. Despite efforts in recent decades to combat AMR, global trends indicate an ongoing and concerning increase in AMR. The primary contributors to the escalation of AMR are the misuse and overuse of various antimicrobial agents in healthcare settings. This has led to severe consequences not only in terms of compromised treatment outcomes but also in terms of substantial financial burdens. The economic impact of AMR is reflected in skyrocketing healthcare costs attributed to heightened hospital admissions and increased drug usage. To address this critical issue, it is imperative to implement effective strategies for antimicrobial therapies. This comprehensive review will explore the latest scientific breakthroughs within the metal-organic frameworks and the use of mesoporous metallic oxide derivates as antimicrobial agents. We will explore their biomedical applications in human health, shedding light on promising avenues for combating AMR. Finally, we will conclude the current state of research and offer perspectives on the future development of these nanomaterials in the ongoing battle against AMR.
Collapse
Affiliation(s)
- Germán E Gomez
- Instituto de Investigaciones en Tecnología Química (INTEQUI), Departamento de Química, Universidad Nacional de San Luis (UNSL), CONICET, Ejército de los Andes 950, San Luis D5700BWS, Argentina
| | - Mariana Hamer
- Instituto de Ciencias, Universidad Nacional de General Sarmiento-CONICET, Juan María Gutiérrez 1150, Los Polvorines CP1613, Argentina
| | - Matías D Regiart
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis (UNSL), CONICET, Chacabuco 917, San Luis D5700BWS, Argentina
| | - Gonzalo R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Galo J A A Soler Illia
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín-CONICET, Av. 25 de mayo 1169, San Martín B1650KNA, Argentina
| | - Martín A Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis (UNSL), CONICET, Chacabuco 917, San Luis D5700BWS, Argentina
| |
Collapse
|
10
|
Yao X, Chen X, Sun Y, Yang P, Gu X, Dai X. Application of metal-organic frameworks-based functional composite scaffolds in tissue engineering. Regen Biomater 2024; 11:rbae009. [PMID: 38420353 PMCID: PMC10900102 DOI: 10.1093/rb/rbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 03/02/2024] Open
Abstract
With the rapid development of materials science and tissue engineering, a variety of biomaterials have been used to construct tissue engineering scaffolds. Due to the performance limitations of single materials, functional composite biomaterials have attracted great attention as tools to improve the effectiveness of biological scaffolds for tissue repair. In recent years, metal-organic frameworks (MOFs) have shown great promise for application in tissue engineering because of their high specific surface area, high porosity, high biocompatibility, appropriate environmental sensitivities and other advantages. This review introduces methods for the construction of MOFs-based functional composite scaffolds and describes the specific functions and mechanisms of MOFs in repairing damaged tissue. The latest MOFs-based functional composites and their applications in different tissues are discussed. Finally, the challenges and future prospects of using MOFs-based composites in tissue engineering are summarized. The aim of this review is to show the great potential of MOFs-based functional composite materials in the field of tissue engineering and to stimulate further innovation in this promising area.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xinran Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yu Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
11
|
Chen Z, Xing F, Yu P, Zhou Y, Luo R, Liu M, Ritz U. Metal-organic framework-based advanced therapeutic tools for antimicrobial applications. Acta Biomater 2024; 175:27-54. [PMID: 38110135 DOI: 10.1016/j.actbio.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
The escalating concern over conventional antibiotic resistance has emphasized the urgency in developing innovative antimicrobial agents. In recent times, metal-organic frameworks (MOFs) have garnered significant attention within the realm of antimicrobial research due to their multifaceted antimicrobial attributes, including the sustained release of intrinsic or exogenous antimicrobial components, chemodynamically catalyzed generation of reactive oxygen species (ROS), and formation of photogenerated ROS. This comprehensive review provides a thorough overview of the synthetic approaches employed in the production of MOF-based materials, elucidating their underlying antimicrobial mechanisms in depth. The focal point lies in elucidating the research advancements across various antimicrobial modalities, encompassing intrinsic component release system, extraneous component release system, auto-catalytical system, and energy conversion system. Additionally, the progress of MOF-based antimicrobial materials in addressing wound infections, osteomyelitis, and periodontitis is meticulously elucidated, culminating in a summary of the challenges and potential opportunities inherent within the realm of antimicrobial applications for MOF-based materials. STATEMENT OF SIGNIFICANCE: Growing concerns about conventional antibiotic resistance emphasized the need for alternative antimicrobial solutions. Metal-organic frameworks (MOFs) have gained significant attention in antimicrobial research due to their diverse attributes like sustained antimicrobial components release, catalytic generation of reactive oxygen species (ROS), and photogenerated ROS. This review covers MOF synthesis and their antimicrobial mechanisms. It explores advancements in intrinsic and extraneous component release, auto-catalysis, and energy conversion systems. The paper also discusses MOF-based materials' progress in addressing wound infections, osteomyelitis, and periodontitis, along with existing challenges and opportunities. Given the lack of related reviews, our findings hold promise for future MOF applications in antibacterial research, making it relevant to your journal's readership.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
12
|
Huang X, Wang F, Hu W, Zou Z, Tang Q, Li H, Xu L. Smart packaging films based on corn starch/polyvinyl alcohol containing nano SIM-1 for monitoring food freshness. Int J Biol Macromol 2024; 256:128373. [PMID: 38000590 DOI: 10.1016/j.ijbiomac.2023.128373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
There is at present an acute need for the construction of biopolymer-based smart packaging material that can be applied for the real-time visual monitoring of food freshness. Herein, a nano-sized substituted imidazolate material (SIM-1) with ammonia-sensitive and antibacterial ability was effectively manufactured and then anchored within corn starch/polyvinyl alcohol (CS/PVA) blend to construct biopolymeric smart active packaging material. The structure, physical and functional performances of CS/PVA-based films with different content of SIM-1 (0.5, 1.0 and 2.0 wt% on CS/PVA basis) were then explored in detail. Results revealed that the incorporated SIM-1 nanocrystals were equally anchored within the CS/PVA matrix owing to the establishment of potent hydrogen-bonding interactions, which produced an obvious improvement in the compatibility of CS/PVA blend film, as well as its mechanical strength, water/oxygen barrier and UV-screening performances. The constructed CS/PVA/SIM-1 blend films further demonstrated superior long-term color stability property, ammonia-sensitive and antibacterial functions. Furthermore, the CS/PVA/SIM-1 blend films were utilized for effectively monitoring the deterioration of shrimp via observable color alteration. The above findings suggested the potential applications of CS/PVA/SIM-1 blend films in smart active packaging.
Collapse
Affiliation(s)
- Xiaopeng Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Fangfang Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Wenkai Hu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Qun Tang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Heping Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Lin Xu
- Biomaterials R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, PR China.
| |
Collapse
|
13
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Functionalization strategies of metal-organic frameworks for biomedical applications and treatment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167295. [PMID: 37742958 DOI: 10.1016/j.scitotenv.2023.167295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
One of the representative coordination polymers, metal-organic frameworks (MOFs) material, is of hotspot interest in the multi field thanks to their unique structural characteristics and properties. As a novel hierarchical structural class, MOFs show diverse topologies, intrinsic behaviors, flexibility, etc. However, bare MOFs have less desirable biofunction, high humid sensitivity and instability in water, restraining their efficiencies in biomedical and environmental applications. Thus, a structural modification is required to address such drawbacks. Herein, we pinpoint new strategies in the synthesis and functionalization of MOFs to meet demanding requirements in in vitro tests, i.e., antibacterial face masks against corona virus infection and in wound healing and nanocarriers for drug delivery in anticancer. Regarding the treatment of wastewater containing emerging pollutants such as POPs, PFAS, and PPCPs, functionalized MOFs showed excellent performance with high efficiency and selectivity. Challenges in toxicity, vast database of clinical trials for biomedical tests and production cost can be still presented. MOFs-based composites can be, however, a bright candidate for reasonable replacement of traditional nanomaterials in biomedical and wastewater treatment applications.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
14
|
Wei D, Feng S, Tang Q, Li H, Peng D, Zou Z. Novel ammonia-sensitive sodium alginate-based films containing Co-Imd microcrystals for smart packaging application. Int J Biol Macromol 2023; 253:126607. [PMID: 37652324 DOI: 10.1016/j.ijbiomac.2023.126607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Currently, there is an urgent requirement for the fabrication of smart packaging materials that can be applied for the real-time visual monitoring of food freshness. In this research, cubic Co-MOF (Co-Imd) microcrystal with ammonia-sensitivity and antibacterial activity was manufactured and then anchored within sodium alginate (NaAlg) matrix to construct smart packaging materials. The structure, physical and functional performances of NaAlg-based films with different content of Co-Imd (0.5, 1.0 and 2.0 wt% on NaAlg basis) were then evaluated in detail. Results reveal that the incorporated Co-Imd fillers are equally anchored within the NaAlg matrix due to the generation of new hydrogen-bonding interaction, which make an obvious improvement in mechanical strength, toughness, oxygen/water barrier, and UV-blocking ability of the NaAlg film. Moreover, the constructed NaAlg/Co-Imd blend films show superior antibacterial capability, ammonia-sensitivity function as well as color stability. Ultimately, the NaAlg/Co-Imd blend films were successfully utilized for indicating the deterioration of shrimp based on noticeable color alteration, suggesting their tremendous prospects for utilization in smart active packaging. This work offers a facile and efficient method for fabricating novel ammonia-sensitive and long-term color-stable NaAlg-based film materials with improved mechanical strength, toughness, oxygen/water barrier, UV-blocking, and antibacterial performances for smart active packaging application.
Collapse
Affiliation(s)
- Dong Wei
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Shaoxiong Feng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Qun Tang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Heping Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Daijiang Peng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China.
| |
Collapse
|
15
|
Sadiq S, Khan I, Humayun M, Wu P, Khan A, Khan S, Khan A, Khan S, Alanazi AF, Bououdina M. Synthesis of Metal-Organic Framework-Based ZIF-8@ZIF-67 Nanocomposites for Antibiotic Decomposition and Antibacterial Activities. ACS OMEGA 2023; 8:49244-49258. [PMID: 38162750 PMCID: PMC10753725 DOI: 10.1021/acsomega.3c07606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Toxic antibiotic effluents and antibiotic-resistant bacteria constitute a threat to global health. So, scientists are investigating high-performance materials for antibiotic decomposition and antibacterial activities. In this novel research work, we have successfully designed ZIF-8@ZIF-67 nanocomposites via sol-gel and solvothermal approaches. The ZIF-8@ZIF-67 nanocomposite is characterized by various techniques that exhibit superior surface area enhancement, charge separation, and high light absorption performance. Yet, ZIF-8 has high adsorption rates and active sites, while ZIF-67 has larger pore volume and efficient adsorption and reaction capabilities, demonstrating that the ZIF-8@ZIF-67 nanocomposite outperforms pristine ZIF-8 and ZIF-67. Compared with pristine ZIF-8 and ZIF-67, the most active 6ZIF-67@ZIF-8 nanocomposite showed higher decomposition efficacy for ciprofloxacin (65%), levofloxacin (54%), and ofloxacin (48%). Scavenger experiments confirmed that •OH, •O2-, and h+ are the most active species for the decomposition of ciprofloxacin (CIP), levofloxacin (LF), and ofloxacin (OFX), respectively. In addition, the 6ZIF-67/ZIF-8 nanocomposite suggested its potential applications in Escherichia coli for growth inhibition zone, antibacterial activity, and decreased viability. Moreover, the stability test and decomposition pathway of CIP, LF, and OFX were also proposed. Finally, our study aims to enhance the efficiency and stability of ZIF-8@ZIF-67 nanocomposite and potentially enable its applications in antibiotic decomposition, antibacterial activities, and environmental remediation.
Collapse
Affiliation(s)
- Samreen Sadiq
- School
of Biotechnology, Jiangsu University of
Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Iltaf Khan
- School
of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Muhammad Humayun
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Ping Wu
- School
of Biotechnology, Jiangsu University of
Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Abbas Khan
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Sohail Khan
- Department
of Pharmacy, University of Swabi, Swabi 94640, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Khan
- Department
of Physics, School of Science, Jiangsu University
of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Shoaib Khan
- College of
Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Amal Faleh Alanazi
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
16
|
Yazdanbakhsh A, Behzadi A, Moghaddam A, Salahshoori I, Khonakdar HA. Mechanisms and factors affecting the removal of minocycline from aqueous solutions using graphene-modified resorcinol formaldehyde aerogels. Sci Rep 2023; 13:22771. [PMID: 38123653 PMCID: PMC10733296 DOI: 10.1038/s41598-023-50125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, concerns about the presence of pharmaceutical compounds in wastewater have increased. Various types of residues of tetracycline family antibiotic compounds, which are widely used, are found in environmental waters in relatively low and persistent concentrations, adversely affecting human health and the environment. In this study, a resorcinol formaldehyde (RF) aerogel was prepared using the sol-gel method at resorcinol/catalyst ratio of 400 and resorcinol/water ratio of 2 and drying at ambient pressure for removing antibiotics like minocycline. Next, RF aerogel was modified with graphene and to increase the specific surface area and porosity of the modified sample and to form the graphene plates without compromising the interconnected porous three-dimensional structure of the aerogel. Also, the pores were designed according to the size of the minocycline particles on the meso- and macro-scale, which bestowed the modified sample the ability to remove a significant amount of the minocycline antibiotic from the aqueous solution. The removal percentage of the antibiotic obtained by UV-vis spectroscopy. Ultimately, the performance of prepared aerogels was investigated under various conditions, including adsorbent doses (4-10 mg), solution pHs (2-12), contact times of the adsorbent with the adsorbate (3-24 h), and initial concentration of antibiotic (40-100 mg/l). The results from the BET test demonstrated that the surface area of the resorcinol formaldehyde aerogel sample, which included 1 wt% graphene (RF-G1), exhibited an augmentation in comparison to the surface area of the pure aerogel. Additionally, it was noted that the removal percentage of minocycline antibiotic for both the unmodified and altered samples was 71.6% and 92.1% at the optimal pH values of 4 and 6, respectively. The adsorption capacity of pure and modified aerogel for the minocycline antibiotic was 358 and 460.5 mg/g, respectively. The adsorption data for the modified aerogel was studied by the pseudo-second-order model and the results obtained from the samples for antibiotic adsorption with this model revealed a favorable fit, which indicated that the chemical adsorption in the rapid adsorption of the antibiotic by the modified aerogel had occurred.
Collapse
Affiliation(s)
| | - Alireza Behzadi
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Armaghan Moghaddam
- Department of Polymer Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran.
| |
Collapse
|
17
|
Farasati Far B, Rabiee N, Iravani S. Environmental implications of metal-organic frameworks and MXenes in biomedical applications: a perspective. RSC Adv 2023; 13:34562-34575. [PMID: 38024989 PMCID: PMC10668918 DOI: 10.1039/d3ra07092a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Metal-organic frameworks (MOFs) and MXenes have demonstrated immense potential for biomedical applications, offering a plethora of advantages. MXenes, in particular, exhibit robust mechanical strength, hydrophilicity, large surface areas, significant light absorption potential, and tunable surface terminations, among other remarkable characteristics. Meanwhile, MOFs possess high porosity and large surface area, making them ideal for protecting active biomolecules and serving as carriers for drug delivery, hence their extensive study in the field of biomedicine. However, akin to other (nano)materials, concerns regarding their environmental implications persist. The number of studies investigating the toxicity and biocompatibility of MXenes and MOFs is growing, albeit further systematic research is needed to thoroughly understand their biosafety issues and biological effects prior to clinical trials. The synthesis of MXenes often involves the use of strong acids and high temperatures, which, if not properly managed, can have adverse effects on the environment. Efforts should be made to minimize the release of harmful byproducts and ensure proper waste management during the production process. In addition, it is crucial to assess the potential release of MXenes into the environment during their use in biomedical applications. For the biomedical applications of MOFs, several challenges exist. These include high fabrication costs, poor selectivity, low capacity, the quest for stable and water-resistant MOFs, as well as difficulties in recycling/regeneration and maintaining chemical/thermal/mechanical stability. Thus, careful consideration of the biosafety issues associated with their fabrication and utilization is vital. In addition to the synthesis and manufacturing processes, the ultimate utilization and fate of MOFs and MXenes in biomedical applications must be taken into account. While numerous reviews have been published regarding the biomedical applications of MOFs and MXenes, this perspective aims to shed light on the key environmental implications and biosafety issues, urging researchers to conduct further research in this field. Thus, the crucial aspects of the environmental implications and biosafety of MOFs and MXenes in biomedicine are thoroughly discussed, focusing on the main challenges and outlining future directions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology Tehran 1684611367 Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University Sydney New South Wales 2109 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University Perth WA 6150 Australia
| | | |
Collapse
|
18
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
19
|
Subhadarshini A, Samal SK, Pattnaik A, Nanda B. Facile fabrication of plasmonic Ag/ZIF-8: an efficient catalyst for investigation of antibacterial, haemolytic and photocatalytic degradation of antibiotics. RSC Adv 2023; 13:31756-31771. [PMID: 37908651 PMCID: PMC10614039 DOI: 10.1039/d3ra04851a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Present article represents the fabrication of plasmonic Ag/ZIF-8 composite and its effect on antibacterial, haemolytic and photocatalytic degradation of antibiotics. Ag/ZIF-8 was prepared by varying molar concentrations (1 mM, 2.5 mM, and 5 mM) of AgNO3 into ZIF-8 using NaBH4 as a reducing agent by the sol-gel process. The material was then characterised using the XRD, XPS, FTIR, SEM, HRTEM, UVDRS, BET and EIS techniques. When it comes to breaking down the antibiotic CIP, the optimised Ag2.5/ZIF-8 exhibits the strongest photocatalytic capability, with a degradation efficiency of 82.3% after 90 minutes. Due to LSPR (Localised Surface Plasmon Resonance) as well as the efficient movement and separation of the interfaces of photo-generated charge carriers in Ag2.5/ZIF-8 may be the causes of this increase in photocatalytic degradation. The effect of several parameters, such as pH, a variety of catalysts, varying dose concentrations, scavenging and sustainability are being investigated. The para benzoquinone (OH˙) and citric acid (h+) the primary active species in the photocatalytic breakdown pathway, according to trapping study. Whereas, Ag5/ZIF-8 was optimised for greater antibacterial activity against S. aureus and E. coli due to the synergistic impact of Ag+ and Zn2+ in Ag5/ZIF-8 and in haemolytic experiment, all samples were discovered to be non-toxic to blood cells. Overall, the synthesised compound was discovered to be a reusable, affordable catalyst for water remediation that can also be used in biomedicine.
Collapse
Affiliation(s)
- Asima Subhadarshini
- Environmental Science, Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan (Deemed to be) University Bhubaneswar Odisha India 751030
- Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan (Deemed to be) University Bhubaneswar Odisha India-751 030
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicines for Advanced Therapies, ICMR-Regional Medical Research Centre Bhubaneswar Odisha India-751023
| | - Ananya Pattnaik
- Laboratory of Biomaterials and Regenerative Medicines for Advanced Therapies, ICMR-Regional Medical Research Centre Bhubaneswar Odisha India-751023
| | - Binita Nanda
- Department of Chemistry, Faculty of Engineering and Technology (ITER), Siksha 'O' Anusandhan (Deemed to be) University Bhubaneswar Odisha India-751 030
| |
Collapse
|
20
|
Saif MS, Hasan M, Zafar A, Ahmed MM, Tariq T, Waqas M, Hussain R, Zafar A, Xue H, Shu X. Advancing Nanoscale Science: Synthesis and Bioprinting of Zeolitic Imidazole Framework-8 for Enhanced Anti-Infectious Therapeutic Efficacies. Biomedicines 2023; 11:2832. [PMID: 37893205 PMCID: PMC10604899 DOI: 10.3390/biomedicines11102832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial infectious disorders are becoming a major health problem for public health. The zeolitic imidazole framework-8 with a novel Cordia myxa extract-based (CME@ZIF-8) nanocomposite showed variable functionality, high porosity, and bacteria-killing activity against Staphylococcus aureus, and Escherichia coli strains have been created by using a straightforward approach. The sizes of synthesized zeolitic imidazole framework-8 (ZIF-8) and CME@ZIF-8 were 11.38 nm and 12.44 nm, respectively. Prepared metal organic frameworks have been characterized by gas chromatography-mass spectroscopy, Fourier transform spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. An antibacterial potential comparison between CME@ZIF-8 and zeolitic imidazole framework-8 has shown that CME@ZIF-8 was 31.3%, 28.57%, 46%, and 47% more efficient than ZIF-8 against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, while it was 31.25%, 33.3%, 46%, and 46% more efficient than the commercially available ciprofloxacin drug against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, respectively, for 750, 500, 250, and 125 μg mL-1. Minimum inhibitory concentration values of CME@ZIF-8 for Escherichia coli and Staphylococcus aureus were 15.6 and 31.25 μg/mL respectively, while the value of zeolitic imidazole framework-8 alone was 62.5 μg/mL for both Escherichia coli and Staphylococcus aureus. The reactive oxygen species generated by CME@ZIF-8 destroys the bacterial cell and its organelles. Consequently, the CME@ZIF-8 nanocomposites have endless potential applications for treating infectious diseases.
Collapse
Affiliation(s)
- Muhammad Saqib Saif
- Faculty of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murtaza Hasan
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ayesha Zafar
- School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, 24 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Muhammad Mahmood Ahmed
- Faculty of Chemical and Biological Science, Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Faculty of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Faculty of Chemical and Biological Science, Department of Veterinary Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Amna Zafar
- Faculty of Chemical and Biological Science, Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Huang Xue
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
21
|
Kamal W, Mahmoud R, Allah AE, Farghali AA, Abdelwahab A, Alkhalifah DHM, Hozzein WN, Mohamed MBED, Abdel Aziz SAA. Controlling Multi-Drug-Resistant Traits of Salmonella Obtained from Retail Poultry Shops Using Metal-Organic Framework (MOF) as a Novel Technique. Microorganisms 2023; 11:2506. [PMID: 37894164 PMCID: PMC10609291 DOI: 10.3390/microorganisms11102506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Salmonella spp. is considered one of the most important causes of food-borne illness globally. Poultry and its products are usually incriminated in its spread. Treatment with antibiotics is the first choice to deal with such cases; however, multi-drug resistance and biofilm formation have been recorded in animals and humans. This study aimed to detect the antibiotic profile of isolated traits from different sources and to find innovative alternatives, such as MOFs. A total of 350 samples were collected from randomly selected retailed poultry shops in Beni-Suef Province, Egypt. Their antimicrobial susceptibility against eight different antibiotics was tested, and multi-drug resistance was found in most of them. Surprisingly, promising results toward MOF were detected. Cu/Ni/Co-MOF (MOF3) showed superior antibacterial efficiency to Cu/Ni-MOF (MOF2) and Cu-MOF (MOF1) at p value ≤ 0.01. These findings highlight the tendency of Salmonella spp. to develop MDR to most of the antibiotics used in the field and the need to find new alternatives to overcome it, as well as confirming the ability of the environment to act as a source of human and animal affection.
Collapse
Affiliation(s)
- W. Kamal
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (W.K.); (A.E.A.)
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (W.K.); (A.E.A.)
| | - Abeer Enaiet Allah
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (W.K.); (A.E.A.)
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.F.); (A.A.)
| | - Abdalla Abdelwahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt; (A.A.F.); (A.A.)
- Faculty of Science, Galala University, Sokhna 43511, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Wael N. Hozzein
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Manar Bahaa El Din Mohamed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (M.B.E.D.M.); (S.A.A.A.A.)
| | - Sahar Abdel Aleem Abdel Aziz
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; (M.B.E.D.M.); (S.A.A.A.A.)
| |
Collapse
|
22
|
Yue Z, Zhou J, Du X, Wu L, Wang J, Wang X. Incorporating charged Ag@MOFs to boost the antibacterial and filtration properties of porous electrospinning polylactide films. Int J Biol Macromol 2023; 250:126223. [PMID: 37558020 DOI: 10.1016/j.ijbiomac.2023.126223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Faced with the pollution caused by particulate matter (PM) in the air, the prevalence of infectious diseases, and the environmental burden by use of nondegradable polymers, the existing filter materials such as meltblown cloth of polypropylene cannot satisfactorily meet people's requirements. In this study, Ag nanoparticles were loaded onto ZIF-8 particles by impregnation reduction to prepare the positively charged Ag@ZIF-8. The porous fibrous membranes of Ag@ZIF-8 with polylactide (PLA) were manufactured by electrostatic spinning technology. Due to the inherently charged feature of Ag@ZIF-8 particles and the presence of pores on fibers, the prepared membranes showed a stable good filtration efficiency of over 97 % at different humidity (30-90%RH, relative humidity). Meanwhile, the presence of charge on Ag@ZIF-8 and the synergistic effects of Ag and ZIF-8 particles made the membranes exhibit good antibacterial effects. The width of the inhibition zone of 3 wt%Ag@ZIF-8/PLA membrane reached 1.33 mm for E. coli and 1.35 mm for S. aureus, respectively.
Collapse
Affiliation(s)
- Zhenqing Yue
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jingheng Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xuye Du
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Lanlan Wu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Junrui Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xinlong Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
23
|
Sharma S, Kaur G, Deep A, Nayak MK. A multifunctional recyclable adsorbent based on engineered MIL-125 (Ti) magnetic mesoporous composite for the effective removal of pathogens. ENVIRONMENTAL RESEARCH 2023; 233:116496. [PMID: 37380008 DOI: 10.1016/j.envres.2023.116496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
The elimination of pathogenic bacteria from water sources is currently crucial for obtaining drinkable water. Therefore, the development of platforms with the ability to interact with pathogens and remove them is a potential future tool for medicine, food and water safety. In this work, we have grafted a layer of NH2-MIL-125 (Ti) on Fe3O4@SiO2 magnetic nanospheres for the removal of multiple pathogenic bacteria from water. The synthesized Fe3O4@SiO2@NH2-MIL-125 (Ti) nano adsorbent was characterized by FE-SEM, HR-TEM, FT-IR, XRD, BET surface analysis, magnetization tests, respectively, which illustrated its well-defined core-shell structure and magnetic behaviour. The prepared magnetic-MOF composite sorbent was attractive towards capturing a wide range of pathogens (S. typhimurium, S. aureus, E. coli, P. aeruginosa and K. pneumoniae) under experimental conditions. Influence factors such as adsorbent dosage, bacterial concentration, pH and incubation time were optimized for enhanced bacterial capture. The application of an external magnetic field removed Fe3O4@SiO2@NH2-MIL-125 (Ti) nano adsorbent from the solution along with sweeping the attached pathogenic bacteria. The non-specific removal efficiency of S. typhimurium for magnetic MOF composite was 96.58%, while it was only 46.81% with Fe3O4@SiO2 particles. For specific removal, 97.58% of S. typhimurium could be removed selectively from a mixture with monoclonal anti- Salmonella antibody conjugated magnetic MOF at a lower concentration of 1.0 mg/mL. The developed nano adsorbent may find great potential in microbiology applications and water remediation.
Collapse
Affiliation(s)
- Saloni Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India
| | - Gurjeet Kaur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Institute of Nano Science and Technology (INST), Sector - 81, Mohali, Punjab, 140306, India.
| | - Manoj K Nayak
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh-160030, India
| |
Collapse
|
24
|
Pulvirenti L, Lombardo C, Salmeri M, Bongiorno C, Mannino G, Lo Presti F, Cambria MT, Condorelli GG. Self-assembled BiFeO 3@MIL-101 nanocomposite for antimicrobial applications under natural sunlight. DISCOVER NANO 2023; 18:113. [PMID: 37697156 PMCID: PMC10495303 DOI: 10.1186/s11671-023-03883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/04/2023] [Indexed: 09/13/2023]
Abstract
In this paper, we report on the synthesis of a new hybrid photocatalytic material activated by natural sunlight irradiation. The material consists of multiferroic nanoparticles of bismuth ferrite (BFO) modified through the growth of the Fe-based MIL-101 framework. Material characterization, conducted using various techniques (X-ray diffraction, transmission electron microscopy, FTIR, and X-ray photoelectron spectroscopies), confirmed the growth of the MIL-101 metal-organic framework on the BFO surface. The obtained system possesses the intrinsic photo-degradative properties of BFO nanoparticles significantly enhanced by the presence of MIL-101. The photocatalytic activity of this material was tested in antibacterial experiments conducted under natural sunlight exposure within the nanocomposite concentration range of 100-0.20 µg/ml. The MIL-modified BFO showed a significant decrease in both Minimum Inhibiting Concentration and Minimum Bactericide Concentration values compared to bare nanoparticles. This confirms the photo-activating effect of the MIL-101 modification. In particular, they show an increased antimicrobial activity against the tested Gram-positive species and the ability to begin to inhibit the growth of the four Escherichia coli strains, although at the maximum concentration tested. These results suggest that the new nanocomposite BiFeO3@MOF has been successfully developed and has proven to be an effective antibacterial agent against a wide range of microorganisms and a potential candidate in disinfection processes.
Collapse
Affiliation(s)
- Luca Pulvirenti
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Cinzia Lombardo
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Via S. Sofia 97, 95125, Catania, Italy
| | - Mario Salmeri
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Via S. Sofia 97, 95125, Catania, Italy
| | | | | | - Francesca Lo Presti
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Maria Teresa Cambria
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Via S. Sofia 97, 95125, Catania, Italy.
| | - Guglielmo Guido Condorelli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- Consorzio INSTM UdR di Catania, Catania, Italy.
| |
Collapse
|
25
|
Peng X, Xu L, Zeng M, Dang H. Application and Development Prospect of Nanoscale Iron Based Metal-Organic Frameworks in Biomedicine. Int J Nanomedicine 2023; 18:4907-4931. [PMID: 37675409 PMCID: PMC10479543 DOI: 10.2147/ijn.s417543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023] Open
Abstract
Metal-organic frameworks (MOFs) are coordination polymers that comprise metal ions/clusters and organic ligands. MOFs have been extensively employed in different fields (eg, gas adsorption, energy storage, chemical separation, catalysis, and sensing) for their versatility, high porosity, and adjustable geometry. To be specific, Fe2+/Fe3+ exhibits unique redox chemistry, photochemical and electrical properties, as well as catalytic activity. Fe-based MOFs have been widely investigated in numerous biomedical fields over the past few years. In this study, the key index requirements of Fe-MOF materials in the biomedical field are summarized, and a conclusion is drawn in terms of the latest application progress, development prospects, and future challenges of Fe-based MOFs as drug delivery systems, antibacterial therapeutics, biocatalysts, imaging agents, and biosensors in the biomedical field.
Collapse
Affiliation(s)
- Xiujuan Peng
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Li Xu
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| | - Min Zeng
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People’s Republic of China
| | - Hao Dang
- Department of Clinical Laboratory, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, 621000, People’s Republic of China
| |
Collapse
|
26
|
Lelouche SNK, Albentosa-González L, Clemente-Casares P, Biglione C, Rodríguez-Diéguez A, Tolosa Barrilero J, García-Martínez JC, Horcajada P. Antibacterial Cu or Zn-MOFs Based on the 1,3,5-Tris-(styryl)benzene Tricarboxylate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2294. [PMID: 37630879 PMCID: PMC10458854 DOI: 10.3390/nano13162294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Metal-organic frameworks (MOFs) are highly versatile materials. Here, two novel MOFs, branded as IEF-23 and IEF-24 and based on an antibacterial tricarboxylate linker and zinc or copper cations, and holding antibacterial properties, are presented. The materials were synthesized by the solvothermal route and fully characterized. The antibacterial activity of IEF-23 and IEF-24 was investigated against Staphylococcus epidermidis and Escherichia coli via the agar diffusion method. These bacteria are some of the most broadly propagated pathogens and are more prone to the development of antibacterial resistance. As such, they represent an archetype to evaluate the efficiency of novel antibacterial treatments. MOFs were active against both strains, exhibiting higher activity against Staphylococcus epidermidis. Thus, the potential of the developed MOFs as antibacterial agents was proved.
Collapse
Affiliation(s)
- Sorraya Najma Kinza Lelouche
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, Mostoles, 28935 Madrid, Spain; (S.N.K.L.); (C.B.)
- Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, c/ Tulipan, s/n, Mostoles, 28933 Madrid, Spain
| | - Laura Albentosa-González
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, C/Almansa 14, 02008 Albacete, Spain; (L.A.-G.); (P.C.-C.); (J.T.B.)
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain
| | - Pilar Clemente-Casares
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, C/Almansa 14, 02008 Albacete, Spain; (L.A.-G.); (P.C.-C.); (J.T.B.)
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, Mostoles, 28935 Madrid, Spain; (S.N.K.L.); (C.B.)
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain;
| | - Juan Tolosa Barrilero
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, C/Almansa 14, 02008 Albacete, Spain; (L.A.-G.); (P.C.-C.); (J.T.B.)
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain
| | - Joaquín Calixto García-Martínez
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, C/Almansa 14, 02008 Albacete, Spain; (L.A.-G.); (P.C.-C.); (J.T.B.)
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr. José María Sánchez Ibáñez, s/n, 02008 Albacete, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, Mostoles, 28935 Madrid, Spain; (S.N.K.L.); (C.B.)
| |
Collapse
|
27
|
Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, Ghahramani Y, Lai CW, Chiang WH, Gholami A. Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4685. [PMID: 37444999 DOI: 10.3390/ma16134685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023]
Abstract
Metal-organic frameworks (MOFs) have proven to be very effective carriers for drug delivery in various biological applications. In recent years, the development of hybrid nanostructures has made significant progress, including developing an innovative MOF-loaded nanocomposite with a highly porous structure and low toxicity that can be used to fabricate core-shell nanocomposites by combining complementary materials. This review study discusses using MOF materials in cancer treatment, imaging, and antibacterial effects, focusing on oral cancer cells. For patients with oral cancer, we offer a regular program for accurately designing and producing various anticancer and antibacterial agents to achieve maximum effectiveness and the lowest side effects. Also, we want to ensure that the anticancer agent works optimally and has as few side effects as possible before it is tested in vitro and in vivo. It is also essential that new anticancer drugs for cancer treatment are tested for efficacy and safety before they go into further research.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Fatemeh Fallahi Nezhad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz 71557-13876, Iran
| | - Milad Dehdashtijahromi
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz 71557-13876, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Yasamin Ghahramani
- Associate Professor of Endodontics Department of Endodontics, School of Dentistry Oral and Dental Disease Research Center Shiraz University of Medical Sciences, Shiraz 71956-15787, Iran
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya (UM), Kuala Lumpur 50603, Malaysia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| |
Collapse
|
28
|
Zhu R, Cai M, Fu T, Yin D, Peng H, Liao S, Du Y, Kong J, Ni J, Yin X. Fe-Based Metal Organic Frameworks (Fe-MOFs) for Bio-Related Applications. Pharmaceutics 2023; 15:1599. [PMID: 37376050 DOI: 10.3390/pharmaceutics15061599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are porous materials composed of metal ions and organic ligands. Due to their large surface area, easy modification, and good biocompatibility, MOFs are often used in bio-related fields. Fe-based metal-organic frameworks (Fe-MOFs), as important types of MOF, are favored by biomedical researchers for their advantages, such as low toxicity, good stability, high drug-loading capacity, and flexible structure. Fe-MOFs are diverse and widely used. Many new Fe-MOFs have appeared in recent years, with new modification methods and innovative design ideas, leading to the transformation of Fe-MOFs from single-mode therapy to multi-mode therapy. In this paper, the therapeutic principles, classification, characteristics, preparation methods, surface modification, and applications of Fe-MOFs in recent years are reviewed to understand the development trends and existing problems in Fe-MOFs, with the view to provide new ideas and directions for future research.
Collapse
Affiliation(s)
- Rongyue Zhu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengru Cai
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tingting Fu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongge Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hulinyue Peng
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shilang Liao
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuji Du
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Kong
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
29
|
Mao F, Su Y, Sun X, Li B, Liu PF. Cu(I) Metal-Organic Framework Composites with AgCl/Ag Nanoparticles for Irradiation-Enhanced Antibacterial Activity against E. coli. ACS OMEGA 2023; 8:2733-2739. [PMID: 36687073 PMCID: PMC9850725 DOI: 10.1021/acsomega.2c07415] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as prospective antibacterial agents or synergistic agents for their versatile chemical building components and structures. In this work, copper(I) halide MOFs of Cu(I)bpyCl (bpy = 4,4'-bipyridine) composited with AgCl/Ag nanoparticles were synthesized, and their antibacterial activities were measured against Escherichia coli and Staphylococcus aureus. The attached chlorine in Cu(I)2Cl2 nodes of the MOFs served as loading sites for silver ions, in which AgCl and concomitant metallic Ag nanoparticles were in situ generated. Exceptional antibacterial activity against E. coli was realized with a minimum inhibitory concentration (MIC) of ∼7.8 μg mL-1, while the MIC value was ∼16 μg mL-1 against S. aureus. Enhanced antibacterial activity against E. coli with light irradiation was measured by the disk diffusion method compared with that under dark conditions.
Collapse
Affiliation(s)
- Fangxin Mao
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yonghua Su
- Department
of Dermatology, Yueyang Hospital of Integrated Traditional Chinese
and Western Medicine, Shanghai University
of Traditional Chinese Medicine, Shanghai 200437, China
- Institute
of Dermatology, Shanghai Academy of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Xiaoying Sun
- Department
of Dermatology, Yueyang Hospital of Integrated Traditional Chinese
and Western Medicine, Shanghai University
of Traditional Chinese Medicine, Shanghai 200437, China
- Institute
of Dermatology, Shanghai Academy of Traditional
Chinese Medicine, Shanghai 201203, China
| | - Bin Li
- Institute
of Dermatology, Shanghai Academy of Traditional
Chinese Medicine, Shanghai 201203, China
- Department
of Dermatology, Shanghai Skin Diseases Hospital, Shanghai 200443, China
| | - Peng Fei Liu
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
30
|
Echenique-Errandonea E, Rojas S, Abdelkader-Fernández VK, Pérez-Mendoza M, Mendes RF, Barbosa P, Figueiredo F, Figueira F, Almeida Paz FA, Delgado-López JM, Rodríguez-Diéguez A, Seco JM. Adsorptive Capacity, Inhibitory Activity and Processing Techniques for a Copper-MOF Based on the 3,4-Dihydroxybenzoate Ligand. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228073. [PMID: 36432174 PMCID: PMC9695574 DOI: 10.3390/molecules27228073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022]
Abstract
Due to the fast, emerging development of antibiotic-resistant bacteria, the need for novel, efficient routes to battle these pathogens is crucial; in this scenario, metal-organic frameworks (MOFs) are promising materials for combating them effectively. Herein, a novel Cu-MOF-namely 1-that displays the formula [Cu3L2(DMF)2]n (DMF = N,N-dimethylformamide) is described, synthesized by the combination of copper(II) and 3,4-dihydroxybenzoic acid (H3L)-both having well-known antibacterial properties. The resulting three-dimensional structure motivated us to study the antibacterial activity, adsorptive capacity and processability of the MOF in the form of pellets and membranes as a proof-of-concept to evaluate its future application in devices.
Collapse
Affiliation(s)
- Estitxu Echenique-Errandonea
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal, N° 3, 20018 Donostia-San Sebastián, Spain
| | - Sara Rojas
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | | | - Manuel Pérez-Mendoza
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Ricardo F. Mendes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Barbosa
- Department of Materials & Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe Figueiredo
- Department of Materials & Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Flávio Figueira
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A. Almeida Paz
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José Manuel Delgado-López
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
- Correspondence: (A.R.-D.); (J.M.S.)
| | - José Manuel Seco
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal, N° 3, 20018 Donostia-San Sebastián, Spain
- Correspondence: (A.R.-D.); (J.M.S.)
| |
Collapse
|