1
|
Zhang J, Kim MH, Lee S, Park S. Integration of nanobiosensors into organ-on-chip systems for monitoring viral infections. NANO CONVERGENCE 2024; 11:47. [PMID: 39589620 PMCID: PMC11599699 DOI: 10.1186/s40580-024-00455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
The integration of nanobiosensors into organ-on-chip (OoC) models offers a promising advancement in the study of viral infections and therapeutic development. Conventional research methods for studying viral infection, such as two-dimensional cell cultures and animal models, face challenges in replicating the complex and dynamic nature of human tissues. In contrast, OoC systems provide more accurate, physiologically relevant models for investigating viral infections, disease mechanisms, and host responses. Nanobiosensors, with their miniaturized designs and enhanced sensitivity, enable real-time, continuous, in situ monitoring of key biomarkers, such as cytokines and proteins within these systems. This review highlights the need for integrating nanobiosensors into OoC systems to advance virological research and improve therapeutic outcomes. Although there is extensive literature on biosensors for viral infection detection and OoC models for replicating infections, real integration of biosensors into OoCs for continuous monitoring remains unachieved. We discuss the advantages of nanobiosensor integration for real-time tracking of critical biomarkers within OoC models, key biosensor technologies, and current OoC systems relevant to viral infection studies. Additionally, we address the main technical challenges and propose solutions for successful integration. This review aims to guide the development of biosensor-integrated OoCs, paving the way for precise diagnostics and personalized treatments in virological research.
Collapse
Affiliation(s)
- Jiande Zhang
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Min-Hyeok Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Seulgi Lee
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| |
Collapse
|
2
|
Khan MQ, Khan J, Alvi MAH, Nawaz H, Fahad M, Umar M. Nanomaterial-based sensors for microbe detection: a review. DISCOVER NANO 2024; 19:120. [PMID: 39080121 PMCID: PMC11289191 DOI: 10.1186/s11671-024-04065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Airborne microorganisms pose a significant health threat, causing various illnesses. Traditional detection methods are often slow and complex. This review highlights the potential of nanomaterial-based biosensors, particularly colorimetric sensors, for rapid and on-site detection of airborne microbes. Colorimetric sensors offer real-time visual detection without complex instrumentation. We explore the integration of these sensors with Lab-on-a-Chip technology using PDMS microfluidics. This review also proposes a novel PDMS-based colorimetric biosensor for real-time detection of airborne microbes. The sensor utilizes a color change phenomenon easily observable with the naked eye, simplifying analysis and potentially enabling point-of-care applications.
Collapse
Affiliation(s)
- Muhammad Qamar Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan.
| | - Jahangir Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Muhammad Abbas Haider Alvi
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Hifza Nawaz
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Muhammad Fahad
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Muhammad Umar
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
3
|
Nosrati H, Nosrati M. Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics (Basel) 2023; 8:442. [PMID: 37754193 PMCID: PMC10526210 DOI: 10.3390/biomimetics8050442] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
The field of regenerative medicine is constantly advancing and aims to repair, regenerate, or substitute impaired or unhealthy tissues and organs using cutting-edge approaches such as stem cell-based therapies, gene therapy, and tissue engineering. Nevertheless, incorporating artificial intelligence (AI) technologies has opened new doors for research in this field. AI refers to the ability of machines to perform tasks that typically require human intelligence in ways such as learning the patterns in the data and applying that to the new data without being explicitly programmed. AI has the potential to improve and accelerate various aspects of regenerative medicine research and development, particularly, although not exclusively, when complex patterns are involved. This review paper provides an overview of AI in the context of regenerative medicine, discusses its potential applications with a focus on personalized medicine, and highlights the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Hamed Nosrati
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Masoud Nosrati
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Wang ZY, Sun MH, Zhang Q, Li PF, Wang K, Li XM. Advances in Point-of-Care Testing of microRNAs Based on Portable Instruments and Visual Detection. BIOSENSORS 2023; 13:747. [PMID: 37504145 PMCID: PMC10377738 DOI: 10.3390/bios13070747] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that are approximately 22 nt in length and regulate gene expression post-transcriptionally. miRNAs play a vital role in both physiological and pathological processes and are regarded as promising biomarkers for cancer, cardiovascular diseases, neurodegenerative diseases, and so on. Accurate detection of miRNA expression level in clinical samples is important for miRNA-guided diagnostics. However, the common miRNA detection approaches like RNA sequencing, qRT-PCR, and miRNA microarray are performed in a professional laboratory with complex intermediate steps and are time-consuming and costly, challenging the miRNA-guided diagnostics. Hence, sensitive, highly specific, rapid, and easy-to-use detection of miRNAs is crucial for clinical diagnosis based on miRNAs. With the advantages of being specific, sensitive, efficient, cost-saving, and easy to operate, point-of-care testing (POCT) has been widely used in the detection of miRNAs. For the first time, we mainly focus on summarizing the research progress in POCT of miRNAs based on portable instruments and visual readout methods. As widely available pocket-size portable instruments and visual detection play important roles in POCT, we provide an all-sided discussion of the principles of these methods and their main limitations and challenges, in order to provide a guide for the development of more accurate, specific, and sensitive POCT methods for miRNA detection.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Ming-Hui Sun
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Qun Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| | - Xin-Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China
| |
Collapse
|
5
|
Toppo AL, Dhagat S, Eswari Jujjavarapu S. Comparative study of response surface methodology and artificial neural network for optimization of process parameters for synthesis of gold nanoparticles by Desmostachya bipinnata extract. Prep Biochem Biotechnol 2022; 53:195-206. [PMID: 35442160 DOI: 10.1080/10826068.2022.2062773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Green synthesis of nanoparticles has gained attention due to its eco-friendly and sustainable approach to synthesize nanoparticles at a reduced cost. Artificial neural network (ANN) and response surface model (RSM) are important to reduce experimental efforts in nanoparticle synthesis. In this work, optimization of gold nanoparticle synthesis by Desmostachya bipinnata extract was performed using the volume of plant extract, concentration of auric chloride, reaction time, pH, and temperature as process parameters, and the output was absorbance. The experimental design was obtained from RSM and the model was optimized further using ANN. Thirty-two experimental runs generated by RSM were performed and the results obtained experimentally were compared with those generated by RSM and ANN. Different algorithms of ANN were tested to obtain the best one. The optimization studies resulted in a maximum response for 20th run with 15 ml, 2.5 mM, 45 min, 7, and 40 °C as parameters. Optimized input parameters obtained by RSM were 10 ml, 2 mM, 30 min, 6, and 30 °C. The formation of gold nanoparticles was confirmed by UV spectroscopy, XRD, and SEM. Different algorithms of ANN, such as leven marquardt, scaled conjugate gradient, and bayesian network were used. Leven marquardt algorithm was found to be the most suitable algorithm for the current study.
Collapse
Affiliation(s)
| | - Swasti Dhagat
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | | |
Collapse
|
6
|
Shand H, Dutta S, Rajakumar S, James Paulraj S, Mandal AK, KT RD, Ghorai S. New Age Detection of Viruses: The Nano-Biosensors. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.814550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viruses and their related diseases have always posed a significant hazard to humans. The current pandemic caused by the Covid-19 (SARS-CoV-2) virus is the latest illustration of what this tiny organism can do to humanity at large, putting everything on the brink of collapse. So it is reasonable that early diagnosis of infection from viruses remains a crucial step to prevent such human suffering. Many traditional methods are already in use for detecting viruses, including molecular approaches, serological methods, direct virus culture methods, and so on. Such traditional methods though are brilliant at some stages but are not devoid of drawbacks. To overcome the limits of conventional procedures, new techniques have been developed which tried to eradicate the demerits of the former procedures. Biosensors have come up with a lot of promises in terms of detecting viruses and diseases connected with them. The development of various types of such biosensors such as Affinity-based nano-biosensors, Nanoisland affinity-based biosensors, Graphene affinity-based biosensors, Nanowires based biosensors, Optical nano biosensors, Fiber optic nano-biosensors, Surface Plasmon Resonance (SPR) based optical nano-biosensors, Total internal reflection fluorescence, Surface-Enhanced Raman Scattering (SERS), Electrochemical nano-biosensors had helped us in the rapid and sensitive detection of viruses. Aid to these nanosensors, viral detection now becomes very sensitive, rapid and cost has come down to a significant low. In this review, an attempt has been made to compile all of the different nano-biosensors and their applications. Due attention is given to the fact that the reader gets the grasp of the concept with much ease.
Collapse
|
7
|
Tzu FM, Hsu SH, Chen JS. Non-Contact Optical Detection of Foreign Materials Adhered to Color Filter and Thin-Film Transistor. MICROMACHINES 2022; 13:mi13010101. [PMID: 35056265 PMCID: PMC8779804 DOI: 10.3390/mi13010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023]
Abstract
This paper describes the non-contact optical detection of debris material that adheres to the substrates of color filters (CFs) and thin-film transistors (TFTs) by area charge-coupled devices (CCDs) and laser sensors. One of the optical detections is a side-view illumination by an area CCD that emits a coherency light to detect debris on the CF. In contrast to the height of the debris material, the image is acquired by transforming the geometric shape from a square to a circle. As a result, the side-view illumination from the area CCD identified the height of the debris adhered to the black matrix (BM) as well as the red, green, and blue of a CF with 95, 97, 98, and 99% accuracy compared to the golden sample. The uncertainty analysis was at 5% for the BM, 3% for the red, 2% for the green, and 1% for the blue. The other optical detection, a laser optical interception with a horizontal alignment, inspected the material foreign to the TFT. At the same time, laser sensors intercepted the debris on the TFT at a voltage of 3.5 V, which the five sets of laser optics make scanning the sample. Consequently, the scanning rate reached over 98% accuracy, and the uncertainty analysis was within 5%. Thus, both non-contact optical methods can detect debris at a 50 μm height or lower. The experiment presents a successful design for the efficient prevention of a valuable component malfunction.
Collapse
Affiliation(s)
- Fu-Ming Tzu
- Department of Marine Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80543, Taiwan
- Correspondence:
| | - Shih-Hsien Hsu
- Department of Electrical Engineering, Feng Chia University, Taichung 40802, Taiwan;
| | - Jung-Shun Chen
- Department of Industrial Technology Education, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan;
| |
Collapse
|
8
|
Xiao MF, Zeng C, Li SH, Yuan FL. Applications of nanomaterials in COVID-19 pandemic. RARE METALS 2021; 41:1-13. [PMID: 34539132 PMCID: PMC8442651 DOI: 10.1007/s12598-021-01789-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/14/2021] [Accepted: 03/29/2021] [Indexed: 05/10/2023]
Abstract
The novel coronavirus 2019 (COVID-19) pandemic represents one of the biggest global health threats in the last two decades, so researchers around the world are searching for solutions and treatments for COVID-19. At the time of writing, there are no specific drugs that have demonstrated suitable effectiveness in treating COVID-19. The current challenge involves designing tools for the prevention, rapid and accurate diagnosis, drug delivery, and effective treatment of this novel coronavirus. In this short review, we discuss how nanotechnology offers new ways to combat COVID-19, and how nanomaterials can be applied to control the COVID-19 outbreak. We also summarize relevant studies regarding the use of nanomaterials for preventing viral spread, preparing vaccines, and diagnosing coronavirus, as well as studies that show how nanoparticles can be used as drug delivery systems for the treatment of viral infections. Research on nanotechnology-based diagnosis, drug delivery, and antiviral therapy is currently in the early stages. However, the unique chemical properties of some nanomaterials highlight the broad prospect of nanomaterials in the future, and we propose that they will play an important role in the fight against COVID-19. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Mei-Fang Xiao
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Shao-Hui Li
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Fu-Lai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008 China
| |
Collapse
|
9
|
Andam N, Refki S, Hayashi S, Sekkat Z. Plasmonic mode coupling and thin film sensing in metal-insulator-metal structures. Sci Rep 2021; 11:15093. [PMID: 34301973 PMCID: PMC8302593 DOI: 10.1038/s41598-021-94143-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Optical sensors based on surface plasmon resonance (SPR) in the attenuated total reflection (ATR) configuration in layered media have attracted considerable attention over the past decades owing to their ability of label free sensing in biomolecular interaction analysis, and highly sensitive detection of changes in refractive index and thickness, i.e. the optical thickness, of thin film adsorbates (thin film sensing). Furthermore, SPR is highly sensitive to the refractive index of the medium adjacent to the bare metal, and it allows for bulk sensing as well. When deposited at the metal/air interface, an adsorbed layer disturbs the highly localized, i.e. bound, wave at this interface and changes the plasmon resonance to allow for sensing in angular or wavelength interrogation and intensity measurement modes. A high degree of sensitivity is required for precise and efficient sensing, especially for biomolecular interaction analysis for early stage diagnostics; and besides conventional SPR (CSPR), several other configurations have been developed in recent years targeting sensitivity, including long-range SPR (LRSPR) and waveguide-coupled SPR (WGSPR) observed in MIM structures, referred here to by MIM modes, resulting from the coupling of SPRs at I/M interfaces, and Fano-type resonances occurring from broad and sharp modes coupling in layered structures. In our previous research, we demonstrated that MIM is better than CSPR for bulk sensing, and in this paper, we show that CSPR is better than MIM for thin film sensing for thicknesses of the sensing layer (SL) larger than 10 nm. We discuss and compare the sensitivity of CSPR and MIM for thin film sensing by using both experiments and theoretical calculations based on rigorous electromagnetic (EM) theory. We discuss in detail MIM modes coupling and anti-crossing, and we show that when a thin film adsorbate, i.e. a SL), is deposited on top of the outermost-layer of an optimized MIM structure, it modifies the characteristics of the coupled modes of the structure, and it reduces the electric field, both inside the SL and at the SL/air interface, and as a result, it decreases the sensitivity of the MIM versus the CSPR sensor. Our work is of critical importance to plasmonic mode coupling using MIM configurations, as well as to optical bio- and chemical-sensing.
Collapse
Affiliation(s)
- N Andam
- Department of Chemistry, Faculty of Sciences, University Mohammed V, Rabat, Morocco.,Optics and Photonics Center, Moroccan Foundation for Advanced Science and Innovation and Research, University Mohammed VI Polytechnic, Rabat, Morocco
| | - S Refki
- Optics and Photonics Center, Moroccan Foundation for Advanced Science and Innovation and Research, University Mohammed VI Polytechnic, Rabat, Morocco
| | - S Hayashi
- Optics and Photonics Center, Moroccan Foundation for Advanced Science and Innovation and Research, University Mohammed VI Polytechnic, Rabat, Morocco.,Graduate School of Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Z Sekkat
- Department of Chemistry, Faculty of Sciences, University Mohammed V, Rabat, Morocco. .,Optics and Photonics Center, Moroccan Foundation for Advanced Science and Innovation and Research, University Mohammed VI Polytechnic, Rabat, Morocco. .,Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Cerra S, Salamone TA, Sciubba F, Marsotto M, Battocchio C, Nappini S, Scaramuzzo FA, Li Voti R, Sibilia C, Matassa R, Beltrán AM, Familiari G, Fratoddi I. Study of the interaction mechanism between hydrophilic thiol capped gold nanoparticles and melamine in aqueous medium. Colloids Surf B Biointerfaces 2021; 203:111727. [PMID: 33819818 DOI: 10.1016/j.colsurfb.2021.111727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022]
Abstract
In the last years, intense efforts have been made in order to obtain colloidal-based systems capable of pointing out the presence of melamine in food samples. In this work, we reported about the recognition of melamine in aqueous solution, using gold nanoparticles stabilized with 3-mercapto-1-propanesulfonate (AuNPs-3MPS), with the aim of deepening how the recognition process works. AuNPs were synthesized using a wet chemical reduction method. The synthesized AuNPs-3MPS probe was fully characterized, before and after the recognition process, by both physicochemical (UV-vis, FT-IR, 1H-NMR, DLS and ζ-potential) and morphostructural techniques (AFM, HR-TEM). The chemical and electronic structure was also investigated by SR-XPS. The sensing method is based on the melamine-induced aggregation of AuNPs; the presence of melamine was successfully detected in the range of 2.5-500 ppm. The results achieved also demonstrate that negatively charged AuNPs-3MPS are potentially useful for determining melamine contents in aqueous solution. SR-XPS measurements allowed to understand interaction mechanism between the probe and the analyte. The presence of sulfonate groups allows a mutual interaction mediated by electrostatic bonds between nanoparticles surface thiols and positively charged amino groups of melamine molecules.
Collapse
Affiliation(s)
- Sara Cerra
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Tommaso A Salamone
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Fabio Sciubba
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Martina Marsotto
- Department of Sciences and CISDiC, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Chiara Battocchio
- Department of Sciences and CISDiC, Roma Tre University, Via della Vasca Navale 79, 00146, Rome, Italy
| | - Silvia Nappini
- IOM CNR, Laboratorio TASC, S.S. 14 Km 163.5 AREA Science Park Basovizza, Trieste, 34149, Italy
| | - Francesca A Scaramuzzo
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Antonio Scarpa 14, 00161, Rome, Italy
| | - Roberto Li Voti
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Antonio Scarpa 14, 00161, Rome, Italy
| | - Concita Sibilia
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Antonio Scarpa 14, 00161, Rome, Italy
| | - Roberto Matassa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161, Rome, Italy
| | - Ana Maria Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011, Seville, Spain
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161, Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
11
|
Tunable infrared metamaterial-based biosensor for detection of hemoglobin and urine using phase change material. Sci Rep 2021; 11:7101. [PMID: 33782516 PMCID: PMC8007597 DOI: 10.1038/s41598-021-86700-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
This paper reports about the outcomes from an investigation carried out on tunable biosensor for detection using infrared in the range of 1.5 µm and 1.65 µm. The biosensor is made of phase change material formed by different alloy combinations, Ge2Sb2Te5 (GST). The nature of GST allows for the material to change phase with changes in temperature, giving the tunable sensing property for biosensing application. Sensor built with amorphous GST (aGST) and crystalline GST (cGST) in different design structures were tested on different concentrations of biomolecules: hemoglobin (10 g/l, 20 g/l, 30 g/l and 40 g/l); and urine (0-1.5 mg/dL, 2.5 mg/dL, 5 mg/dL and 10 mg/dL). The tunable response observed from the tests demonstrates the potential application of the materials in the design of switching and sensing systems.
Collapse
|
12
|
Design and characterisation of frequency selective conductive materials for electromagnetic fields control. Sci Rep 2020; 10:19351. [PMID: 33168899 PMCID: PMC7653929 DOI: 10.1038/s41598-020-76447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
To prevent the electromagnetic (EM) wakefields excitation, protect detectors from damage at a range of installations and facilities including particle accelerators the EM field control is required. Conductive foils or wires providing EM protection and required thermal and mechanical properties are normally used. We suggest novel composite materials with uniquely designed frequency selective conductivity enabling them to overcome the properties of the conventional materials, protect from EM fields and supress undesirable phenomena. Theoretical and experimental investigations are carried out and the conductivity of designed and composite (dual-layer) aluminium/graphene metamaterials as well as graphene and aluminium foils is studied. The EM properties of these materials are compared, and conditions of full and partial electromagnetic transparency are discussed. Results observed allow engineering materials capable of EM field control, instability suppression including those observed in high-intensity particle accelerators and enabling control of an EM field generating media including relativistic charge particle beams.
Collapse
|
13
|
Alhalaili B, Popescu IN, Kamoun O, Alzubi F, Alawadhia S, Vidu R. Nanobiosensors for the Detection of Novel Coronavirus 2019-nCoV and Other Pandemic/Epidemic Respiratory Viruses: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6591. [PMID: 33218097 PMCID: PMC7698809 DOI: 10.3390/s20226591] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is considered a public health emergency of international concern. The 2019 novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused this pandemic has spread rapidly to over 200 countries, and has drastically affected public health and the economies of states at unprecedented levels. In this context, efforts around the world are focusing on solving this problem in several directions of research, by: (i) exploring the origin and evolution of the phylogeny of the SARS-CoV-2 viral genome; (ii) developing nanobiosensors that could be highly effective in detecting the new coronavirus; (iii) finding effective treatments for COVID-19; and (iv) working on vaccine development. In this paper, an overview of the progress made in the development of nanobiosensors for the detection of human coronaviruses (SARS-CoV, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV) is presented, along with specific techniques for modifying the surface of nanobiosensors. The newest detection methods of the influenza virus responsible for acute respiratory syndrome were compared with conventional methods, highlighting the newest trends in diagnostics, applications, and challenges of SARS-CoV-2 (COVID-19 causative virus) nanobiosensors.
Collapse
Affiliation(s)
- Badriyah Alhalaili
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Ileana Nicoleta Popescu
- Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 13 Aleea Sinaia Street, 130004 Targoviste, Romania
| | - Olfa Kamoun
- Physics of Semiconductor Devices Unit, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis 1068, Tunisia;
| | - Feras Alzubi
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Sami Alawadhia
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Ruxandra Vidu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
14
|
Spatial tracking of individual fluid dispersed particles via Raman spectroscopy. Sci Rep 2020; 10:14350. [PMID: 32873832 PMCID: PMC7463031 DOI: 10.1038/s41598-020-71253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/11/2020] [Indexed: 11/08/2022] Open
Abstract
We demonstrate a method for the spatial tracking of individual particles, dispersed in a fluid host, via Raman spectroscopy. The effect of moving a particle upon the intensity of different bands within its Raman spectrum is first established computationally through a scattering matrix method. By comparing an experimental spectrum to the computational analysis, we show that the position of the particle can be obtained. We apply this method to the specific cases of molybdenum disulfide and graphene oxide particles, dispersed in a nematic liquid crystal, and contained within a microfluidic channel. By considering the ratio and difference between the intensities of the two Raman bands of molybdenum disulfide and graphene oxide, we demonstrate that an accurate position can be obtained in two dimensions.
Collapse
|
15
|
Ran X, Zhang Q, Zhang Y, Chen J, Wei Z, He Y, Guo L. Probing the Electron Transfer between iLOV Protein and Ag Nanoparticles. Molecules 2020; 25:molecules25112544. [PMID: 32486057 PMCID: PMC7321358 DOI: 10.3390/molecules25112544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 01/10/2023] Open
Abstract
Nanomaterials have been widely used in biomedical sciences; however, the mechanism of interaction between nanoparticles and biomolecules is still not fully understood. In the present study, we report the interaction mechanism between differently sized Ag nanoparticles and the improved light-oxygen-voltage (iLOV) protein. The steady-state and time-resolved fluorescence results demonstrated that the fluorescence intensity and lifetime of the iLOV protein decreased upon its adsorption onto Ag nanoparticles, and this decrease was dependent upon nanoparticle size. Further, we showed that the decrease of fluorescence intensity and lifetime arose from electron transfer between iLOV and Ag nanoparticles. Moreover, through point mutation and controlled experimentation, we demonstrated for the first time that electron transfer between iLOV and Ag nanoparticles is mediated by the tryptophan residue in the iLOV protein. These results are of great importance in revealing the function of iLOV protein as it applies to biomolecular sensors, the field of nano-photonics, and the interaction mechanism between the protein and nanoparticles.
Collapse
Affiliation(s)
- Xia Ran
- Institute of Micro/Nano Photonic Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China; (X.R.); (Q.Z.); (J.C.); (Z.W.)
- Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475001, China;
| | - Qianqian Zhang
- Institute of Micro/Nano Photonic Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China; (X.R.); (Q.Z.); (J.C.); (Z.W.)
| | - Yu Zhang
- Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475001, China;
| | - Jin Chen
- Institute of Micro/Nano Photonic Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China; (X.R.); (Q.Z.); (J.C.); (Z.W.)
| | - Zhongran Wei
- Institute of Micro/Nano Photonic Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China; (X.R.); (Q.Z.); (J.C.); (Z.W.)
| | - Yulu He
- Institute of Micro/Nano Photonic Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China; (X.R.); (Q.Z.); (J.C.); (Z.W.)
- Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475001, China;
- Correspondence: (Y.H.); (L.G.)
| | - Lijun Guo
- Institute of Micro/Nano Photonic Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China; (X.R.); (Q.Z.); (J.C.); (Z.W.)
- Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475001, China;
- Correspondence: (Y.H.); (L.G.)
| |
Collapse
|
16
|
Jiang T, Li C, He Q, Peng ZK. Randomized resonant metamaterials for single-sensor identification of elastic vibrations. Nat Commun 2020; 11:2353. [PMID: 32393741 PMCID: PMC7214442 DOI: 10.1038/s41467-020-15950-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/03/2020] [Indexed: 11/25/2022] Open
Abstract
Vibrations carry a wealth of useful physical information in various fields. Identifying the multi-source vibration information generally requires a large number of sensors and complex hardware. Compressive sensing has been shown to be able to bypass the traditional sensing requirements by encoding spatial physical fields, but how to encode vibration information remains unexplored. Here we propose a randomized resonant metamaterial with randomly coupled local resonators for single-sensor compressed identification of elastic vibrations. The disordered effective masses of local resonators lead to highly uncorrelated vibration transmissions, and the spatial vibration information can thus be physically encoded. We demonstrate that the spatial vibration information can be reconstructed via a compressive sensing framework, and this metamaterial can be reconfigured while maintaining desirable performance. This randomized resonant metamaterial presents a new perspective for single-sensor vibration sensing via vibration transmission encoding, and potentially offers an approach to simpler sensing devices for many other physical information. Designing efficient and flexible metamaterial with uncorrelated transmissions for spatial vibration encoding and identification remains a challenge. Here, the authors propose a randomized resonant metamaterial with randomly coupled local resonators for single-sensor identification of elastic vibrations.
Collapse
Affiliation(s)
- Tianxi Jiang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Chong Li
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Qingbo He
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China.
| | - Zhi-Ke Peng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Dielectric Characterization of Non-Conductive Fabrics for Temperature Sensing through Resonating Antenna Structures. MATERIALS 2020; 13:ma13061271. [PMID: 32168849 PMCID: PMC7142631 DOI: 10.3390/ma13061271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/30/2022]
Abstract
Seamless integration of electronics within clothing is key for further development of efficient and convenient wearable technologies. Therefore, the characterization of textile and fabric materials under environmental changes and other parametric variations is an important requirement. To our knowledge, this paper presents for the first time the evaluation of dielectric characterization over temperature for non-conductive textiles using resonating structures. The paper describes the effects of temperature variations on the dielectric properties of non-conductive fabrics and how this can be derived from the performance effects of a simple microstrip patch antenna. Organic cotton was chosen as the main substrate for this research due to its broad presence in daily clothing. A dedicated measurement setup is developed to allow reliable and repeatable measurements, isolating the textile samples from external factors. This work shows an approximately linear relation between temperature and textile’s dielectric constant, giving to fabric-based antennas temperature sensing properties with capability up to 1 degree Celsius at millimeter-wave frequencies.
Collapse
|
18
|
3D Numerical Modeling of Induced-Polarization Grounded Electrical-Source Airborne Transient Electromagnetic Response Based on the Fictitious Wave Field Methods. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10031027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The grounded electrical-source airborne transient electromagnetic (GREATEM) system is widely used in mineral exploration. Meanwhile, the induced polarization (IP) effect, which indicates the polarizability of the earth, is often found. In this paper, the Maxwell equations in the frequency domain are transformed into fictitious wave domain, where Maxwell equations are solved by the time domain finite difference method. Then, an integral transformation method is used to convert the calculation results back to the time domain. A three-dimensional (3D) numerical simulation in a polarizable medium is presented. The accuracy of this method is proven by comparing it with the analytical solution and the existing method, and the calculation efficiency is increased five-fold. The simulation results show that the GREATEM system has a higher response amplitude in the conductive region, while IP effects cannot be identified in the conductive area. The GREATEM system has a higher response amplitude in the low-resistance region, but IP effects cannot be identified in the low-resistance area, and the detection of IP effects is more suitable for the high-resistance area. Therefore, it is necessary to improve the detection ability of the GREATEM system in the low-resistance area.
Collapse
|
19
|
Abstract
A smart city has a bright and sustainable way to integrate services together and can monitor/control them using intelligent devices called sensors to preserve the efficient utilization of resources. Sensors are distributed everywhere in smart cities. They can be employed to monitor health care, transportation, infrastructure, building, surveillance, government, etc. Especially, nanosensors hold great impact to turn the current techniques for the detection of viruses. With the facility of real-time sensing, there is no need for regular inspections for maintenance and surveying, which results in reduced costs and time wastage. Definitely, common sensing platforms need persistent updates to address increasing doubts in the detection of viruses as they modify quickly and spread from person to person, pointing the urgency of early detection. In this chapter the introduction is briefly described in Section 30.1. The fundamental of nanosensors is explained in Section 30.2. The significance and applications of nanosensors in virus detection are extensively discussed in Sections 30.3 and 30.4. Section 30.5 consists of various challenges and outlook.
Collapse
|
20
|
Hapuarachchi H, Gunapala SD, Premaratne M. Plasmonic metaresonances: harnessing nonlocal effects for prospective biomedical applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:325301. [PMID: 30897555 DOI: 10.1088/1361-648x/ab1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal nanoparticles (MNPs) possess optical concentration capabilities that can amplify and localize electromagnetic fields into nanometer length scales. The near-fields of MNPs can be used to tailor optical response of luminescent semiconductor quantum dots (QDs), resulting in fascinating optical phenomena. Plasmonic metaresonances (PMRs) form a class of such optical events gaining increasing popularity due to their promising prospects in sensing and switching applications. Unlike the basic excitonic and plasmonic resonances in MNP-QD nanohybrids, PMRs occur in the space/time domain. A nanohybrid experiences PMR when system parameters such as QD dipole moment, MNP-QD centre separation or submerging medium permittivity reach critical values, resulting in the plasmonically induced time delay of the effective Rabi frequency experienced by the QD asymptotically tending to infinity. Theoretical analyses of PMRs available in the literature utilize the local response approximation (LRA) which does not account for the nonlocal effects of the MNP, and neglect the MNP dependence of the QD decay and dephasing rates which hinder their applicability to QDs in the close vicinity of small MNPs. Here, we address these limitations using an approach based on the generalized nonlocal optical response (GNOR) theory which has proven to yield successful theoretical explanations of experimentally observed plasmonic phenomena. Our results indicate that, omission of the MNP nonlocal response and the associated decay/dephasing rate modifications of the QD tend to raise implications such as significant over-estimation of the QD dipole moment required to achieve PMR, under-estimation of the critical centre separation and prediction of significantly lower near-PMR QD absorption rates, in comparison to the improved GNOR based predictions. In light of our observations, we finally suggest two prospective applications of PMR based nanoswitches, namely, aptamer based in vitro cancer screening and thermoresponsive polymer based temperature sensing. To demonstrate the latter application, we develop and utilize a proof of concept (two dimensional) skin tumor model homogeneously populated by MNP-QD nanohybrids. Our simulations reveal a novel near-PMR physical phenomenon observable under perpendicular illumination, which we like to call the margin pattern reversal, where the spatial absorption pattern reverses when the near-PMR QDs switch from the bright to dark state.
Collapse
Affiliation(s)
- Harini Hapuarachchi
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
21
|
Hoang MC, Le VH, Kim J, Choi E, Kang B, Park JO, Kim CS. A wireless tattooing capsule endoscope using external electromagnetic actuation and chemical reaction pressure. PLoS One 2019; 14:e0219740. [PMID: 31310612 PMCID: PMC6634410 DOI: 10.1371/journal.pone.0219740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 07/02/2019] [Indexed: 01/08/2023] Open
Abstract
In this paper, we present a tattooing capsule endoscope (TCE) that can localize an intestinal lesion or tumor for a preoperative laparoscopic surgery. The TCE is based on a wireless capsule endoscope (WCE) structure and can be actively controlled by an external electromagnetic actuation system to move, observe, and mark the target lesion in the gastrointestinal (GI) tract. The TCE is designed to perform capsule locomotion, needle extrusion and intrusion motions, and ink injection. First, the TCE is controlled to move to the target lesion during GI tract diagnosis via a capsule endoscopic camera. Further, a tattooing needle is extruded by an electromagnetically controlled mechanism to puncture the tissue. Finally, the tattooing ink is injected by the chemically reacted carbon dioxide gas pressure that is triggered by a shape memory alloy wire and a reed switch. The reed switch is also activated by the external magnetic field flux density. The suggested methods were verified by the ex-vivo experiments. The TCE prototype was able to move to the target lesion and inject the ink beneath the mucosa layer safely, thereby leaving a visible tattooed mark for surgical lesion identification. The proposed TCE method can accelerate the development of functionalities as well as tattooing procedures of the WCE in the GI tract.
Collapse
Affiliation(s)
- Manh Cuong Hoang
- School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea
| | - Viet Ha Le
- School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea
| | - Jayoung Kim
- Medical Microrobot Center, Chonnam National University, Gwangju, South Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea
| | - Byungjeon Kang
- Medical Microrobot Center, Chonnam National University, Gwangju, South Korea
| | - Jong-Oh Park
- School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea
| | - Chang-Sei Kim
- School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
22
|
Schuler B, Kühner L, Hentschel M, Giessen H, Tarín C. Adaptive Method for Quantitative Estimation of Glucose and Fructose Concentrations in Aqueous Solutions Based on Infrared Nanoantenna Optics. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3053. [PMID: 31373287 PMCID: PMC6678705 DOI: 10.3390/s19143053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 11/17/2022]
Abstract
In life science and health research one observes a continuous need for new concepts and methods to detect and quantify the presence and concentration of certain biomolecules-preferably even in vivo or aqueous solutions. One prominent example, among many others, is the blood glucose level, which is highly important in the treatment of, e.g., diabetes mellitus. Detecting and, in particular, quantifying the amount of such molecular species in a complex sensing environment, such as human body fluids, constitutes a significant challenge. Surface-enhanced infrared absorption (SEIRA) spectroscopy has proven to be uniquely able to differentiate even very similar molecular species in very small concentrations. We are thus employing SEIRA to gather the vibrational response of aqueous glucose and fructose solutions in the mid-infrared spectral range with varying concentration levels down to 10 g/l. In contrast to previous work, we further demonstrate that it is possible to not only extract the presence of the analyte molecules but to determine the quantitative concentrations in a reliable and automated way. For this, a baseline correction method is applied to pre-process the measurement data in order to extract the characteristic vibrational information. Afterwards, a set of basis functions is fitted to capture the characteristic features of the two examined monosaccharides and a potential contribution of the solvent itself. The reconstruction of the actual concentration levels is then performed by superposition of the different basis functions to approximate the measured data. This software-based enhancement of the employed optical sensors leads to an accurate quantitative estimate of glucose and fructose concentrations in aqueous solutions.
Collapse
Affiliation(s)
- Benjamin Schuler
- Institute for System Dynamics and Research Center SCoPE, University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany.
| | - Lucca Kühner
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Mario Hentschel
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Cristina Tarín
- Institute for System Dynamics and Research Center SCoPE, University of Stuttgart, Waldburgstr. 17/19, 70563 Stuttgart, Germany.
| |
Collapse
|
23
|
Metamaterial Lensing Devices. Molecules 2019; 24:molecules24132460. [PMID: 31277470 PMCID: PMC6650915 DOI: 10.3390/molecules24132460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022] Open
Abstract
In recent years, the development of metamaterials and metasurfaces has drawn great attention, enabling many important practical applications. Focusing and lensing components are of extreme importance because of their significant potential practical applications in biological imaging, display, and nanolithography fabrication. Metafocusing devices using ultrathin structures (also known as metasurfaces) with superlensing performance are key building blocks for developing integrated optical components with ultrasmall dimensions. In this article, we review the metamaterial superlensing devices working in transmission mode from the perfect lens to two-dimensional metasurfaces and present their working principles. Then we summarize important practical applications of metasurfaces, such as plasmonic lithography, holography, and imaging. Different typical designs and their focusing performance are also discussed in detail.
Collapse
|
24
|
Walker JP, Swaminathan V, Haynes AS, Grebel H. Periodic Metallo-Dielectric Structures: Electromagnetic Absorption and its Related Developed Temperatures. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2108. [PMID: 31262011 PMCID: PMC6651637 DOI: 10.3390/ma12132108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022]
Abstract
Multi-layer, metallo-dielectric structures (screens) have long been employed as electromagnetic band filters, either in transmission or in reflection modes. Here we study the radiation energy not transmitted or reflected by these structures (trapped radiation, which is denoted-absorption). The trapped radiation leads to hot surfaces. In these bi-layer screens, the top (front) screen is made of metallic hole-array and the bottom (back) screen is made of metallic disk-array. The gap between them is filled with an array of dielectric spheres. The spheres are embedded in a dielectric host material, which is made of either a heat-insulating (air, polyimide) or heat-conducting (MgO) layer. Electromagnetic intensity trapping of 97% is obtained when a 0.15 micron gap is filled with MgO and Si spheres, which are treated as pure dielectrics (namely, with no added absorption loss). Envisioned applications are anti-fogging surfaces, electromagnetic shields, and energy harvesting structures.
Collapse
Affiliation(s)
- Jean Paul Walker
- Electronic Imaging Center and Electrical Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | - Aisha S Haynes
- U.S. Army Combat Capabilities Development Command Armaments Center, Picatinny, NJ 07806, USA
| | - Haim Grebel
- Electronic Imaging Center and Electrical Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
25
|
Encoded-Enhancement of THz Metasurface Figure of Merit for Label-Free Sensing. SENSORS 2019; 19:s19112544. [PMID: 31167378 PMCID: PMC6603581 DOI: 10.3390/s19112544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/03/2022]
Abstract
We describe an experimental strategy for the use of Terahertz (THz) metasurfaces as a platform for label-free wide range detection of the dielectric function in biological fluids. Specifically, we propose a metagrid (MG), opportunely infiltrated with a fluid and then capped, as the reference structure for sensing experiments with a high reproducibility character. By combining experiments and full-wave simulations of the transmission T of such a structure, we introduce a reliable set up where the volume of the involved analyte in each unit cell is precisely determined. The unavoidable decrease in the quality factor of the intrinsic resonances due to the lossy fluid and cap layer is circumvented using an appropriate transformation of T that amplifies the change in the MG intrinsic resonances, improving in such a way the sensor sensitivity to values close to the experimental limits. The transformed signal features delta-like peaks enabling an easy readout of frequency positions at resonances.
Collapse
|
26
|
Saylan Y, Erdem Ö, Ünal S, Denizli A. An Alternative Medical Diagnosis Method: Biosensors for Virus Detection. BIOSENSORS 2019; 9:E65. [PMID: 31117262 PMCID: PMC6627152 DOI: 10.3390/bios9020065] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 12/14/2022]
Abstract
Infectious diseases still pose an omnipresent threat to global and public health, especially in many countries and rural areas of cities. Underlying reasons of such serious maladies can be summarized as the paucity of appropriate analysis methods and subsequent treatment strategies due to the limited access of centralized and equipped health care facilities for diagnosis. Biosensors hold great impact to turn our current analytical methods into diagnostic strategies by restructuring their sensing module for the detection of biomolecules, especially nano-sized objects such as protein biomarkers and viruses. Unquestionably, current sensing platforms require continuous updates to address growing challenges in the diagnosis of viruses as viruses change quickly and spread largely from person-to-person, indicating the urgency of early diagnosis. Some of the challenges can be classified in biological barriers (specificity, low number of targets, and biological matrices) and technological limitations (detection limit, linear dynamic range, stability, and reliability), as well as economical aspects that limit their implementation into resource-scarce settings. In this review, the principle and types of biosensors and their applications in the diagnosis of distinct infectious diseases were comprehensively explained. The deployment of current biosensors into resource-scarce settings is further discussed for virus detection by elaborating the pros and cons of existing methods as a conclusion and future perspective.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Özgecan Erdem
- Department of Biology, Hacettepe University, Ankara 06800, Turkey.
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara 06230, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|
27
|
Experimental Verification of Isotropic and Anisotropic Anhysteretic Magnetization Models. MATERIALS 2019; 12:ma12091549. [PMID: 31083532 PMCID: PMC6539541 DOI: 10.3390/ma12091549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022]
Abstract
The anhysteretic magnetization curve is the key element of modeling magnetic hysteresis loops. Despite the fact that it is intensively exploited, known models of anhysteretic curve have not been verified experimentally. This paper presents the validation of four anhysteretic curve models considering four different materials, including isotropic, such as Mn-Zn soft ferrite, as well as anisotropic amorphous and nanocrystalline alloys. The presented results indicate that only the model that considers anisotropic energy is valid for a wide set of modern magnetic materials. The most suitable of the verified models is the anisotropic extension function-based model, which considers uniaxial anisotropy.
Collapse
|
28
|
He K, Liu Y, Fu Y. Transmit-Array, Metasurface-Based Tunable Polarizer and High-Performance Biosensor in the Visible Regime. NANOMATERIALS 2019; 9:nano9040603. [PMID: 30979060 PMCID: PMC6523321 DOI: 10.3390/nano9040603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022]
Abstract
There are two types of metasurfaces, reflect-array and transmit-array,—which are classified on the basis of structural features. In this paper, we design a transmit-array metasurface for y-polarized incidence which is characterized by having a transmission spectrum with a narrow dip (i.e., less than 3 nm). Furthermore, a tunable polarizer is achieved using linear geometric configurations, realizing a transmittivity ratio between x- and y-polarized incidence ranging from 0.031% to 1%. Based on the narrow-band polarization sensitivity of our polarizer, a biosensor was designed to detect an environmental refractive index ranging from 1.30 to 1.39, with a factor of sensitivity S = 192 nm/RIU and figure of merit (FOM) = 64/RIU. In the case of a narrow-band feature and dips in transmission spectrums close to zero, FOM* can have a value as large as 92,333/RIU. This unique feature makes the novel transmit-array metasurface a potential market candidate in the field of biosensors. Moreover, transmit-array metasurfaces with lossless materials offer great convenience by means of detecting either the reflectance spectrum or the transmission spectrum.
Collapse
Affiliation(s)
- Kai He
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yidong Liu
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yongqi Fu
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
29
|
Theoretical Investigation of a Simple Design of Triple-Band Terahertz Metamaterial Absorber for High-Q Sensing. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents a simple metamaterial design to achieve the triple-band near-perfect absorption response that can be used in the area of sensor application. The introduced absorber consists of an array of Au strip and a bulk flat Au film separated by an insulator dielectric layer. Three narrow-band resonance absorption peaks are obtained by superposing three different modes (a fundamental mode resonance and two high-order responses) of the Au strip. These resonance modes (in particular of the last two modes) have large sensitivity to the changes of the surrounding index, overlayer thickness and the refractive index of the overlayer.
Collapse
|
30
|
La Spada L, Spooner C, Haq S, Hao Y. Curvilinear MetaSurfaces for Surface Wave Manipulation. Sci Rep 2019; 9:3107. [PMID: 30816130 PMCID: PMC6395592 DOI: 10.1038/s41598-018-36451-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
Artificial sheet materials, known as MetaSurfaces, have been applied to fully control both space and surface waves due to their exceptional abilities to dynamically tailor wave fronts and polarization states, while maintaining small footprints. However, previous and current designs and manufactured MetaSurfaces are limited to specific types of surfaces. There exists no general but rigorous design methodology for MetaSurfaces with generic curvature. The aim of this paper is to develop an analytical approach to characterize the wave behavior over arbitrary curvilinear MetaSurfaces. The proposed method allows us to fully characterize all propagating and evanescent wave modes from the MetaSurfaces. We will validate the proposed technique by designing, realizing and testing an ultrathin MetaSurface cloak for surface waves. Good results are obtained in terms of bandwidth, polarization independence and fabrication simplicity.
Collapse
Affiliation(s)
- Luigi La Spada
- School of Electronic Engineering and Computer Science Queen Mary University of London, London, E1 4NS, United Kingdom.,School of Engineering and the Built Environment, Edinburgh Napier University, 10 Colinton Rd, Edinburgh, EH10 5DT, United Kingdom
| | - Chris Spooner
- QinetiQ Ltd, Cody Technology Park Ively Road, Farnborough Hampshire, GU14 0LX, United Kingdom
| | - Sajad Haq
- QinetiQ Ltd, Cody Technology Park Ively Road, Farnborough Hampshire, GU14 0LX, United Kingdom
| | - Yang Hao
- School of Electronic Engineering and Computer Science Queen Mary University of London, London, E1 4NS, United Kingdom.
| |
Collapse
|
31
|
La Spada L. Metasurfaces for Advanced Sensing and Diagnostics. SENSORS (BASEL, SWITZERLAND) 2019; 19:E355. [PMID: 30654582 PMCID: PMC6359273 DOI: 10.3390/s19020355] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/24/2018] [Accepted: 01/09/2019] [Indexed: 11/28/2022]
Abstract
Interest in sensors and their applications is rapidly evolving, mainly driven by the huge demand of technologies whose ultimate purpose is to improve and enhance health and safety. Different electromagnetic technologies have been recently used and achieved good performances. Despite the plethora of literature, limitations are still present: limited response control, narrow bandwidth, and large dimensions. MetaSurfaces, artificial 2D materials with peculiar electromagnetic properties, can help to overcome such issues. In this paper, a generic tool to model, design, and manufacture MetaSurface sensors is developed. First, their properties are evaluated in terms of impedance and constitutive parameters. Then, they are linked to the structure physical dimensions. Finally, the proposed method is applied to realize devices for advanced sensing and medical diagnostic applications: glucose measurements, cancer stage detection, water content recognition, and blood oxygen level analysis. The proposed method paves a new way to realize sensors and control their properties at will. Most importantly, it has great potential to be used for many other practical applications, beyond sensing and diagnostics.
Collapse
Affiliation(s)
- Luigi La Spada
- School of Engineering and the Built Environment, Edinburgh Napier University, 10 Colinton Rd, Edinburgh EH10 5DT, UK.
| |
Collapse
|
32
|
Liu H, Luo K, Tang S, Peng D, Hu F, Tu L. An Ultra-Wideband THz/IR Metamaterial Absorber Based on Doped Silicon. MATERIALS 2018; 11:ma11122590. [PMID: 30572632 PMCID: PMC6315332 DOI: 10.3390/ma11122590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022]
Abstract
Metamaterial-based absorbers have been extensively investigated in the terahertz (THz) range with ever increasing performances. In this paper, we propose an all-dielectric THz absorber based on doped silicon. The unit cell consists of a silicon cross resonator with an internal cross-shaped air cavity. Numerical results suggest that the proposed absorber can operate from THz to far-infrared regimes, having an average power absorption of ∼95% between 0.6 and 10 THz. Experimental results using THz time-domain spectroscopy show a good agreement with simulations. The underlying mechanisms for broadband absorption are attributed to the combined effects of multiple cavities modes formed by silicon resonators and bulk absorption in the doped silicon substrate, as confirmed by simulated field patterns and calculated diffraction efficiency. This ultra-wideband absorption is polarization insensitive and can operate across a wide range of the incident angle. The proposed absorber can be readily integrated into silicon-based photonic platforms and used for sensing, imaging, energy harvesting and wireless communications applications in the THz/IR range.
Collapse
Affiliation(s)
- Huafeng Liu
- MOE Key Laboratory of Fundamental Physical Quantities Measurement, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Kai Luo
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shihao Tang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Danhua Peng
- MOE Key Laboratory of Fundamental Physical Quantities Measurement, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Fangjing Hu
- MOE Key Laboratory of Fundamental Physical Quantities Measurement, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Liangcheng Tu
- MOE Key Laboratory of Fundamental Physical Quantities Measurement, Huazhong University of Science and Technology, Wuhan 430074, China.
- Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
33
|
Hoque A, Tariqul Islam M, Almutairi AF, Alam T, Jit Singh M, Amin N. A Polarization Independent Quasi-TEM Metamaterial Absorber for X and Ku Band Sensing Applications. SENSORS 2018; 18:s18124209. [PMID: 30513675 PMCID: PMC6308816 DOI: 10.3390/s18124209] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
In this paper, a dual-band metamaterial absorber (MMA) ring with a mirror reflexed C-shape is introduced for X and Ku band sensing applications. The proposed metamaterial consists of two square ring resonators and a mirror reflexed C-shape, which reveals two distinctive absorption bands in the electromagnetic wave spectrum. The mechanism of the two-band absorber particularly demonstrates two resonance frequencies and absorption was analyzed using a quasi-TEM field distribution. The absorption can be tunable by changing the size of the metallic ring in the frequency spectrum. Design and analysis of the proposed meta-absorber was performed using the finite-integration technique (FIT)-based CST microwave studio simulation software. Two specific absorption peaks value of 99.6% and 99.14% are achieved at 13.78 GHz and 15.3 GHz, respectively. The absorption results have been measured and compared with computational results. The proposed dual-band absorber has potential applications in sensing techniques for satellite communication and radar systems.
Collapse
Affiliation(s)
- Ahasanul Hoque
- Centre of Advanced Electronic and Communication Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
| | - Mohammad Tariqul Islam
- Centre of Advanced Electronic and Communication Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
| | - Ali F Almutairi
- Electrical Engineering Department, Kuwait University, Kuwait City 13060, Kuwait.
| | - Touhidul Alam
- Centre of Advanced Electronic and Communication Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
| | - Mandeep Jit Singh
- Centre of Advanced Electronic and Communication Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
| | - Nowshad Amin
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
34
|
Zhou Q, Zha S, Liu P, Liu C, Bian LA, Zhang J, Liu H, Ding L. Graphene Based Controllable Broadband Terahertz Metamaterial Absorber with Transmission Band. MATERIALS 2018; 11:ma11122409. [PMID: 30501033 PMCID: PMC6316969 DOI: 10.3390/ma11122409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 11/16/2022]
Abstract
A graphene-based controllable broadband terahertz metamaterial absorber with transmission band is presented in this paper. It consists of a graphene-SiO2-frequency selective surface (FSS) sandwich structure. The sinusoidal graphene layer supports continuous plasmonic resonances, forming a broad electric-tuning absorbing band. Bandpass FSS constructs a transmission window outside the absorbing band. The simulation results indicate that the absorption from 0.5 THz to 1 THz can be tuned continuously from 0.4 to 0.9 with angle and polarization independence. A transparent window peaking at 1.65 THz maintains high transmittance over 0.7. The metamaterial absorber has potential applications for detection, stealth, filtering, and electromagnetic compatibility.
Collapse
Affiliation(s)
- Qihui Zhou
- College of Electronic Science, National University of Defense Technology, Changsha 410073, China.
| | - Song Zha
- College of Electronic Science, National University of Defense Technology, Changsha 410073, China.
| | - Peiguo Liu
- College of Electronic Science, National University of Defense Technology, Changsha 410073, China.
| | - Chenxi Liu
- College of Electronic Science, National University of Defense Technology, Changsha 410073, China.
| | - Li-An Bian
- College of Electronic Science, National University of Defense Technology, Changsha 410073, China.
- School of Physical and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China.
| | - Jihong Zhang
- College of Electronic Science, National University of Defense Technology, Changsha 410073, China.
| | - Hanqing Liu
- College of Electronic Science, National University of Defense Technology, Changsha 410073, China.
| | - Liang Ding
- College of Electronic Science, National University of Defense Technology, Changsha 410073, China.
| |
Collapse
|
35
|
Radiation from a Cavity-Backed Circular Aperture Array Antenna Enclosed by an FSS Radome. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiation from a cavity-backed circular aperture array antenna enclosed by a frequency selective surface (FSS) radome is studied using the hybrid analysis method, by combining the mode matching method, the ray tracing technique, and Huygens’s principle. The equivalent magnetic surface currents on the apertures are derived from the aperture electromagnetic fields, which are calculated based on the mode matching method. The rays are generated from the equivalent magnetic surface currents and used to analyze the FSS radome based on the ray tracing technique. After being obtained from both the mode matching method and the ray tracing technique, electromagnetic fields on an outermost radome are transformed into the equivalent electric and magnetic surface currents using Huygens’s principle. The radiated fields are computed from the equivalent surface currents and compared with the measured data.
Collapse
|
36
|
Ling F, Zhong Z, Zhang Y, Huang R, Zhang B. Broadband negative-refractive index terahertz metamaterial with optically tunable equivalent-energy level. OPTICS EXPRESS 2018; 26:30085-30099. [PMID: 30469888 DOI: 10.1364/oe.26.030085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
An optically tunable terahertz negative-refractive index metamaterial (NIM) is proposed. The NIMs are composed of two aluminum rings and two photosensitive ring-shaped silicon apertures coaxially coated on the both sides of Teflon substrate. The NIMS are also designed to realize wide incident angle, polarization insensitivity, and tunability. Similar to the real atom, the unit cell of NIMs is equivalent to the Teflon nucleus surrounded by top and bottom resonator electrons, which indicates that the equivalent-energy level of NIMs can be dynamically controlled by the resonator electrons, once the scale of substrate nucleus is fixed. Using the LC-circuit model, the dynamic control of the equivalent-energy level of NIMs is studied in detail. Simulation results indicate that the transmission of NIMs is tuned from lowpass to highpass when the conductivity of silicon is increased, and the corresponding phase at lower frequency can be continually tuned. Correspondingly, the negative refractive index of NIMs represents dynamically tunable property, and the tunable negative refraction is simulated by classical wedge prism model. Besides, the phase flow indicates that the direction of phase velocity of NIMs is negative for the single-negative index.
Collapse
|
37
|
Dual-Band Perfect Metamaterial Absorber Based on an Asymmetric H-Shaped Structure for Terahertz Waves. MATERIALS 2018; 11:ma11112193. [PMID: 30404174 PMCID: PMC6266884 DOI: 10.3390/ma11112193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 11/25/2022]
Abstract
We designed an ultra-thin dual-band metamaterial absorber by adjusting the side strips’ length of an H-shaped unit cell in the opposite direction to break the structural symmetry. The dual absorption peaks approximately 99.95% and 99.91% near the central resonance frequency of 4.72 THz and 5.0 THz were obtained, respectively. Meanwhile, a plasmon-induced transmission (PIT) like reflection window appears between the two absorption frequencies. In addition to theoretical explanations qualitatively, a multi-reflection interference theory is also investigated to prove the simulation results quantitatively. This work provides a way to obtain perfect dual-band absorption through an asymmetric metamaterial structure, and it may achieve potential applications in a variety of fields including filters, sensors, and some other functional metamaterial devices.
Collapse
|
38
|
Damarla G, Venkatesh M, Chaudhary AK. Temperature-dependent terahertz spectroscopy and refractive index measurements of aqua-soluble and plastic explosives. APPLIED OPTICS 2018; 57:8743-8750. [PMID: 30461953 DOI: 10.1364/ao.57.008743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/11/2018] [Indexed: 06/09/2023]
Abstract
The paper reports the temperature-dependent time domain terahertz spectroscopy of premium aqua-soluble and plastic explosives such as NH4NO3, TNT, and RDX between 0.1 and 2.2 THz. Tunable terahertz radiation was generated using ZnTe crystal as a source, and a photoconductive antenna was used as a detector. The temperature-dependent study was carried out between 30°C and 200°C in a specially designed oven. The signature peaks of RDX and TNT present at 0.82 and 1.60 THz, respectively, show a strong redshift, whereas the NH4NO3 molecule shows a comparatively small shift. The high-temperature-based redshift phenomenon is just the opposite of the blueshift recorded at low temperatures. In addition, the temperature-dependent absorption coefficient data of these molecules support the change in the concentration of the NO2 molecule. We have also ascertained the temperature-dependent refractive indices of these molecules between 0.1 and 2.0 THz, which confirms the effect of temperature on the refractive indices. Finally, the signature peak of RDX with respect to the reduction in the weight concentration of RDX in the Teflon matrix was studied at 0.82 THz.
Collapse
|
39
|
Independent Manipulating of Orthogonal-Polarization Terahertz Waves Using A Reconfigurable Graphene-Based Metasurface. MATERIALS 2018; 11:ma11101817. [PMID: 30257434 PMCID: PMC6213873 DOI: 10.3390/ma11101817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/24/2022]
Abstract
Viewing the trend of miniaturization and integration in modern electronic device design, a reconfigurable multi-functional graphene-based metasurface is proposed in this paper. By virtue of the reconfigurability of reflection patterns, this metasurface is able to independently manipulate orthogonal linearly polarized terahertz wave. The building blocks of the proposed metasurface are series of graphene-strips-based unit-cells. Each unit-cell consists of two orthogonal graphene strips and a grounded substrate, which has anisotropic responses for each of orthogonal polarizations (x-polarized and y-polarized waves). The reflection phases of both x- and y-polarized waves can be controlled independently through separate electrical tuning. Based on the proposed metasurface, functionalities including beam splitting, beam deflecting, and linear-to-circular polarization converting using a shared aperture are numerically demonstrated and analyzed. Simulation results demonstrate excellent performance, which is consistent with the theorized expectations. This work paves the way for enhancing the miniaturization of modern electronic/optical devices and potentially has important applications in the next-generation information systems for communication, sensing, and imaging.
Collapse
|
40
|
A Co-Polarization Broadband Radar Absorber for RCS Reduction. MATERIALS 2018; 11:ma11091668. [PMID: 30205609 PMCID: PMC6164952 DOI: 10.3390/ma11091668] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022]
Abstract
In this article, a single layer co-polarization broadband radar absorber is presented. Under normal incidence, it achieves at least 90% of absorption from 5.6 GHz to 9.1 GHz for both Transverse Electric (TE) and Transverse Magnetic (TM) polarizations. Our contribution and the challenge of this work is to achieve broadband absorption using a very thin single layer dielectric and it is achieved by rotating the resonating element by 45 ∘ . An original optimized Underlined U shape has been developed for the resonating element which provides a broadband co-polarization absorption. The structure is 12.7 times thinner than the wavelength at the center frequency. To understand the absorption mechanism, the transmission line model of an absorber and the three near unity absorption peaks at 5.87 GHz, 7.16 GHz and 8.82 GHz have been used to study the electric and magnetic fields. The physical insight of how the three near unity absorption peaks are achieved has also been discussed. After fabricating the structure, the measurements were found to be in good agreement with the simulation results. Furthermore, with the proposed original UUSR resonating element, the operational bandwidth to thickness ratio of 6.43 is obtained making the proposed UUSR very competitive.
Collapse
|
41
|
Study of Energy Scattering Relation and RCS Reduction Characteristic of Matrix-Type Coding Metasurface. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8081231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this paper, we present a design of the linear polarization conversion metasurface (MS) for the broadband radar cross section (RCS) reduction based on split-ring resonator (SRR) structure in microwave region. The corresponding phase gradient can be obtained through the stable phase difference of basic units of polarization conversion MS. The designed polarization conversion MS is applied in coded electromagnetic (EM) matrix by defining two basic units “0” and “1”, respectively. Based on the principle of planar array theory, a new random coding method named by matrix-type coding is proposed. Correlative RCS reduction mechanism is discussed and verified, which can be used to explore the RCS reduction characteristic. The simulated linear polarization conversion rate of the designed structure is up to 90% in the frequency range of 6–15 GHz, and the RCS reduction results verify the theoretical assumptions. Two kinds of matrix-type coding MS samples are prepared and measured. The experimental results indicate that the reflectance of MS is less than –10 dB on average under normal incidence in frequency range of 5.8–15.5 GHz. The average RCS reduction is essentially more than 10 dB in frequency range of 5.5–15 GHz and the corresponding relative bandwidth is 92.7%, which reasonably agrees with simulation. In addition, excellent RCS reduction characteristic of the designed MS can also be achieved over a wide incident angle.
Collapse
|