1
|
Wu D, Li Y, Dai Y, Tian H, Chen Y, Shen G, Yang G. Stabilization of chitosan-based nanomedicines in cancer therapy: a review. Int J Biol Macromol 2025; 309:143016. [PMID: 40216118 DOI: 10.1016/j.ijbiomac.2025.143016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Chitosan (CS), a versatile and alkaline polysaccharide, has gained significant attention in nanomedicine due to its biocompatibility and biodegradability. In recent years, its applications in cancer therapy, particularly for the delivery of chemotherapeutic drugs, diagnostic agents, and genes, have advanced considerably. However, many CS-based nanomedicines suffer from poor stability in biological fluids, especially under physiological conditions. The neutral pH and the presence of electrolytes in physiological environments reduce the charge density of CS, which can account for this application limitation of CS-based nanomedicines. To improve the stability and prevent dissociation or aggregation of these nanomedicines before reaching the target sites, this review summarizes common stabilization strategies including hydrophilic or hydrophobic modification of CS, as well as incorporation with metal ions (e.g. Fe3+ or Zn2+), complexation with anionic cross-linkers (e.g. TPP) or anionic polymers. Additionally, the review highlights the application of stabilized CS-based nanocarriers in drug delivery, with a particular focus on cancer therapy. The challenges and future perspectives for accelerating the clinical translation of these nanomedicines are also discussed.
Collapse
Affiliation(s)
- Danjun Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yazhen Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiwei Dai
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Tian
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gongmin Shen
- Hangzhou Guoguang Pharmaceutical Co., Ltd., Hangzhou 310018, China.
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Zhang W, Azizi-Lalabadi M, Can Karaca A, Abedi-Firoozjah R, Assadpour E, Zhang F, Jafari SM. A review of bio-based dialdehyde polysaccharides as multifunctional building blocks for biomedical and food science applications. Int J Biol Macromol 2025; 309:142964. [PMID: 40210025 DOI: 10.1016/j.ijbiomac.2025.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Food science and biomedical engineering are key disciplines related to human health, with the development of functional materials being an important research direction in both fields. In recent years, dialdehyde polysaccharides (DAPs), as green biopolymers, have become increasingly important in functional materials within food science and biomedical engineering. This work systematically summarizes the sources and properties of various DAPs, introduces their preparation methods and common DAP-based functional biomaterials, including hydrogels, scaffolds, films, coatings, nanoparticles, and nanofibers. Importantly, this work also reviews DAP applications in functional materials for food science and biomedical engineering, such as drug delivery, wound dressings, tissue engineering, food packaging films/edible coatings, food emulsions, antibacterial nanoparticles, and enzyme immobilization. Finally, the work briefly discusses the biosafety of DAPs. To conclude, this study provides a toolkit for developing functional materials in these fields and offers important reference value regarding the broad application of DAPs.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Reza Abedi-Firoozjah
- Student Research committee, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Agha HM, Jawad AH, Wilson LD, Al-Essa K, ALOthman ZA. A chitosan-Staphylococcus epidermidis bacterial biocomposite adsorbent for removal of reactive orange 16 dye: Box-Behnken design optimization. Int J Biol Macromol 2025; 309:142752. [PMID: 40180078 DOI: 10.1016/j.ijbiomac.2025.142752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
A biocomposite material of chitosan/Staphylococcus epidermidis bacterial biomass (CS/STEPI) was developed for removal of reactive orange 16 (RO16) dye. The properties of the CS/STEPI biocomposite were characterized using XRD, FESEM-EDX, FTIR spectroscopy and pHpzc. The adsorptive capacity of the CS/STEPI biocomposite for removal of RO16 dye was optimized through a Box-Behnken design employing a desirability function to achieve a 92.7 % dye removal. Three types of operational biosorption parameters were considered: CS/STEPI dose (0.02 to 0.1 g/100 mL), contact time (20 to 120 min), and solution pH (4 to 10). Kinetic and equilibrium biosorption isotherms revealed that the biosorption of RO16 dye onto the CS/STEPI biocomposite was described by the pseudo-second-order kinetic and the Langmuir adsorption models, respectively. The maximum dye adsorption capacity was estimated to be 119 mg/g at pH 4.3. The thermodynamic analysis of the biosorption process reveals that the process is exothermic and spontaneous overall. Biosorption of the RO16 dye onto the surface of the CS/STEPI biocomposite is attributed to multiple types of interactions: n-π, electrostatic, and hydrogen bonding. A reusability test shows that CS/STEPI biocomposite was reusable for five cycles of applications. Therefore, the CS/STEPI biocomposite has favourable potential for the removal of anionic dyes from wastewater.
Collapse
Affiliation(s)
- Hasan M Agha
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Khansaa Al-Essa
- Department of Chemistry, Jerash University, 26150 Jerash, Jordan
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Sedghamiz MA, Mehrvar M, Tavakkoli MA, Sharif M, Sahami M. The efficient chitosan-polythiophene-graphene oxide bionanocomposite with enhanced antibacterial activity, dye adsorption ability, mechanical and thermal properties. Sci Rep 2025; 15:10485. [PMID: 40140690 PMCID: PMC11947090 DOI: 10.1038/s41598-025-95090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Water pollution is the most serious environmental issues due to toxic impurity such as dye and pathogenic microorganisms. The main goal of the present study is to produce a novel ternary chitosan-polythiophene-graphene oxide (CS-PTh-GO) bionanocomposites using the intercalation of GO into CS through solution mixing process followed by the in-situ polymerization of thiophene for removal of dye and killing microorganisms from an aqueous solution. The fabricated CS-PTh-GOs were characteristically examined via FTIR, XRD, SEM, TEM, TGA, tensile analysis and subsequently applied for adsorption of cationic dyes such as methylene blue (MB) in the dark or under light and killing the growth of Gram-positive and Gram-negative microorganisms. The data revealed that presence of PTh-GO enhanced the surface roughness, tensile strength, thermal stability, adsorption characteristics and antibacterial activity. The CS-PTh-GO showed 97% dye removal of MB in 50 min. Ultimately, the CS-PTh-GO bionanocomposites analysis against the growth of Staphylococcus aureus, and Escherichia coli manifesting a minimum inhibitory concentration (MIC) of 5 µg/mL, respectively. Thus, the CS-PTh-GO bionanocomposite has the potential to use as an efficient adaptable antimicrobial and dye absorbent of organic dyes in industrial wastewater.
Collapse
Affiliation(s)
- Mohammad Amin Sedghamiz
- Department of Chemical, Petroleum and Gas Engineering, Lamerd Higher Education Center, Shiraz University of Technology, Lamerd, Iran.
| | - Mohammadhadi Mehrvar
- Department of Polymer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | | | - Mehdi Sharif
- Department of Polymer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Mehdi Sahami
- Department of Mechanical Engineering, The University of Akron, 244 Sumner Street, Akron, OH, 44325-3903, USA
| |
Collapse
|
5
|
Muchová M, Münster L, Valášková K, Lovecká L, Víchová Z, Osička J, Kašpárková V, Humpolíček P, Vašíček O, Vícha J. One-step fabrication of chitosan/dialdehyde cellulose/polypyrrole composite nanofibers with antibacterial, antioxidant, and immunomodulatory effects. Int J Biol Macromol 2025; 308:142105. [PMID: 40112969 DOI: 10.1016/j.ijbiomac.2025.142105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
The study introduces a novel method for fabricating crosslinked chitosan/polypyrrole (PPy) composite nanofibers with covalently anchored PPy. Crosslinking is achieved already during electrospinning by using dialdehyde cellulose (DAC) as a dual-functioning reagent able to simultaneously crosslink chitosan nanofibers and covalently tether PPy nanoparticles by a newly discovered aldol condensation reaction. The presented method eliminates the need for postprocessing steps. It reduces the environmental impact by avoiding toxic organic chemicals while preventing PPy leaching and improving prepared composite nanofibers' mechanical and biological properties. A direct comparison to neat chitosan nanofibres was performed to demonstrate the superiority of prepared composites. The resulting crosslinked CHIT_DAC_PPy composite nanofibers have increased tensile strength, improved stability at low pH, conductivity up to 11 mS/cm, and higher swelling compared to neat CHIT nanofibers. They also possess significantly enhanced antibacterial activity against gram-positive S. aureus, higher antioxidant activity, increased immunomodulatory effects, and substantially higher acceleration of wound healing in vitro. CHIT_DAC_PPy nanofibrous composite thus shows significant potential for fabricating advanced wound dressings.
Collapse
Affiliation(s)
- Monika Muchová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Lukáš Münster
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Kristýna Valášková
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Lenka Lovecká
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Zdenka Víchová
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Josef Osička
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic
| | - Věra Kašpárková
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Ondřej Vašíček
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic.
| | - Jan Vícha
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic.
| |
Collapse
|
6
|
Duymaz D, Kebabci AO, Kizilel S. Harnessing the immunomodulatory potential of chitosan and its derivatives for advanced biomedical applications. Int J Biol Macromol 2025; 307:142055. [PMID: 40090654 DOI: 10.1016/j.ijbiomac.2025.142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
The success of biomaterial applications in medicine, particularly in tissue engineering, relies on achieving a balance between promoting tissue regeneration and controlling the immune response. Due to its natural origin, high biocompatibility, and versatility, chitosan has emerged as a promising biomaterial especially for immunomodulation purposes. Immunomodulation, refers to the deliberate alteration of the immune system's activity to achieve a desired therapeutic effect either by enhancing or suppressing the function of specific immune cells, signaling pathways, or cytokine production. This modulation opens up the unlimited possibilities for the use of biomaterials, especially about the use of natural polymers such as chitosan. Although numerous chitosan-based immunoregulatory strategies have been demonstrated over the past two decades, the lack of in-depth exploration hinders the full potential of strategies that include chitosan and its derivatives in biomedical applications. Thus, in this review, the possible immunomodulatory effects of chitosan, chitosan derivatives and their potential combined with various agents and therapies are investigated in detail. Moreover, this report includes agents for localized immune response control, chitosan-based strategies with complementary immunomodulatory properties to create synergistic effects that will influence the success of cell therapies for enhanced tissue acceptance and regeneration. Finally, the challenges and outlook of chitosan-based therapies as a powerful tool for improving immunomodulatory applications are discussed for paving the way for further studies.
Collapse
Affiliation(s)
- Doğukan Duymaz
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye
| | - Aybaran O Kebabci
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye
| | - Seda Kizilel
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye.
| |
Collapse
|
7
|
Khan R, Haider S, Wahit MU, Rahman SU, Hameed S, Haider A, Aqif M, Bukhari IA, Razak SIA. Preparation of amine-functionalized polyacrylonitrile-TiO 2-chitosan multilayer nanofibers as a potential wound dressing: Characterization and investigation of in vitro cell viability, proliferation and antibacterial study. Int J Biol Macromol 2025; 305:141006. [PMID: 39952506 DOI: 10.1016/j.ijbiomac.2025.141006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Development of a Multi-layered (ML) nanofibers (NFs) scaffold by combining advanced materials to address the diverse needs of wound healing offers a comprehensive solution. In this study, a ML scaffold composed of amine functionalized polyacrylonitrile (AFP) NFs membrane as base layer, TiO2 NPs (T) as middle layer, and chitosan (CS) NFs membrane as contact layer was fabricated sequentially by electrospinning, surface functionalization and electrospraying to promote the wound healing. The multi-layered NFs scaffold (ML AFPT-CS) demonstrated adequate morphology, porosity, surface roughness and hydrophilicity with a water contact angle of 41.94°. The NFs scaffolds were evaluated for in-vitro cellular activity using NIH3T3-E1cells and antibacterial performance. The in-vitro analysis inferred that ML AFPT-CS scaffold in comparison with other study groups exhibited excellent cell viability proliferation and resulted in a spindle shape morphology with cells extending across the ML AFPT-CS scaffold and spreading over the NFs surface. Similarly, the ML AFPT-CS scaffolds were active against all four types of bacterial pathogens (M. luteus, S. flexeneri, S. aureus and K. pneumonia) with a highest inhibition against M. luteus (1.7 mm). The developed ML AFPT-CS scaffold could be promising candidate for advanced wound dressing in future.
Collapse
Affiliation(s)
- Rawaiz Khan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia; King Salman Center for Disability Research, P.O. Box 94682, Riyadh 11614, Saudi Arabia.
| | - Mat Uzir Wahit
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Saeed Ur Rahman
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shazia Hameed
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhammad Aqif
- Faculty of Materials and Chemical Engineering, Department of Chemical Engineering, Ghulam Ishaq Khan Institute, Topi, Khyber Pakhtunkhwa 23460, Pakistan
| | - Ishfaq A Bukhari
- Department of Biomedical Sciences Kentucky College of Osteopathic Medicine University of Pikeville, Pikeville, KY, USA
| | - Saiful Izwan Abd Razak
- Sports Innovation & Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia.
| |
Collapse
|
8
|
Bai Y, Liu T, Zhang X, Li H, Li J, Ran X, Wang P, Du G, Yang L, Cao M. Biomimetic flame retardant adhesive via combining polysiloxane, chitosan and vermiculite nanosheets inspired by nacre and arthropod cuticle. Int J Biol Macromol 2025; 289:138870. [PMID: 39701222 DOI: 10.1016/j.ijbiomac.2024.138870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The wood industry's dependence on traditional petrochemical adhesives, which pose environmental and health risks, has spurred research into sustainable alternatives. Sustainable bio-based polysaccharide materials show promise due to their inherent adhesive properties, despite challenges related to mechanical weaknesses and water resistance. Inspired by the hardening mechanisms of nacre and arthropod cuticles, we have developed a novel biomimetic flame-retardant HPA/OCTS/VMT NSs-NH2 adhesive. This adhesive uses oxidized chitosan (OCTS) to crosslink with hyperbranched polymers (HPA) and surface-modified vermiculite nanosheets ((VMT NSs-NH2), conferring flame retardancy. Furthermore, the interfacial compatibility between the VMT NSs-NH₂ nanomaterials and the adhesive is enhanced through the mediating action of HPA, thereby promoting the homogeneous dispersion of the adhesive. Through Schiff base chemistry-mediated covalent crosslinking, VMT NSs-NH2 integrates with OCTS, forming a microphase-separated structure similar to marine arthropod cuticles. This combination yields a wood bonding strength of 1.7 MPa, a limiting oxygen index of 36.7 %, and excellent cone calorimetry test results, providing an environmentally friendly adhesive solution for the wood industry.
Collapse
Affiliation(s)
- Yannan Bai
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Tongda Liu
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xu Zhang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Hongshan Li
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Jun Li
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xin Ran
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Ping Wang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Guanben Du
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Long Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Mengnan Cao
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
9
|
Sanchez-Salvador JL, Mattsson A, Pettersson G, Blanco A, Engstrand P, Negro C. Lignin microparticle coatings for enhanced wet resistance in lignocellulosic materials. Int J Biol Macromol 2024; 282:137243. [PMID: 39500425 DOI: 10.1016/j.ijbiomac.2024.137243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 11/02/2024] [Indexed: 11/09/2024]
Abstract
The widespread use of synthetic plastics in packaging materials poses significant environmental challenges, prompting the search for biobased, biodegradable, and non-toxic alternatives. This study focuses on improving high-yield pulps (HYPs) as sustainable materials for packaging. Enhancing wet strength and barrier properties of papers from bleached chemi-thermomechanical pulps (BCTMPs) is crucial for their application in water- and air- resistant wrappers. Traditional wet strength agents raise environmental and health concerns; therefore, this research explores the use of lignin, in the form of microparticles (LMPs), as a natural biopolymer that offers a safer alternative. However, the low viscosity of LMPs hampers their dispersion as a coating, requiring thickening agents (such as cationic starch (CS), chitosan (CH) or sodium alginate) for an effective coating formulation. Results demonstrate a synergistic effect of LMP coatings with CH or CS, enhanced by hot-pressing at 260 °C for 30 s, which improves dry and wet mechanical properties and decreases air permeability. The use of LMPs as a water-resistant interlayer between BCTMP paper sheets further improves the wet tensile index to 40 kN·m/kg for CH + LMPs and 23 kN·m/kg for CS + LMPs interlayer, representing 55 and 38 % of their respective dry tensile indices.
Collapse
Affiliation(s)
- Jose Luis Sanchez-Salvador
- Department of Chemical Engineering and Materials, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Amanda Mattsson
- Department of Engineering, Mathematics and Subject Didactics (IMD), Mid Sweden University, SE-85170 Sundsvall, Sweden
| | - Gunilla Pettersson
- Department of Engineering, Mathematics and Subject Didactics (IMD), Mid Sweden University, SE-85170 Sundsvall, Sweden
| | - Angeles Blanco
- Department of Chemical Engineering and Materials, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Per Engstrand
- Department of Engineering, Mathematics and Subject Didactics (IMD), Mid Sweden University, SE-85170 Sundsvall, Sweden
| | - Carlos Negro
- Department of Chemical Engineering and Materials, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Demian P, Nagaya D, Refaei R, Iwai K, Hasegawa D, Baba M, Messersmith PB, Lamrani M. Enhancing Performance of Silicone Hydrogel Contact Lenses with Hydrophilic Polyphenolic Coatings. J Funct Biomater 2024; 15:321. [PMID: 39590525 PMCID: PMC11595945 DOI: 10.3390/jfb15110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores the application of a dopamine-assisted co-deposition strategy to modify the surface of daily disposable silicone hydrogel contact lenses. Aiming to enhance the hydrophilicity of these typically hydrophobic lenses, we developed an industry-friendly process using simple dip coating in aqueous solutions. By co-depositing tannic acid, dopamine and chitosan derivative and employing periodate oxidation, we achieved a rapid and efficient coating process. High-molecular-weight branched polyethylene imine was introduced to promote surface reactions. The resulting lenses exhibited extreme hydrophilicity and lipid repellency without compromising their intrinsic properties or causing cytotoxicity. While the coating demonstrated partial antimicrobial activity against Gram-positive Staphylococcus aureus, it offers a foundation for the further development of broad-spectrum antimicrobial coatings. This versatile and efficient process, capable of transforming hydrophobic contact lenses into hydrophilic ones in just 15 min, shows significant potential for improving comfort and performance in daily disposable contact lenses.
Collapse
Affiliation(s)
- Paul Demian
- Menicon R&D Innovation Centre, Menicon Co., Ltd., Nagoya (Japan), Geneva Branch, 1205 Geneva, Switzerland;
| | - Daichi Nagaya
- Menicon Co., Ltd., 21-19, Aoi 3, Naka-ku, Nagoya 460-0006, Japan
| | - Roeya Refaei
- Laboratory of LAMSE, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaâdi University, B.P. 416, Tangier 90000, Morocco
| | - Kaoru Iwai
- Menicon Co., Ltd., 21-19, Aoi 3, Naka-ku, Nagoya 460-0006, Japan
| | - Daiki Hasegawa
- Menicon Co., Ltd., 21-19, Aoi 3, Naka-ku, Nagoya 460-0006, Japan
| | - Masaki Baba
- Menicon Co., Ltd., 21-19, Aoi 3, Naka-ku, Nagoya 460-0006, Japan
| | - Phillip B. Messersmith
- Bioengineering and Materials Science and Engineering Departments, University of California, Berkeley, CA 94720, USA;
| | - Mouad Lamrani
- Menicon R&D Innovation Centre, Menicon Co., Ltd., Nagoya (Japan), Geneva Branch, 1205 Geneva, Switzerland;
- Menicon Co., Ltd., 21-19, Aoi 3, Naka-ku, Nagoya 460-0006, Japan
| |
Collapse
|
11
|
Grabska-Zielińska S. Cross-Linking Agents in Three-Component Materials Dedicated to Biomedical Applications: A Review. Polymers (Basel) 2024; 16:2679. [PMID: 39339142 PMCID: PMC11435819 DOI: 10.3390/polym16182679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
In biomaterials research, using one or two components to prepare materials is common. However, there is a growing interest in developing materials composed of three components, as these can offer enhanced physicochemical properties compared to those consisting of one or two components. The introduction of a third component can significantly improve the mechanical strength, biocompatibility, and functionality of the resulting materials. Cross-linking is often employed to further enhance these properties, with chemical cross-linking agents being the most widely used method. This article provides an overview of the chemical agents utilized in the cross-linking of three-component biomaterials. The literature review focused on cases where the material was composed of three components and a chemical substance was employed as the cross-linking agent. The most commonly used cross-linking agents identified in the literature include glyoxal, glutaraldehyde, dialdehyde starch, dialdehyde chitosan, and the EDC/NHS mixture. Additionally, the review briefly discusses materials cross-linked with the MES/EDC mixture, caffeic acid, tannic acid, and genipin. Through a critical analysis of current research, this work aims to guide the development of more effective and safer biopolymeric materials tailored for biomedical applications, highlighting potential areas for further investigation and optimization.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
12
|
Atila D, Dalgic AD, Krzemińska A, Pietrasik J, Gendaszewska-Darmach E, Bociaga D, Lipinska M, Laoutid F, Passion J, Kumaravel V. Injectable Liposome-Loaded Hydrogel Formulations with Controlled Release of Curcumin and α-Tocopherol for Dental Tissue Engineering. Adv Healthc Mater 2024; 13:e2400966. [PMID: 38847504 DOI: 10.1002/adhm.202400966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Indexed: 06/19/2024]
Abstract
An injectable hydrogel formulation is developed utilizing low- and high-molecular-weight chitosan (LCH and HCH) incorporated with curcumin and α-tocopherol-loaded liposomes (Lip/Cur+Toc). Cur and Toc releases are delayed within the hydrogels. The injectability of hydrogels is proved via rheological analyses. In vitro studies are conducted using human dental pulp stem cells (hDPSCs) and human gingival fibroblasts (hGFs) to examine the biological performance of the hydrogels toward endodontics and periodontics, respectively. The viability of hDPSCs treated with the hydrogels with Lip/Cur+Toc is the highest till day 14, compared to the neat hydrogels. During odontogenic differentiation tests, alkaline phosphatase (ALP) enzyme activity of hDPSCs is induced in the Cur-containing groups. Biomineralization is enhanced mostly with Lip/Cur+Toc incorporation. The viability of hGFs is the highest in HCH combined with Lip/Cur+Toc while wound healing occurs almost 100% in both (Lip/Cur+Toc@LCH and Lip/Cur+Toc@HCH) after 2 days. Antioxidant activity of Lip/Cur+Toc@LCH on hGFs is significantly the highest among the groups. Antimicrobial tests demonstrate that Lip/Cur+Toc@LCH is more effective against Escherichia coli whereas so is Lip/Cur+Toc@HCH against Staphylococcus aureus. The antimicrobial mechanism of the hydrogels is investigated for the first time through various computational models. LCH and HCH loaded with Lip/Cur+Toc are promising candidates with multi-functional features for endodontics and periodontics.
Collapse
Affiliation(s)
- Deniz Atila
- International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, 90-924, Poland
| | - Ali Deniz Dalgic
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, 34060, Turkey
| | - Agnieszka Krzemińska
- International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, 90-924, Poland
| | - Joanna Pietrasik
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, 90-924, Poland
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, 90-924, Poland
| | - Dorota Bociaga
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, 90-924, Poland
| | - Magdalena Lipinska
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, 90-924, Poland
| | - Fouad Laoutid
- Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons Innovation Center, Mons, B-7000, Belgium
| | - Julie Passion
- Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons Innovation Center, Mons, B-7000, Belgium
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, 90-924, Poland
| |
Collapse
|
13
|
Klak M, Kosowska K, Czajka M, Dec M, Domański S, Zakrzewska A, Korycka P, Jankowska K, Romanik-Chruścielewska A, Wszoła M. The Impact of the Methacrylation Process on the Usefulness of Chitosan as a Biomaterial Component for 3D Printing. J Funct Biomater 2024; 15:251. [PMID: 39330227 PMCID: PMC11433516 DOI: 10.3390/jfb15090251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Chitosan is a very promising material for tissue model printing. It is also known that the introduction of chemical modifications to the structure of the material in the form of methacrylate groups makes it very attractive for application in the bioprinting of tissue models. The aim of this work is to study the characteristics of biomaterials containing chitosan (BCH) and its methacrylated equivalent (BCM) in order to identify differences in their usefulness in 3D bioprinting technology. It has been shown that the BCM material containing methacrylic chitosan is three times more viscous than its non-methacrylated BCH counterpart. Additionally, the BCM material is characterized by stability in a larger range of stresses, as well as better printability, resolution, and fiber stability. The BCM material has higher mechanical parameters, both mechanical strength and Young's modulus, than the BCH material. Both materials are ideal for bioprinting, but BCM has unique rheological properties and significant mechanical resistance. In addition, biological tests have shown that the addition of chitosan to biomaterials increases cell proliferation, particularly in 3D-printed models. Moreover, modification in the form of methacrylation encourages reduced toxicity of the biomaterial in 3D constructs. Our investigation demonstrates the suitability of a chitosan-enhanced biomaterial, specifically methacrylate-treated, for application in tissue engineering, and particularly for tissues requiring resistance to high stress, i.e., vascular or cartilage models.
Collapse
Affiliation(s)
- Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Katarzyna Kosowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Milena Czajka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Magdalena Dec
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| | | | | | - Paulina Korycka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
| | - Kamila Jankowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
| | | | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland
- Polbionica Ltd., 01-793 Warsaw, Poland
| |
Collapse
|
14
|
Chelminiak-Dudkiewicz D, Wujak M, Mlynarczyk DT, Dlugaszewska J, Mylkie K, Smolarkiewicz-Wyczachowski A, Ziegler-Borowska M. Enhancing the porosity of chitosan sponges with CBD by adding antimicrobial violacein. Heliyon 2024; 10:e35389. [PMID: 39165973 PMCID: PMC11334822 DOI: 10.1016/j.heliyon.2024.e35389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/22/2024] Open
Abstract
Given the growing interest in non-toxic materials with good anti-inflammatory and antimicrobial mechanical properties, this work focuses on preparing chitosan sponges with violacein and cannabis oil crosslinked with dialdehyde chitosan. The sponge was tested for its physicochemical and biological properties, presenting a high swelling rate, good thermal stability, and satisfactory mechanical properties. The obtained sponge's water vapor transmission rate was 2101 g/m2/day and is within the recommended values for ideal wound dressings. Notably, adding violacein favorably affected the material's porosity, which is essential for dressing materials. In addition, studies have shown that the designed material interacts with human serum albumin and exhibits good antioxidant and anti-inflammatory properties. The antibacterial properties of the prepared biomaterial were assessed using the Microtox test against A. fisherii (Gram-negative bacterium) and S. aureus (Gram-positive bacterium). The investigated material provides potential therapeutic benefits due to the synergistic action of chitosan, violacein, and cannabis oil so that it could be used as a dressing material. The natural origin of the substances could provide an attractive and sustainable alternative to traditional commercially available dressings.
Collapse
Affiliation(s)
- Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Magdalena Wujak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jurasza 2, 85-089, Bydgoszcz, Poland
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-80, Poznan, Poland
| | - Jolanta Dlugaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland
| | - Kinga Mylkie
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Aleksander Smolarkiewicz-Wyczachowski
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| |
Collapse
|
15
|
Denise R M, Usharani N, Saravanan N, Kanth SV. In vitro and in silico approach towards antimicrobial and antioxidant behaviour of water-soluble chitosan dialdehyde biopolymers. Carbohydr Res 2024; 542:109192. [PMID: 38944981 DOI: 10.1016/j.carres.2024.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Chitosan dialdehyde (ChDA) was prepared from a three-step process initiated by thermal organic acid hydrolysis, periodate oxidization, and precipitation from native chitosan (NCh). The developed ChDA resulted in an aldehydic content of about 82 % with increased solubility (89 %) and maximum yield (97 %). The functional alteration of the aldehydic (-CHO) group in ChDA was established using vibrational stretching at 1744 cm-1. The increase in the zone of inhibition of ChDA compared to NCh has confirmed the inherent antimicrobial effect against bacterial and fungal species. ChDA showed better antioxidant activity of about 97.4 % (DPPH) and 31.1 % (ABTS) compared to NCh, measuring 45.3 % (DPPH) and 15.9 % (ABTS), respectively. The novel insilico predictions of the ChDA's biocidal activity were confirmed through molecular docking studies. The amino acid moiety such as ARG 110 (A), ASN 206 (A), SER 208 (A), THR 117 (B), ASN 118 (B), and LYS 198 (B) residues of 7B53 peptide from E. coli represents the binding pockets responsible for interaction with aldehyde group of ChDA. Whereas PHE 115 (E), ALA 127 (H), TYR 119 (C), GLN 125 (H), ASN 175 (E), ARG 116 (E), LYS 101 (H), and LYS 129 (H) of 1IYL A peptide from Candida albicans makes possible for binding with ChDA. Hence, the synergistic effect of ChDA as a biocidal compound is found to be plausible in the drug delivery system for therapeutic applications.
Collapse
Affiliation(s)
- Monica Denise R
- Center for Human & Organizational Resources Development (CHORD), CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Nagarajan Usharani
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Natarajan Saravanan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Swarna V Kanth
- Center for Human & Organizational Resources Development (CHORD), CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.
| |
Collapse
|
16
|
Yuan X, Zhou Y, Wang Y, Liu L, Yang G. Fabrication of Schiff-base crosslinked films modified dialdehyde starch with excellent UV-blocking and antibacterial properties for fruit preservation. Carbohydr Polym 2024; 326:121619. [PMID: 38142076 DOI: 10.1016/j.carbpol.2023.121619] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
Starch-based films have received considerable attention, owing to their commendable biocompatible and biodegradable properties; however, their poor ultraviolet (UV)-blocking and antibacterial performances limit their application in fruit preservation. Herein, bio-based bifunctional benzoxazine (Bi-BOZ) compounds with different carbon chain lengths were synthesized, and the influence of chain lengths on the antibacterial effect was explored. Benzoxazine with 1,12-dodecanediamine as the amine source (BOZ-DDA) exhibited excellent antibacterial and antibiofilm activities, with minimum inhibitory concentrations of 21.7 ± 2.2 and 23.3 ± 2.6 μg/mL against Escherichia coli and Staphylococcus aureus, respectively, mainly because the electrostatic attraction and hydrophobic effect of BOZ-DDA, effectively disrupted the bacterial integrity. DS/DDA films with hydrophobic, antibacterial, and UV-resistant abilities were prepared by the Schiff-base reaction between BOZ-DDA and dialdehyde starch (DS). The interactions between the films increased with BOZ-DDA content, enhanced mechanical and barrier properties. DS/DDA films exhibited acid-responsive antibacterial activity attributed to the acid hydrolysis of Schiff bases, released of BOZ-DDA from the films, and the protonation of BOZ-DDA. DS/DDA films exhibited commendable antibacterial and anti-ultraviolet characteristics compared to commercially available films, allowing them to prevent the degradation of mangoes and grapes. As sustainable antibacterial materials, the multifunctional DS/DDA films manifest promising prospects in fruit preservation packaging applications.
Collapse
Affiliation(s)
- Xuan Yuan
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yijia Zhou
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yudan Wang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Lijia Liu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Yantai Research Institute of Harbin Engineering University, Yantai 264006, China
| | - Guoxing Yang
- Daqing Petrochemical Research Center, Petrochemical Research Institute, PetroChina Corporation, Daqing 163000, China.
| |
Collapse
|
17
|
Chełminiak-Dudkiewicz D, Smolarkiewicz-Wyczachowski A, Ziegler-Borowska M, Kaczmarek H. Photochemical stability of chitosan films doped with cannabis oil. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112850. [PMID: 38277961 DOI: 10.1016/j.jphotobiol.2024.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
The effect of UV radiation from three different sources on chitosan (CS) films containing the addition of 10% by weight of cannabis oil was investigated. Cannabis oil (CBD) alone exposed to UV is unstable, but its photostability significantly increases in the chitosan matrix. The course of photochemical reactions, studied by FTIR spectroscopy, is slow and inefficient in chitosan with CBD, even under high-energy UV sources. The research also included chitosan films with CBD cross-linked with dialdehyde starch (DAS). Using AFM microscopy and contact angle measurements, the morphology and surface properties of prepared chitosan films with CBD were investigated, respectively. It was found that CBD embedded in CS is characterized by the best photostability under the influence of an LED emitting long-wave radiation. Using a monochromatic and polychromatic UV lamp (HPK and UV-C) emitting high-energy radiation, gradual degradation accompanied by oxidation was observed, both in the CS chains and in the CBD additive. Additionally, changes in surface properties are observed during UV irradiation. It was concluded that CS protects CBD against photodegradation, and a further improvement in photochemical stability is achieved after system cross-linking with DAS.
Collapse
Affiliation(s)
| | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Halina Kaczmarek
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
18
|
Wang Y, Wang N, Wang P, Yang F, Han C, Yu D. Preparation of magnetic dialdehyde starch-immobilized phospholipase A 1 and acyl transfer in reflection. Int J Biol Macromol 2024; 257:128804. [PMID: 38101664 DOI: 10.1016/j.ijbiomac.2023.128804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
In this paper, using a coprecipitation method to prepare Fe3O4 magnetic nanoparticles (Fe3O4 MNPS), magnetic dialdehyde starch nanoparticles with immobilized phospholipase A1 (MDSNIPLA) were successfully prepared by using green dialdehyde starch (DAS) instead of glutaraldehyde as the crosslinking agent. The Fe3O4 MNPS was characterized by infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), the Brunauer-Emmett-Teller (BET) surface area analysis method, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) et al. The results showed that the alkaline resistance and acid resistance of the enzyme were improved after the crosslinking of DAS. After repeated use (seven times), the relative activity of MDSNIPLA reached 56 %, and the magnetic dialdehyde starch nanoparticles (MDASN) had good carrier performance. MDSNIPLA was applied to enzymatic hydrolysis of phospholipids in the soybean oil degumming process. The results showed that the acyl transfer rate of sn-2-HPA was 14.01 %, and the content of free fatty acids was 1.144 g/100 g after 2 h reaction at 50 °C and pH 5.0 with appropriate boric acid. The immobilized enzyme has good thermal stability and storage stability, and its application of soybean oil improves the efficiency of the oil.
Collapse
Affiliation(s)
- Yawen Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ning Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fuming Yang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Cuiping Han
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
19
|
Wang Y, Zhong Z, Munawar N, Wang R, Zan L, Zhu J. Production of green-natural and "authentic" cultured meat based on proanthocyanidins-dialdehyde chitosan-collagen ternary hybrid edible scaffolds. Food Res Int 2024; 175:113757. [PMID: 38129054 DOI: 10.1016/j.foodres.2023.113757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Cultured meat has the potential to fulfill the meat demand for the growing human population, but cultured meat development will be required to simplify the production process and produce naturally cultured meat, such as no longer stripping off scaffolders and adding artificial dyes. In this study, proanthocyanidins (PC) and dialdehyde chitosan (DAC) were employed as dual crosslinkers with collagen to prepare a hybrid 3D edible scaffold for the production of high-quality cell-cultured meat. The results revealed that the scaffold was biocompatible and could offer robust mechanical support and adhesion sites for bovine myoblasts, enabling long-term cell culture. Meanwhile, the Col-PC-DAC scaffold promoted the myogenic differentiation of bovine myoblasts and extracellular matrix protein secretion, further affecting the texture of cultured meat. After cooking the cultured meat and beef, it was shown that the cultured meat had some similarities to beef in color and flavor. Importantly, our findings demonstrate that cultured meat can acquire a color remarkably similar to that of conventional beef without the need for artificial dyeing. This breakthrough not only simplifies the production process but also ensures a more natural and appealing appearance of cultured meat. In conclusion, the proanthocyanidins-dialdehyde chitosan-collagen hybrid 3D edible scaffolds provide a new option for producing cultured meat that satisfies consumer expectations.
Collapse
Affiliation(s)
- Yafang Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhihao Zhong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Noshaba Munawar
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiqi Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
20
|
Gholivand K, Mohammadpour M, Derakhshankhah H, Samadian H, Aghaz F, Eshaghi Malekshah R, Rahmatabadi S. Composites based on alginate containing formylphosphazene-crosslinked chitosan and its Cu(II) complex as an antibiotic-free antibacterial hydrogel dressing with enhanced cytocompatibility. Int J Biol Macromol 2023; 253:127297. [PMID: 37813210 DOI: 10.1016/j.ijbiomac.2023.127297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Hydrogels based on chitosan or alginate biopolymers are believed to be desirable for covering skin lesions. In this research, we explored the potential of a new composite hydrogels series of sodium alginate (Alg) filled with cross-linked chitosan to use as hydrogel wound dressings. Cross-linked chitosan (CSPN) was synthesized by Schiff-base reaction with aldehydated cyclophosphazene, and its Cu(II) complex was manufactured and identified. Then, their powder suspension and Alg were transformed into hydrogel via ion-crosslinking with Ca2+. The hydrogel constituents were investigated by using FTIR, XRD, rheological techniques, and thermal analysis including TGA (DTG) and DSC. Moreover, structure optimization calculations were performed with the Material Studio 2017 program based on DFT-D per Dmol3 module. Examination of Alg's interactions with CSPN and CSPN-Cu using this module demonstrated that Alg molecules can be well adsorbed to the particle's surface. By changing the dosage of CSPN and CSPN-Cu, the number and size of pores, swelling rate, degradation behavior, protein absorption rate, cytotoxicity and blood compatibility were changed significantly. Subsequently, we employed erythromycin as a model drug to assess the entrapment efficiency, loading capacity, and drug release rate. FITC staining was selected to verify the hydrogels' intracellular uptake. Assuring the cytocompatibility of Alg-based hydrogels was approved by assessing the survival rate of fibroblast cells using MTT assay. However, the presence of Cu(II) in the developed hydrogels caused a significant antibacterial effect, which was comparable to the antibiotic-containing hydrogels. Our findings predict these porous, biodegradable, and mechanically stable hydrogels potentially have a promising future in the wound healing as antibiotic-free antibacterial dressings.
Collapse
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahnaz Mohammadpour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Soheil Rahmatabadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
21
|
Alfuraydi RT, Al-Harby NF, Alminderej FM, Elmehbad NY, Mohamed NA. Poly (Vinyl Alcohol) Hydrogels Boosted with Cross-Linked Chitosan and Silver Nanoparticles for Efficient Adsorption of Congo Red and Crystal Violet Dyes. Gels 2023; 9:882. [PMID: 37998972 PMCID: PMC10670830 DOI: 10.3390/gels9110882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
In our previous work, three different weight ratios of chitosan/PVA (1:3, 1:1, and 3:1) were blended and then cross-linked with trimellitic anhydride isothiocyanate (TAI) at a concentration depending on their chitosan content, obtaining three hydrogels symbolized by H13, H11, and H31. Pure chitosan was cross-linked with TAI, producing a hydrogel symbolized by H10. Further, three H31-based silver nanoparticles composites (H31/AgNPs1%, H31/AgNPs3%, and H31/AgNPs5%) were also synthesized. They were investigated, for the first time in this study, as adsorbents for Congo Red (CR) and Crystal Violet (CV) dyes. The removal efficiency of CR dye increased with increasing H10 content in the hydrogels, and with increasing AgNP content in the composites, reaching 99.91% for H31/AgNPs5%. For CV dye, the removal efficiency increased with the increase in the PVA content. Furthermore, the removal efficiency of CV dye increased with an increasing AgNP content, reaching 94.7% for H31/AgNPs5%. The adsorption capacity increased with the increase in both the initial dye concentration and temperature, while with an increasing pH it increased in the case of CV dye and decreased in the case of CR dye. The adsorption of CV dye demonstrated that the Freundlich isotherm model is better suited for the experimental results. Moreover, the results were best fitted with pseudo-second-order kinetic model.
Collapse
Affiliation(s)
- Reem T. Alfuraydi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (N.F.A.-H.); (F.M.A.)
| | - Nouf F. Al-Harby
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (N.F.A.-H.); (F.M.A.)
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (N.F.A.-H.); (F.M.A.)
| | - Noura Y. Elmehbad
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 55461, Saudi Arabia;
| | - Nadia A. Mohamed
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (N.F.A.-H.); (F.M.A.)
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
22
|
Zhang J, Bai H, Bai M, Wang X, Li Z, Xue H, Wang J, Cui Y, Wang H, Wang Y, Zhou R, Zhu X, Xu M, Zhao X, Liu H. Bisphosphonate-incorporated coatings for orthopedic implants functionalization. Mater Today Bio 2023; 22:100737. [PMID: 37576870 PMCID: PMC10413202 DOI: 10.1016/j.mtbio.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bisphosphonates (BPs), the stable analogs of pyrophosphate, are well-known inhibitors of osteoclastogenesis to prevent osteoporotic bone loss and improve implant osseointegration in patients suffering from osteoporosis. Compared to systemic administration, BPs-incorporated coatings enable the direct delivery of BPs to the local area, which will precisely enhance osseointegration and bone repair without the systemic side effects. However, an elaborate and comprehensive review of BP coatings of implants is lacking. Herein, the cellular level (e.g., osteoclasts, osteocytes, osteoblasts, osteoclast precursors, and bone mesenchymal stem cells) and molecular biological regulatory mechanism of BPs in regulating bone homeostasis are overviewed systematically. Moreover, the currently available methods (e.g., chemical reaction, porous carriers, and organic material films) of BP coatings construction are outlined and summarized in detail. As one of the key directions, the latest advances of BP-coated implants to enhance bone repair and osseointegration in basic experiments and clinical trials are presented and critically evaluated. Finally, the challenges and prospects of BP coatings are also purposed, and it will open a new chapter in clinical translation for BP-coated implants.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haotian Bai
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Miao Bai
- Department of Ocular Fundus Disease, Ophthalmology Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiaonan Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - ZuHao Li
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haowen Xue
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Hui Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yanbing Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rongqi Zhou
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiujie Zhu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Mingwei Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
23
|
Tohamy HAS, Taha G, Sultan M. Dialdehyde cellulose/gelatin hydrogel as a packaging material for manganese oxides adsorbents for wastewater remediation: Characterization and performance evaluation. Int J Biol Macromol 2023; 248:125931. [PMID: 37481186 DOI: 10.1016/j.ijbiomac.2023.125931] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
The dialdehyde cellulose (DC) was used to synthesize gelatin-cellulose dialdehyde by Schiff base as a packaging material to manganese oxides nanoparticles adsorbents (Mn oxides@DC/Gel) for wastewater remediation and support the antimicrobial behavior of gelatin and DC. The crystallinity index% of microwave-synthesized DC prepared from cellulose II decreased from 43.18% to 34.11% and its oxidation degree was 143.77%. The greenly-produced Mn oxides were studied by XRD and TEM. XRD verified the presence of two different phases of α-MnO2 and α-Mn2O3 in the form of nanorods and nanocubes. Mn oxides@DC/Gel was investigated by FT-IR, XRD, XPS, SEM, swelling absorptivity, and thermal analysis. The optimal swelling ratio% of Mn oxides@DC/Gel nanocomposite was 1494.04±16.65%. The influence of pH on swelling ratios verified the instability of the imine group in acid and basic media. Mn oxides@DC/Gel nanocomposite hydrogel causes approximately two-fold greater inhibitory zones than gentamicin. The optimal adsorption conditions were adsorbent dose (0.05g), pH (9.0), contact time (120 min), and methylene blue dye concentration (30mg/L). The maximum adsorption capacity of Mn oxides@DC/Gel nanocomposite was 51.06±1.0 mg/g. The adsorption by Mn oxides@DC/Gel nanocomposite agrees with Langmuir, Redlich-Peterson, and Freundlich mechanisms.
Collapse
Affiliation(s)
- Hebat-Allah S Tohamy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza, P.O. 12622, Egypt
| | - Ghada Taha
- Pre-treatment and Finishing of Cellulose-based Textiles Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza, P.O. 12622, Egypt.
| | - Maha Sultan
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza, P.O. 12622, Egypt
| |
Collapse
|
24
|
Wang Y, Zhong Z, Wang R, Munawar N, Zan L, Zhu J. Effects of proanthocyanidins and dialdehyde chitosan on the proliferation and differentiation of bovine myoblast for cultured meat production. Int J Biol Macromol 2023; 246:125618. [PMID: 37392917 DOI: 10.1016/j.ijbiomac.2023.125618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Cultured meat technology intends to manufacture meat by cultivating muscle stem cells in vitro, which is an emerging methodology in meat production. However, the insufficient stemness of bovine myoblasts cultivated in vitro declined the ability of cell expansion and myogenic differentiation, which limited the production of cultured meat. Therefore, in this study, we introduced proanthocyanidins (PC, natural polyphenolic compounds) and dialdehyde chitosan (DAC, natural polysaccharides) to explore the effects of proliferation and differentiation of bovine myoblasts in vitro. The experiment results revealed that PC and DAC promoted cell proliferation by improving the transition from G1 to the S phase as well as cell division in G2. Meanwhile, the myogenic differentiation of cells was further boosted by the combined PC and DAC up-regulation of MYH3 expression. Moreover, the study revealed the synergistic effect of PC and DAC on enhancing the structural stability of collagen, and bovine myoblasts demonstrated excellent growth and dispersion ability on collagen scaffolds. It is concluded that both PC and DAC promote the proliferation and differentiation of bovine myoblasts, contributing to the development of cultured meat production systems.
Collapse
Affiliation(s)
- Yafang Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhihao Zhong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiqi Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Noshaba Munawar
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Zena Y, Periyasamy S, Tesfaye M, Tumsa Z, Jayakumar M, Mohamed BA, Asaithambi P, Aminabhavi TM. Essential characteristics improvement of metallic nanoparticles loaded carbohydrate polymeric films - A review. Int J Biol Macromol 2023; 242:124803. [PMID: 37182627 DOI: 10.1016/j.ijbiomac.2023.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Petroleum-based films have contributed immensely to various environmental issues. Developing green-based films from carbohydrate polymers is crucial for addressing the harms encountered. However, some limitations exist on their property, processibility, and applicability that prohibit their processing for further developments. This review discusses the potential carbohydrate polymers and their sources, film preparation methods, such as solvent-casting, tape-casting, extrusion, and thermo-mechanical compressions for green-based films using various biological polymers with their merits and demerits. Research outcomes revealed that the essential characteristics improvement achieved by incorporating different metallic nanoparticles has significantly reformed the properties of biofilms, including crystallization, mechanical stability, thermal stability, barrier function, and antimicrobial activity. The property-enhanced bio-based films made with nanoparticles are potentially interested in replacing fossil-based films in various areas, including food-packaging applications. The review paves a new way for the commercial use of numerous carbohydrate polymers to help maintain a sustainable green environment.
Collapse
Affiliation(s)
- Yezihalem Zena
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Melaku Tesfaye
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Zelalem Tumsa
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box No. 138, Haramaya, Dire Dawa, Ethiopia
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza 12613, Egypt
| | - Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Po Box - 378, Jimma, Ethiopia
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| |
Collapse
|
26
|
Saeedi M, Moghbeli MR, Vahidi O. Chitosan/glycyrrhizic acid hydrogel: Preparation, characterization, and its potential for controlled release of gallic acid. Int J Biol Macromol 2023; 231:123197. [PMID: 36639089 DOI: 10.1016/j.ijbiomac.2023.123197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
In the present work, chitosan (CHT) as a biodegradable polymer was crosslinked using various amounts of glycyrrhizic acid (GLA) as a novel crosslinking agent to prepare biocompatible hydrogels. The prepared hydrogels were used for the controlled release of gallic acid (GA) in transdermal therapy application. FTIR, XRD, and SEM were used to characterize the prepared gels. The results indicated that the carboxylic acid groups of GLA react with the amine groups of the CHT in the presence of activating coupling reagents to form covalent amide linkage between the polymer chains of CHT and construct CHT cross-linked hydrogel (CCH) network structure. The prepared CCH samples were characterized and used for the controlled release of a drug, i.e. (GA). For this purpose, the swelling kinetic, loading and encapsulation efficiency, in vitro drug release, drug release kinetics, cell viability assay, and anti-bacterial activity of the samples were evaluated. The swelling ratio of CCH samples were in the range of 455-37 % depending on the pH of environment. Swelling kinetic results showed an aggregate to the non-linear second-order kinetic model. Drug release results were fitted by kinetic models while the Korsmeyer-Peppas model was fitted better. The CCH samples exhibited high biocompatibility for 5 mg/ml hydrogel concentration. In addition, the CHT and CCH sample without the GA did not show anti-bacterial properties for 1200 and 150 μg/ml concentrations, respectively. The CCH sample containing the GA exhibited enough anti-bacterial activity on the S. aureus bacteria strain at 150 μg/ml concentration. In contrast, the CCH sample containing the GA has a light anti-bacterial effect on the E. coli bacteria strain. The calculated mesh size of hydrogel networks, drug size, and kinetics models revealed that the CCH samples could release GA based on a diffusion mechanism. In conclusion, the designed CCH samples have enough ability for controlled drug release in transdermal applications.
Collapse
Affiliation(s)
- Mostafa Saeedi
- Smart Polymers and Nanocomposites Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran
| | - Mohammad Reza Moghbeli
- Smart Polymers and Nanocomposites Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran.
| | - Omid Vahidi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16844-13114, Iran
| |
Collapse
|
27
|
Natural organic-inorganic hybrid structure enabled green biomass adhesive with desirable strength, toughness and mildew resistance. Int J Biol Macromol 2023; 236:123931. [PMID: 36889615 DOI: 10.1016/j.ijbiomac.2023.123931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Plant based proteins are green, sustainable, and renewable materials that show the potential to replace traditional formaldehyde resin. High performance plywood adhesives exhibit high water resistance, strength, toughness, and desirable mildew resistance. Adding petrochemical-based crosslinkers is not economically viable or environmentally benign; this chemical crosslinking strategy makes the imparted high strength and toughness less attractive. Herein, a green approach based on natural organic-inorganic hybrid structure enhancement is proposed. The design of soybean meal-dialdehyde chitosan-amine modified halloysite nanotubes (SM-DACS-HNTs@N) adhesive with desirable strength and toughness enhanced by covalent bonding (Schiff base) crosslinking and toughened by surface-modified nanofillers is demonstrated. Consequently, the prepared adhesive showed a wet shear strength of 1.53 MPa and work of debonding of 389.7 mJ, which increased by 146.8 % and 276.5 %, respectively, due to the cross-linking effect of organic DACS and toughening effect of inorganic HNTs@N. The introduction of DACS and Schiff base generation enhanced the antimicrobial property of the adhesive and increased the mold resistance of the adhesive and plywood. In addition, the adhesive has good economic benefits. This research creates new opportunities for developing biomass composites with desirable performance.
Collapse
|
28
|
Chitosan Based Materials in Cosmetic Applications: A Review. Molecules 2023; 28:molecules28041817. [PMID: 36838805 PMCID: PMC9959028 DOI: 10.3390/molecules28041817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
This review provides a report on the properties and recent advances in the application of chitosan and chitosan-based materials in cosmetics. Chitosan is a polysaccharide that can be obtained from chitin via the deacetylation process. Chitin most commonly is extracted from cell walls in fungi and the exoskeletons of arthropods, such as crustaceans and insects. Chitosan has attracted significant academic interest, as well as the attention of the cosmetic industry, due to its interesting properties, which include being a natural humectant and moisturizer for the skin and a rheology modifier. This review paper covers the structure of chitosan, the sources of chitosan used in the cosmetic industry, and the role played by this polysaccharide in cosmetics. Future aspects regarding applications of chitosan-based materials in cosmetics are also mentioned.
Collapse
|
29
|
Cohen E, Avram L, Poverenov E. Formation of Robust and Adaptive Biopolymers via Non-Covalent Supramolecular Interactions. Macromol Rapid Commun 2023; 44:e2200579. [PMID: 36153845 DOI: 10.1002/marc.202200579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/16/2022] [Indexed: 01/26/2023]
Abstract
Biomass-originated materials are the future's next-tier polymers. This work suggests improving mechanical and barrier properties of nature-sourced polymers using non-covalent supramolecular interactions. Polysaccharide chitosan is modified with amino acids via an esterification pathway using a systematic variation of hydrogen bond and aromatic domains (Degrees of substitution 12-49%). These controlled modifications improve stability due to non-covalent interactions, resulting in biopolymers with tailored thermal (decomposition temperature 232-275 °C), mechanical (Young's modulus 540-2667 MPa), and surface properties (roughness 4-40 nm). Chitosan and natural amino acids that are already manufactured at scale are purposely selected. The facile synthesis, controlled properties, stimuli-responsive potential, and inexhaustible origin of the raw materials provide the presented findings with the potential to become the method for the formation of high-performance biodegradable alternatives to petroleum-based polymers that can be used in packaging, food, agriculture, and medicine.
Collapse
Affiliation(s)
- Erez Cohen
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agriculture Research Organization, The Volcani Center, 68 HaMacabim Road, Rishon LeZion, 7505101, Israel.,Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001, Israel
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Center, Institute of Postharvest and Food Sciences, Agriculture Research Organization, The Volcani Center, 68 HaMacabim Road, Rishon LeZion, 7505101, Israel
| |
Collapse
|
30
|
Constantin M, Lupei M, Bucatariu SM, Pelin IM, Doroftei F, Ichim DL, Daraba OM, Fundueanu G. PVA/Chitosan Thin Films Containing Silver Nanoparticles and Ibuprofen for the Treatment of Periodontal Disease. Polymers (Basel) 2022; 15:polym15010004. [PMID: 36616354 PMCID: PMC9824025 DOI: 10.3390/polym15010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
Local delivery of drugs or antimicrobial agents is a suitable approach in the management of periodontitis when the infection is localized deep in the pockets and does not adequately respond to mechanical debridement and/or systemic antibiotic treatment. In this context, the objective of this study was to prepare new biocomposite films with antimicrobial, anti-inflammatory, and good mechanical properties to be applied in periodontal pockets. The composite film is eco-friendly synthesized from poly(vinyl alcohol) (PVA) cross-linked with oxidized chitosan (OxCS). Silver nanoparticles (AgNps) were inserted during film synthesis by adding freshly chitosan-capped AgNps colloidal solution to the polymer mixture; the addition of AgNps up to 1.44 wt.% improves the physico-chemical properties of the film. The characterization of the films was performed by FT-IR, atomic mass spectrometry, X-ray spectroscopy, and SEM. The films displayed a high swelling ratio (162%), suitable strength (1.46 MPa), and excellent mucoadhesive properties (0.6 N). Then, ibuprofen (IBF) was incorporated within the best film formulation, and the IBF-loaded PVA/OxCS-Ag films could deliver the drug in a sustained manner up to 72 h. The biocomposite films have good antimicrobial properties against representative pathogens for oral cavities. Moreover, the films are biocompatible, as demonstrated by in vitro tests on HDFa cell lines.
Collapse
Affiliation(s)
- Marieta Constantin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
- Correspondence: (M.C.); (G.F.); Tel.: +40-332-880155 (M.C.); +40-332-880225 (G.F.); Fax: +40-332-211299 (M.C.); +40-332-211299 (G.F.)
| | - Mihail Lupei
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Sanda-Maria Bucatariu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Irina Mihaela Pelin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Florica Doroftei
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | | | - Oana Maria Daraba
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
| | - Gheorghe Fundueanu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
- Correspondence: (M.C.); (G.F.); Tel.: +40-332-880155 (M.C.); +40-332-880225 (G.F.); Fax: +40-332-211299 (M.C.); +40-332-211299 (G.F.)
| |
Collapse
|
31
|
Chelminiak-Dudkiewicz D, Smolarkiewicz-Wyczachowski A, Mylkie K, Wujak M, Mlynarczyk DT, Nowak P, Bocian S, Goslinski T, Ziegler-Borowska M. Chitosan-based films with cannabis oil as a base material for wound dressing application. Sci Rep 2022; 12:18658. [PMID: 36333591 PMCID: PMC9636169 DOI: 10.1038/s41598-022-23506-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
This study focuses on obtaining and characterizing novel chitosan-based biomaterials containing cannabis oil to potentially promote wound healing. The primary active substance in cannabis oil is the non-psychoactive cannabidiol, which has many beneficial properties. In this study, three chitosan-based films containing different concentrations of cannabis oil were prepared. As the amount of oil increased, the obtained biomaterials became rougher as tested by atomic force microscopy. Such rough surfaces promote protein adsorption, confirmed by experiments assessing the interaction between human albumin with the obtained materials. Increased oil concentration also improved the films' mechanical parameters, swelling capacity, and hydrophilic properties, which were checked by the wetting angle measurement. On the other hand, higher oil content resulted in decreased water vapour permeability, which is essential in wound dressing. Furthermore, the prepared films were subjected to an acute toxicity test using a Microtox. Significantly, the film's increased cannabis oil content enhanced the antimicrobial effect against A. fischeri for films in direct contact with bacteria. More importantly, cell culture studies revealed that the obtained materials are biocompatible and, therefore, they might be potential candidates for application in wound dressing materials.
Collapse
Affiliation(s)
- Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Medicinal Chemistry Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland.
| | - Aleksander Smolarkiewicz-Wyczachowski
- Department of Biomedical Chemistry and Polymer Science, Medicinal Chemistry Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Kinga Mylkie
- Department of Biomedical Chemistry and Polymer Science, Medicinal Chemistry Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Magdalena Wujak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Collegium Medicum, Jurasza 2, 85-089, Bydgoszcz, Poland
| | - Dariusz T Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Pawel Nowak
- Department of Biomedical Chemistry and Polymer Science, Medicinal Chemistry Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Szymon Bocian
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Medicinal Chemistry Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland.
| |
Collapse
|
32
|
Cao H, Liu D, Zhi L, Liu J, Liu Y, Xu H, Wang D, Xu Y, Xue C, Sun X. Oxidized inositol stabilizes rehydrated sea cucumbers against non-enzymatic deterioration. Food Chem 2022; 405:134973. [DOI: 10.1016/j.foodchem.2022.134973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
|
33
|
Lactobionic acid-functionalized hollow mesoporous silica nanoparticles for cancer chemotherapy and phototherapy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Antioxidant packaging films developed by in-situ cross-linking chitosan with dialdehyde starch-catechin conjugates. Int J Biol Macromol 2022; 222:3203-3214. [PMID: 36243166 DOI: 10.1016/j.ijbiomac.2022.10.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
In this study, four dialdehyde starch-catechin (DAS-catechin) conjugates were prepared by conjugating (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate (EGCG) with dialdehyde starch. Then, DAS-catechin conjugates were used as antioxidant and cross-linking agents to produce chitosan (CS) based antioxidant packaging films. The functionality of CS/DAS-catechin conjugate films was determined. Results showed four DAS-catechin conjugates formed Schiff-base linkages and hydrogen bond interactions with CS, resulting in improved film uniformity. Compared with plain CS film, CS/DAS-catechin conjugate films owned higher UV-vis light, water vapor and oxygen barrier ability, lower swelling degree, and stronger tensile strength, thermal stability and antioxidant activity. The cross-linking between CS and DAS-catechin conjugates delayed the biodegradable process of CS film. CS/DAS-catechin conjugate films showed good performance on inhibiting sunflower seed oil oxidation. Notably, CS/DAS-ECG conjugate film had the highest oxygen barrier, mechanical and antioxidant performances among four CS/DAS-catechin conjugate films. Therefore, CS/DAS-ECG conjugate film is an antioxidant packaging candidate for edible oil.
Collapse
|
35
|
Detailed Structural Characterization of Oxidized Sucrose and Its Application in the Fully Carbohydrate-Based Preparation of a Hydrogel from Carboxymethyl Chitosan. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186137. [PMID: 36144870 PMCID: PMC9503324 DOI: 10.3390/molecules27186137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
Oxidized sucrose (OS) is a bio-based cross-linking agent with excellent biological safety and environmental non-toxicity. However, the precise structure of OS has not been elucidated owing to its structural complexity and low purity. Accordingly, in this study, complete chemical shift assignments were performed by applying various nuclear magnetic resonance techniques, which permitted the structural and quantitative characterization of the two main OS products, each of which contained four aldehyde groups. In addition, we investigated the use of OS as a cross-linking agent in the preparation of a hydrogel from carboxymethyl chitosan (CMC), one of the most popular polysaccharides for use in biomedical applications. The primary amine groups of CMC were immediately cross-linked with the aldehyde groups of OS to form hydrogels without the requirement for a catalyst. It was found that the degree of cross-linking could be easily controlled by the feed amount of OS during CMC hydrogel preparation and the final cross-linking degree affected the thermal, swelling, and rheological properties of the obtained hydrogel. The results presented in this study are therefore expected to be applicable in the preparation of fully carbohydrate-based hydrogels for medical and pharmaceutical applications.
Collapse
|
36
|
Wegrzynowska-Drzymalska K, Mlynarczyk DT, Chelminiak-Dudkiewicz D, Kaczmarek H, Goslinski T, Ziegler-Borowska M. Chitosan-Gelatin Films Cross-Linked with Dialdehyde Cellulose Nanocrystals as Potential Materials for Wound Dressings. Int J Mol Sci 2022; 23:9700. [PMID: 36077096 PMCID: PMC9456065 DOI: 10.3390/ijms23179700] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, thin chitosan-gelatin biofilms cross-linked with dialdehyde cellulose nanocrystals for dressing materials were received. Two types of dialdehyde cellulose nanocrystals from fiber (DNCL) and microcrystalline cellulose (DAMC) were obtained by periodate oxidation. An ATR-FTIR analysis confirmed the selective oxidation of cellulose nanocrystals with the creation of a carbonyl group at 1724 cm-1. A higher degree of cross-linking was obtained in chitosan-gelatin biofilms with DNCL than with DAMC. An increasing amount of added cross-linkers resulted in a decrease in the apparent density value. The chitosan-gelatin biofilms cross-linked with DNCL exhibited a higher value of roughness parameters and antioxidant activity compared with materials cross-linked with DAMC. The cross-linking process improved the oxygen permeability and anti-inflammatory properties of both measurement series. Two samples cross-linked with DNCL achieved an ideal water vapor transition rate for wound dressings, CS-Gel with 10% and 15% addition of DNCL-8.60 and 9.60 mg/cm2/h, respectively. The swelling ability and interaction with human serum albumin (HSA) were improved for biofilms cross-linked with DAMC and DNCL. Significantly, the films cross-linked with DAMC were characterized by lower toxicity. These results confirmed that chitosan-gelatin biofilms cross-linked with DNCL and DAMC had improved properties for possible use in wound dressings.
Collapse
Affiliation(s)
- Katarzyna Wegrzynowska-Drzymalska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Halina Kaczmarek
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
37
|
Wegrzynowska-Drzymalska K, Mylkie K, Nowak P, Mlynarczyk DT, Chelminiak-Dudkiewicz D, Kaczmarek H, Goslinski T, Ziegler-Borowska M. Dialdehyde Starch Nanocrystals as a Novel Cross-Linker for Biomaterials Able to Interact with Human Serum Proteins. Int J Mol Sci 2022; 23:ijms23147652. [PMID: 35886996 PMCID: PMC9320567 DOI: 10.3390/ijms23147652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/20/2023] Open
Abstract
In recent years, new cross-linkers from renewable resources have been sought to replace toxic synthetic compounds of this type. One of the most popular synthetic cross-linking agents used for biomedical applications is glutaraldehyde. However, the unreacted cross-linker can be released from the materials and cause cytotoxic effects. In the present work, dialdehyde starch nanocrystals (NDASs) were obtained from this polysaccharide nanocrystal form as an alternative to commonly used cross-linking agents. Then, 5-15% NDASs were used for chemical cross-linking of native chitosan (CS), gelatin (Gel), and a mixture of these two biopolymers (CS-Gel) via Schiff base reaction. The obtained materials, forming thin films, were characterized by ATR-FTIR, SEM, and XRD analysis. Thermal and mechanical properties were determined by TGA analysis and tensile testing. Moreover, all cross-linked biopolymers were also characterized by hydrophilic character, swelling ability, and protein absorption. The toxicity of obtained materials was tested using the Microtox test. Dialdehyde starch nanocrystals appear as a beneficial plant-derived cross-linking agent that allows obtaining cross-linked biopolymer materials with properties desirable for biomedical applications.
Collapse
Affiliation(s)
- Katarzyna Wegrzynowska-Drzymalska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Kinga Mylkie
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Pawel Nowak
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.G.)
| | - Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Halina Kaczmarek
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.G.)
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
- Correspondence:
| |
Collapse
|
38
|
Jiang J, Zhang J, Li T, Zhang X, Wang Y, Xia B, Huang J, Fan Y, Dong W. Facile route to tri-carboxyl chitin nanocrystals from di-aldehyde chitin modified by selective periodate oxidation. Int J Biol Macromol 2022; 211:281-288. [PMID: 35569675 DOI: 10.1016/j.ijbiomac.2022.04.217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022]
Abstract
Chitin, a kind of polysaccharide mainly obtained from food waste, has emerged as an important biodegradable biopolymer in composite materials. The difficulty of aldehyde modification, which greatly limited the application of chitin nanocrystals, was addressed by applying a facile route of partial deacetylation followed by periodate oxidation in this study. Deacetylation occurred on the surface of both crystalline and amorphous regions, which were significantly degraded in the following periodate oxidation due to the inevitable cleavage of chitin chains, leading to an increase in the crystallinity index of obtained di-aldehyde chitin. The degree of deacetylation and periodate addition had limited improvement in the aldehyde content of di-aldehyde chitin with a maximum value of around 0.42 mmol/g. With further 2,2,6,6-tetramethylpiperidine-1-oxyl-mediated oxidation, the carboxyl content of tri-carboxyl chitin was improved to 1.58 mmol/g, which played a critical role in the dispersion efficiency and morphology of chitin nanocrystals. The obtained rod-like chitin nanocrystals with a ζ-potential value of -42 mV and an average size of 97 nm have potential application in dye-adsorption and emulsion stabilizers.
Collapse
Affiliation(s)
- Jie Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jiaju Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Bihua Xia
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals, International Innovation Center for Forest Chemicals and Material, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
39
|
Scaffolds Loaded with Dialdehyde Chitosan and Collagen—Their Physico-Chemical Properties and Biological Assessment. Polymers (Basel) 2022; 14:polym14091818. [PMID: 35566989 PMCID: PMC9103159 DOI: 10.3390/polym14091818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
In this work, dialdehyde chitosan (DAC) and collagen (Coll) scaffolds have been prepared and their physico-chemical properties have been evaluated. Their structural properties were studied by Fourier Transform Infrared Spectroscopy with Attenuated Internal Reflection (FTIR–ATR) accompanied by evaluation of thermal stability, porosity, density, moisture content and microstructure by Scanning Electron Microscopy—SEM. Additionally, cutaneous assessment using human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF) and melanoma cells (A375 and G-361) was performed. Based on thermal studies, two regions in DTG curves could be distinguished in each type of scaffold, what can be assigned to the elimination of water and the polymeric structure degradation of the materials components. The type of scaffold had no major effect on the porosity of the materials, but the water content of the materials decreased with increasing dialdehyde chitosan content in subjected matrices. Briefly, a drop in proliferation was noticed for scaffolds containing 20DAC/80Coll compared to matrices with collagen alone. Furthermore, increased content of DAC (50DAC/50Coll) either significantly induced the proliferation rate or maintains its ratio compared to the control matrix. This delivery is a promising technique for additional explorations targeting therapies in regenerative dermatology. The using of dialdehyde chitosan as one of the main scaffolds components is the novelty in terms of bioengineering.
Collapse
|
40
|
Chiaregato CG, França D, Messa LL, Dos Santos Pereira T, Faez R. A review of advances over 20 years on polysaccharide-based polymers applied as enhanced efficiency fertilizers. Carbohydr Polym 2022; 279:119014. [PMID: 34980357 DOI: 10.1016/j.carbpol.2021.119014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
Over the last 20 years, polysaccharide-based materials have garnered attention in the enhanced efficiency fertilizers (EEFs) research. Biodegradability, non-toxicity, water-solubility, swellability, and ease of chemical modification make these polymers suitable for agricultural applications. In this review, the polysaccharides-based EEFs advances are summarized over the polymer and co-materials selection, the methods, and the chemical/structure aspects necessary for an appropriate production. We also briefly discuss terminologies, nutrient release mechanisms, biodegradation, and future trends. The most used polysaccharides are chitosan, starch, and alginate, and the non-Fickian model most describes the release mechanism. It is dependent on the relaxation of polymer chains by the matrix swelling followed by the nutrient diffusion. EEFs-polymers-based should be designed as more packed and less porous structures to avoid the immediate contact of the fertilizer with the surrounding water, improving fertilizer retention. Furthermore, the preparation methods will determine the scale-up of the material.
Collapse
Affiliation(s)
- Camila Gruber Chiaregato
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Débora França
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Lucas Luiz Messa
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Tamires Dos Santos Pereira
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil
| | - Roselena Faez
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, UFSCar, 13600970 Araras, SP, Brazil.
| |
Collapse
|
41
|
Ansari MJ, Jasim SA, Bokov DO, Thangavelu L, Yasin G, Khalaji AD. Preparation of new bio-based chitosan/Fe 2O 3/NiFe 2O 4 as an efficient removal of methyl green from aqueous solution. Int J Biol Macromol 2022; 198:128-134. [PMID: 34968538 DOI: 10.1016/j.ijbiomac.2021.12.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Modified chitosan with various functional groups has high potential as an efficient adsorbent in removing water pollution. In this study, new magnetic adsorbent, bio-based chitosan/Fe2O3/NiFe2O4, was successfully prepared by green chemistry route involving mixing of chitosan as core moiety and Fe2O3/NiFe2O4 nanocomposite, and slow evaporation of solvent. Synthesized chitosan/Fe2O3/NiFe2O4 was characterized by FT-IR, TGA, XRD, VSM and FE-SEM. The FT-IR and XRD results confirmed that the successful preparation of chitosan/Fe2O3/NiFe2O4. Uniform dispersion of Fe2O3/NiFe2O4 nanoparticles with low aggregation was confirmed by FE-SEM. The as-prepared magnetic chitosan/Fe2O3/NiFe2O4 was developed as solid phase adsorbent to remove methyl green (MG) dye from aqueous solutions. Several important parameters such as contact time, pH, temperature and adsorbent dosage were investigated systematically. The high and fast MG dye removal (≈ 80%) occurs after 30 min. The optimal conditions for MG removal was recorded at pH = 8, contact time of 60 min, adsorbent dosage of 0.2 g and 25 °C and displayed a high MG dye removal percentage of 96.51% and adsorption capacity of 77.22 mg/g.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz, University, Al-kharj, Saudi Arabia.
| | - Saade Abdalkareem Jasim
- Al-maarif University College, Medical Laboratory Techniques Department, Al-anbar-Ramadi, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India.
| | - Ghulam Yasin
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
| | | |
Collapse
|
42
|
Maćczak P, Kaczmarek H, Ziegler-Borowska M, Węgrzynowska-Drzymalska K, Burkowska-But A. The Use of Chitosan and Starch-Based Flocculants for Filter Backwash Water Treatment. MATERIALS 2022; 15:ma15031056. [PMID: 35161001 PMCID: PMC8838026 DOI: 10.3390/ma15031056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Inorganic aluminum or iron salts supported with synthetic polymers are commonly used to eradicate colloidal particles from water in coagulation and flocculation processes. Nevertheless, these agents have several disadvantages, such as large volumes of sludge produced or environmental toxicity. Recently biodegradable polymers have been suggested as eco-friendly flocculants for water treatment. This study aimed to investigate the possibilities of using starch and chitosan and their oxidized derivatives as flocculants for filter backwash water treatment. Dialdehyde starch (DST) and dialdehyde chitosan (DCT) were synthesized by periodate oxidization of natural starch from corn and low molecular weight chitosan. The obtained materials have been characterized with scanning electron microscopy (SEM), ATR-FTIR spectroscopy, and thermogravimetric analysis (TGA). Furthermore, we studied the flocculation properties of polysaccharide flocculants in a series of jar tests. The effectiveness of chitosan and starched-based flocculants was compared to synthetic polymers commonly used to treat iron ions-rich filter backwash water. The environmental aspects of these chemicals, particularly the biodegradability of post-flocculation residues, were also addressed. It was found that oxidized starch and chitosan derivatives can be used as ecological flocculating materials to treat potable water or sludge.
Collapse
Affiliation(s)
- Piotr Maćczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland; (M.Z.-B.); (K.W.-D.)
- Water Supply and Sewage Enterprise LLC, Przemysłowa 4, 99-300 Kutno, Poland
- Correspondence: (P.M.); (H.K.)
| | - Halina Kaczmarek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland; (M.Z.-B.); (K.W.-D.)
- Correspondence: (P.M.); (H.K.)
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland; (M.Z.-B.); (K.W.-D.)
| | | | - Aleksandra Burkowska-But
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
43
|
Abdalla TH, Nasr AS, Bassioni G, Harding DR, Kandile NG. Fabrication of sustainable hydrogels-based chitosan Schiff base and their potential applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
Ge L, Luo C, You D, Yang N, Zhang Q, Yuan R, Wang J, Lu Z. Adhesion-enhanced coral cells with self-healing coating. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Wang X, Song R, Johnson M, A S, He Z, Milne C, Wang X, Lara-Sáez I, Xu Q, Wang W. An Injectable Chitosan-Based Self-Healable Hydrogel System as an Antibacterial Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5956. [PMID: 34683575 PMCID: PMC8539725 DOI: 10.3390/ma14205956] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
Due to their biodegradability and biocompatibility, chitosan-based hydrogels have great potential in regenerative medicine, with applications such as bacteriostasis, hemostasis, and wound healing. However, toxicity and high cost are problems that must be solved for chitosan-based hydrogel crosslinking agents such as formaldehyde, glutaraldehyde, and genipin. Therefore, we developed a biocompatible yet cost-effective chitosan-based hydrogel system as a candidate biomaterial to prevent infection during wound healing. The hydrogel was fabricated by crosslinking chitosan with dialdehyde chitosan (CTS-CHO) via dynamic Schiff-base reactions, resulting in a self-healable and injectable system. The rheological properties, degradation profile, and self-healable properties of the chitosan-based hydrogel were evaluated. The excellent antibacterial activity of the hydrogel was validated by a spread plate experiment. The use of Live/Dead assay on HEK 293 cells showed that the hydrogel exhibited excellent biocompatibility. The results demonstrate that the newly designed chitosan-based hydrogel is an excellent antibacterial wound dressing candidate with good biocompatibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qian Xu
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Eircode D04 V1W8, Ireland; (X.W.); (R.S.); (M.J.); (S.A.); (Z.H.); (C.M.); (X.W.); (I.L.-S.)
| | - Wenxin Wang
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Eircode D04 V1W8, Ireland; (X.W.); (R.S.); (M.J.); (S.A.); (Z.H.); (C.M.); (X.W.); (I.L.-S.)
| |
Collapse
|
46
|
The Characterization of Scaffolds Based on Dialdehyde Chitosan/Hyaluronic Acid. MATERIALS 2021; 14:ma14174993. [PMID: 34501083 PMCID: PMC8434512 DOI: 10.3390/ma14174993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023]
Abstract
In this work, two-component dialdehyde chitosan/hyaluronic acid scaffolds were developed and characterized. Dialdehyde chitosan was obtained by one-step synthesis with chitosan and sodium periodate. Three-dimensional scaffolds were prepared by the lyophilization method. Fourier transform infrared spectroscopy (FTIR) was used to observe the chemical structure of scaffolds and scanning electron microscopy (SEM) imaging was done to assess the microstructure of resultant materials. Thermal analysis, mechanical properties measurements, density, porosity and water content measurements were used to characterize physicochemical properties of dialdehyde chitosan/hyaluronic acid 3D materials. Additionally, human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF) and human melanoma cells (A375 and G-361) were used to evaluate cell viability in the presence of subjected scaffolds. It was found that scaffolds were characterized by a porous structure with interconnected pores. The scaffold composition has an influence on physicochemical properties, such as mechanical strength, thermal resistance, porosity and water content. There were no significant differences between cell viability proliferation of all scaffolds, and this observation was visible for all subjected cell lines.
Collapse
|
47
|
Cerón AA, Nascife L, Norte S, Costa SA, Oliveira do Nascimento JH, Morisso FDP, Baruque-Ramos J, Oliveira RC, Costa SM. Synthesis of chitosan-lysozyme microspheres, physicochemical characterization, enzymatic and antimicrobial activity. Int J Biol Macromol 2021; 185:572-581. [PMID: 34216659 DOI: 10.1016/j.ijbiomac.2021.06.178] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/24/2022]
Abstract
Chitosan microspheres (CMS) by the emulsion-chemical cross-linking method with and without lysozyme immobilization were synthesized and characterized. The technique conditions were adjusted, and spherical particles with approximate diameters of 3.74 ± 1.08 μm and 0. 29 ± 0.029 μm to CMS and chitosan-lysozyme microspheres (C-LMS), respectively, were obtained. The microspheres were characterized by scanning electron microscopy (FESEM), Spectroscopy Fourier Transform Spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and zeta potential. Particle size was identified by laser light scattering (DLS) and the thermal properties by Differential Scanning Calorimetry (DSC) and Thermogravimetry (TGA) were determined. By the lysis of Micrococcus lysodeikticus, the activity of the microspheres was determined, and the results correlated with the amount of lysozyme used in the immobilization process and the enzyme loading efficiency was 67%. Finally, release tests pointed out the amount of enzyme immobilized on the microsphere surface. These results showed that chitosan microspheres could be used as material for lysozyme immobilization by cross-linking technique. The antimicrobial activity was tested by inhibition percent determination, and it evidenced both chitosan microspheres (CMS) and chitosan-lysozyme microspheres (C-LMS) positive antimicrobial activity to Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Annie A Cerón
- School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Bétio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil.
| | - Lorrane Nascife
- School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Bétio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
| | - Samuel Norte
- Center of Agricultural Sciences, University Federal of São Carlos, Rodovia Anhanguera, km 174, Araras, SP 13600-97, Brazil
| | - Silgia A Costa
- School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Bétio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
| | | | | | - Júlia Baruque-Ramos
- School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Bétio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
| | - Rodrigo C Oliveira
- Departament of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, Bauru, SP 17012-901, Brazil
| | - Sirlene M Costa
- School of Arts, Sciences and Humanities, Textile and Fashion Course, University of São Paulo, Av. Arlindo Bétio 1000, Ermelino Matarazzo, São Paulo, SP 03828-000, Brazil
| |
Collapse
|
48
|
Kaczmarek-Szczepańska B, Wekwejt M, Mazur O, Zasada L, Pałubicka A, Olewnik-Kruszkowska E. The Physicochemical and Antibacterial Properties of Chitosan-Based Materials Modified with Phenolic Acids Irradiated by UVC Light. Int J Mol Sci 2021; 22:6472. [PMID: 34208782 PMCID: PMC8235692 DOI: 10.3390/ijms22126472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
This paper concerns the physicochemical properties of chitosan/phenolic acid thin films irradiated by ultraviolet radiation with wavelengths between 200 and 290 nm (UVC) light. We investigated the preparation and characterization of thin films based on chitosan (CTS) with tannic (TA), caffeic (CA) and ferulic acid (FA) addition as potential food-packaging materials. Such materials were then exposed to the UVC light (254 nm) for 1 and 2 h to perform the sterilization process. Different properties of thin films before and after irradiation were determined by various methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimeter (DSC), mechanical properties and by the surface free energy determination. Moreover, the antimicrobial activity of the films and their potential to reduce the risk of contamination was assessed. The results showed that the phenolic acid improving properties of chitosan-based films, short UVC radiation may be used as sterilization method for those films, and also that the addition of ferulic acid obtains effective antimicrobial activity, which have great benefit for food packing applications.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (O.M.); (L.Z.)
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-008 Gdańsk, Poland;
| | - Olha Mazur
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (O.M.); (L.Z.)
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (O.M.); (L.Z.)
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, 83-400 Kościerzyna, Poland;
| | - Ewa Olewnik-Kruszkowska
- Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| |
Collapse
|
49
|
Saheed IO, Oh WD, Suah FBM. Chitosan modifications for adsorption of pollutants - A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124889. [PMID: 33418525 DOI: 10.1016/j.jhazmat.2020.124889] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 05/18/2023]
Abstract
In recent times, research interest into the development of biodegradable, cost-effective and environmental friendly adsorbents with favourable properties for adsorption of pollutants is a challenge. Modification of chitosan via different physical and chemical methods have gained attention as a promising approach for removing organic (such as dyes and pharmaceuticals) and inorganic (such as metal/metal ions) pollutants from aqueous medium. In this regard, researchers have reported grafting and cross-linking approach among others as a potentially useful method for chitosan's modification for improved adsorption efficiency with respect to pollutant uptake. This article reviews the trend in chitosan modification, with regards to the summary of some recently published works on modification of chitosan and their adsorption application in pollutants (metal ion, dyes and pharmaceuticals) removal from aqueous medium. The review uniquely highlights some common cross-linkers and grafting procedures for chitosan modification, their influence on structure and adsorption capacity of modified-chitosan with respect to pollutants removal. Findings revealed that the performance of modified chitosan for adsorption of pollutants depends largely on the modification method adopted, materials used for the modification and adsorption experimental conditions. Cross-linking is commonly utilized for improving the chemical and mechanical stabilities of chitosan but usually decreases adsorption capacity of chitosan/modified-chitosan for adsorption of pollutants. However, literature survey revealed that adsorption capacity of cross-linked chitosan based materials have been enhanced in recently published works either by grafting, incorporation of solid adsorbents (e.g metals, clays and activated carbon) or combination of both prior to cross-linking.
Collapse
Affiliation(s)
- Ismaila Olalekan Saheed
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia; Department of Chemical, Geological and Physical Sciences, Kwara State University, Malete, P.M.B 1530, Ilorin, Nigeria
| | - Wen Da Oh
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia
| | - Faiz Bukhari Mohd Suah
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia
| |
Collapse
|
50
|
Grabska-Zielińska S, Sionkowska A, Olewnik-Kruszkowska E, Reczyńska K, Pamuła E. Is Dialdehyde Chitosan a Good Substance to Modify Physicochemical Properties of Biopolymeric Materials? Int J Mol Sci 2021; 22:3391. [PMID: 33806219 PMCID: PMC8037002 DOI: 10.3390/ijms22073391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of this work was to compare physicochemical properties of three dimensional scaffolds based on silk fibroin, collagen and chitosan blends, cross-linked with dialdehyde starch (DAS) and dialdehyde chitosan (DAC). DAS was commercially available, while DAC was obtained by one-step synthesis. Structure and physicochemical properties of the materials were characterized using Fourier transfer infrared spectroscopy with attenuated total reflectance device (FTIR-ATR), swelling behavior and water content measurements, porosity and density observations, scanning electron microscopy imaging (SEM), mechanical properties evaluation and thermogravimetric analysis. Metabolic activity with AlamarBlue assay and live/dead fluorescence staining were performed to evaluate the cytocompatibility of the obtained materials with MG-63 osteoblast-like cells. The results showed that the properties of the scaffolds based on silk fibroin, collagen and chitosan can be modified by chemical cross-linking with DAS and DAC. It was found that DAS and DAC have different influence on the properties of biopolymeric scaffolds. Materials cross-linked with DAS were characterized by higher swelling ability (~4000% for DAS cross-linked materials; ~2500% for DAC cross-linked materials), they had lower density (Coll/CTS/30SF scaffold cross-linked with DAS: 21.8 ± 2.4 g/cm3; cross-linked with DAC: 14.6 ± 0.7 g/cm3) and lower mechanical properties (maximum deformation for DAC cross-linked scaffolds was about 69%; for DAS cross-linked scaffolds it was in the range of 12.67 ± 1.51% and 19.83 ± 1.30%) in comparison to materials cross-linked with DAC. Additionally, scaffolds cross-linked with DAS exhibited higher biocompatibility than those cross-linked with DAC. However, the obtained results showed that both types of scaffolds can provide the support required in regenerative medicine and tissue engineering. The scaffolds presented in the present work can be potentially used in bone tissue engineering to facilitate healing of small bone defects.
Collapse
Affiliation(s)
- Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Katarzyna Reczyńska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland; (K.R.); (E.P.)
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland; (K.R.); (E.P.)
| |
Collapse
|