1
|
Yang HQ, Li ZW, Dong XX, Zhang JX, Shan J, Wang MJ, Yang J, Li MH, Wang J, Zhao HM. Vinpocetine alleviates the abdominal aortic aneurysm progression via VSMCs SIRT1-p21 signaling pathway. Acta Pharmacol Sin 2024:10.1038/s41401-024-01358-w. [PMID: 39179867 DOI: 10.1038/s41401-024-01358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative disease that caused mortality in people aged >65. Senescence plays a critical role in AAA pathogenesis. Advances in AAA repair techniques have occurred, but a remaining priority is therapies to limit AAA growth and rupture. Our Previous study found cyclic nucleotide phosphodiesterase 1C (PDE1C) exacerbate AAA through aggravate vascular smooth muscle cells (VSMCs) senescence by downregulating Sirtuin1 (SIRT1) expression and activity. Vinpocetine as a selective inhibitor of PDE1 and a clinical medication for cerebral vasodilation, it is unclear whether vinpocetine can rely on SIRT1 to alleviate AAA. This study showed that pre-treatment with vinpocetine remarkably prevented aneurysmal dilation and reduced aortic rupture in elastase-induced AAA mice. In addition, the elastin degradation, MMP (matrix metalloproteinase) activity, macrophage infiltration, ROS production, collagen fibers remodeling, and VSMCs senescence were decreased in AAA treated with vinpocetine. While these effects were unable to exert in VSMCs-specific SIRT1 knockout AAA mice. Accordingly, we revealed that vinpocetine suppressed migration, proliferation, and senescence in VSMCs. Moreover, vinpocetine reduced SIRT1 degradation by inhibiting lysosome-mediated autophagy. In conclusion, this study indicated that vinpocetine may be as a potential drug for therapy AAA through alleviate VSMCs senescence via the SIRT1-dependent pathway.
Collapse
Affiliation(s)
- Hong-Qin Yang
- Baotou Medical College, Baotou, 014040, Inner Mongolia Autonomous Region, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Zhi-Wei Li
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Xi-Xi Dong
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Jia-Xin Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Jin Shan
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Min-Jie Wang
- Medical Experimental Center, School of Basic Medical Sciences, Inner Mongolia Medical University, Chilechuan dairy economic development zone, Hohhot, Inner Mongolia Autonomous Region, Hohhot, 010110, China
| | - Jing Yang
- Baotou Medical College, Baotou, 014040, Inner Mongolia Autonomous Region, China.
| | - Min-Hui Li
- Baotou Medical College, Baotou, 014040, Inner Mongolia Autonomous Region, China.
| | - Jing Wang
- State Key laboratory of Respiratory Health and Multimorbidity, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Hong-Mei Zhao
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100005, China.
| |
Collapse
|
2
|
Zhou L, Wu J, Wei Z, Zheng Y. Legumain in cardiovascular diseases. Exp Biol Med (Maywood) 2024; 249:10121. [PMID: 39104790 PMCID: PMC11298360 DOI: 10.3389/ebm.2024.10121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, having become a global public health problem, so the pathophysiological mechanisms and therapeutic strategies of CVDs need further study. Legumain is a powerful enzyme that is widely distributed in mammals and plays an important role in a variety of biological processes. Recent research suggests that legumain is associated with the occurrence and progression of CVDs. In this review, we provide a comprehensive overview of legumain in the pathogenesis of CVDs. The role of legumain in CVDs, such as carotid atherosclerosis, pulmonary hypertension, coronary artery disease, peripheral arterial disease, aortic aneurysms and dissection, is discussed. The potential applications of legumain as a biomarker of these diseases are also explored. By understanding the role of legumain in the pathogenesis of CVDs, we aim to support new therapeutic strategies to prevent or treat these diseases.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Institute of Clinical Medicine, National Science and Technology Key Infrastructure on Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Mohammed KAK, Madeddu P, Avolio E. MEK inhibitors: a promising targeted therapy for cardiovascular disease. Front Cardiovasc Med 2024; 11:1404253. [PMID: 39011492 PMCID: PMC11247000 DOI: 10.3389/fcvm.2024.1404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.
Collapse
Affiliation(s)
- Khaled A K Mohammed
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paolo Madeddu
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Chu S, Shan D, He L, Yang S, Feng Y, Zhang Y, Yu J. Anemoside B4 attenuates abdominal aortic aneurysm by limiting smooth muscle cell transdifferentiation and its mediated inflammation. Front Immunol 2024; 15:1412022. [PMID: 38881898 PMCID: PMC11176519 DOI: 10.3389/fimmu.2024.1412022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative disease characterized by local abnormal dilation of the aorta accompanied by vascular smooth muscle cell (VSMC) dysfunction and chronic inflammation. VSMC dedifferentiation, transdifferentiation, and increased expression of matrix metalloproteinases (MMPs) are essential causes of AAA formation. Previous studies from us and others have shown that Anemoside B4 (AB4), a saponin from Pulsatilla chinensis, has anti-inflammatory, anti-tumor, and regulatory effects on VSMC dedifferentiation. The current study aimed to investigate whether AB4 inhibits AAA development and its underlying mechanisms. By using an Ang II induced AAA model in vivo and cholesterol loading mediated VSMC to macrophage transdifferentiation model in vitro, our study demonstrated that AB4 could attenuate AAA pathogenesis, prevent VSMC dedifferentiation and transdifferentiation to macrophage-like cells, decrease vascular inflammation, and suppress MMP expression and activity. Furthermore, KLF4 overexpression attenuated the effects of AB4 on VSMC to macrophage-like cell transition and VSMC inflammation in vitro. In conclusion, AB4 protects against AAA formation in mice by inhibiting KLF4 mediated VSMC transdifferentiation and inflammation. Our study provides the first proof of concept of using AB4 for AAA management.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Abdominal/chemically induced
- Cell Transdifferentiation/drug effects
- Kruppel-Like Factor 4/metabolism
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Inflammation/metabolism
- Saponins/pharmacology
- Disease Models, Animal
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Mice, Inbred C57BL
- Macrophages/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Angiotensin II/pharmacology
- Humans
Collapse
Affiliation(s)
- Shuhan Chu
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Dan Shan
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Luling He
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Shilin Yang
- National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Nanchang, Jiangxi, China
| | - Yulin Feng
- National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Nanchang, Jiangxi, China
| | - Yifeng Zhang
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jun Yu
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Wen Y, Liu Y, Li Q, Tan J, Fu X, Liang Y, Tuo Y, Liu L, Zhou X, LiuFu D, Fan X, Chen C, Chen Z, Wang Z, Fan S, Liu R, Pan L, Zhang Y, Tang WH. Spatiotemporal ATF3 Expression Determines VSMC Fate in Abdominal Aortic Aneurysm. Circ Res 2024; 134:1495-1511. [PMID: 38686580 DOI: 10.1161/circresaha.124.324323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy, likely due to the limited understanding of the mechanisms underlying AAA development and progression. ATF3 (activating transcription factor 3) has been increasingly recognized as a key regulator of cardiovascular diseases. However, the role of ATF3 in AAA development and progression remains elusive. METHODS Genome-wide RNA sequencing analysis was performed on the aorta isolated from saline or Ang II (angiotensin II)-induced AAA mice, and ATF3 was identified as the potential key gene for AAA development. To examine the role of ATF3 in AAA development, vascular smooth muscle cell-specific ATF3 knockdown or overexpressed mice by recombinant adeno-associated virus serotype 9 vectors carrying ATF3, or shRNA-ATF3 with SM22α (smooth muscle protein 22-α) promoter were used in Ang II-induced AAA mice. In human and murine vascular smooth muscle cells, gain or loss of function experiments were performed to investigate the role of ATF3 in vascular smooth muscle cell proliferation and apoptosis. RESULTS In both Ang II-induced AAA mice and patients with AAA, the expression of ATF3 was reduced in aneurysm tissues but increased in aortic lesion tissues. The deficiency of ATF3 in vascular smooth muscle cell promoted AAA formation in Ang II-induced AAA mice. PDGFRB (platelet-derived growth factor receptor β) was identified as the target of ATF3, which mediated vascular smooth muscle cell proliferation in response to TNF-alpha (tumor necrosis factor-α) at the early stage of AAA. ATF3 suppressed the mitochondria-dependent apoptosis at the advanced stage by upregulating its direct target BCL2. Our chromatin immunoprecipitation results also demonstrated that the recruitment of NFκB1 and P300/BAF/H3K27ac complex to the ATF3 promoter induces ATF3 transcription via enhancer activation. NFKB1 inhibitor (andrographolide) inhibits the expression of ATF3 by blocking the recruiters NFKB1 and ATF3-enhancer to the ATF3-promoter region, ultimately leading to AAA development. CONCLUSIONS Our results demonstrate a previously unrecognized role of ATF3 in AAA development and progression, and ATF3 may serve as a novel therapeutic and prognostic marker for AAA.
Collapse
MESH Headings
- Activating Transcription Factor 3/genetics
- Activating Transcription Factor 3/metabolism
- Animals
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/chemically induced
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice
- Male
- Mice, Inbred C57BL
- Apoptosis
- Cells, Cultured
- Angiotensin II
- Cell Proliferation
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Ying Wen
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Yingying Liu
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Qiang Li
- Department of Vascular Surgery (Q.L.), the Second Affiliated Hospital of Guangzhou Medical University, China
| | - Jinlin Tan
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Xing Fu
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Yiwen Liang
- Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, China (Y. Liang)
| | - Yonghua Tuo
- Department of Neurosurgery (Y.T.), the Second Affiliated Hospital of Guangzhou Medical University, China
| | - Luhao Liu
- Department of Organ Transplantation (L.L., Z.C.), the Second Affiliated Hospital of Guangzhou Medical University, China
| | - Xueqiong Zhou
- Department of Occupational Health and Medicine, School of Public Health, Southern Medical University, China (X.Z.)
| | - Dongkai LiuFu
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Xuejiao Fan
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Chaofei Chen
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Zheng Chen
- Department of Organ Transplantation (L.L., Z.C.), the Second Affiliated Hospital of Guangzhou Medical University, China
| | - Zhouping Wang
- Department of Cardiology (Z.W.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Shunyang Fan
- Heart Center, The Third Affiliated Hospital of Zhengzhou University, China (S.F., W.H.T.)
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Sydney, Australia (R.L.)
| | - Lei Pan
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, China (L.P.)
| | - Yuan Zhang
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Wai Ho Tang
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
- Heart Center, The Third Affiliated Hospital of Zhengzhou University, China (S.F., W.H.T.)
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, Hong Kong SAR, China (W.H.T.)
| |
Collapse
|
6
|
Xin Y, Zhang Z, Lv S, Xu S, Liu A, Li H, Li P, Han H, Liu Y. Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications. Front Cardiovasc Med 2024; 11:1400780. [PMID: 38803664 PMCID: PMC11128571 DOI: 10.3389/fcvm.2024.1400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, despite advances in understanding cardiovascular health. Significant barriers still exist in effectively preventing and managing these diseases. Vascular smooth muscle cells (VSMCs) are crucial for maintaining vascular integrity and can switch between contractile and synthetic functions in response to stimuli such as hypoxia and inflammation. These transformations play a pivotal role in the progression of cardiovascular diseases, facilitating vascular modifications and disease advancement. This article synthesizes the current understanding of the mechanisms and signaling pathways regulating VSMC phenotypic transitions, highlighting their potential as therapeutic targets in cardiovascular disease interventions.
Collapse
Affiliation(s)
- Yuning Xin
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zipei Zhang
- Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shan Lv
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shan Xu
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Aidong Liu
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Li
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Pengfei Li
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Huize Han
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Bingyu W, Xi Y, Jiangfang L, Jianqing Z. Key chromatin regulator-related genes associated with the risk of coronary artery disease regulate the expression of HCFC1, RNF8, TNP1 and SET. Heliyon 2024; 10:e28685. [PMID: 38596069 PMCID: PMC11002600 DOI: 10.1016/j.heliyon.2024.e28685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Chromatin regulators are indispensable upstream epigenetic regulators.The emergence and progression of atherosclerosis has been demonstrated to be influenced by smooth muscle-related chromatin regulators, such as ZEB2 and MAFF. However, specific chromatin regulators and their possible roles have not been clarified. Information was gathered from 51 patients diagnosed with coronary artery disease (CAD) and 50 individuals in good health from the GEO database. 440 genes were identified as having differential expression across the two datasets, and these genes were linked to cellular reactions. Enrichment of pathways related to histone modification and transcriptional regulatory factors was observed in GO and KEGG analyses. Four machine learning models (RF, SVM, GLM, and XGB) were developed using the expression profiles of 440 chromatin-associated genes in the CAD cohort to pinpoint genes with significant diagnostic potential. After evaluating residuals, root mean square errors, receiver operating characteristic curves, and immune-infiltration, four key genes (HCFC1, RNF8, TNP1, and SET) were identified. Gene expression in different blood vessel levels in atherosclerotic plaques in a mouse model of coronary artery disease showed significant variations. The gene expression levels in macrophages aligned with clinical data from the GEO database as expected. This discovery is crucial for future analysis and the prediction of drug and miRNA targets. In conclusion, we found that the four hub genes are important in the mechanism of CAD. These findings provide new ideas for the study of potential epigenetic predictive markers and therapeutic targets to be used in determining a treatment strategy for CAD.
Collapse
Affiliation(s)
- Wang Bingyu
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yang Xi
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Lian Jiangfang
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Zhou Jianqing
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| |
Collapse
|
8
|
Wei X, Li Y, Jiang T, Luo P, Dai Y, Wang Q, Xu M, Yan J, Li Y, Gao J, Liu L, Zhang C, Liu Y. Terazosin attenuates abdominal aortic aneurysm formation by downregulating Peg3 expression to inhibit vascular smooth muscle cell apoptosis and senescence. Eur J Pharmacol 2024; 968:176397. [PMID: 38331337 DOI: 10.1016/j.ejphar.2024.176397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Abdominal aortic aneurysm (AAA), a vascular degenerative disease, is a potentially life-threatening condition characterised by the loss of vascular smooth muscle cells (VSMCs), degradation of extracellular matrix (ECM), inflammation, and oxidative stress. Despite the severity of AAA, effective drugs for treatment are scarce. At low doses, terazosin (TZ) exerts antiapoptotic and anti-inflammatory effects in several diseases, but its potential to protect against AAA remains unexplored. Herein, we investigated the effects of TZ in two AAA animal models: Angiotensin II (Ang II) infusion in Apoe-/- mice and calcium chloride application in C57BL/6J mice. Mice were orally administered with TZ (100 or 1000 μg/kg/day). The in vivo results indicated that low-dose TZ alleviated AAA formation in both models. Low-dose TZ significantly reduced aortic pulse wave velocity without exerting an apparent antihypertensive effect in the Ang II-induced AAA model. Paternally expressed gene 3 (Peg3) was identified via RNA sequencing as a novel TZ target. PEG3 expression was significantly elevated in both mouse and human AAA tissues. TZ suppressed PEG3 expression and reduced the abundance of matrix metalloproteinases (MMP2/MMP9) in the tunica media. Functional experiments and molecular analyses revealed that TZ (10 nM) treatment and Peg3 knockdown effectively prevented Ang II-induced VSMC senescence and apoptosis in vitro. Thus, Peg3, a novel target of TZ, mediates inflammation-induced VSMC apoptosis and senescence. Low-dose TZ downregulates Peg3 expression to attenuate AAA formation and ECM degradation, suggesting a promising therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mulin Xu
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
| | - Jingwen Gao
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Zhang F, Li K, Zhang W, Zhao Z, Chang F, Du J, Zhang X, Bao K, Zhang C, Shi L, Liu Z, Dai X, Chen C, Wang DW, Xian Z, Jiang H, Ai D. Ganglioside GM3 Protects Against Abdominal Aortic Aneurysm by Suppressing Ferroptosis. Circulation 2024; 149:843-859. [PMID: 38018467 DOI: 10.1161/circulationaha.123.066110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated. METHODS We performed a metabolomics study to evaluated GM3 level in plasma of human patients with AAA. We profiled GM3 synthase (ST3GAL5) expression in the mouse model of aneurysm and human AAA tissues through Western blotting and immunofluorescence staining. RNA sequencing, affinity purification and mass spectrometry, proteomic analysis, surface plasmon resonance analysis, and functional studies were used to dissect the molecular mechanism of GM3-regulating ferroptosis. We conditionally deleted and overexpressed St3gal5 in smooth muscle cells (SMCs) in vivo to investigate its role in AAA. RESULTS We found significantly reduced plasma levels of GM3 in human patients with AAA. GM3 content and ST3GAL5 expression were decreased in abdominal aortic vascular SMCs in patients with AAA and an AAA mouse model. RNA sequencing analysis showed that ST3GAL5 silencing in human aortic SMCs induced ferroptosis. We showed that GM3 interacted directly with the extracellular domain of TFR1 (transferrin receptor 1), a cell membrane protein critical for cellular iron uptake, and disrupted its interaction with holo-transferrin. SMC-specific St3gal5 knockout exacerbated iron accumulation at lesion sites and significantly promoted AAA development in mice, whereas GM3 supplementation suppressed lipid peroxidation, reduced iron deposition in aortic vascular SMCs, and markedly decreased AAA incidence. CONCLUSIONS Together, these results suggest that GM3 dysregulation promotes ferroptosis of vascular SMCs in AAA. Furthermore, GM3 may constitute a new therapeutic target for AAA.
Collapse
Affiliation(s)
- Fangni Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Institute of Cardiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (F.Z., D.A.)
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Kan Li
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Wenhui Zhang
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Ziyan Zhao
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Fangyuan Chang
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Jie Du
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
- Beijing Anzhen Hospital, Capital Medical University, China (J.D.)
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, China (J.D.)
- Collaborative Innovation Center for Cardiovascular Disorders, Beijing, China (J.D.)
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, China (J.D.)
| | - Xu Zhang
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| | - Kaiwen Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (K.B., C.Z., L.S.), Tianjin Medical University, China
| | - Chunyong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (K.B., C.Z., L.S.), Tianjin Medical University, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (K.B., C.Z., L.S.), Tianjin Medical University, China
| | - Zongwei Liu
- Department of Vascular Surgery, Tianjin Medical University General Hospital, China (Z.L., X.D.)
| | - Xiangchen Dai
- Department of Vascular Surgery, Tianjin Medical University General Hospital, China (Z.L., X.D.)
| | - Chen Chen
- Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (C.C., D.W.W.)
| | - Dao Wen Wang
- Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (C.C., D.W.W.)
| | - Zhong Xian
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Z.X., H.J.)
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Z.X., H.J.)
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Institute of Cardiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (F.Z., D.A.)
- Department of Physiology and Pathophysiology (F.Z., K.L., W.Z., Z.Z., F.C., J.D., X.Z., D.A.)
| |
Collapse
|
10
|
Terriaca S, Ferlosio A, Scioli MG, Coppa F, Bertoldo F, Pisano C, Belmonte B, Balistreri CR, Orlandi A. miRNA Regulation of Cell Phenotype and Parietal Remodeling in Atherosclerotic and Non-Atherosclerotic Aortic Aneurysms: Differences and Similarities. Int J Mol Sci 2024; 25:2641. [PMID: 38473887 DOI: 10.3390/ijms25052641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aortic aneurysms are a serious health concern as their rupture leads to high morbidity and mortality. Abdominal aortic aneurysms (AAAs) and thoracic aortic aneurysms (TAAs) exhibit differences and similarities in their pathophysiological and pathogenetic features. AAA is a multifactorial disease, mainly associated with atherosclerosis, characterized by a relevant inflammatory response and calcification. TAA is rarely associated with atherosclerosis and in some cases is associated with genetic mutations such as Marfan syndrome (MFS) and bicuspid aortic valve (BAV). MFS-related and non-genetic or sporadic TAA share aortic degeneration with endothelial-to-mesenchymal transition (End-Mt) and fibrosis, whereas in BAV TAA, aortic degeneration with calcification prevails. microRNA (miRNAs) contribute to the regulation of aneurysmatic aortic remodeling. miRNAs are a class of non-coding RNAs, which post-transcriptionally regulate gene expression. In this review, we report the involvement of deregulated miRNAs in the different aortic remodeling characterizing AAAs and TAAs. In AAA, miRNA deregulation appears to be involved in parietal inflammatory response, smooth muscle cell (SMC) apoptosis and aortic wall calcification. In sporadic and MFS-related TAA, miRNA deregulation promotes End-Mt, SMC myofibroblastic phenotypic switching and fibrosis with glycosaminoglycan accumulation. In BAV TAA, miRNA deregulation sustains aortic calcification. Those differences may support the development of more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Francesca Coppa
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Fabio Bertoldo
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Calogera Pisano
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
- Azienda sanitaria Provinciale di Catania (ASP), 95124 Catania, Italy
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
11
|
Kucher AN, Koroleva IA, Nazarenko MS. Pathogenetic Significance of Long Non-Coding RNAs in the Development of Thoracic and Abdominal Aortic Aneurysms. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:130-147. [PMID: 38467550 DOI: 10.1134/s0006297924010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 03/13/2024]
Abstract
Aortic aneurysm (AA) is a life-threatening condition with a high prevalence and risk of severe complications. The aim of this review was to summarize the data on the role of long non-coding RNAs (lncRNAs) in the development of AAs of various location. Within less than a decade of studies on the role of lncRNAs in AA, using experimental and bioinformatic approaches, scientists have obtained the data confirming the involvement of these molecules in metabolic pathways and pathogenetic mechanisms critical for the aneurysm development. Regardless of the location of pathological process (thoracic or abdominal aorta), AA was found to be associated with changes in the expression of various lncRNAs in the tissue of the affected vessels. The consistency of changes in the expression level of lncRNA, mRNA and microRNA in aortic tissues during AA development has been recordedand regulatory networks implicated in the AA pathogenesis in which lncRNAs act as competing endogenous RNAs (ceRNA networks) have been identified. It was found that the same lncRNA can be involved in different ceRNA networks and regulate different biochemical and cellular events; on the other hand, the same pathological process can be controlled by different lncRNAs. Despite some similarities in pathogenesis and overlapping of involved lncRNAs, the ceRNA networks described for abdominal and thoracic AA are different. Interactions between lncRNAs and other molecules, including those participating in epigenetic processes, have also been identified as potentially relevant to the AA pathogenesis. The expression levels of some lncRNAs were found to correlate with clinically significant aortic features and biochemical parameters. Identification of regulatory RNAs functionally significant in the aneurysm development is important for clarification of disease pathogenesis and will provide a basis for early diagnostics and development of new preventive and therapeutic drugs.
Collapse
Affiliation(s)
- Aksana N Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Iuliia A Koroleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Maria S Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
| |
Collapse
|
12
|
Wu H, Chen L, Lu K, Liu Y, Lu W, Jiang J, Weng C. HMGB2 Deficiency Mitigates Abdominal Aortic Aneurysm by Suppressing Ang-II-Caused Ferroptosis and Inflammation via NF- κβ Pathway. Mediators Inflamm 2023; 2023:2157355. [PMID: 38148870 PMCID: PMC10751175 DOI: 10.1155/2023/2157355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023] Open
Abstract
Background Ferroptosis is a new form of cell death, which is closely related to the occurrence of many diseases. Our work focused on the mechanism by which HMGB2 regulate ferroptosis and inflammation in abdominal aortic aneurysm (AAA). Methods Reverse transcription-quantitative polymerase chain reaction and western blot were utilized to assess HMGB2 levels. CCK-8 and flow cytometry assays were utilized to measure cell viability and apoptosis. We detected reactive oxygen species generation, Fe2+ level, and ferroptosis-related protein levels in Ang-II-treated VSMCs, which were typical characteristics of ferroptosis. Finally, the mice model of AAA was established to verify the function of HMGB2 in vivo. Results Increased HMGB2 level was observed in Ang-II-treated VSMCs and Ang-II-induced mice model. HMGB2 depletion accelerated viability and impeded apoptosis in Ang-II-irritatived VSMCs. Moreover, HMGB2 deficiency neutralized the increase of ROS in VSMCs caused by Ang-II. HMGB2 silencing considerably weakened Ang-II-caused VSMC ferroptosis, as revealed by the decrease of Fe2+ level and ACSL4 and COX2 levels and the increase in GPX4 and FTH1 levels. Furthermore, the mitigation effects of shHMGB2 on Ang-II-induced VSMC damage could be counteracted by erastin, a ferroptosis agonist. Mechanically, HMGB2 depletion inactivated the NF-κβ signaling in Ang-II-treated VSMCs. Conclusions Our work demonstrated that inhibition of HMGB2-regulated ferroptosis and inflammation to protect against AAA via NF-κβ signaling, suggesting that HMGB2 may be a potent therapeutic agent for AAA.
Collapse
Affiliation(s)
- Hao Wu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Legao Chen
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Kaiping Lu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Yi Liu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Weiqin Lu
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Jinsong Jiang
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - Chao Weng
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Yao D, Mei S, Tang W, Xu X, Lu Q, Shi Z. AAAKB: A manually curated database for tracking and predicting genes of Abdominal aortic aneurysm (AAA). PLoS One 2023; 18:e0289966. [PMID: 38100461 PMCID: PMC10723669 DOI: 10.1371/journal.pone.0289966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/31/2023] [Indexed: 12/17/2023] Open
Abstract
Abdominal aortic aneurysm (AAA), an extremely dangerous vascular disease with high mortality, causes massive internal bleeding due to aneurysm rupture. To boost the research on AAA, efforts should be taken to organize and link the information about AAA-related genes and their functions. Currently, most researchers screen through genetic databases manually, which is cumbersome and time-consuming. Here, we developed "AAAKB" a manually curated knowledgebase containing genes, SNPs and pathways associated with AAA. In order to facilitate researchers to further explore the mechanism network of AAA, AAAKB provides predicted genes that are potentially associated with AAA. The prediction is based on the protein interaction information of genes collected in the database, and the random forest algorithm (RF) is used to build the prediction model. Some of these predicted genes are differentially expressed in patients with AAA, and some have been reported to play a role in other cardiovascular diseases, illustrating the utility of the knowledgebase in predicting novel genes. Also, AAAKB integrates a protein interaction visualization tool to quickly determine the shortest paths between target proteins. As the first knowledgebase to provide a comprehensive catalog of AAA-related genes, AAAKB will be an ideal research platform for AAA. Database URL: http://www.lqlgroup.cn:3838/AAAKB/.
Collapse
Affiliation(s)
- Di Yao
- Institute of Industrial Internet and Internet of Things, China Academy of Information and Communications Technology (CAICT), China
| | - Shuyuan Mei
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wangyang Tang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xingyu Xu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Qiulun Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhiguang Shi
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Yan B, Belke D, Gui Y, Chen YX, Jiang ZS, Zheng XL. Pharmacological inhibition of MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) induces ferroptosis in vascular smooth muscle cells. Cell Death Discov 2023; 9:456. [PMID: 38097554 PMCID: PMC10721807 DOI: 10.1038/s41420-023-01748-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a human paracaspase protein with proteolytic activity via its caspase-like domain. The pharmacological inhibition of MALT1 by MI-2, a specific chemical inhibitor, diminishes the response of endothelial cells to inflammatory stimuli. However, it is largely unknown how MALT1 regulates the functions of vascular smooth muscle cells (SMCs). This study aims to investigate the impact of MALT1 inhibition by MI-2 on the functions of vascular SMCs, both in vitro and in vivo. MI-2 treatment led to concentration- and time-dependent cell death of cultured aortic SMCs, which was rescued by the iron chelator deferoxamine (DFO) or ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, but not by inhibitors of apoptosis (Z-VAD-fmk), pyroptosis (Z-YVAD-fmk), or necrosis (Necrostatin-1, Nec-1). MI-2 treatment downregulated the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy polypeptide 1 (FTH1), which was prevented by pre-treatment with DFO or Fer-1. MI-2 treatment also activated autophagy, which was inhibited by Atg7 deficiency or bafilomycin A1 preventing MI-2-induced ferroptosis. MI-2 treatment reduced the cleavage of cylindromatosis (CYLD), a specific substrate of MALT1. Notably, MI-2 treatment led to a rapid loss of contractility in mouse aortas, which was prevented by co-incubation with Fer-1. Moreover, local application of MI-2 significantly reduced carotid neointima lesions and atherosclerosis in C57BL/6J mice and apolipoprotein-E knockout (ApoE-/-) mice, respectively, which were both ameliorated by co-treatment with Fer-1. In conclusion, the present study demonstrated that MALT1 inhibition induces ferroptosis of vascular SMCs, likely contributing to its amelioration of proliferative vascular diseases.
Collapse
Affiliation(s)
- Binjie Yan
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Darrell Belke
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Yong-Xiang Chen
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
15
|
Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med 2023; 55:2519-2530. [PMID: 38036736 PMCID: PMC10766996 DOI: 10.1038/s12276-023-01130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Aortic aneurysm is a chronic disease characterized by localized expansion of the aorta, including the ascending aorta, arch, descending aorta, and abdominal aorta. Although aortic aneurysms are generally asymptomatic, they can threaten human health by sudden death due to aortic rupture. Aortic aneurysms are estimated to lead to 150,000 ~ 200,000 deaths per year worldwide. Currently, there are no effective drugs to prevent the growth or rupture of aortic aneurysms; surgical repair or endovascular repair is the only option for treating this condition. The pathogenic mechanisms and therapeutic targets for aortic aneurysms have been examined over the past decade; however, there are unknown pathogenic mechanisms involved in cellular heterogeneity and plasticity, the complexity of the transforming growth factor-β signaling pathway, inflammation, cell death, intramural neovascularization, and intercellular communication. This review summarizes the latest research findings and current pathogenic mechanisms of aortic aneurysms, which may enhance our understanding of aortic aneurysms.
Collapse
Affiliation(s)
- Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mi-Ran Lee
- Department of Biomedical Laboratory Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
16
|
Zhang Q, Cai Z, Yu Z, Di C, Qiu Y, Qi R. Agathis dammara Extract and its Monomer Araucarone Attenuate Abdominal Aortic Aneurysm in Mice. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07518-0. [PMID: 37979015 DOI: 10.1007/s10557-023-07518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a chronic vascular disease wherein the inflammation of vascular smooth muscle cells (VSMCs) plays a pivotal role in its development. Effectively mitigating AAA involves inhibiting VSMC inflammation. Agathis dammara (Lamb.) Rich, recognized for its robust anti-inflammatory and antioxidant attributes, has been employed as a traditional medicinal resource. Nonetheless, there is a dearth of information regarding the potential of Agathis dammara extract (AD) in attenuating AAA, specifically by diminishing vascular inflammation, notably VSMC inflammation. Furthermore, the active constituents of AD necessitate identification. AIM OF THE STUDY This study sought to ascertain the efficacy of AD in reducing AAA, evaluate its impact on VSMC inflammation, and elucidate whether the monomer araucarone (AO) in AD acts as an active component against AAA. MATERIALS AND METHODS The extraction of AD was conducted and subjected to analysis through High-Performance Liquid Chromatography (HPLC) and mass spectrometry. The isolation of the AO monomer followed, involving the determination of its content and purity. Subsequently, the effects of AD and AO on VSMC inflammation were assessed in vitro, encompassing an examination of inflammatory factors such as IL-6 and IL-18, as well as the activation of matrix metalloproteinase 9 (MMP9) in tumor necrosis factor-alpha (TNF-α)-stimulated VSMCs. To explore the inhibitory effects of AD/AO on AAA, C57BL/6J male mice were subjected to oral gavage (100 mg/kg) or intraperitoneal injection (50 mg/kg) of AD and AO in a porcine pancreatic elastase (PPE)-induced AAA model (14 days). This facilitated the observation of abdominal aorta dilatation, remodeling, elastic fiber disruption, and macrophage infiltration. Additionally, a three-day PPE mouse model was utilized to assess the effects of AD and AO (administered at 100 mg/kg via gavage) on acute inflammation and MMP9 expression in blood vessels. The mechanism by which AD/AO suppresses the inflammatory response was probed through the examination of NF-κB/NLRP3 pathway activation in VSMCs and aortas. RESULTS Liquid Chromatography-Mass Spectrometry (LC-MS) revealed that AO constituted 15.36% of AD's content, with a purity of 96%. Subsequent pharmacological investigations of AO were conducted in parallel with AD. Both AD and AO exhibited the ability to inhibit TNF-α-induced VSMC inflammation and MMP production in vitro. Furthermore, both substances effectively prevented PPE-induced AAA in mice, whether administered through gavage or intraperitoneal injection, evidenced by decreased vascular diameter dilation, disruption of elastin fiber layers, and infiltration of inflammatory cells. In the three-day PPE mouse model, AD and AO mitigated the heightened expression of inflammatory factors and the elevated expression of MMP9 induced by PPE. The activation of the NF-κB/NLRP3 pathway in both VSMCs and aortas was significantly suppressed by treatment with AD or AO. CONCLUSIONS Through suppressing NF-κB/NLRP3 pathway activation, AD effectively mitigates the inflammatory response in VSMCs, mitigates inflammation in aortas, prevents extracellular matrix degradation, and consequently impedes the progression of AAA. AO emerges as one of the active compounds in AD responsible for inhibiting VSMC inflammation and inhibiting AAA development.
Collapse
Affiliation(s)
- Qingyi Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Zeyu Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhewei Yu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chang Di
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| |
Collapse
|
17
|
Bharadhwaj RA, Kumarswamy R. Long noncoding RNA TUG1 regulates smooth muscle cell differentiation via KLF4-myocardin axis. Am J Physiol Cell Physiol 2023; 325:C940-C950. [PMID: 37642238 PMCID: PMC10635660 DOI: 10.1152/ajpcell.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Abdominal aortic aneurysms (AAAs) are asymptomatic vascular diseases that have life-threatening outcomes. Smooth muscle cell (SMC) dysfunction plays an important role in AAA development. The contribution of non-coding genome, specifically the role of long non-coding RNAs (lncRNAs) in SMC dysfunction, is relatively unexplored. We investigated the role of lncRNA TUG1 in SMC dysfunction. To identify potential lncRNAs relevant to SMC functionality, lncRNA profiling was performed in angiotensin-II-treated SMCs. AAA was induced by angiotensin-II treatment in mice. Transcriptional regulation of TUG1 was studied using promoter luciferase and chromatin-immuno-precipitation experiments. Gain-or-loss-of-function experiments were performed in vitro to investigate TUG1-mediated regulation of SMC function. Immunoprecipitation experiments were conducted to elucidate the mechanism underlying TUG1-mediated SMC dysfunction. TUG1 was upregulated in SMCs following angiotensin-II treatment. Similarly, TUG1 levels were elevated in abdominal aorta in a mouse model of angiotensin-II-induced AAA. Further investigations showed that angiotensin-II-induced TUG1 expression could be suppressed by inhibiting Notch-signaling pathway, both in vitro and in mouse AAA model and that TUG1 is a direct transcriptional target of the Notch pathway. In aneurysmal tissues, TUG1 expression was inversely correlated with the expression of SMC contractile genes. Overexpression of TUG1 repressed SMC differentiation in vitro, whereas siRNA/shRNA-mediated TUG1 knockdown showed an opposite effect. Mechanistically, TUG1 interacts with transcriptional repressor KLF4 and facilitates its recruitment to myocardin promoter ultimately leading to the repression of SMC differentiation. In summary, our study uncovers a novel role for the lncRNA TUG1 wherein it modulates SMC differentiation via the KLF4-myocardin axis, which may have potential implications in AAA development.NEW & NOTEWORTHY TUG1 is an angiotensin-II-induced long noncoding RNA that mediates smooth muscle cell (SMC) dysfunction through interaction with transcriptional repressor KLF4.
Collapse
Affiliation(s)
- Ravi Abishek Bharadhwaj
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Regalla Kumarswamy
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Fasolo F, Winski G, Li Z, Wu Z, Winter H, Ritzer J, Glukha N, Roy J, Hultgren R, Pauli J, Busch A, Sachs N, Knappich C, Eckstein HH, Boon RA, Paloschi V, Maegdefessel L. The circular RNA Ataxia Telangiectasia Mutated regulates oxidative stress in smooth muscle cells in expanding abdominal aortic aneurysms. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:848-865. [PMID: 37680984 PMCID: PMC10481153 DOI: 10.1016/j.omtn.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
An abdominal aortic aneurysm (AAA) is a pathological widening of the aortic wall characterized by loss of smooth muscle cells (SMCs), extracellular matrix degradation, and local inflammation. This condition is often asymptomatic until rupture occurs, leading to high morbidity and mortality rates. Diagnosis is mostly accidental and the only currently available treatment option remains surgical intervention. Circular RNAs (circRNAs) represent a novel class of regulatory non-coding RNAs that originate from backsplicing. Their highly stable loop structure, combined with a remarkable enrichment in body fluids, make circRNAs promising disease biomarkers. We investigated the contribution of circRNAs to AAA pathogenesis and their potential application to improve AAA diagnostics. Gene expression analysis revealed the presence of deregulated circular transcripts stemming from AAA-relevant gene loci. Among these, the circRNA to the Ataxia Telangiectasia Mutated gene (cATM) was upregulated in human AAA specimens, in AAA-derived SMCs, and serum samples collected from aneurysm patients. In primary aortic SMCs, cATM increased upon angiotensin II and doxorubicin stimulation, while its silencing triggered apoptosis. Higher cATM levels made AAA-derived SMCs less vulnerable to oxidative stress, compared with control SMCs. These data suggest that cATM contributes to elicit an adaptive oxidative-stress response in SMCs and provides a reliable AAA disease signature.
Collapse
Affiliation(s)
- Francesca Fasolo
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Berlin, Germany
| | - Greg Winski
- Department of Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Zhaolong Li
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Berlin, Germany
| | - Zhiyan Wu
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Berlin, Germany
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology and Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Hanna Winter
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Berlin, Germany
| | - Julia Ritzer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Nadiya Glukha
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Department of Vascular Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Rebecka Hultgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
- Department of Vascular Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Berlin, Germany
| | - Albert Busch
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty, Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Christoph Knappich
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Reinier A. Boon
- German Center for Cardiovascular Research DZHK 10785 Berlin, Partner Site Frankfurt Rhine-Main, Frankfurt am Main, Germany
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, 1081 Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, 1081 Amsterdam, the Netherlands
| | - Valentina Paloschi
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Berlin, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Berlin, Germany
- Department of Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
19
|
Li D, Wang L, Jiang B, Miao Y, Li X. An evidence update to explore molecular targets and protective mechanisms of apigenin against abdominal aortic aneurysms based on network pharmacology and experimental validation. Mol Divers 2023:10.1007/s11030-023-10723-6. [PMID: 37653360 DOI: 10.1007/s11030-023-10723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Abdominal aortic aneurysms (AAA) is a life-threatening disease and the incidence of AAA is still on the rise in recent years. Numerous studies suggest that dietary moderate consumption of polyphenol exerts beneficial effects on cardiovascular disease. Apigenin (API) is a promising dietary polyphenol and possesses potent beneficial effects on our body. Although our previous study revealed protective effects of API on experimental AAA formation, up till now few studies were carried out to further investigate its involved molecular mechanisms. In the present study, network pharmacology combined molecular docking and experimental validation was used to explore API-related therapeutic targets and mechanisms in the treatment of AAA. Firstly, we collected 202 API-related therapeutic targets and 2475 AAA-related pathogenetic targets. After removing duplicates, a total of 68 potential therapeutic targets were obtained. Moreover, 5 targets with high degree including TNF, ACTB, INS, JUN, and MMP9 were identified as core targets of API for treating AAA. In addition, functional enrichment analysis indicated that API exerted pharmacological effects in AAA by affecting versatile mechanisms, including apoptosis, inflammation, blood fluid dynamics, and immune modulation. Molecular docking results further supported that API had strong affinity with the above core targets. Furthermore, protein level of core targets and related pathways were evaluated in a Cacl2-induced AAA model by using western blot and immunohistochemistry. The experimental validation results demonstrated that API significantly attenuated phosphorylation of JUN and protein level of predicted core targets. Taken together, based on network pharmacological and experimental validation, our study systematically explored associated core targets and potential therapeutic pathways of API for AAA treatment, which could supply valuable insights and theoretical basis for AAA treatment.
Collapse
Affiliation(s)
- Dongyu Li
- Department of General Surgery & VIP In-Patient Ward, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Nanjingbei 155 Street, Shenyang, 110001, Liaoning Province, China
| | - Bo Jiang
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Nanjingbei 155 Street, Shenyang, 110001, Liaoning Province, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Xuan Li
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Nanjingbei 155 Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
20
|
Jiang H, Jiang Y, Qu Y, Lv J, Zeng H. sGC agonist BAY1021189 promotes thoracic aortic dissection formation by accelerating vascular smooth muscle cell phenotype switch. Eur J Pharmacol 2023:175789. [PMID: 37244376 DOI: 10.1016/j.ejphar.2023.175789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Thoracic aortic dissection (TAD) is common but lethal cardiovascular disease with high mortality. This study aimed to expound whether and how sGC-PRKG1 signaling pathway might promote the formation of TAD. Our work identified two modules with high relevance to TAD using WGCNA method. Combined with previous studies, we focused on the participation of endothelial NOS (eNOS) in the progression of TAD. Through immunohistochemistry, immunofluorescence and western blot we verified that eNOS expression was elevated in the tissues of patients and mice with aortic dissection, and the phosphorylation Ser1177 of eNOS was activated. In a BAPN-induced TAD mouse model, sGC-PRKG1 signaling pathway promotes TAD formation by inducing vascular smooth muscle cells (VSMCs) phenotype transition, which was demonstrated as a decrease in markers of the contractile phenotype of VSMCs such as αSMA, SM22α, and Calponin. These results were also verified by experiments in vitro. To explore the further mechanism, we conducted immunohistochemistry, western blot and quantitative RT-PCR (qPCR), the results of which indicated that sGC-PRKG1 signaling pathway was activated when TAD occurred. In conclusion, our current study revealed that sGC-PRKG1 signaling pathway could promote TAD formation by accelerating VSMCs phenotype switch.
Collapse
Affiliation(s)
- Hongcheng Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yue Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
21
|
Mitochondrial Dysfunction and Increased DNA Damage in Vascular Smooth Muscle Cells of Abdominal Aortic Aneurysm (AAA-SMC). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6237960. [PMID: 36743698 PMCID: PMC9891816 DOI: 10.1155/2023/6237960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 01/27/2023]
Abstract
There is increasing evidence for enhanced oxidative stress in the vascular wall of abdominal aortic aneurysms (AAA). Mitochondrial damage and dysfunction are hypothesized to be actors in altered production of reactive oxygen species (ROS) and oxidative stress. However, the role of mitochondria and oxidative stress in vascular remodelling and progression of AAA remains uncertain. We here addressed whether mitochondrial dysfunction is persistently increased in vascular smooth muscle cells (VSMCs) isolated from AAA compared to healthy VSMC. AAA-derived VSMC cultures (AAA-SMC, n = 10) and normal VSMC cultures derived from healthy donors (n = 7) were grown in vitro and analysed for four parameters, indicating mitochondrial dysfunction: (i) mitochondrial content and morphology, (ii) ROS production and antioxidative response, (iii) NADP+/NADPH content and ratio, and (iv) DNA damage, in the presence or absence of angiotensin II (AngII). AAA-SMC displayed increased mitochondrial circularity (rounded shape), reduced mitochondrial area, and reduced perimeter, indicating increased fragmentation and dysfunction compared to healthy controls. This was accompanied by significantly increased O2 - production, reduced NADP+/NADPH levels, a lower antioxidative response (indicated by antioxidative response element- (ARE-) driven luciferase reporter assays), more DNA damage (determined by percentage of γ-H2A.X-positive nuclei), and earlier growth arrest in AAA-SMC. Our data suggest that mitochondrial dysfunction and oxidative stress are persistently increased in AAA-SMC, emphasizing their implication in the pathophysiology of AAA.
Collapse
|
22
|
Jreije A, Medlej-Hashim M, Hajal J, Saliba Y, Chacar S, Fares N, Khouzami L. Calcitriol Supplementation Protects Against Apoptosis and Alleviates the Severity of Abdominal Aortic Aneurysm Induced by Angiotensin II and Anti-TGFβ. J Cardiovasc Transl Res 2022; 15:1340-1351. [PMID: 35445935 DOI: 10.1007/s12265-022-10254-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
The present study aims to assess the effect of vitamin D deficiency (VDD) and its supplementation on the severity of AAA in mice. AAA was induced by AngII and anti-TGF-β administration. Animals were divided into four groups: Sham, mice with AAA, mice with AAA, and VDD, and mice with AAA supplemented with calcitriol. Blood pressure, echocardiography, abdominal aortic tissues, and plasma samples were monitored for all groups. VDD was associated with enhanced activity of cleaved MMP-9 and elastin degradation and positively correlated with the severity of AAA. Calcitriol supplementation decreased the INFγ/IL-10 ratio and enhanced the Nrf2 pathway. Moreover, Cu/Zn-superoxide dismutase expression and catalase and neutral sphingomyelinase activity were exacerbated in AAA and VDD groups. Furthermore, calcitriol supplementation showed a significantly lower protein expression of caspase-8, caspase-3, Bid, and t-Bid, and prevented the apoptosis of VSMCs treated by AngII and anti-TGF-β. Calcitriol supplementation may alleviate AAA severity and could be of great interest in the clinical management of AAA. VDD enhances antioxidant enzymes activity and expression, whereas calcitriol supplementation alleviates AAA severity by re-activating Nrf2 and inhibiting apoptotic pathways.
Collapse
Affiliation(s)
- Afaf Jreije
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
- Cellular and Molecular Physiopathologies (CAMP) Laboratory, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Myrna Medlej-Hashim
- Cellular and Molecular Physiopathologies (CAMP) Laboratory, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Joelle Hajal
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Youakim Saliba
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Stephanie Chacar
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Nassim Fares
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon.
| | - Lara Khouzami
- Cellular and Molecular Physiopathologies (CAMP) Laboratory, Faculty of Sciences II, Lebanese University, Fanar, Lebanon.
| |
Collapse
|
23
|
Nurkkala J, Kauko A, Palmu J, Aittokallio J, Niiranen T. Sex differences in coronary artery bypass grafting-related morbidity and mortality. Front Cardiovasc Med 2022; 9:1021363. [DOI: 10.3389/fcvm.2022.1021363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022] Open
Abstract
BackgroundCoronary artery bypass grafting (CABG) is associated with both cardiovascular disease (CVD) and non-CVD traits. In addition, women’s prognosis after coronary events and revascularizations is worse than in men. As the course of CVD in women differs from that of men, we performed a phenome-wide analysis on the sex differences in CABG -related morbidity and mortality.Materials and methodsWe performed an untargeted analysis on the sex differences in predictors and outcomes of CABG. We studied a sample of 176,680 FinnGen participants, including 5,950 individuals who underwent CABG (4,988 men and 962 women) and were followed between 1998 and 2019. Over 1,100 different traits were analyzed for both sexes and the results were adjusted with age, smoking status and BMI. Cox proportional hazards models with sex-trait interactions were used to estimate the associations between (1) traits and incident CABG; and (2) CABG and incident traits.ResultsIn women, CABG was more strongly related to greater increases in risk of diseases such as hypertension, Alzheimer’s, aortic aneurysms, gout, and chronic kidney disease compared to risk increases observed in men (all interaction p-values < 0.03). After CABG, men had 2.5-fold (p = 3.1E−15) and women 6.3-fold (p = 9.4E−08) greater risk of cardiac death compared to same-sex individuals who did not undergo CABG (p for interaction 8.2E−4). Moreover, the risk of death in women remained higher even 12 years after CABG, whereas the long-term risk of death in men was not increased, compared to same-sex individuals who did not undergo CABG.ConclusionThe adverse outcomes after CABG, both quantity and quality, also appear to differ between men and women. In women, CABG is related to greater long-term increases in risk of cardiac death and several other disease states than in men. Consideration should therefore be given to whether women receive adequate long-term post-operative therapy and follow-up as CABG is not associated with equally improved cardiovascular disease prognosis in women than in men.
Collapse
|
24
|
Fang ZM, Feng X, Chen Y, Luo H, Jiang DS, Yi X. Targeting autophagy in aortic aneurysm and dissection. Biomed Pharmacother 2022; 153:113547. [PMID: 36076620 DOI: 10.1016/j.biopha.2022.113547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023] Open
|
25
|
Chen CH, Ho HH, Jiang WC, Ao-Ieong WS, Wang J, Orekhov AN, Sobenin IA, Layne MD, Yet SF. Cysteine-rich protein 2 deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation in mice. J Biomed Sci 2022; 29:25. [PMID: 35414069 PMCID: PMC9004090 DOI: 10.1186/s12929-022-00808-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a relatively common and often fatal condition. A major histopathological hallmark of AAA is the severe degeneration of aortic media with loss of vascular smooth muscle cells (VSMCs), which are the main source of extracellular matrix (ECM) proteins. VSMCs and ECM homeostasis are essential in maintaining structural integrity of the aorta. Cysteine-rich protein 2 (CRP2) is a VSMC-expressed protein; however, the role of CRP2 in AAA formation is unclear. Methods To investigate the function of CRP2 in AAA formation, mice deficient in Apoe (Apoe−/−) or both CRP2 (gene name Csrp2) and Apoe (Csrp2−/−Apoe−/−) were subjected to an angiotensin II (Ang II) infusion model of AAA formation. Aortas were harvested at different time points and histological analysis was performed. Primary VSMCs were generated from Apoe−/− and Csrp2−/−Apoe−/− mouse aortas for in vitro mechanistic studies. Results Loss of CRP2 attenuated Ang II-induced AAA incidence and severity, accompanied by preserved smooth muscle α-actin expression and reduced elastin degradation, matrix metalloproteinase 2 (MMP2) activity, deposition of collagen, particularly collagen III (Col III), aortic tensile strength, and blood pressure. CRP2 deficiency decreased the baseline MMP2 and Col III expression in VSMCs and mitigated Ang II-induced increases of MMP2 and Col III via blunting Erk1/2 signaling. Rescue experiments were performed by reintroducing CRP2 into Csrp2−/−Apoe−/− VSMCs restored Ang II-induced Erk1/2 activation, MMP2 expression and activity, and Col III levels. Conclusions Our results indicate that in response to Ang II stimulation, CRP2 deficiency maintains aortic VSMC density, ECM homeostasis, and structural integrity through Erk1/2–Col III and MMP2 axis and reduces AAA formation. Thus, targeting CRP2 provides a potential therapeutic strategy for AAA. Supplementary information The online version contains supplementary material available at 10.1186/s12929-022-00808-z.
Collapse
Affiliation(s)
- Chung-Huang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Zhunan, Taiwan
| | - Hua-Hui Ho
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Zhunan, Taiwan
| | - Wei-Cheng Jiang
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Zhunan, Taiwan
| | - Wai-Sam Ao-Ieong
- Department of Chemical Engineering, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | | | - Igor A Sobenin
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552, Moscow, Russia
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35053, Zhunan, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|