1
|
Fahad Almulhim B, Sherif FE, Younis NS, Safwat Y, Khattab S. Foliar spraying with zinc oxide nanoparticles enhances the anti-osteoporotic efficacy of the fruit extracts of Silybum marianum L. by stimulating silybin production. FRONTIERS IN PLANT SCIENCE 2025; 15:1421485. [PMID: 39840357 PMCID: PMC11747799 DOI: 10.3389/fpls.2024.1421485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/28/2024] [Indexed: 01/23/2025]
Abstract
Introduction Silybum marianum is a medicinal plant that produces silymarin, which has been demonstrated to possess antiviral, anti-neurodegenerative, and anticancer activities. Silybin (A+B) are two major hepatoprotective flavonolignans produced predominantly in S. marianum fruits. Several attempts have been made to increase the synthesis of silymarin, or its primary components, silybin (A+B). Zinc oxide nanoparticles (ZnO-NPs) are considered a highly efficient Zn source widely used to promote crop development and productivity. Methods In this study, we aimed to investigate the effects of the foliar application of ZnO-NPs on the growth, yield, photosynthetic pigment content, silybin (A+B) content, and the expression of the chalcone synthase (CHS) gene in S. marianum plants. Different concentrations of ZnO-NPs were administered as foliar sprays to S. marianum plants growing in greenhouse conditions. Furthermore, we evaluated the anti-osteoporotic efficacy of the corresponding fruit extract against dexamethasone (Dex)-induced osteoporosis. Results and discussion Foliar treatment at all ZnO-NP concentrations increased the amounts of bioactive components of silybin (A+B), which enhanced the growth and yield of S. marianum plants while increasing the levels of N, P, K, and Zn in their leaves, roots, and fruits; the levels of photosynthetic pigments in their leaves; and silybin (A+B) content in their fruits, thereby increasing the medicinal value of S. marianum. The highest gains were observed in plants sprayed with the highest ZnO-NP concentration (20.0 mg/L). In addition, gene expression studies revealed that ZnO-NPs stimulated silybin (A+B) production by activating CHS genes. The administration of S. marianum extracts to Dex-administered rats increased osteoblast and bone formation while inhibiting osteoclast and bone resorption, thereby protecting the animals against Dex-induced osteoporosis.
Collapse
Affiliation(s)
- Bedoor Fahad Almulhim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Fadia El Sherif
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismalia, Egypt
| | - Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Yamen Safwat
- Department of Orthopedic Surgery, Zagazig University, Zagazig, Egypt
| | - Salah Khattab
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Horticulture, Faculty of Agriculture, Suez Canal University, Ismalia, Egypt
| |
Collapse
|
2
|
Lekkala VVV, Sirigireddy B, Reddy MC, Lomada D. Synthesis and Characterization of Silver and Zinc Nanoparticles From Vitex altissima: Comparative Analysis of Anti-Oxidant, Anti-Inflammatory, Antibacterial, and Anti-Biofilm Activities. Chem Biodivers 2024:e202402166. [PMID: 39722480 DOI: 10.1002/cbdv.202402166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Metal nanoparticles have attained much popularity due to their low toxicity, economic feasibility, and eco-friendly nature. The present study focuses on the synthesis of silver and zinc nanoparticles from Vitex altissima leaf extract, further characterized by UV/Vis spectral analysis, Powder-x-ray diffraction (XRD), FE-SEM, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential. Synthesized silver and zinc nanoparticles were screened for antioxidant, anti-inflammatory, antibacterial, and anti-biofilm activities. AgNPs exhibited moderate antioxidant activities compared to ZnNPs, which were studied using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and ABTS assays. The anti-inflammatory effect was assessed using membrane stabilization and human red blood cell methods. Furthermore, both types of nanoparticles, AgNPs and ZnNPs, exhibited anti-biofilm activity against four MDR bacterial strains: Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Synthesized nanoparticles show antibacterial activity. Our data suggest that silver nanoparticles exhibited moderate activity compared to ZnNPs. These nanoparticles could act as potential antioxidant, anti-inflammatory, and antibacterial agents.
Collapse
Affiliation(s)
| | - Bharathi Sirigireddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| |
Collapse
|
3
|
Pulikova EP, Ivanov FD, Alliluev IA, Chernikova NP, Krepakova MR, Gorovtsov AV, Minkina TM, Bauer TV, Tsitsuashvili VS, Garg MC, Kumar S, Rajput VD. Effects of bulk forms and nanoparticles of zinc and copper oxides on the abundance, nitrogen cycling and enzymatic activities of microbial communities, morphometric parameters and antioxidant status of Hordeum vulgare L. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:494. [PMID: 39508891 DOI: 10.1007/s10653-024-02258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Uncontrolled use or improper disposal of bulk forms and nanoparticles of heavy metals may lead to their release into the environment. Coastal and floodplain ecosystems are particularly vulnerable, and the effects of metal nanoparticles on Fluvisol and Stagnic Fluvisol are poorly studied. This study aims to examine the effect of heavy metals on the enzymatic activity of the soil, the abundance of culturable microorganisms, growth, and antioxidant status of H. vulgare L. A model experiment was carried out with contamination of Stagnic Fluvisol Humic and Fluvisol with 2200 and 1320 mg kg-1 Zn and Cu, to assess the ecotoxicity of bulk forms and nanoparticles of ZnO and CuO in floodplain soils. The abundance of culturable microorganisms, namely copiotrophs, prototrophs, oligotrophs and nitrogen fixers increased. However, a sharp decrease in dehydrogenase activity and denitrification occurred. This effect was more pronounced in Fluvisol (7 times) than in Stagnic Fluvisol Humic (3 times). The accumulation of HMs was also higher in plants grown in Fluvisol (16-32 times) than in Stagnic Fluvisol Humic (13-24 times), which led to a decrease in plant growth and activation of antioxidant defense systems. An increase in the level of malondialdehyde, and the activity of superoxide dismutase and catalase indicates the induction of oxidative stress. Heavy metals have a greater impact on the biological properties of Fluvisol compared to Stagnic Fluvisol Humic. The presence of heavy metals boosts the abundance of culturable microorganisms, while nanoparticles hinder plant growth more than bulk heavy metals.
Collapse
Affiliation(s)
- E P Pulikova
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation.
| | - F D Ivanov
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - I A Alliluev
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - N P Chernikova
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - M R Krepakova
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - A V Gorovtsov
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - T M Minkina
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - T V Bauer
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - V S Tsitsuashvili
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| | - M C Garg
- Amity Institute of Environmental Science (AIES), Amity University Uttar Pradesh, Sector-125, Gautam Budh Nagar, Noida, 201313, India
| | - S Kumar
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India
| | - V D Rajput
- Southern Federal University, Rostov-On-Don, 344090, Russian Federation
| |
Collapse
|
4
|
Taj H, Noreen Z, Aslam M, Usman S, Shah AA, Rafique M, Raja V, El-Sheikh MA. Effects of SNP, MgSO 4, and MgO-NPs foliar application on Spinacia oleracea L. growth and physio-biochemical responses under cadmium stress. Sci Rep 2024; 14:26687. [PMID: 39496661 PMCID: PMC11535332 DOI: 10.1038/s41598-024-77221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
The effects of foliar application of sodium nitroprusside (SNP), magnesium sulfate (MgSO4) and magnesium oxide nanoparticles (MgO-NPs) on the growth, physiology, and gas exchange parameters of two varieties of spinach (Spinacia oleracea L.) under cadmium (Cd) stress were examined. The experiment was arranged in a completely randomized design with 72 pots. Two varieties of S. oleracea (Desi Palak & Lahori Palak) were used. Two concentrations of Cd (0 µM and 150 µM) in the form of cadmium chloride (CdCl2) were used. Two levels of SNP (0 ppm and 100 ppm) and two levels for each form of Mg i.e. MgSO4 and MgO-NPs (0 and 200 ppm) were foliar sprayed on plants in control and Cd stress. Both varieties behaved similarly under Cd stress and caused reductions in growth, physiology, gas exchange, water content parameters and inorganic ion uptake. However, the biochemical parameters like relative membrane permeability (RMP), malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents were increased. However, all foliar spray treatments increased growth, physiological and gas exchange parameters, water content and inorganic ion uptake. However, this reduced the MDA, RMP, and H2O2 contents. Desi Palak showed the more positive results under foliar application of MgO-NPs. However, Lahori palak showed more positive results under the SNP + MgO-NP treatment. It is concluded that foliar application of SNP, MgSO4 and MgO-NPs could be an innovative approach to alleviated the heavy metals (Cd) toxicity in crop plants.
Collapse
Affiliation(s)
- Hafsa Taj
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Maham Rafique
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Hassan MU, Guoqin H, Ahmad N, Khan TA, Nawaz M, Shah AN, Rasheed A, Asseri TAY, Ercisli S. Multifaceted roles of zinc nanoparticles in alleviating heavy metal toxicity in plants: a comprehensive review and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61356-61376. [PMID: 39424645 DOI: 10.1007/s11356-024-35018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Heavy metal (HM) toxicity is a serious concern across the globe owing to their harmful impacts on plants, animals, and humans. Zinc oxide nanoparticles (ZnO-NPs) have gained appreciable attention in mitigating the adverse effects of abiotic stresses. The exogenous application of ZnO-NPs induces tolerance against HMs by improving plant physiological, metabolic, and molecular responses. They also interact with potential osmolytes and phyto-hormones to regulate the plant performance under HM stress. Moreover, ZnO-NPs also work synergistically with microbes and gene expression which helps to withstand HM toxicity. Additionally, ZnO-NPs also restrict the uptake and accumulation of HMs in plants which improves the plant performance. This review highlights the promising role of ZnO-NPs in mitigating the adverse impacts of HMs in plants. In this review, we explained the different mechanisms mediated by ZnO-NPs to counter the toxic effects of HMs. We also discussed the interactions of ZnO-NPs with osmolytes, phytohormones, and microbes in mitigating the toxic effects of HMs in plants. This review will help to learn more about the role of ZnO-NPs to mitigate HM toxicity in plants. Therefore, it will provide new insights to ensure sustainable and safer production with ZnO-NPs in HM-polluted soils.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huang Guoqin
- Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Naeem Ahmad
- College of Agronomy, Key Laboratory of Crop Physi-Ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Tahir Abbas Khan
- Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, China.
| | - Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tahani A Y Asseri
- College of Science, Department of Biology, King Khalid University, 61413, Abha, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture Ataturk University, 25240, Erzurum, Turkey
- HGF Agro, Ata Teknokent, TR-25240, Erzurum, Turkey
| |
Collapse
|
6
|
Gomaa I, Aleid G, El-Moslamy SH, AlShammari A, Al-Marshedy S, Alshammary F, Gharkan J, Abdel-Hameed R, Kamoun EA. Synergistic efficacy of ZnO quantum dots, Ag NPs, and nitazoxanide composite against multidrug-resistant human pathogens as new trend of revolutionizing antimicrobial treatment. DISCOVER NANO 2024; 19:164. [PMID: 39361062 PMCID: PMC11450118 DOI: 10.1186/s11671-024-04085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Antibiotic resistance is currently becoming a more serious threat to global health, especially in severe nosocomial infections treatment by multidrug-resistant bacteria. This research provides a new way of synergizing green-synthesis for zinc oxide quantum dots (ZnO-QDs with hexagonal crystals) that are 7 nm in diameter and zero-valent Ag cubic crystals that are 67 nm in size embedded with nitazoxanide substrate (NAZ). Instrumental characterization like SEM, TEM, EDAX, and FT-IR and comprehensive antimicrobial studies were conducted to study the incorporation behavior of composites based on Ag NPs/ZnO QDs/NAZ. This combination has not been hitherto addressed anywhere else in the published literature, as well as commercial viability. In this context, we have precisely tuned nanoparticle to nitazoxanide ratio for designing the formulation demonstrating potent activity against MDR infections. By employing nitazoxanide as a scaffold and careful decoration thereof antimicrobial potency has been unlocked overriding conventional therapies. In addition, Ag NPs/ZnO-QDs/nitazoxanide (G6) formula exhibited a therapeutic efficacy span of 96.15 ± 1.68% to 99.57 ± 0.20% against MDR human infections post 48 h incubation; a breakthrough in therapeutic efficacy levels has been achieved by our method. Accordingly, ZnO QDs/Ag NPs/NAZ composite offered potential multidrug resistant human pathogens as a new trend of revolutionizing antimicrobial treatment.
Collapse
Affiliation(s)
- Islam Gomaa
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo, 11837, Egypt
| | - Ghadah Aleid
- Basic Science Departments, Preparatory Year, University of Ha'il, 1560, Hail, Kingdom of Saudi Arabia
| | - Shahira H El-Moslamy
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
| | - Anoud AlShammari
- Department of Physics and Chemistry, Northern Border University, Rafha, Kingdom of Saudi Arabia
| | - Sumayyah Al-Marshedy
- Biochemistry Department, College of Medicine, University of Ha'il, Hail, Kingdom of Saudi Arabia
| | - Freah Alshammary
- Department of Preventive Dental Sciences, College of Dentistry, University of Ha'il, Hail, Kingdom of Saudi Arabia
| | - Jouza Gharkan
- Emergency Medical Services and Critical Care, Inaya Medical College, Riyadh, Kingdom of Saudi Arabia
| | - Reda Abdel-Hameed
- Basic Science Departments, Preparatory Year, University of Ha'il, 1560, Hail, Kingdom of Saudi Arabia.
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Elbadawy A Kamoun
- Department of Chemistry, College of Science, King Faisal University, 31982, Al-Ahsa, Kingdom of Saudi Arabia.
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications, New Borg Al-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
7
|
Ahmed N, Deng L, Narejo MUN, Baloch I, Deng L, Chachar S, Li Y, Li J, Bozdar B, Chachar Z, Hayat F, Chachar M, Gong L, Tu P. Bridging agro-science and human nutrition: zinc nanoparticles and biochar as catalysts for enhanced crop productivity and biofortification. FRONTIERS IN PLANT SCIENCE 2024; 15:1435086. [PMID: 39220014 PMCID: PMC11361987 DOI: 10.3389/fpls.2024.1435086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The integration of zinc nanoparticles (Zn NPs) with biochar offers a transformative approach to sustainable agriculture by enhancing plant productivity and human nutrition. This combination improves soil health, optimizes nutrient uptake, and increases resilience to environmental stressors, leading to superior crop performance. Our literature review shows that combining Zn NPs with biochar significantly boosts the crop nutrient composition, including proteins, vitamins, sugars, and secondary metabolites. This enhancement improves the plant tolerance to environmental challenges, crop quality, and shelf life. This technique addresses the global issue of Zn deficiency by biofortifying food crops with increased Zn levels, such as mung beans, lettuce, tomatoes, wheat, maize, rice, citrus, apples, and microgreens. Additionally, Zn NPs and biochar improve soil properties by enhancing water retention, cation exchange capacity (CEC), and microbial activity, making soils more fertile and productive. The porous structure of biochar facilitates the slow and sustained release of Zn, ensuring its bioavailability over extended periods and reducing the need for frequent fertilizer applications. This synergy promotes sustainable agricultural practices and reduces the environmental footprint of the traditional farming methods. However, potential ecological risks such as biomagnification, nanoparticle accumulation, and toxicity require careful consideration. Comprehensive risk assessments and management strategies are essential to ensure that agricultural benefits do not compromise the environmental or human health. Future research should focus on sustainable practices for deploying Zn NPs in agriculture, balancing food security and ecological integrity and positioning this approach as a viable solution for nutrient-efficient and sustainable agriculture.
Collapse
Affiliation(s)
- Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lifang Deng
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, China
| | | | - Iqra Baloch
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Lansheng Deng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Juan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Bilquees Bozdar
- Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Faisal Hayat
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | | | - Lin Gong
- Dongguan Yixiang Liquid Fertilizer Co. Ltd., Dongguan, China
| | - Panfeng Tu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Taeprayoon P, Pongphontong K, Somtrakoon K, Phusantisampan T, Meeinkuirt W. Synergistic effects of zinc and cadmium on phytoremediation potential of Christmas moss (Vesicularia montagnei). Sci Rep 2024; 14:17754. [PMID: 39085365 PMCID: PMC11291674 DOI: 10.1038/s41598-024-68849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
The hyperaccumulation potential of zinc (Zn) and cadmium (Cd) and their synergistic effects were examined in relation to Christmas moss (Vesicularia montagnei (Bél) Broth., Hypnaceae), an aquatic and terrestrial moss, dosed with Cd (Cd1 and Cd2), Zn (Zn1 and Zn2) and combined Zn and Cd (Cd1Zn1 and Cd2Zn2). Zinc promoted plant growth and development, particularly in the highest Zn and combined Zn/Cd treatments (Zn2 and Cd2Zn2). The Zn treatment resulted in substantial moss chlorophyll content and highest percentage relative growth rate in biomass value (0.23 mg L-1 and 106.8%, respectively); however, the Cd2Zn2 treatment achieved maximal production of chlorophyll a and total chlorophyll (0.29 and 0.51 mg L-1, respectively) due to synergistic effects. These findings suggest that Christmas moss is a highly metal-tolerant and adaptable bryophyte species. Zinc was essential for reducing the detrimental effects of Cd while simultaneously promoting moss growth and biomass development. Furthermore, Christmas moss exhibited hyperaccumulation potential for Cd and Zn in the Cd2Zn2 and Zn alone treatments, as evidenced by highest Cd and Zn values in gametophores (1002 and 18,596 mg per colony volume, respectively). Using energy dispersive X-ray fluorescence (EDXRF) spectrometry, atomic percentages of element concentrations in moss gametophores in the Zn2, Cd2 and combined Zn/Cd treatments were generally in the order: K > Ca > P > Zn > Cd. When comparing the atomic percentages of Zn and Cd in gametophores, it is likely that the higher atomic percentage of Zn was because this element is essential for plant growth and development.
Collapse
Affiliation(s)
- Puntaree Taeprayoon
- Agricultural and Environmental Utilization Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand
| | - Kanwara Pongphontong
- Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, 44150, Maha Sarakham, Thailand
| | - Khanitta Somtrakoon
- Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai, 44150, Maha Sarakham, Thailand
| | - Theerawut Phusantisampan
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Weeradej Meeinkuirt
- Water and Soil Environmental Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand.
| |
Collapse
|
9
|
Singh S, Tiwari H, Verma A, Gupta P, Chattopadhaya A, Singh A, Singh S, Kumar B, Mandal A, Kumar R, Yadav AK, Gautam HK, Gautam V. Sustainable Synthesis of Novel Green-Based Nanoparticles for Therapeutic Interventions and Environmental Remediation. ACS Synth Biol 2024; 13:1994-2007. [PMID: 38899943 DOI: 10.1021/acssynbio.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The advancement in nanotechnology has completely revolutionized various fields, including pharmaceutical sciences, and streamlined the potential therapeutic of many diseases that endanger human life. The synthesis of green nanoparticles by biological processes is an aspect of the newly emerging scientific field known as "green nanotechnology". Due to their safe, eco-friendly, nontoxic nature, green synthesis tools are better suited to produce nanoparticles between 1 and 100 nm. Nanoformulation of different types of nanoparticles has been made possible by using green production techniques and commercially feasible novel precursors, such as seed extracts, algae, and fungi, that act as potent reducing, capping, and stabilizing agents. In addition to this, the biofunctionalization of nanoparticles has also broadened its horizon in the field of environmental remediation and various novel therapeutic innovations including wound healing, antimicrobial, anticancer, and nano biosensing. However, the major challenge pertaining to green nanotechnology is the agglomeration of nanoparticles that may alter the surface topology, which can affect biological physiology, thereby contributing to system toxicity. Therefore, a thorough grasp of nanoparticle toxicity and biocompatibility is required to harness the applications of nanotechnology in therapeutics.
Collapse
Affiliation(s)
- Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Amrit Chattopadhaya
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ananya Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sanjana Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
- Department of Botany, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Brijesh Kumar
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, 221005, India
| | - Abhijit Mandal
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashok K Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Hemant Kumar Gautam
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
10
|
Zhang H, Zhou Q, Liu R, Zhao Z, Liu J, Siddique KHM, Mao H. Enhancing zinc biofortification and mitigating cadmium toxicity in soil-earthworm-spinach systems using different zinc sources. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135243. [PMID: 39029182 DOI: 10.1016/j.jhazmat.2024.135243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/16/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Cadmium (Cd) pollution poses significant threats to soil organisms and human health by contaminating the food chain. This study aimed to assess the impact of various concentrations (50, 250, and 500 mg·kg-1) of zinc oxide nanoparticles (ZnO NPs), bulk ZnO, and ZnSO4 on morphological changes and toxic effects of Cd in the presence of earthworms and spinach. The results showed that Zn application markedly improved spinach growth parameters (such as fresh weight, plant height, root length, and root-specific surface area) and root morphology while significantly reducing Cd concentration and Cd bioconcentration factors (BCF-Cd) in spinach and earthworms, with ZnO NPs exhibiting the most pronounced effects. Earthworm, spinach root, and shoot Cd concentration decreased by 82.3 %, 77.0 %, and 75.6 %, respectively, compared to CK. Sequential-step extraction (BCR) analysis revealed a shift in soil Cd from stable to available forms, consistent with the available Cd (DTPA-Cd) results. All Zn treatments significantly reduced Cd accumulation, alleviated Cd-induced stress, and promoted spinach growth, with ZnO NPs demonstrating the highest Cd reduction and Zn bioaugmentation efficiencies compared to bulk ZnO and ZnSO4 at equivalent concentrations. Therefore, ZnO NPs offer a safer and more effective option for agricultural production and soil heavy metal pollution management than other Zn fertilizers.
Collapse
Affiliation(s)
- Haoyue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Qianqian Zhou
- Lanzhou Industry Research Institute, Lanzhou 730050, Gansu, China
| | - Ruiyu Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zimo Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinshan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Voloshyna IM, Netiaha YM, Nechaiuk YV, Khomenko VG, Shkotova LV. The influence of metal nanoparticles on plants. BIOPOLYMERS AND CELL 2024; 40:83-95. [DOI: 10.7124/bc.000aaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
| | | | | | | | - L. V. Shkotova
- 'Institute of Molecular Biology and Genetics, NAS of Ukraine'
| |
Collapse
|
12
|
Nizamani MM, Hughes AC, Zhang HL, Wang Y. Revolutionizing agriculture with nanotechnology: Innovative approaches in fungal disease management and plant health monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172473. [PMID: 38615773 DOI: 10.1016/j.scitotenv.2024.172473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Nanotechnology has emerged as a transformative force in modern agriculture, offering innovative solutions to address challenges related to fungal plant diseases and overall agricultural productivity. Specifically, the antifungal activities of metal, metal oxide, bio-nanoparticles, and polymer nanoparticles were examined, highlighting their unique mechanisms of action against fungal pathogens. Nanoparticles can be used as carriers for fungicides, offering advantages in controlled release, targeted delivery, and reduced environmental toxicity. Nano-pesticides and nano-fertilizers can enhance nutrient uptake, plant health, and disease resistance were explored. The development of nanosensors, especially those utilizing quantum dots and plasmonic nanoparticles, promises early and accurate detection of fungal pathogens, a crucial step in timely disease management. However, concerns about their potential toxic effects on non-target organisms, environmental impacts, and regulatory hurdles underscore the importance of rigorous research and impact assessments. The review concludes by emphasizing the significant prospects of nanotechnology in reshaping the future of agriculture but advocates for a balanced approach that prioritizes safety, sustainability, and environmental stewardship.
Collapse
Affiliation(s)
- Mir Muhammad Nizamani
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, China
| | - Hai-Li Zhang
- Sanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
13
|
Chen Z, Feng Y, Guo Z, Han M, Yan X. Zinc oxide nanoparticles alleviate cadmium toxicity and promote tolerance by modulating programmed cell death in alfalfa (Medicago sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133917. [PMID: 38432092 DOI: 10.1016/j.jhazmat.2024.133917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) can induce programmed cell death (PCD) and zinc oxide nanoparticles (ZnO NPs) effectively alleviate Cd stress. However, the mechanisms of ZnO NPs-mediated Cd detoxification in alfalfa (Medicago sativa L.) are limited. The pot experiment was conducted with Cd soil (19.2 mg kg-1) and foliar ZnO NPs (100 mg L-1) on alfalfa. The results showed that Cd reduced shoot height and biomass, and accumulated reactive oxygen species (ROS), resulting in oxidative stress and further PCD (plasmolysis, cytosolic and nuclear condensation, subcellular organelle swelling, and cell death). ZnO NPs positively regulated the antioxidant system, cell membrane stability, ultrastructure, osmotic homeostasis, and reduced PCD, indicating a multi-level coordination for the increased Cd tolerance. ZnO NPs up-regulated the activity and expression of antioxidant enzymes and regulated PCD-related genes to scavenge ROS and mitigate PCD caused by Cd. The genes related to ZnO NPs-mediated Cd detoxification were significantly enriched in cell death and porphyrin and chlorophyll metabolism. Overall, it elucidates the molecular basis of ZnO NPs-mediated Cd-tolerance by promoting redox and osmotic homeostasis, maintaining cellular ultrastructure, reducing Cd content, and attenuating Cd-induced PCD. it provides a promising application of ZnO NPs to mitigate Cd phytotoxicity and the related cellular and biochemical mechanisms. ENVIRONMENTAL IMPLICATION: Cd, one of the most toxic heavy metals, has caused serious environmental pollution. ZnO NPs can effectively alleviate Cd stress on plants and the environment. This study revealed that foliar-applied ZnO NPs alleviate Cd toxicity by mitigating the oxidative damage and regulating Cd-induced PCD via morphological, physiological, and transcriptomic levels. The findings elucidated the molecular basis of ZnO NPs-mediated Cd tolerance by promoting osmotic and redox homeostasis, reducing Cd content and lipid peroxidation, attenuating Cd-induced PCD features, and altering PCD-related genes in alfalfa. The study laid a theoretical foundation for the safe production of alfalfa under Cd pollution.
Collapse
Affiliation(s)
- Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuxi Feng
- College of Animal science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Mengli Han
- College of Animal science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuebing Yan
- College of Animal science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
14
|
Arteaga-Castrejón AA, Agarwal V, Khandual S. Microalgae as a potential natural source for the green synthesis of nanoparticles. Chem Commun (Camb) 2024; 60:3874-3890. [PMID: 38529840 DOI: 10.1039/d3cc05767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The increasing global population is driving the development of alternative sources of food and energy, as well as better or new alternatives for health and environmental care, which represent key challenges in the field of biotechnology. Microalgae represent a very important source material to produce several high-value-added bioproducts. Due to the rapid changes in the modern world, there is a need to build new materials for use, including those in the nanometer size, although these developments may be chronological but often do not occur at a time. In the last few years, a new frontier has opened up at the interface of biotechnology and nanotechnology. This new frontier could help microalgae-based nanomaterials to possess new functions and abilities. Processes for the green synthesis of nanomaterials are being investigated, and the availability of biological resources such as microalgae is continuously being examined. The present review provides a concise overview of the recent advances in the synthesis, characterization, and applications of nanoparticles formed using a wide range of microalgae-based biosynthesis processes. Highlighting their innovative and sustainable potential in current research, our study contributes towards the in-depth understanding and provides latest updates on the alternatives offered by microalgae in the synthesis of nanomaterials.
Collapse
Affiliation(s)
- Ariana A Arteaga-Castrejón
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, Mexico.
| | - Sanghamitra Khandual
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
15
|
Chen F, Jiang F, Okla MK, Abbas ZK, Al-Qahtani SM, Al-Harbi NA, Abdel-Maksoud MA, Gómez-Oliván LM. Nanoparticles synergy: Enhancing wheat (Triticum aestivum L.) cadmium tolerance with iron oxide and selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169869. [PMID: 38218476 DOI: 10.1016/j.scitotenv.2024.169869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields and also individual application of iron oxide nanoparticle (FeO - NPs) and selenium nanoparticles (Se - NPs) have been studied in many literatures. However, the combined application of FeO and Se - NPs is a novel approach and studied in only few studies. For this purpose, a pot experiment was conducted to examine various growth and biochemical parameters in wheat (Triticum aestivum L.) under the toxic concentration of cadmium (Cd) i.e., 50 mg kg-1 which were primed with combined application of two levels of FeO and Se - NPs i.e., 15 and 30 mg L-1 respectively. The results showed that the Cd toxicity in the soil showed a significantly (P < 0.05) declined in the growth, gas exchange attributes, sugars, AsA-GSH cycle, cellular fractionation, proline metabolism in T. aestivum. However, Cd toxicity significantly (P < 0.05) increased oxidative stress biomarkers, enzymatic and non-enzymatic antioxidants including their gene expression in T. aestivum. Although, the application of FeO and Se - NPs showed a significant (P < 0.05) increase in the plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased the oxidative stress, and Cd uptake. In addition, individual or combined application of FeO and Se - NPs enhanced the cellular fractionation and decreases the proline metabolism and AsA - GSH cycle in T. aestivum. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Feifei Jiang
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zahid Khorshid Abbas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Leobardo Manuel Gómez-Oliván
- Universidad Autónoma del Estado de México, Paseo Colón, intersección Paseo Tollocan Col. Universidad, CP 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
16
|
Banerjee S, Mondal S, Islam J, Sarkar R, Saha B, Sen A. Rhizospheric nano-remediation salvages arsenic genotoxicity: Zinc-oxide nanoparticles articulate better oxidative stress management, reduce arsenic uptake, and increase yield in Pisum sativum (L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169493. [PMID: 38151134 DOI: 10.1016/j.scitotenv.2023.169493] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Pea (Pisum sativum L.), a legume, has a high nutritional content, but arsenic (As) in the agro-ecosystem poses a significant bottleneck to its yield, especially in South East Asia, by severely hampering ontogeny. The present study proposes a rhizospheric nano-remediation strategy to evade As-genotoxicity and improve crop yield using biogenic zinc-oxide nanoparticles (ZnONPs). Similar to any other source of environmental stress, As-toxicity caused rapid oxidative bursts with deterioration in morpho-physiological attributes (germination rate, shoot length, and root length decreased by 62 %, 16 %, and 14.9 % respectively in the negative control, over normal control). Reactive oxygen species (ROS) accumulation (12.8 and 9-fold increase in leaves and roots) overburdened antioxidative defense, and loss of cellular homeostasis resulted in membrane damage (82.75 % increase) and electrolyte-leakage (2.6-fold increase) in negative control. The study also reveals a significant increase in nuclear area, nuclear fragmentation, and micronuclei formation in root tip cells under As-stress, indicating severe genomic instability and increased programmed cell death (3.3-fold increase in early apoptotic cells) due to leaky plasma membrane and unrepaired DNA damage. Application of ZnONPs significantly reduced As-toxicity in peas due to its adsorption in the rhizosphere, causing diminished As-uptake and better antioxidant response. Improved phytochelatin synthesis enhanced vacuolar sequestration of arsenic, which reduced As-interference. Comparatively better flowering time (7.74-19.36 % reduction in flowering delay) with greater transcript abundance of GIGANTIA (GI), CONSTANS (CO), and FLOWERING LOCUS T (FT) genes; better photosynthetic activity (1.3-1.9-fold increased chlorophyll autofluorescence); increased pollen viability; lesser genotoxicity (decreased tail DNA in comet assay) was noticed. A maximum increase of 37.5 % in pod number and seed zinc content (1.67-fold) was observed while seed arsenic content decreased under ZnONPs treatment. However, the highest dose of ZnONPs (400 mg L-1) induced NP-toxicity in pea plants under our experimental conditions, while optimum stress-alleviation was observed up to 300 mg L-1.
Collapse
Affiliation(s)
- Swarnendra Banerjee
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Sourik Mondal
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Jarzis Islam
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Rajarshi Sarkar
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization (ARO), Ramat Yishay 3009500, Israel
| | - Arnab Sen
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India.
| |
Collapse
|
17
|
Saleem MH, Mfarrej MFB, Khan KA, Alharthy SA. Emerging trends in wastewater treatment: Addressing microorganic pollutants and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169755. [PMID: 38176566 DOI: 10.1016/j.scitotenv.2023.169755] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
This review focuses on the challenges and advances associated with the treatment and management of microorganic pollutants, encompassing pesticides, industrial chemicals, and persistent organic pollutants (POPs) in the environment. The translocation of these contaminants across multiple media, particularly through atmospheric transport, emphasizes their pervasive nature and the subsequent ecological risks. The urgency to develop cost-effective remediation strategies for emerging organic contaminants is paramount. As such, wastewater-based epidemiology and the increasing concern over estrogenicity are explored. By incorporating conventional and innovative wastewater treatment techniques, this article highlights the integration of environmental management strategies, analytical methodologies, and the importance of renewable energy in waste treatment. The primary objective is to provide a comprehensive perspective on the current scenario, imminent threats, and future directions in mitigating the effects of these pollutants on the environment. Furthermore, the review underscores the need for international collaboration in developing standardized guidelines and policies for monitoring and controlling these microorganic pollutants. It advocates for increased investment in research and development of advanced materials and technologies that can efficiently remove or neutralize these contaminants, thereby safeguarding environmental health and promoting sustainable practice.
Collapse
Affiliation(s)
- Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates.
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Saif A Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
18
|
Varghese RM, S AK, Shanmugam R. Comparative Anti-inflammatory Activity of Silver and Zinc Oxide Nanoparticles Synthesized Using Ocimum tenuiflorum and Ocimum gratissimum Herbal Formulations. Cureus 2024; 16:e52995. [PMID: 38406168 PMCID: PMC10894022 DOI: 10.7759/cureus.52995] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Background The aim of this study was to evaluate and compare the anti-inflammatory properties of silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) that were synthesized utilizing African tulsi and black tulsi herbal formulations. The anti-inflammatory activity was assessed by the utilization of bovine serum albumin (BSA) denaturation and egg albumin denaturation tests. In addition, a membrane stabilization experiment was performed to evaluate their efficacy as anti-inflammatory drugs. Methods This study was conducted at Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India. AgNPs and ZnONPs were synthesized using Ocimum tenuiflorum (African tulsi) and Ocimum gratissimum (black tulsi) extracts. The BSA denaturation assay involved mixing serum albumin with different nanoparticle concentrations (10-50 µg/mL) and measuring absorbance at 660 nm. The egg albumin denaturation assay followed a similar procedure. The membrane stabilization assay utilized red blood cells and spectrophotometric measurements at 540 nm. Results In the BSA denaturation assay, AgNPs and ZnONPs showed concentration-dependent inhibition of protein denaturation. While these nanoparticles exhibited anti-inflammatory potential, diclofenac sodium consistently displayed slightly stronger inhibition. In the egg albumin denaturation assay, AgNPs and ZnONPs inhibited protein denaturation at various concentrations. Their anti-inflammatory effects were comparable to the standard drug, diclofenac sodium. In the membrane stabilization assay, both nanoparticle types demonstrated concentration-dependent membrane stabilization effects. Diclofenac sodium exhibited slightly stronger membrane stabilization. Conclusions AgNPs and ZnONPs synthesized using Ocimum tenuiflorum and Ocimum gratissimum (African tulsi and black tulsi) possess anti-inflammatory potential, as demonstrated by their inhibition of protein denaturation and membrane stabilization. While these nanoparticles show promise as anti-inflammatory agents, further research is needed to explore their clinical applications and safety profiles.
Collapse
Affiliation(s)
- Remmiya Mary Varghese
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Aravind Kumar S
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
19
|
Mahawar L, Živčák M, Barboricova M, Kovár M, Filaček A, Ferencova J, Vysoká DM, Brestič M. Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. under salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108281. [PMID: 38157834 DOI: 10.1016/j.plaphy.2023.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
The study evaluates the impact of two metal oxide nanoparticles: copper oxide (CuO) and zinc oxide (ZnO) on the growth and physiology of Raphanus sativus L. (radish) under salinity stress. Fifteen days old seedlings of R. sativus were subjected to different concentrations of salt stress (0 mM, 150 mM, and 300 mM NaCl) alone and in interaction with 100 mgL-1 metal oxide nanoparticle treatments (CuO and ZnO NPs via foliar spray) for 15 days. The results confirmed the severe effects of salinity stress on the growth and physiology of radish plants by decreasing nutrient uptake, leaf area, and photosystems photochemistry and by increasing proline accumulation, anthocyanin, flavonoids content, and antioxidant enzyme activities which is directly linked to increased oxidative stress. The foliar application of CuO and ZnO NPs alleviated the adverse effects of salt stress on radish plants, as indicated by improving these attributes. Foliar spray of ZnO NPs was found efficient in improving the leaf area, photosynthetic electron transport rate, the PSII quantum yield, proton conductance and mineral content in radish plants under NaCl stress. Besides, ZnO NPs decreased the NaCl-induced oxidative stress by declining proline, anthocyanin, and flavonoids contents and enzymatic activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (GOPX). Thus, our study revealed that ZnO NPs are more effective and have beneficial effects over CuO NPs in promoting growth and reducing the adverse effects of NaCl stress in radish plants.
Collapse
Affiliation(s)
- Lovely Mahawar
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia; Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 90187, Sweden.
| | - Marek Živčák
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Maria Barboricova
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Andrej Filaček
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Jana Ferencova
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Dominika Mlynáriková Vysoká
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Marián Brestič
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia.
| |
Collapse
|
20
|
Kaznina NM, Repkina NS, Batova YV, Ignatenko AA, Titov AF. Seed Treatment with Salicylic Acid Increases Gene Expression and Activity of Antioxidant Enzymes in Wheat Plants in Zinc or Copper Deficiency. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 513:S55-S60. [PMID: 38430295 DOI: 10.1134/s001249662470090x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 03/03/2024]
Abstract
The effect of wheat seed treatment with salicylic acid (SA) on expression of the TaCu/ZnSOD, TaFeSOD, and TaCAT2 genes and activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in leaves was studied at optimal contents of zinc (2 µM) and copper (0.3 µM) in the root environment and in zinc and copper deficiencies. Seed treatment with SA was for the first time shown to increase of the amount of transcripts of the above genes as compared with untreated plants, both in optimal conditions and in zinc or copper deficiency. Activities of the enzymes, especially catalase, also increased. Judging by the malondialdehyde (MDA) content, the changes make it possible to avoid an increase in lipid peroxidation (LPO) and, therefore, oxidative stress. A positive effect of seed treatment with SA on activities of the main antioxidant enzymes was assumed to underlie the stimulating effect of SA on physiological processes in plants exposed to microelement deficiency.
Collapse
Affiliation(s)
- N M Kaznina
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia.
| | - N S Repkina
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - Yu V Batova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - A A Ignatenko
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - A F Titov
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
21
|
Aly AA, Safwat G, Eliwa NE, Eltawil AHM, Abd El-Aziz MH. Changes in morphological traits, anatomical and molecular alterations caused by gamma-rays and zinc oxide nanoparticles in spinach (Spinacia oleracea L.) plant. Biometals 2023; 36:1059-1079. [PMID: 37173538 PMCID: PMC10545649 DOI: 10.1007/s10534-023-00505-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Spinach seeds were irradiated with gamma-rays after that soaked in zinc oxide nanoparticles (ZnO-NPs) at 0.0, 50, 100 and 200 ppm for twenty-four hours at room temperature. Vegetative plant growth, photosynthetic pigments, and proline contents were investigated. Also, anatomical studies and the polymorphism by the SCoT technique were conducted. The present results revealed that the germination percentage was at the maximum values for the treatment of 100 ppm ZnO-NPs (92%), followed by 100 ppm ZnO-NPs + 60 Gy (90%). The application of ZnO-NPs resulted in an enhancement in the plant length. The maximum of chlorophylls and carotenoids content was recorded in the treatment, 100 ppm ZnO-NPs + 60 Gy. Meanwhile, the irradiation dose level (60 Gy) with all ZnO-NPs treatments increased proline content and reached its maximum increase to 1.069 mg/g FW for the treatment 60 Gy combined with 200 ppm ZnO-NPs. Also, the anatomical studies declared that there were variations between the treatments; un-irradiated and irradiated combined with ZnO-NPs plants which reveal that the leave epidermal tissue increased with 200 ppm ZnO-NPs in both the upper and lower epidermis. While irradiated plants with 60 Gy combined with 100 ppm ZnO-NPs gave more thickness of upper epidermis. As well as SCoT molecular marker technique effectively induced molecular alterations between the treatments. Where, SCoT primers targeted many new and missing amplicons that are expected to be associated with the lowly and highly expressed genes with 18.2 and 81.8%, respectively. Also, showed that the soaking in ZnO-NPs was helped for reducing molecular alteration rate, both spontaneous and induced by gamma irradiation. This nominates ZnO-NPs as potential nano-protective agents that can reduce irradiation-induced genetic damage.
Collapse
Affiliation(s)
- Amina A Aly
- Natural Products Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt
| | - Noha E Eliwa
- Natural Products Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed H M Eltawil
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt
| | - M H Abd El-Aziz
- Genetic Department Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
22
|
Zhu Y, Wang L, Ma J, Li Y, Chen F, Peijnenburg W. Comparative physiological and metabolomics analyses using Ag⎯NPs and HAS31 (PGPR) to alleviate Cr stress in barley (Hordeum vulgare L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122010. [PMID: 37302784 DOI: 10.1016/j.envpol.2023.122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
In the current industrial scenario, chromium (Cr) as a metal is of great importance but poses a major threat to the ecosystem because of its toxicity, but fewer studies have been conducted on its effects and alleviation strategies by using nanoparticles (NPs) and plant growth promoting rhizobacteria (PGPR). Taking into consideration the positive effects of silver⎯nanoparticles (Ag⎯NPs) and (HAS31) rhizobacteria in reducing Cr toxicity in plants, the present study was conducted. A pot experiment was conducted to determine the effects of single and/or combined application of different levels [0 (no Ag⎯NPS), 15 and 30 mM] of Ag⎯NPs and HAS31 [0 (no HAS31), 50 g and 100 g] on Cr accumulation, morpho-physiological and antioxidative defense attributes of barley (Hordeum vulgare L.) exposed to severe Cr stress [0 (without Cr stress), 50 and 100 μM)]. Results from the present study showed that the increasing levels of Cr in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. In contrast, increasing levels of Cr in the soil significantly (P < 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation patter in the roots of H. vulgare. Although, the activities of enzymatic antioxidants and the response of their gene expressions in the roots and shoots of the plants and non-enzymatic such as phenolic, flavonoid, ascorbic acid, and anthocyanin contents were increased by increasing the Cr concentration in the soil. The negative impacts of Cr injury were reduced by the application of PGPR (HAS31) and Ag⎯NPs, which increased plant growth and biomass, improved photosynthetic apparatus, antioxidant enzymes, and mineral uptake, as well as diminished the exudation of organic acids and oxidative stress indicators in roots of H. vulgare by decreasing Cr toxicity. Research findings, therefore, suggest that the application of PGPR (HAS31) and Ag⎯NPs can ameliorate Cr toxicity in H. vulgare, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou, 221000, China.
| | - Liping Wang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou, 221000, China.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Yuhang Li
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, 3720 BA, the Netherlands.
| |
Collapse
|
23
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
24
|
Yadav RC, Sharma SK, Varma A, Singh UB, Kumar A, Bhupenchandra I, Rai JP, Sharma PK, Singh HV. Zinc-solubilizing Bacillus spp. in conjunction with chemical fertilizers enhance growth, yield, nutrient content, and zinc biofortification in wheat crop. Front Microbiol 2023; 14:1210938. [PMID: 37469421 PMCID: PMC10352851 DOI: 10.3389/fmicb.2023.1210938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/29/2023] [Indexed: 07/21/2023] Open
Abstract
Micronutrient deficiency is a serious health issue in resource-poor human populations worldwide, which is responsible for the death of millions of women and underage children in most developing countries. Zinc (Zn) malnutrition in middle- and lower-class families is rampant when daily calorie intake of staple cereals contains extremely low concentrations of micronutrients, especially Zn and Fe. Looking at the importance of the problem, the present investigation aimed to enhance the growth, yield, nutrient status, and biofortification of wheat crop by inoculation of native zinc-solubilizing Bacillus spp. in conjunction with soil-applied fertilizers (NPK) and zinc phosphate in saline soil. In this study, 175 bacterial isolates were recovered from the rhizosphere of wheat grown in the eastern parts of the Indo-Gangetic Plain of India. These isolates were further screened for Zn solubilization potential using sparingly insoluble zinc carbonate (ZnCO3), zinc oxide (ZnO), and zinc phosphate {Zn3(PO4)2} as a source of Zn under in vitro conditions. Of 175 bacterial isolates, 42 were found to solubilize either one or two or all the three insoluble Zn compounds, and subsequently, these isolates were identified based on 16S rRNA gene sequences. Based on zone halo diameter, solubilization efficiency, and amount of solubilized zinc, six potential bacterial strains, i.e., Bacillus altitudinis AJW-3, B. subtilis ABW-30, B. megaterium CHW-22, B. licheniformis MJW-38, Brevibacillus borstelensis CHW-2, and B. xiamenensis BLW-7, were further shortlisted for pot- and field-level evaluation in wheat crop. The results of the present investigation clearly indicated that these inoculants not only increase plant growth but also enhance the yield and yield attributes. Furthermore, bacterial inoculation also enhanced available nutrients and microbial activity in the wheat rhizosphere under pot experiments. It was observed that the application of B. megaterium CHW-22 significantly increased the Zn content in wheat straw and grains along with other nutrients (N, P, K, Fe, Cu, and Mn) followed by B. licheniformis MJW-38 as compared to other inoculants. By and large, similar observations were recorded under field conditions. Interestingly, when comparing the nutrient use efficiency (NUE) of wheat, bacterial inoculants showed their potential in enhancing the NUE in a greater way, which was further confirmed by correlation and principal component analyses. This study apparently provides evidence of Zn biofortification in wheat upon bacterial inoculation in conjunction with chemical fertilizers and zinc phosphate in degraded soil under both nethouse and field conditions.
Collapse
Affiliation(s)
- Ramesh Chandra Yadav
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Sushil K. Sharma
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Adarsh Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Ingudam Bhupenchandra
- Farm Science Centre, ICAR-Research Complex for North Eastern Hill Region, Tamenglong, Manipur, India
| | - Jai P. Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pawan K. Sharma
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| |
Collapse
|
25
|
Sun Y, Mfarrej MFB, Song X, Ma J, Min B, Chen F. New insights in to the ameliorative effects of zinc and iron oxide nanoparticles to arsenic stressed spinach (Spinacia oleracea L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107715. [PMID: 37104975 DOI: 10.1016/j.plaphy.2023.107715] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/10/2023] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Abstract
Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields and also individual application of iron oxide nanoparticle (FeO-NPs) and zinc oxide nanoparticle (ZnO-NPs) have been studied in many literatures. However, the combined application of FeO and ZnO-NPs is a novel approach and studied in only few studies. For this purpose, a pot experiment was conducted to examine the plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), sugars, nutritional status of the plant, organic acid exudation pattern As accumulation from the different parts of the plants in spinach (Spinacia oleracea L.) under the different As concentrations i.e., 0 (no As), 60 and 120 μM] which were primed with combined application of two levels of FeO-NPs (10 and 20 mg L-1) and ZnO-NPs (20 and 40 mg L-1). Results from the present study showed that the increasing levels of As in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. In contrast, increasing levels of As in the soil significantly (P < 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation patter in the roots of S. oleracea. The negative impact of As toxicity can overcome the combined application of ZnO-NPs and FeO-NPs, which ultimately increased plant growth and biomass by capturing the reactive oxygen species, and decreased oxidative stress in S. oleracea by decreasing the As contents in the roots and shoots of the plants. Research findings, therefore, suggest that the combined application of ZnO-NPs and FeO-NPs can ameliorate As toxicity in S. oleracea, resulting in improved plant growth and composition under As stress, as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Yan Sun
- School of Public Administration, Hohai University, Nanjing, China.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Xiaojun Song
- School of Public Administration, Hohai University, Nanjing, China.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, China.
| | - Bolin Min
- School of Public Administration, Hohai University, Nanjing, China.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, China.
| |
Collapse
|
26
|
Alatawi A, Mfarrej MFB, Alshegaihi RM, Asghar MA, Mumtaz S, Yasin G, Marc RA, Fahad S, Elsharkawy MM, Javed S, Ali S. Application of silicon and sodium hydrosulfide alleviates arsenic toxicity by regulating the physio-biochemical and molecular mechanisms of Zea mays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27739-y. [PMID: 37243763 DOI: 10.1007/s11356-023-27739-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Soil contamination with toxic heavy metals (such as arsenic (As)) is becoming a serious global problem due to rapid development of social economy, although the use of silicon (Si) and sodium hydrosulfide (NaHS) has been found effective in enhancing plant tolerance against biotic and abiotic stresses including the As toxicity. For this purpose, a pot experiment was conducted using the different levels of As toxicity in the soil, i.e., (0 mM (no As), 50, and 100 µM) which were also supplied with the different exogenous levels of Si, i.e., (0 (no Si), 1.5, and 3 mM) and also with the NaHS, i.e., (0 (no NaHS), 1, and 2 mM) on growth, photosynthetic pigments, gas exchange characteristics, oxidative stress biomarkers, antioxidant machinery (enzymatic and non-enzymatic antioxidants), and their gene expression, ion uptake, organic acid exudation, and As uptake of maize (Zea mays L.). Results from the present study showed that the increasing levels of As in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. In contrast, increasing levels of As in the soil significantly (P < 0.05) increased oxidative stress indicators in terms of malondialdehyde, hydrogen peroxide, and electrolyte leakage and also increased organic acid exudation patter in the roots of Z. mays, although the activities of enzymatic antioxidants and the response of their gene expressions in the roots and shoots of the plants and non-enzymatic such as phenolic, flavonoid, ascorbic acid, and anthocyanin contents were initially increased with the exposure of 50 µM As, but decreased by the increasing the As concentration 100 µM in the soil. The negative impact of As toxicity can overcome the application of Si and NaHS, which ultimately increased plant growth and biomass by capturing the reactive oxygen species and decreased oxidative stress in Z. mays by decreasing the As contents in the roots and shoots of the plants. Our results also showed that the Si was more sever and showed better results when we compared with NaHS under the same treatment of As in the soil. Research findings, therefore, suggest that the combined application of Si and NaHS can ameliorate As toxicity in Z. mays, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Aishah Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, 71421, Tabuk, Saudi Arabia
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, 144534, Abu Dhabi, United Arab Emirates
| | - Rana M Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, 21493, Saudi Arabia
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik U. 2, H-2462, Martonvásár, Hungary
| | - Sahar Mumtaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan
| | - Ghulam Yasin
- Mountain Research Centre for Field Crops, Khudwani, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 192101, Jammu and Kashmir, India
| | - Romina Alina Marc
- Faculty of Food Science and Technology, Department of Food Engineering, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca-Napoca, Romania
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan, 23200, Pakistan.
| | - Mohsen Mohamed Elsharkawy
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafr El-Sheikh, Egypt
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
27
|
Demir AY, Karadayi M, Isaoglu M, Karadayi G, Gulluce M. In vitro genotoxicity assessment of biosynthesized zinc oxide nanoparticles. Toxicol Ind Health 2023:7482337231173727. [PMID: 37156264 DOI: 10.1177/07482337231173727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
There are various studies on the toxicological potentials of conventionally synthesized zinc oxide (ZnO) nanoparticles, which are useful tools for many medical applications. However, knowledge about the biologically synthesized ones is still limited. In this study, the potential of producing ZnO nanoparticles via a green synthesis method, which enables safer, environmentally, economical and controlled production by using the Symphoricarpos albus L. plant, was investigated. For this purpose, aqueous extract was obtained from the fruits of the plant and reacted with zinc nitrate precursor. Characterization of the synthesized product was carried out by SEM and EDAX analyzes. In addition, the biosafety of the product was also investigated by using the Ames/Salmonella, E. coli WP2, Yeast DEL, seed germination, and RAPD test systems. The results obtained from SEM studies showed that spherical nanoparticles with an average diameter of 30 nm were synthesized as a result of the reaction. EDAX findings confirmed that these nanoparticles were composed of Zn and O elements. On the other hand, according to the findings of the biocompatibility tests, the synthesized nanoparticle did not show any toxic and genotoxic effects up to a concentration of 640 μg/ml in any of the test systems. Accordingly, considering the findings of our study, it was concluded that the aqueous extract of S. albus fruits can be used for the green synthesis of ZnO nanoparticles, the products obtained successfully passed the biocompatibility tests in our study, and additionally, more comprehensive biocompatibility tests should be performed before industrial scale production.
Collapse
Affiliation(s)
- Abdussamed Yasin Demir
- Department of Medical Genetics, Medical Faculty, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mehmet Karadayi
- Biology Department, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mine Isaoglu
- Institute of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Gokce Karadayi
- Molecular Biology and Genetics Department, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Medine Gulluce
- Biology Department, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
28
|
Ma J, Li Y, Chen F, Sun Y, Zhu Y, Wang L. Bacillus mycoides PM35 in combination with titanium dioxide (TiO 2)⎯nanoparticles enhanced morpho-physio-biochemical attributes in Barley (Hordeum vulgare L.) under cadmium stress. CHEMOSPHERE 2023; 323:138224. [PMID: 36828111 DOI: 10.1016/j.chemosphere.2023.138224] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria and are known to induce plant growth promotion and titanium dioxide (TiO2)⎯nanoparticles (NPs) used in a range of applications that need increased whiteness, improved corrosion resistance and photocatalytic activity. Keeping in view the stress mitigation potential of TiO2⎯NPS and B. mycoides PM35, the existing research work was premeditated to inspect the beneficial role of seed priming with using different levels of TiO2⎯NPs i.e., [(0 no TiO2⎯NPs), 25 and 50 μg/ml] and soil incubation plant growth promoting rhizobacteria (B. mycoides PM35) i.e., [(0 no B. mycoides PM35), 10 and 20 μL] on biochemical, morphological and physiological characteristics of Barley (Hordeum vulgare L.) plants under different levels of Cd in the soil i.e., [(0 Cd), 50 and 100 mg kg-1]. Results from the present study showed that the increasing levels of Cd in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. In contrast, increasing levels of Cd in the soil significantly (P < 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation patter in the roots of H. vulgare. Although, the activities of enzymatic antioxidants and the response of their gene expressions in the roots and shoots of the plants and non-enzymatic such as phenolic, flavonoid, ascorbic acid, and anthocyanin contents were initially increased with the exposure of 50 mg kg-1 Cd, but decreased by the increasing the Cd concentration 100 mg kg-1 in the soil. The negative impact of Cd toxicity can overcome the application of PGPR (B. mycoides PM35) and TiO2⎯NPs, which ultimately increased plant growth and biomass by capturing the reactive oxygen species, and decreased oxidative stress in H. vulgare by decreasing the Cd contents in the roots and shoots of the plants. Our results also showed that the TiO2⎯NPs were more sever and showed better results when we compared with PGPR (B. mycoides PM35) under the same treatment of Cd in the soil. Research findings, therefore, suggest that the combined application of PGPR (B. mycoides PM35) and TiO2⎯NPs can ameliorate Cd toxicity in H. vulgare, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Yuhang Li
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Yan Sun
- School of Public Administration, Hohai University, Nanjing, 211100, China.
| | - Yanfeng Zhu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Liping Wang
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
29
|
Fouda A, Saied E, Eid AM, Kouadri F, Alemam AM, Hamza MF, Alharbi M, Elkelish A, Hassan SED. Green Synthesis of Zinc Oxide Nanoparticles Using an Aqueous Extract of Punica granatum for Antimicrobial and Catalytic Activity. J Funct Biomater 2023; 14:jfb14040205. [PMID: 37103295 PMCID: PMC10144860 DOI: 10.3390/jfb14040205] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
The peel aqueous extract of Punica granatum was utilized to fabricate zinc oxide nanoparticles (ZnO-NPs) as a green approach. The synthesized NPs were characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy, which was attached to an energy dispersive X-ray (SEM-EDX). Spherical, well arranged, and crystallographic structures of ZnO-NPs were formed with sizes of 10-45 nm. The biological activities of ZnO-NPs, including antimicrobial and catalytic activity for methylene blue dye, were assessed. Data analysis showed that the antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria, as well as unicellular fungi, was observed to occur in a dose-dependent manner, displaying varied inhibition zones and low minimum inhibitory concentration (MIC) values in the ranges of 6.25-12.5 µg mL-1. The degradation efficacy of methylene blue (MB) using ZnO-NPs is dependent on nano-catalyst concentration, contact time, and incubation condition (UV-light emission). The maximum MB degradation percentages of 93.4 ± 0.2% was attained at 20 µg mL-1 after 210 min in presence of UV-light. Data analysis showed that there is no significant difference between the degradation percentages after 210, 1440, and 1800 min. Moreover, the nano-catalyst showed high stability and efficacy to degrade MB for five cycles with decreasing values of 4%. Overall, P. granatum-based ZnO-NPs are promising tools to inhibit the growth of pathogenic microbes and degradation of MB in the presence of UV-light emission.
Collapse
Affiliation(s)
- Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ebrahim Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Fayza Kouadri
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Ahmed M Alemam
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohammed F Hamza
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 11728, Egypt
| | - Maha Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Elkelish
- Biology Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
30
|
Chemek M, Kadi A, Merenkova S, Potoroko I, Messaoudi I. Improving Dietary Zinc Bioavailability Using New Food Fortification Approaches: A Promising Tool to Boost Immunity in the Light of COVID-19. BIOLOGY 2023; 12:biology12040514. [PMID: 37106716 PMCID: PMC10136047 DOI: 10.3390/biology12040514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
Zinc is a powerful immunomodulatory trace element, and its deficiency in the body is closely associated with changes in immune functions and viral infections, including SARS-CoV-2, the virus responsible for COVID-19. The creation of new forms of zinc delivery to target cells can make it possible to obtain smart chains of food ingredients. Recent evidence supports the idea that the optimal intake of zinc or bioactive compounds in appropriate supplements should be considered as part of a strategy to generate an immune response in the human body. Therefore, controlling the amount of this element in the diet is especially important for populations at risk of zinc deficiency, who are more susceptible to the severe progression of viral infection and disease, such as COVID-19. Convergent approaches such as micro- and nano-encapsulation develop new ways to treat zinc deficiency and make zinc more bioavailable.
Collapse
Affiliation(s)
- Marouane Chemek
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Svetlana Merenkova
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Irina Potoroko
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-Ressourcés, Institut Supérieur de Biotechnologie de Monastir, Universitéde Monastir, Monastir 5000, Tunisia
| |
Collapse
|
31
|
Scaling-up strategies for controllable biosynthetic ZnO NPs using cell free-extract of endophytic Streptomyces albus: characterization, statistical optimization, and biomedical activities evaluation. Sci Rep 2023; 13:3200. [PMID: 36823304 PMCID: PMC9950444 DOI: 10.1038/s41598-023-29757-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
In this study, we identified a suitable precursor and good cellular compartmentalization for enhancing bioactive metabolites to produce biosynthetic zinc oxide nanoparticles (ZnO NPs). An effective medium for cultivating endophytic Streptomyces albus strain E56 was selected using several optimized approaches in order to maximize the yield of biosynthetic ZnO NPs. The highest biosynthetic ZnO NPs yield (4.63 g/L) was obtained when pipetting the mixed cell-free fractions with 100 mM of zinc sulfate as a precursor. The generation of biosynthetic ZnO NPs was quickly verified using a colored solution (white color) and UV-Visible spectroscopy (maximum peak, at 320 nm). On a small scale, the Taguchi method was applied to improve the culture medium for culturing the strain E56. As a result, its cell-dry weight was 3.85 times that of the control condition. And then the biosynthesis of ZnO NPs (7.59 g/L) was increased by 1.6 times. Furthermore, by using the Plackett-Burman design to improve the utilized biogenesis pathway, the biosynthesis of ZnO NPs (18.76 g/L) was increased by 4.3 times. To find the best growth production line, we used batch and fed batch fermentation modes to gradually scale up biomass output. All kinetics of studied cell growth were evaluated during fed-batch fermentation as follows: biomass yield was 271.45 g/L, yield coefficient was 94.25 g/g, and ZnO NPs yield was 345.32 g/L. In vitro, the effects of various dosages of the controllable biosynthetic ZnO NPs as antimicrobial and anticancer agents were also investigated. The treatments with controllable biosynthetic ZnO NPs had a significant impact on all the examined multidrug-resistant human pathogens as well as cancer cells.
Collapse
|
32
|
Usman M, Zia-Ur-Rehman M, Rizwan M, Abbas T, Ayub MA, Naeem A, Alharby HF, Alabdallah NM, Alharbi BM, Qamar MJ, Ali S. Effect of soil texture and zinc oxide nanoparticles on growth and accumulation of cadmium by wheat: a life cycle study. ENVIRONMENTAL RESEARCH 2023; 216:114397. [PMID: 36167110 DOI: 10.1016/j.envres.2022.114397] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is getting worldwide attention due to its continuous accumulation in agricultural soils which is due to anthropogenic activities and finally Cd enters in food chain mainly through edible plants. Cadmium free food production on contaminated soils is great challenge which requires some innovative measures for crop production on such soils. The current study evaluated the efficiency of zinc oxide nanoparticles (ZnONPs) (0, 150 and 300 mg/kg) on the growth of wheat in texturally different soils including clay loam (CL), sandy clay loam (SCL), and sandy loam (SL) which were contaminated with were contaminated with 25 mg/kg of Cd before crop growth. Results depicted that doses of ZnONPs and soil textures significantly affected the biological yields, Zn and Cd uptake in wheat plants. The application of 300 mg/kg ZnONPs caused maximum increase in dry weights of shoot (66.6%), roots (58.5%), husk (137.8%) and grains (137.8%) in CL soil. The AB-DTPA extractable Zn was increased while Cd was decreased with doses of NPs depending upon soil textures. The maximum decrease in AB-DTPA extractable Cd was recorded in 300 mg/kg of ZnONPs treatment which was 58.7% in CL, 33.2% in SCL and 12.1% in SL soil as compared to respective controls. Minimum Cd concentrations in roots, shoots, husk and grain were found in 300 mg/kg ZnONPs amended CL soil which was 58%, 76.7%, 58%, and 82.6%, respectively. The minimum bioaccumulation factor (0.14), translocation index (2.46) and health risk index (0.05) was found in CL soil with the highest dose of NPs. The results concluded that use of ZnONPs significantly decreased Cd concentration while increased Zn concentrations in plants depending upon doses of NPs and soil textures.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Tahir Abbas
- Department of Environmental Sciences, University of Jhang, Pakistan
| | - Muhammad Ashar Ayub
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan; Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Asif Naeem
- Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology, Jhang Road, Faisalabad, 38000, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | | | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
33
|
Sun Y, Ma L, Ma J, Li B, Zhu Y, Chen F. Combined application of plant growth-promoting bacteria and iron oxide nanoparticles ameliorates the toxic effects of arsenic in Ajwain ( Trachyspermum ammi L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1098755. [PMID: 36643291 PMCID: PMC9832315 DOI: 10.3389/fpls.2022.1098755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/01/2023]
Abstract
Soil contamination with toxic heavy metals [such as arsenic (As)] is becoming a serious global problem because of the rapid development of the social economy. Although plant growth-promoting bacteria (PGPB) and nanoparticles (NPs) are the major protectants to alleviate metal toxicity, the study of these chemicals in combination to ameliorate the toxic effects of As is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of Providencia vermicola (5 ppm and 10 ppm) and iron oxide nanoparticles (FeO-NPs) (50 mg/l-1 and 100 mg/l-1) on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and non-enzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern As accumulation from the different parts of the plants, and electron microscopy under the soil, which was spiked with different levels of As [0 μM (i.e., no As), 50 μM, and 100 μM] in Ajwain (Trachyspermum ammi L.) seedlings. Results from the present study showed that the increasing levels of As in the soil significantly (p< 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants, and destroyed the ultra-structure of membrane-bound organelles. In contrast, increasing levels of As in the soil significantly (p< 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation patter in the roots of T. ammi seedlings. The negative impact of As toxicity can overcome the application of PGPB (P. vermicola) and FeO-NPs, which ultimately increased plant growth and biomass by capturing the reactive oxygen species, and decreased oxidative stress in T. ammi seedlings by decreasing the As contents in the roots and shoots of the plants. Our results also showed that the FeO-NPs were more sever and showed better results when we compared with PGPB (P. vermicola) under the same treatment of As in the soil. Research findings, therefore, suggest that the combined application of P. vermicola and FeO-NPs can ameliorate As toxicity in T. ammi seedlings, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Yan Sun
- School of Public Administration, Hohai University, Nanjing, China
| | - Li Ma
- School of Public Administration, Hohai University, Nanjing, China
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, China
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Bingkun Li
- School of Public Administration, Hohai University, Nanjing, China
| | - Yanfeng Zhu
- School of Environmental Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, China
| |
Collapse
|
34
|
Ma J, Saleem MH, Alsafran M, Jabri HA, Rizwan M, Nawaz M, Ali S, Usman K. Response of cauliflower (Brassica oleracea L.) to nitric oxide application under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113969. [PMID: 35969983 DOI: 10.1016/j.ecoenv.2022.113969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination with cadmium (Cd) is a persistent threat to crop production worldwide. The present study examined the putative roles of nitric oxide (NO) in improving Cd-tolerance in cauliflower (Brassica oleracea L.). The present study was conducted using four different genotypes of B. oleracea named as FD-3, FD-4, FD-2 and Ceilo Blanco which were subjected to the Cd stress at various concentrations i.e., 0, 5, 10 and 20 µM with or without the application of NO i.e., 0.10 mM in the sand containing nutrient Hoagland's solution. Our results illustrated that the increasing levels of Cd in the sand, significantly (P < 0.05) decreased shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, germination percentage, germination index, mean germination time, time to 50% germination, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid contents in all genotypes of B. oleracea. The concentration of malondialdehyde (MDA) and Cd accumulation (roots and shoots) increased significantly (P < 0.05) under the increasing levels of Cd in all genotypes of B. oleracea while antioxidant (enzymatic or non-enzymatic) capacity and nutritional status of the plants was decreased with varying levels of Cd in the sand. From all studied genotypes of B. oleracea, Ceilo Blanco and FD-4 was found to be most sensitive species to the Cd stress under the same levels of the Cd in the medium while FD-2 and FD-3 showed more tolerance to the Cd stress compared to all other genotypes of B. oleracea. Although, toxic effect of Cd in the sand can overcome by the application of NO which not only increased plant growth and nutrients accumulation but also decreased the oxidative damage to the membranous bounded organelles and also Cd accumulation in various parts of the plants in all genotypes of B. oleracea. Hence, it was concluded that application of NO can overcome Cd toxicity in B. oleracea by maintaining the growth regulation and nutritional status of the plant and overcome oxidative damage induced by Cd toxicity in all genotypes of B. oleracea.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing 210098, China.
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713 Doha, Qatar; Central Laboratories Unit (CLU), Office of VP for Research & Graduate Studies, Qatar University, 2713 Doha, Qatar.
| | - Hareb Al Jabri
- Center for Sustainable Development (CSD), College of Arts and Sciences, Qatar University, Doha 2713, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Muhammad Nawaz
- Department of Botany, Government College University, Faisalabad 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713 Doha, Qatar.
| |
Collapse
|
35
|
Li X, Zhang L, Ren H, Wang X, Mi F. Zinc toxicity response in Ceratoides arborescens and identification of CaMTP, a novel zinc transporter. FRONTIERS IN PLANT SCIENCE 2022; 13:976311. [PMID: 36161019 PMCID: PMC9505901 DOI: 10.3389/fpls.2022.976311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
Zinc (Zn) is an essential micronutrient for several physiological and biochemical processes. Changes in soil Zn levels can negatively affect plant physiology. Although the mechanism of Zn nutrition has been studied extensively in crops and model plants, there has been little research on steppe plants, particularly live in alkaline soils of arid and semiarid regions. Ceratoides arborescens is used in arid and semiarid regions as forage and ecological restoration germplasm, which is studied can enrich the mechanism of Zn nutrition. The plants were exposed to three different Zn treatments, Zn-deficient (-Zn 0 mM L-1), Zn-normal (Control, 0.015 mM L-1), and Zn-excess (+Zn, 0.15 mM L-1), for 3 weeks. Individual biomass, ion concentrations, photosynthetic system, and antioxidant characteristics were measured. High Zn supply significantly decreased plant biomass and induced chlorosis and growth defects and increased Zn concentration but decreased Fe and Ca concentrations, unlike in controls (p < 0.05). High Zn supply also reduced plant chlorophyll content, which consequently decreased the photosynthesis rate. Increased concentrations of malondialdehyde and soluble sugar and activities of peroxidase and superoxide dismutase could resist the high-level Zn stress. In contrast, low Zn supply did not affect plant growth performance. We also identified a novel protein through RNA transcriptome analysis, named CaMTP, that complemented the sensitivity of a yeast mutant to excessive Zn, which was found to be localized to the endoplasmic reticulum through transient gene expression in Nicotiana benthamiana. The gene CaMTP identified to be highly sensitive to Zn stress is a potential candidate for overcoming mineral stress in dicot crop plants.
Collapse
Affiliation(s)
- Xingyue Li
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Zhang
- M-Grass Ecology and Environment (Group) Co., Ltd., Hohhot, China
| | - Haiyan Ren
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoyu Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fugui Mi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
36
|
Ehsan M, Raja NI, Mashwani ZUR, Zohra E, Abasi F, Ikram M, Mustafa N, Wattoo FH, Proćków J, Pérez de la Lastra JM. Effects of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-Based Fertilizers on Biochemical and Yield Attributes of Two Wheat Varieties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172894. [PMID: 36079932 PMCID: PMC9457894 DOI: 10.3390/nano12172894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 05/14/2023]
Abstract
Wheat is the most important staple food worldwide, but wheat cultivation faces challenges from high food demand. Fertilizers are already in use to cope with the demand; however, more unconventional techniques may be required to enhance the efficiency of wheat cultivation. Nanotechnology offers one potential technique for improving plant growth and production by providing stimulating agents to the crop. In this study, plant-derived Ag/ZnO nanomaterials were characterized using UV-Vis spectroscopy, SEM, EDX, FTIR, and XRD methods. Various concentrations of phytogenically synthesized Ag/ZnO nanomaterials (20, 40, 60, and 80 ppm) and nitrogen-based fertilizers (urea and ammonium sulphate 50 and 100 mg/L) were applied to wheat varieties (Galaxy-13 and Pak-13). The results obtained from this research showed that application of 60 ppm Ag/ZnO nanomaterials with nitrogenous fertilizers (50 and 100 mg/L) were more effective in improving biochemistry and increasing yield of wheat plants by reducing enzymatic and non-enzymatic antioxidants (proline content, soluble sugar content, malondialdehyde, total phenolic content, total flavonoid content, superoxide dismutase, peroxidase, and catalase); and significantly increasing the protein content, number of grains per pot, spike length, 100-grain weight, grain yield per pot, and harvest index of both wheat varieties, compared to untreated plants. These findings allow us to propose Ag/ZnO nanomaterial formulation as a promising growth- and productivity-improvement strategy for wheat cultivation.
Collapse
Affiliation(s)
- Maria Ehsan
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
- Correspondence: (M.E.); (E.Z.); (J.P.); (J.M.P.d.l.L.); Tel.: +34-922-474334 (J.P.d.l.L.)
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Zia Ur Rehman Mashwani
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Efat Zohra
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
- Correspondence: (M.E.); (E.Z.); (J.P.); (J.M.P.d.l.L.); Tel.: +34-922-474334 (J.P.d.l.L.)
| | - Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Muhammad Ikram
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Nilofar Mustafa
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Feroza Hamid Wattoo
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland
- Correspondence: (M.E.); (E.Z.); (J.P.); (J.M.P.d.l.L.); Tel.: +34-922-474334 (J.P.d.l.L.)
| | - José Manuel Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA CSIC), 3-38206 San Cristóbal de la Laguna, Spain
- Correspondence: (M.E.); (E.Z.); (J.P.); (J.M.P.d.l.L.); Tel.: +34-922-474334 (J.P.d.l.L.)
| |
Collapse
|
37
|
Basit F, Nazir MM, Shahid M, Abbas S, Javed MT, Naqqash T, Liu Y, Yajing G. Application of zinc oxide nanoparticles immobilizes the chromium uptake in rice plants by regulating the physiological, biochemical and cellular attributes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1175-1190. [PMID: 35910447 PMCID: PMC9334463 DOI: 10.1007/s12298-022-01207-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 05/13/2023]
Abstract
Zinc oxide nano particles (ZnO NPs) have been employed as a novel strategy to regulate plant tolerance and alleviate heavy metal stress, but our scanty knowledge regarding the systematic role of ZnO NPs to ameliorate chromium (Cr) stress especially in rice necessitates an in-depth investigation. An experiment was performed to evaluate the effect of different concentrations of ZnO NPs (e.g., 0, 25, 50, 100 mg/L) in ameliorating the Cr toxicity and accumulation in rice seedlings in hydroponic system. Our results demonstrated that Cr (100 µM) severely inhibited the rice seedling growth, whereas exogenous treatment of ZnO NPs significantly alleviated Cr toxicity stress and promoted the plant growth. Moreover, application of ZnO NPs significantly augmented the germination energy, germination percentage, germination index, and vigor index. In addition, biomass accumulation, antioxidants (SOD, CAT, POD), nutrient acquisition (Zn, Fe) was also improved in ZnO NPs-treated plants, while the lipid peroxidation (MDA, H2O2), electrolyte leakage as well as Cr uptake and in-planta accumulation was significantly decreased. The burgeoning effects were more apparent at ZnO NPs (100 mg/L) suggesting the optimum treatment to ameliorate Cr induced oxidative stress in rice plants. Furthermore, the treatment of ZnO NPs (100 mg/L) reduced the level of endogenous abscisic acid (ABA) and stimulated the growth regulator hormones such as brassinosteroids (BRs) possibly linked with enhanced phytochelatins (PCs) levels. The ultrastructure analysis at cellular level of rice revealed that the application of 100 mg/L ZnO NPs protected the chloroplast integrity and other cell organells via improvement in plant ionomics, antioxidant activities and down regulating Cr induced oxidative stress in rice plants. Conclusively, observations of the current study will be helpful in developing stratigies to decrease Cr contamination in food chain by employing ZnO NPs and to mitigate the drastic effects of Cr in plants for the sustainable crop growth.
Collapse
Affiliation(s)
- Farwa Basit
- Seed Science Center, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Muhammad Mudassir Nazir
- Seed Science Center, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000 Pakistan
| | - Saghir Abbas
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| | | | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Yihan Liu
- Seed Science Center, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Guan Yajing
- Seed Science Center, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
38
|
Hamzah Saleem M, Usman K, Rizwan M, Al Jabri H, Alsafran M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:1033092. [PMID: 36275511 PMCID: PMC9586378 DOI: 10.3389/fpls.2022.1033092] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 05/13/2023]
Abstract
Zinc (Zn), which is regarded as a crucial micronutrient for plants, and is considered to be a vital micronutrient for plants. Zn has a significant role in the biochemistry and metabolism of plants owing to its significance and toxicity for biological systems at specific Zn concentrations, i.e., insufficient or harmful above the optimal range. It contributes to several cellular and physiological activities of plants and promotes plant growth, development, and yield. Zn is an important structural, enzymatic, and regulatory component of many proteins and enzymes. Consequently, it is essential to understand the interplay and chemistry of Zn in soil, its absorption, transport, and the response of plants to Zn deficiency, as well as to develop sustainable strategies for Zn deficiency in plants. Zn deficiency appears to be a widespread and prevalent issue in crops across the world, resulting in severe production losses that compromise nutritional quality. Considering this, enhancing Zn usage efficiency is the most effective strategy, which entails improving the architecture of the root system, absorption of Zn complexes by organic acids, and Zn uptake and translocation mechanisms in plants. Here, we provide an overview of various biotechnological techniques to improve Zn utilization efficiency and ensure the quality of crop. In light of the current status, an effort has been made to further dissect the absorption, transport, assimilation, function, deficiency, and toxicity symptoms caused by Zn in plants. As a result, we have described the potential information on diverse solutions, such as root structure alteration, the use of biostimulators, and nanomaterials, that may be used efficiently for Zn uptake, thereby assuring sustainable agriculture.
Collapse
Affiliation(s)
| | - Kamal Usman
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | | | - Hareb Al Jabri
- Center for Sustainable Development (CSD), College of Arts and Sciences, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohammed Alsafran
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
- Central Laboratories Unit (CLU), Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
- *Correspondence: Mohammed Alsafran,
| |
Collapse
|
39
|
Ma J, Saleem MH, Ali B, Rasheed R, Ashraf MA, Aziz H, Ercisli S, Riaz S, Elsharkawy MM, Hussain I, Alhag SK, Ahmed AE, Vodnar DC, Mumtaz S, Marc RA. Impact of foliar application of syringic acid on tomato ( Solanum lycopersicum L.) under heavy metal stress-insights into nutrient uptake, redox homeostasis, oxidative stress, and antioxidant defense. FRONTIERS IN PLANT SCIENCE 2022; 13:950120. [PMID: 36092395 PMCID: PMC9453224 DOI: 10.3389/fpls.2022.950120] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/13/2022] [Indexed: 05/19/2023]
Abstract
Soil contamination with toxic heavy metals [such as lead (Pb)] is becoming a serious global problem due to the rapid development of the social economy. However, accumulation of Pb in plant parts is very toxic for plant growth and decreases crop yield and productivity. In the present study, we have investigated the different concentrations of Pb in the soil i.e., [0 (no Pb), 50, and 100 mg kg-1] to study plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators and the response of various antioxidants (enzymatic and non-enzymatic), nutritional status of the plant, organic acid exudation pattern and also Pb accumulation in the roots and shoots of the plants of two varieties of tomato (Solanum lycopersicum L.) i.e., Roma and Cchuas, grown under different levels of synergic acid [no spray (NS), water spray (WS), 0.3-0.5°μM]. Results from the present study showed that the increasing levels of Pb in the soil decreased non-significantly (P < 0.05) shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid content, net photosynthesis, stomatal conductance, transpiration rate, soluble sugar, reducing sugar, non-reducing sugar contents, calcium (Ca2+), magnesium (Mg2+), iron (Fe2+), and phosphorus (P) contents in the roots and shoots of the plants. However, Pb toxicity also induced oxidative stress in the roots and shoots of the plants by increasing malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) which also induced increased the compounds of various enzymatic and non-enzymatic antioxidants and also organic acids exudation pattern in the roots such as fumaric acid, acetic acid, citric acid, formic acid, malic acid, oxalic acid contents and increased the concentration of Pb in different parts of the plants. Results also show that the Cchuas showed better growth and development compared to Roma, under the same levels of Pb in the soil. The alleviation of Pb toxicity was induced by the application of synergic acid, and results showed that the application of synergic acid increased plant growth and biomass and also increased the gas exchange characteristics and antioxidant capacity in the roots and shoots of the plants. Research findings, therefore, suggested that synergic acid application can ameliorate Pb toxicity in S. lycopersicum varieties and result in improved plant growth and composition under metal stress as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing, China
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, Pakistan
| | | | - Humera Aziz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Sana Riaz
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Mohsen Mohamed Elsharkawy
- Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad, Pakistan
- *Correspondence: Iqbal Hussain,
| | - Sadeq K. Alhag
- Department of Biology, College of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
- Department of Biology, College of Science, Ibb University, Ibb, Yemen
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Dan C. Vodnar
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Sahar Mumtaz
- Division of Science and Technology, Department of Botany, University of Education, Lahore, Pakistan
- Sahar Mumtaz,
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Romina Alina Marc,
| |
Collapse
|