1
|
Gan M, Cao A, Cai L, Xiang X, Li J, Luan Q. Preparation of cellulose-based nanoparticles via electrostatic self-assembly for the pH-responsive delivery of astaxanthin. Food Chem 2025; 463:141324. [PMID: 39321653 DOI: 10.1016/j.foodchem.2024.141324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Oral administration of astaxanthin (AST), a potent antioxidant, is limited owing to its low solubility, physicochemical stability, and bioavailability. This study developed pH-responsive nanocarriers by the electrostatic self-assembly of 2,2,6,6-tetramethylpiperidine-1-oxyradical (TEMPO)-oxidized cellulose nanofibers (TCNFs) and chitosan (CS) to enhance the intestinal delivery of AST. The TCNF/CS@AST nanoparticles were optimized through single-factor experiments and Box-Behnken design, subsequently overcoming the hydrophobicity of AST and demonstrating improved stability against environmental stressors and controlled release in the intestinal environment. Transmission electron microscopy confirmed the near-spherical shape of these nanoparticles, with an average hydrodynamic diameter of 64 nm. TCNF/CS@AST enhanced the antioxidant effectiveness of AST after digestion and in lipopolysaccharide-stimulated RAW 264.7 cells while demonstrating good cellular compatibility. These nanoparticles present a promising strategy for the oral delivery of hydrophobic bioactive compounds orally, with potential applications in precision nutrition.
Collapse
Affiliation(s)
- Miaoyu Gan
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Ailing Cao
- Silk Inspection Center, Hangzhou Customs, Hangzhou 310063, China
| | - Luyun Cai
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Polytechnic Institute, Zhejiang University, Hangzhou 310015, China; College of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Xia Xiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jian Li
- Ningbo Luming Biotechnology Co., Ltd, Ningbo 315100, China
| | - Qian Luan
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; Polytechnic Institute, Zhejiang University, Hangzhou 310015, China; College of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
2
|
dos Santos RNF, Passos TS, Fernandes RDS, Matsui KN, de Sousa Júnior FC, Damasceno KSFDSC, de Assis CF. Effect of nanoencapsulation on the solubility and antioxidant activity of astaxanthin pigmented oil extracted from shrimp waste (Litopeneaus vannamei). PLoS One 2024; 19:e0313059. [PMID: 39546460 PMCID: PMC11567521 DOI: 10.1371/journal.pone.0313059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
Astaxanthin-pigmented oil from shrimp waste meal was nanoencapsulated by O/W emulsification using porcine gelatin (EAG) and a combination with soy protein (EAGS 2:2 and EAGS 3:1) to improve the solubility and antioxidant activity of the pigmented oil. The encapsulates presented spherical shape and smooth surface; particle size equal to 159.68 (14.42) nm for EAG, 192.72 (10.44) nm for EAGS 2:2, and 95.41 (17.83) nm for EAGS 3:1; amorphous structure; and chemical interactions. The oil incorporation efficiency ranged from 87.60-89.20%, the percentage of astaxanthin incorporated was approximately 68%, and the dispersibility in water around 50%. The antioxidant potential evaluation indicated that all formulations preserve or enhance the antioxidant activity of the oil up to three times than non-encapsulated oil. Therefore, porcine gelatin alone or in combination with soy protein was effective in promoting the solubility and enhancing the antioxidant activity of the astaxanthin-pigmented oil, demonstrating interesting characteristics for use in food.
Collapse
Affiliation(s)
- Renata Nayane Fernandes dos Santos
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Thaís Souza Passos
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rafael da Silva Fernandes
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Kátia Nicolau Matsui
- Departament of Chemical Engineering, Center of Technology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Francisco Canindé de Sousa Júnior
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Pharmacy, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Karla Suzanne Florentino da Silva Chaves Damasceno
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Cristiane Fernandes de Assis
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Pharmacy, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
3
|
Cattaneo N, Zarantoniello M, Conti F, Tavano A, Frontini A, Sener I, Cardinaletti G, Olivotto I. Natural-based solutions to mitigate dietary microplastics side effects in fish. CHEMOSPHERE 2024; 367:143587. [PMID: 39433100 DOI: 10.1016/j.chemosphere.2024.143587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Dietary microplastics (MPs) can be consumed by fish, crossing through the gastrointestinal tract. MPs smaller than 20 μm can easily translocate to other organs, such as liver, commonly triggering oxidative stress in fish. Given the current unlikelihood of their short-term elimination, strategies to mitigate MPs-related issues on fish are of considerable interest to the scientific community. In the present study, to reduce both the dietary MPs-induced oxidative stress and the accumulation of MPs, the effectiveness of microencapsulated astaxanthin (ASX) was evaluated in zebrafish (Danio rerio). Specifically, zebrafish were reared from larvae to adults (6 months) and fed diets containing MPs different in range-size (polymer A: 1-5 μm; polymer B: 40-47 μm) at different concentrations (50 or 500 mg/kg). After this period, fish from each experimental group were divided in two sub-groups that were fed, for an additional month, with the previous diets or with the same diets containing implemented with microencapsulated ASX (7 g/kg), respectively. Results showed that microencapsulated ASX was able to counteract the negative effects caused by MPs different in size. Particularly, in zebrafish fed diets containing polymer B microbeads, microencapsulated astaxanthin was able to restore the intestinal epithelium, affected by the abrasive role of MPs during gut transit. Differently, in zebrafish fed diets containing polymer A microbeads, absorbed at intestinal level and translocated mainly to the liver, the microencapsulated ASX decreased the oxidative stress response and reduced the MPs accumulation in target organs due to the antioxidant and the coagulant properties of the ASX and microcapsules wall, respectively. Taken together, the results highlighted that the aquafeeds' implementation with microencapsulated astaxanthin is a prospective tool to prevent MPs-related issues in fish.
Collapse
Affiliation(s)
- N Cattaneo
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - M Zarantoniello
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - F Conti
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - A Tavano
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - A Frontini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - I Sener
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - G Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2, 33100, Udine, Italy.
| | - I Olivotto
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
4
|
Xie X, Zhong M, Huang X, Yuan X, Mahna N, Mussagy CU, Ren M. Astaxanthin biosynthesis for functional food development and space missions. Crit Rev Biotechnol 2024:1-15. [PMID: 39428346 DOI: 10.1080/07388551.2024.2410364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/21/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
Astaxanthin (AXT), a natural carotenoid, has strong antioxidant and anti-ageing effects and can reduce ultraviolet light-induced damage to cells and DNA, stimulate the immune system, and improve cardiovascular disease prognosis. Despite its wide applications in the: nutraceutical, cosmetic, aquaculture, and pharmaceutical industries, AXT industrial production and application are hindered by natural source scarcity, low production efficiency, and high requirements. This review compares the qualitative differences of AXT derived from different natural sources, evaluates the upstream procedures for AXT expression in different chassis organisms, and investigates synthetic biology- and cell factory-based strategies for the industrial production of natural AXT. Synthetic biology is a promising novel strategy for reprogramming plants or microorganisms to produce AXT. Additionally, genetic engineering using cell factories extends beyond terrestrial applications, as it may contribute to the long-term sustainability of human health during space exploration and migration endeavors. This review provides a theoretical basis for the efficient and accurate genetic engineering of AXT from the microalga Haematococcuspluvialis, providing a valuable reference for future research on the biomanufacturing of AXT and other biological metabolites.
Collapse
Affiliation(s)
- Xiulan Xie
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Moyu Zhong
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xinxin Huang
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinrui Yuan
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Maozhi Ren
- Laboratory of Space Biology, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Zhang X, Ning Y, Chai L, Yin Y, Luo D, Xu W. Physicochemical properties and in vitro digestive behavior of astaxanthin loaded Pickering emulsion gel regulated by konjac glucomannan and κ-carrageenan. Int J Biol Macromol 2024; 278:134710. [PMID: 39151859 DOI: 10.1016/j.ijbiomac.2024.134710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
This study aimed to elaborate the combination effect of polysaccharides on physicochemical properties and in vitro digestive behavior of astaxanthin (AST)-loaded Pickering emulsion gel. AST-loaded Pickering emulsion gel was prepared by heating Pickering emulsion with konjac glucomannan (KGM) and κ-carrageenan (CRG). The microstructure revealed that adding the two polysaccharides resulted in Pickering emulsion forming a network structure. It exhibited a denser and more uniform network structure, enhancing its mechanical properties four times and increasing its water-holding capacity by 20 %. In vitro digestion experiments demonstrated that the release of free fatty acids from the Pickering emulsion gel (4.25 %) was notably lower than that from conventional Pickering emulsion (17.19 %), whereas AST bioaccessibility was remarkably low at 0.003 %. It provided a feasible strategy to regulate the bioaccessibility in Pickering emulsion, which has theoretical significance to guide the current eutrophic diet people.
Collapse
Affiliation(s)
- Xiaofan Zhang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yuli Ning
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Liwen Chai
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yongpeng Yin
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
6
|
Rodrigues VD, Boaro BL, Laurindo LF, Chagas EFB, de Lima EP, Laurindo LF, Barbalho SM. Exploring the benefits of astaxanthin as a functional food ingredient: Its effects on oxidative stress and reproductive outcomes in women with PCOS - A systematic review and single-arm meta-analysis of randomized clinical trials. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03432-w. [PMID: 39269488 DOI: 10.1007/s00210-024-03432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological-endocrinological disorder characterized by hyperandrogenism, menstrual irregularities, and metabolic disturbances. Recent research has highlighted the role of oxidative stress and chronic inflammation in exacerbating PCOS symptoms and impeding reproductive outcomes. Astaxanthin, a potent antioxidant found in marine organisms, has been suggested as a potential therapeutic intervention due to its ability to reduce oxidative stress and inflammation. This meta-analysis systematically reviews randomized controlled trials assessing the impact of astaxanthin supplementation on oxidative stress and reproductive outcomes in women with PCOS. Data from four trials were analyzed, focusing on markers of oxidative stress and reproductive health metrics. The meta-analysis utilized fixed and random-effects models to synthesize results, with heterogeneity assessed using Chi-square and I2 statistics. The findings indicate that while astaxanthin significantly improves markers of total antioxidant capacity (TAC) in follicular fluid, it does not show a consistent effect on other oxidative stress biomarkers such as malondialdehyde (MDA), catalase (CAT), or superoxide dismutase (SOD). Reproductive outcomes, including oocyte quality and the number of high-quality embryos, showed moderate improvements, although effects on fertilization rates and pregnancy outcomes were insignificant. The analysis highlights variability in study designs and dosing, suggesting a need for further research with standardized protocols and larger sample sizes. Future studies should focus on determining optimal dosing, exploring mechanistic pathways, and investigating the combined effects of astaxanthin with other interventions. Longitudinal studies are needed to assess long-term benefits and safety, and personalized approaches could enhance treatment efficacy for individuals with PCOS.
Collapse
Affiliation(s)
- Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José Do Rio Preto (FAMERP), São José Do Rio Preto, São Paulo, 15090-000, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
- UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| |
Collapse
|
7
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
8
|
Jiang YR, Liu RJ, Tang J, Li MQ, Zhang DK, Pei ZQ, Fan SH, Xu RC, Huang HZ, Lin JZ. The health benefits of dietary polyphenols on pediatric intestinal diseases: Mechanism of action, clinical evidence and future research progress. Phytother Res 2024; 38:3782-3800. [PMID: 38839050 DOI: 10.1002/ptr.8218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 06/07/2024]
Abstract
Pediatric intestinal development is immature, vulnerable to external influences and produce a variety of intestinal diseases. At present, breakthroughs have been made in the treatment of pediatric intestinal diseases, but there are still many challenges, such as toxic side effects, drug resistance, and the lack of more effective treatments and specific drugs. In recent years, dietary polyphenols derived from plants have become a research hotspot in the treatment of pediatric intestinal diseases due to their outstanding pharmacological activities such, as anti-inflammatory, antibacterial, antioxidant and regulation of intestinal flora. This article reviewed the mechanism of action and clinical evidence of dietary polyphenols in the treatment of pediatric intestinal diseases, and discussed the influence of physiological characteristics of children on the efficacy of polyphenols, and finally prospected the new dosage forms of polyphenols in pediatrics.
Collapse
Affiliation(s)
- Yu-Rou Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren-Jie Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Qi Li
- Department of Pharmacy, Sichuan Nursing Vocational College, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao-Qing Pei
- Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - San-Hu Fan
- Sanajon Pharmaceutical Group, Chengdu, China
| | - Run-Chun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Zhou Huang
- State key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Zhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
9
|
Wilawan B, Chan SS, Ling TC, Show PL, Ng EP, Jonglertjunya W, Phadungbut P, Khoo KS. Advancement of Carotenogenesis of Astaxanthin from Haematococcus pluvialis: Recent Insight and Way Forward. Mol Biotechnol 2024; 66:402-423. [PMID: 37270443 DOI: 10.1007/s12033-023-00768-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information.
Collapse
Affiliation(s)
- Busakorn Wilawan
- Institut Biologi Sains, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sook Sin Chan
- Institut Biologi Sains, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institut Biologi Sains, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Woranart Jonglertjunya
- Fermentation Technology Laboratory (FerTechLab), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Poomiwat Phadungbut
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| |
Collapse
|
10
|
Yu D, Guo M, Tan M, Su W. Lipid-Lowering and Antioxidant Effects of Self-Assembled Astaxanthin-Anthocyanin Nanoparticles on High-Fat Caenorhabditis elegans. Foods 2024; 13:514. [PMID: 38397491 PMCID: PMC10887880 DOI: 10.3390/foods13040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Obesity has become a serious global public health risk threatening millions of people. In this study, the astaxanthin-anthocyanin nanoparticles (AXT-ACN NPs) were used to investigate their effects on the lipid accumulation and antioxidative capacity of the high-sugar-diet-induced high-fat Caenorhabditis elegans (C. elegans). It can be found that the lifespan, motility, and reproductive capacity of the high-fat C. elegans were significantly decreased compared to the normal nematodes in the control group. However, treatment of high-fat C. elegans with AXT-ACN NPs resulted in a prolonged lifespan of 35 days, improved motility, and a 22.06% increase in total spawn production of the nematodes. Furthermore, AXT-ACN NPs were found to effectively extend the lifespan of high-fat C. elegans under heat and oxidative stress conditions. Oil-red O staining results also demonstrated that AXT-ACN NPs have a remarkable effect on reducing the fat accumulation in nematodes, compared with pure astaxanthin and anthocyanin nanoparticles. Additionally, AXT-ACN NPs can significantly decrease the accumulation of lipofuscin and the level of reactive oxygen species (ROS). The activities of antioxidant-related enzymes in nematodes were further measured, which revealed that the AXT-ACN NPs could increase the activities of catalase (CAT), superoxidase dismutase (SOD), and glutathione peroxidase (GSH-Px), and decrease the malondialdehyde (MDA) content. The astaxanthin and anthocyanin in AXT-ACN NPs showed sound synergistic antioxidation and lipid-lowering effects, making them potential components in functional foods.
Collapse
Affiliation(s)
- Deyang Yu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Meng Guo
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
11
|
Ge Y, Zhou Y, Li S, Yan J, Chen H, Qin W, Zhang Q. Astaxanthin encapsulation in soybean protein isolate-sodium alginate complexes-stabilized nanoemulsions: antioxidant activities, environmental stability, and in vitro digestibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1539-1552. [PMID: 37807825 DOI: 10.1002/jsfa.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Nanoemulsions (NEs) have been considered an effective carrier to protect environmentally labile bioactive compounds from degradation during food processing. Among the numerous types of NEs, biopolymer-stabilized NEs have gained much attention to achieve this function because of the extensive sources, biocompatibility, and tunability. Therefore, the antioxidant activities, environmental stability, and in vitro digestibility of astaxanthin (AST)-loaded soybean protein isolate (SPI)-alginate (SA) complexes-stabilized NEs (AST-SPI-SA-NEs) were investigated in this study. RESULTS The AST-SPI-SA-NEs exhibited an encapsulation efficiency of 88.30 ± 1.67%, which is greater than that of the AST-loaded SPI-stabilized NEs (AST-SPI-NEs) (77.31 ± 0.83%). Both AST-SPI-SA-NEs and AST-SPI-NEs exhibited significantly stronger hydroxyl or diphenylpicryl-hydrazyl radical-scavenging activities than the free AST. The formation of SPI-SA complexes strengthened the thermal, light, and storage stability of AST-SPI-SA-NEs with no apparently increasing mean diameter (around 200 nm). AST-SPI-SA-NEs also exhibited a better freeze-thaw dispersibility behavior than AST-SPI-NEs. AST-SPI-SA-NEs were more stable than AST-SPI-NEs were under in vitro gastrointestinal digestion conditions and exhibited a greater bioaccessibility (47.92 ± 0.42%) than both AST-SPI-NEs (12.97 ± 1.33%) and free AST (7.87 ± 0.37%). Hydrogen bonding was confirmed to participate in the formation of AST-SPI-SA-NEs and AST-SPI-NEs based on the molecular docking results. CONCLUSIONS The construction of SPI-SA-NEs is conducive to the encapsulation, protection, and absorption of AST, providing a promising method for broadening the application of AST in processed foods or developing novel ingredients of functional foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhong Ge
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yangying Zhou
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shunfa Li
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jing Yan
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- Key Laboratory of Agricultural Product Processing and Nutrition Health of Ministry of Agriculture and Rural Affairs (jointly built by Ministry and Province), Ya'an Centre for the General Quality Control Technology of National Famous, Special, Superior, and New Agricultural Products, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
12
|
Moammeri A, Chegeni MM, Sahrayi H, Ghafelehbashi R, Memarzadeh F, Mansouri A, Akbarzadeh I, Abtahi MS, Hejabi F, Ren Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater Today Bio 2023; 23:100837. [PMID: 37953758 PMCID: PMC10632535 DOI: 10.1016/j.mtbio.2023.100837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The advent of nanotechnology has led to an increased interest in nanocarriers as a drug delivery system that is efficient and safe. There have been many studies addressing nano-scale vesicular systems such as liposomes and niosome is a newer generation of vesicular nanocarriers. The niosomes provide a multilamellar carrier for lipophilic and hydrophilic bioactive substances in the self-assembled vesicle, which are composed of non-ionic surfactants in conjunction with cholesterol or other amphiphilic molecules. These non-ionic surfactant vesicles, simply known as niosomes, can be utilized in a wide variety of technological applications. As an alternative to liposomes, niosomes are considered more chemically and physically stable. The methods for preparing niosomes are more economic. Many reports have discussed niosomes in terms of their physicochemical properties and applications as drug delivery systems. As drug carriers, nano-sized niosomes expand the horizons of pharmacokinetics, decreasing toxicity, enhancing drug solvability and bioavailability. In this review, we review the components and fabrication methods of niosomes, as well as their functionalization, characterization, administration routes, and applications in cancer gene delivery, and natural product delivery. We also discuss the limitations and challenges in the development of niosomes, and provide the future perspective of niosomes.
Collapse
Affiliation(s)
- Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Farkhondeh Memarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Afsoun Mansouri
- School of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Sadat Abtahi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Faranak Hejabi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| |
Collapse
|
13
|
Xu W, Ning Y, Wang M, Zhang S, Sun H, Yin Y, Li N, Li P, Luo D. Construction of astaxanthin loaded Pickering emulsions gel stabilized by xanthan gum/lysozyme nanoparticles with konjac glucomannan from structure, protection and gastrointestinal digestion perspective. Int J Biol Macromol 2023; 252:126421. [PMID: 37625751 DOI: 10.1016/j.ijbiomac.2023.126421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Pickering emulsion gels have demonstrated their efficacy in delivering bioactive compounds by effectively preventing droplet aggregation, Ostwald maturation, and phase separation through gel network. Astaxanthin (AST) Pickering emulsion gels stabilized by xanthan gum/lysozyme nanoparticles (XG/Ly NPs) and konjac glucomannan (KGM) were studied from rheological tests and textural analysis. The Pickering emulsion gel demonstrated the highest water holding capacity (WHC) at concentration of 2 % XG/Ly NPs, 60 % oil phase fraction, and 0.5 % KGM concentration. The presence of KGM was observed to enhance the plasticity of Pickering emulsion gels, as evidenced by the dense gel network structure formed on the surface of the droplets. Furthermore, the utilization of Pickering emulsion gels containing AST has demonstrated enhanced photostability and a protective effect on AST, as evidenced by antioxidant experiments. Moreover, the incorporation of KGM in Pickering emulsion gels has been found to reduce the release of free fatty acids (FFA) and the bioaccessibility of AST, as indicated in vitro digestion results. Overall, these findings indicate the potential of KGM-based Pickering emulsion gels as effective vehicles for the delivery of hydrophobic bioactive compounds within the food industry.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Yuli Ning
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Mengyao Wang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Shuo Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Haomin Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yongpeng Yin
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Na Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Penglin Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
14
|
Guo M, Cui W, Li Y, Fei S, Sun C, Tan M, Su W. Microfluidic fabrication of size-controlled nanocarriers with improved stability and biocompatibility for astaxanthin delivery. Food Res Int 2023; 170:112958. [PMID: 37316049 DOI: 10.1016/j.foodres.2023.112958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/25/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Improving the stability of astaxanthin (AST) is a vital way to enhance its oral bioavailability. In this study, a microfluidic strategy for the preparation of astaxanthin nano-encapsulation system was proposed. Thanks to the precise control of microfluidic and the rapid preparation ability of the Mannich reaction, the resulting astaxanthin nano-encapsulation system (AST-ACNs-NPs) was obtained with average sizes of 200 nm, uniform spherical shape and high encapsulation rate of 75%. AST was successfully doped into the nanocarriers, according to the findings of the DFT calculation, fluorescence spectrum, Fourier transform spectroscopy, and UV-vis absorption spectroscopy. Compared with free AST, AST-ACNs-NPs showed better stability under the conditions of high temperature, pH and UV light with<20% activity loss rate. The nano-encapsulation system containing AST could significantly reduce the hydrogen peroxide produced by reactive oxygen species, keep the potential of the mitochondrial membrane at a healthy level, and improve the antioxidant ability of H2O2-induced RAW 264.7 cells. These results indicated that microfluidics-based astaxanthin delivery system is an effective solution to improve the bioaccessibility of bioactive substances and has potential application value in food industry.
Collapse
Affiliation(s)
- Meng Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Weina Cui
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yuanchao Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Siyuan Fei
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
15
|
Davan I, Fakurazi S, Alias E, Ibrahim N'I, Hwei NM, Hassan H. Astaxanthin as a Potent Antioxidant for Promoting Bone Health: An Up-to-Date Review. Antioxidants (Basel) 2023; 12:1480. [PMID: 37508018 PMCID: PMC10376010 DOI: 10.3390/antiox12071480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, bone loss and its associated diseases have become a significant public health concern due to increased disability, morbidity, and mortality. Oxidative stress and bone loss are correlated, where oxidative stress suppresses osteoblast activity, resulting in compromised homeostasis between bone formation and resorption. This event causes upregulation of bone remodeling turnover rate with an increased risk of fractures and bone loss. Therefore, supplementation of antioxidants can be proposed to reduce oxidative stress, facilitate the bone remodeling process, suppress the initiation of bone diseases, and improve bone health. Astaxanthin (3,3'-dihydroxy-4-4'-diketo-β-β carotene), a potent antioxidant belonging to the xanthophylls family, is a potential ROS scavenger and could be a promising therapeutic nutraceutical possessing various pharmacological properties. In bone, astaxanthin enhances osteoblast differentiation, osteocytes numbers, and/or differentiation, inhibits osteoclast differentiation, cartilage degradation markers, and increases bone mineral density, expression of osteogenic markers, while reducing bone loss. In this review, we presented the up-to-date findings of the potential anabolic effects of astaxanthin on bone health in vitro, animal, and human studies by providing comprehensive evidence for its future clinical application, especially in treating bone diseases.
Collapse
Affiliation(s)
- Iswari Davan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| |
Collapse
|
16
|
Gu L, Wang W, Wu B, Ji S, Xia Q. Preparation and in vitro characterization studies of astaxanthin-loaded nanostructured lipid carriers with antioxidant properties. J Biomater Appl 2023:8853282231189779. [PMID: 37452613 DOI: 10.1177/08853282231189779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The purpose of this study was to evaluate the astaxanthin-loaded nanostructured lipid carriers (ASX-NLC) prepared using a high-pressure homogenization transport system for local application of astaxanthin. Dynamic light scattering (DLS) and X-ray diffraction (XRD) were used to study the effect of microencapsulation on the properties of ASX-NLC. The mean size of ASX-NLC was about 108.43 ± 0.26 nm and PdI was 0.176 ± 0.002. The ASX-NLC had high encapsulation efficiency which was 95.69 ± 0.13%. Good light stability and temperature stability were shown at the ASX-NLC, indicating that the preparation process was feasible. The 2,2-diphenyl-1-pyridylohydrazinyl (DPPH) scavenging test showed that ASX-NLC could still play an antioxidant role. In vitro release studies showed that compared with an astaxanthin ethanol solution, an ASX-NLC could maintain astaxanthin release more effectively. In vitro permeation studies showed that ASX-NLC could increase astaxanthin retention in the skin. In conclusion, ASX-NLC could significantly enhance astaxanthin accumulation during dermal applications. The research results have important reference significance for local skin applications and provide a basis for the development of nanostructured lipid carriers. ASX-NLC might be suitable carriers for the local application of astaxanthin.
Collapse
Affiliation(s)
- Liyuan Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wenjuan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Bi Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Suping Ji
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiang Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
17
|
Cunha SA, Borges S, Baptista-Silva S, Ribeiro T, Oliveira-Silva P, Pintado M, Batista P. Astaxanthin impact on brain: health potential and market perspective. Crit Rev Food Sci Nutr 2023; 64:11067-11090. [PMID: 37417323 DOI: 10.1080/10408398.2023.2232866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Nowadays, there is an emergent interest in new trend-driven biomolecules to improve health and wellbeing, which has become an interesting and promising field, considering their high value and biological potential. Astaxanthin is one of these promising biomolecules, with impressive high market growth, especially in the pharmaceutical and food industries. This biomolecule, obtained from natural sources (i.e., microalgae), has been reported in the literature to have several beneficial health effects due to its biological properties. These benefits seem to be mainly associated with Astaxanthin's high antioxidant and anti-inflammatory properties, which may act on several brain issues, thus attenuating symptoms. In this sense, several studies have demonstrated the impact of astaxanthin on a wide range of diseases, namely on brain disorders (such as Alzheimer's disease, Parkinson, depression, brain stroke and autism). Therefore, this review highlights its application in mental health and illness. Furthermore, a S.W.O.T. analysis was performed to display an approach from the market/commercial perspective. However, to bring the molecule to the market, there is still a need for more studies to increase deep knowledge regarding the real impact and mechanisms in the human brain.HIGHLIGHTSAstaxanthin has been mainly extracted from the algae Haematococcus pluvialisAstaxanthin, bioactive molecule with high antioxidant and anti-inflammatory propertiesAstaxanthin has an important protective effect on brain disordersAstaxanthin is highly marketable, mainly for food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sara A Cunha
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sandra Borges
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sara Baptista-Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Tânia Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Oliveira-Silva
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Batista
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| |
Collapse
|
18
|
Zhang D, He J, Cui J, Wang R, Tang Z, Yu H, Zhou M. Oral Microalgae-Nano Integrated System against Radiation-Induced Injury. ACS NANO 2023; 17:10560-10576. [PMID: 37253200 DOI: 10.1021/acsnano.3c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The increasing applications of ionizing radiation in society raise the risk of radiation-induced intestinal and whole-body injury. Astaxanthin is a powerful antioxidant to reduce the reactive oxygen generated from radiation and the subsequent damage. However, the oral administration of astaxanthin remains challenging owing to its low solubility and poor bioavailability. Herein, we facilely construct an orally used microalgae-nano integrated system (SP@ASXnano) against radiation-induced intestinal and whole-body injury, combining natural microalgae Spirulina platensis (SP) with astaxanthin nanoparticles (ASXnano). SP and ASXnano show complementation in drug delivery to improve distribution in the intestine and blood. SP displays limited gastric drug loss, prolonged intestinal retention, constant ASXnano release, and progressive degradation. ASXnano improves drug solubility, gastric stability, cell uptake, and intestinal absorption. SP and ASXnano have synergy in many aspects such as anti-inflammation, microbiota protection, and fecal short-chain fatty acid up-regulation. In addition, the system is ensured with biosafety for long-term administration. The system organically combines the properties of microalgae and nanoparticles, which was expected to expand the medical application of SP as a versatile drug delivery platform.
Collapse
Affiliation(s)
- Dongxiao Zhang
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jian He
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiarong Cui
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ruoxi Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Hongyu Yu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Min Zhou
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
19
|
Polyakov NE, Focsan AL, Gao Y, Kispert LD. The Endless World of Carotenoids-Structural, Chemical and Biological Aspects of Some Rare Carotenoids. Int J Mol Sci 2023; 24:9885. [PMID: 37373031 PMCID: PMC10298575 DOI: 10.3390/ijms24129885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Carotenoids are a large and diverse group of compounds that have been shown to have a wide range of potential health benefits. While some carotenoids have been extensively studied, many others have not received as much attention. Studying the physicochemical properties of carotenoids using electron paramagnetic resonance (EPR) and density functional theory (DFT) helped us understand their chemical structure and how they interact with other molecules in different environments. Ultimately, this can provide insights into their potential biological activity and how they might be used to promote health. In particular, some rare carotenoids, such as sioxanthin, siphonaxanthin and crocin, that are described here contain more functional groups than the conventional carotenoids, or have similar groups but with some situated outside of the rings, such as sapronaxanthin, myxol, deinoxanthin and sarcinaxanthin. By careful design or self-assembly, these rare carotenoids can form multiple H-bonds and coordination bonds in host molecules. The stability, oxidation potentials and antioxidant activity of the carotenoids can be improved in host molecules, and the photo-oxidation efficiency of the carotenoids can also be controlled. The photostability of the carotenoids can be increased if the carotenoids are embedded in a nonpolar environment when no bonds are formed. In addition, the application of nanosized supramolecular systems for carotenoid delivery can improve the stability and biological activity of rare carotenoids.
Collapse
Affiliation(s)
- Nikolay E. Polyakov
- Institute of Chemical Kinetics & Combustion, Institutskaya Str. 3, 630090 Novosibirsk, Russia;
| | - A. Ligia Focsan
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, USA;
| | - Yunlong Gao
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Lowell D. Kispert
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
20
|
Abdelazim K, Ghit A, Assal D, Dorra N, Noby N, Khattab SN, El Feky SE, Hussein A. Production and therapeutic use of astaxanthin in the nanotechnology era. Pharmacol Rep 2023:10.1007/s43440-023-00488-y. [PMID: 37179259 PMCID: PMC10182848 DOI: 10.1007/s43440-023-00488-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Astaxanthin (AXT) is a red fat-soluble pigment found naturally in aquatic animals, plants, and various microorganisms and can be manufactured artificially using chemical catalysis. AXT is a xanthophyll carotenoid with a high potential for scavenging free radicals. Several studies have investigated AXT efficacy against diseases such as neurodegenerative, ocular, skin, and cardiovascular hypertension, diabetes, gastrointestinal and liver diseases, and immuno-protective functions. However, its poor solubility, low stability to light and oxygen, and limited bioavailability are major obstacles hindering its wide applications as a therapeutic agent or nutritional supplement. Incorporating AXT with nanocarriers holds great promise in enhancing its physiochemical properties. Nanocarriers are delivery systems with several benefits, including surface modification, bioactivity, and targeted medication delivery and release. Many approaches have been applied to enhance AXT's medicinal effect, including solid lipid nanoparticles, nanostructured lipid carriers (NLCs) and polymeric nanospheres. AXT nano-formulations have demonstrated a high antioxidant and anti-inflammatory effect, significantly affecting cancer in different organs. This review summarizes the most recent data on AXT production, characterization, biological activity, and therapeutic usage, focusing on its uses in the nanotechnology era.
Collapse
Affiliation(s)
- Karim Abdelazim
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amr Ghit
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Dina Assal
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Biology, Biotechnology Program, American University in Cairo, Cairo, Egypt
| | - Neamat Dorra
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shaymaa Essam El Feky
- Radiation Sciences Department, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
21
|
Liu R, Li Y, Zhou C, Tan M. Pickering emulsions stabilized with a spirulina protein-chitosan complex for astaxanthin delivery. Food Funct 2023; 14:4254-4266. [PMID: 37067860 DOI: 10.1039/d3fo00092c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Astaxanthin (AXT) is a lipid-soluble carotenoid with good anti-oxidation, hepatic steatosis reduction, anti-inflammation, and intestinal microbiota regulation ability, whose poor stability and pH vulnerability limit its bioavailability. Spirulina protein (SP) derived from spirulina has good emulsifying ability with potential application in nutraceuticals, medicines, and cosmetics. In this study, Pickering emulsions were prepared using a SP-chitosan (CS) complex as an emulsifier. The particle size, zeta potential, and three-phase contact angle of the SP-CS complex with different SP to CS ratios were investigated. A mass ratio of 1 : 2.5 SP-CS complex showed a good emulsifying ability in preparing Pickering emulsion. A higher storage modulus and viscoelasticity were observed with higher SP-CS complex concentrations and oil fractions. The SP-CS Pickering emulsion significantly improved the stability of AXT in different environments. The lipid release rate and AXT bioavailability after digestion of 3 wt% SP-CS complex-stabilized Pickering emulsion reached 70.54 ± 1.59% and 36.60 ± 3.44%, respectively. The results indicated that the SP-CS complex could act as a Pickering emulsion stabilizer and had the potential to deliver protective hydrophobic AXT.
Collapse
Affiliation(s)
- Ronggang Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Chengfu Zhou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| |
Collapse
|
22
|
Tian Y, Che H, Yang J, Jin Y, Yu H, Wang C, Fu Y, Li N, Zhang J. Astaxanthin Alleviates Aflatoxin B1-Induced Oxidative Stress and Apoptosis in IPEC-J2 Cells via the Nrf2 Signaling Pathway. Toxins (Basel) 2023; 15:toxins15030232. [PMID: 36977123 PMCID: PMC10057844 DOI: 10.3390/toxins15030232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Aflatoxin B1 (AFB1), a typical fungal toxin found in feed, is highly carcinogenic. Oxidative stress is one of the main ways it exerts its toxicity; therefore, finding a suitable antioxidant is the key to reducing its toxicity. Astaxanthin (AST) is a carotenoid with strong antioxidant properties. The aim of the present research was to determine whether AST eases the AFB1-induced impairment in IPEC-J2 cells, and its specific mechanism of action. AFB1 and AST were applied to IPEC-J2 cells in different concentrations for 24 h. The AST (80 µM) significantly prevented the reduction in the IPEC-J2 cell viability that was induced by AFB1 (10 μM). The results showed that treatment with AST attenuated the AFB1-induced ROS, and cytochrome C, the Bax/Bcl2 ratio, Caspase-9, and Caspase-3, which were all activated by AFB1, were among the pro-apoptotic proteins which were diminished by AST. AST activates the Nrf2 signaling pathway and ameliorates antioxidant ability. This was further evidenced by the expression of the HO-1, NQO1, SOD2, and HSP70 genes were all upregulated. Taken together, the findings show that the impairment of oxidative stress and apoptosis, caused by the AFB1 in the IPEC-J2 cells, can be attenuated by AST triggering the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yue Tian
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haoyu Che
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jinsheng Yang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yongcheng Jin
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hao Yu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chuanqi Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yurong Fu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Na Li
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jing Zhang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
23
|
Astaxanthin as a King of Ketocarotenoids: Structure, Synthesis, Accumulation, Bioavailability and Antioxidant Properties. Mar Drugs 2023; 21:md21030176. [PMID: 36976225 PMCID: PMC10056084 DOI: 10.3390/md21030176] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Astaxanthin (3,3-dihydroxy-β, β-carotene-4,4-dione) is a ketocarotenoid synthesized by Haematococcus pluvialis/lacustris, Chromochloris zofingiensis, Chlorococcum, Bracteacoccus aggregatus, Coelastrella rubescence, Phaffia rhodozyma, some bacteria (Paracoccus carotinifaciens), yeasts, and lobsters, among others However, it is majorly synthesized by Haematococcus lacustris alone (about 4%). The richness of natural astaxanthin over synthetic astaxanthin has drawn the attention of industrialists to cultivate and extract it via two stage cultivation process. However, the cultivation in photobioreactors is expensive, and converting it in soluble form so that it can be easily assimilated by our digestive system requires downstream processing techniques which are not cost-effective. This has made the cost of astaxanthin expensive, prompting pharmaceutical and nutraceutical companies to switch over to synthetic astaxanthin. This review discusses the chemical character of astaxanthin, more inexpensive cultivating techniques, and its bioavailability. Additionally, the antioxidant character of this microalgal product against many diseases is discussed, which can make this natural compound an excellent drug to minimize inflammation and its consequences.
Collapse
|
24
|
Chen S, Wang J, Feng J, Xuan R. Research progress of Astaxanthin nano-based drug delivery system: Applications, prospects and challenges? Front Pharmacol 2023; 14:1102888. [PMID: 36969867 PMCID: PMC10034004 DOI: 10.3389/fphar.2023.1102888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Astaxanthin (ASX) is a kind of carotenoid widely distributed in nature, which has been shown to extremely strong antioxidative effects and significant preventive and therapeutic effects on cancer, diabetes, cardiovascular disease, etc. However, its application in the medical field is greatly limited due to its poor water solubility, unstable chemical properties and other shortcomings. In recent years, the nano-based drug delivery systems such as nanoparticles, liposomes, nanoemulsions, nanodispersions, and polymer micelles, have been used as Astaxanthin delivery carriers with great potential for clinical applications, which have been proved that they can enhance the stability and efficacy of Astaxanthin and achieve targeted delivery of Astaxanthin. Herein, based on the pharmacological effects of Astaxanthin, we reviewed the characteristics of various drug delivery carriers, which is of great significance for improving the bioavailability of Astaxanthin.
Collapse
Affiliation(s)
- Siqian Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiayi Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiating Feng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Rongrong Xuan,
| |
Collapse
|
25
|
Chen J, Zhang R, Zhang G, Liu Z, Jiang H, Mao X. Heterologous Expression of the Plant-Derived Astaxanthin Biosynthesis Pathway in Yarrowia lipolytica for Glycosylated Astaxanthin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2943-2951. [PMID: 36629355 DOI: 10.1021/acs.jafc.2c08153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Astaxanthin is a high-value red pigment and antioxidant widely used in the pharmaceutical, cosmetic, and food industries. However, the hydrophobicity of astaxanthin causes its low bioavailability. Glycosylation can substantially increase the water solubility of astaxanthin, thus enhancing its bioavailability, photostability, and biological activities. In this study, we report for the first time the heterologous production of glycosylated astaxanthin in Yarrowia lipolytica. By appropriate removal of the chloroplast transit peptide, carotenoid 4-hydroxy-β-ring 4-dehydrogenase (HBFD) and carotenoid β-ring 4-dehydrogenase (CBFD) from Adonis aestivalis were expressed in a β-carotene-producing Y. lipolytica strain, resulting in astaxanthin production with a yield of 0.59 mg/L, 0.05 mg/g DCW. This is the first time to successfully construct a plant-derived astaxanthin synthesis pathway in yeast. Modularized assembly of CBFD and HBFD, replacement of the promoter upstream CBFD, increasing the precursor β-carotene supply, and regulating the expressions of CBFD and HBFD led to a 4.9-fold increase in astaxanthin production (3.46 mg/L). Finally, introduction of crtX from Pantoea ananatis ATCC 19321 into the astaxanthin-producing strain enabled glycosylated astaxanthin production, and the yield reached 1.47 mg/L, which is the highest yield of microbially produced glycosylated astaxanthin reported to date.
Collapse
Affiliation(s)
- Jing Chen
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| | - Ruiling Zhang
- Shandong Analysis and Test, Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Guilin Zhang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| | - Zhen Liu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| | - Hong Jiang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, P. R. China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, P. R. China
| |
Collapse
|
26
|
Cai L, Gan M, Regenstein JM, Luan Q. Improving the biological activities of astaxanthin using targeted delivery systems. Crit Rev Food Sci Nutr 2023; 64:6902-6923. [PMID: 36779336 DOI: 10.1080/10408398.2023.2176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The antioxidant and anti-inflammatory properties of astaxanthin (AST) enable it to protect against oxidative stress-related and inflammatory diseases with a range of biological effects. These activities provide the potential to develop healthier food products. Therefore, it would be beneficial to design delivery systems for AST to overcome its low stability, control its release, and/or improve its bioavailability. This review discusses the basis for AST's various biological activities and the factors limiting these activities, including stability, solubility, and bioavailability. It also discusses the different systems available for the targeted delivery of AST and their applications in enhancing the biological activity of AST. These include systems that are candidates for preventive and therapeutic effects, which include nerves, liver, and skin, particularly for possible cancer reduction. Targeted delivery of AST to specific regions of the gastrointestinal tract, or more selectively to target tissues and cells, can be achieved using targeted delivery systems to increase the biological activities of AST.
Collapse
Affiliation(s)
- Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Miaoyu Gan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qian Luan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| |
Collapse
|
27
|
Astaxanthin-Loaded Pickering Emulsions Stabilized by Nanofibrillated Cellulose: Impact on Emulsion Characteristics, Digestion Behavior, and Bioaccessibility. Polymers (Basel) 2023; 15:polym15040901. [PMID: 36850184 PMCID: PMC9959445 DOI: 10.3390/polym15040901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Astaxanthin (AX) is one of the major bioactives that has been found to have strong antioxidant properties. However, AX tends to degrade due to its highly unsaturated structure. To overcome this problem, a Pickering O/W emulsion using nanofibrillated cellulose (NFC) as an emulsifier was investigated. NFC was used because it is renewable, biodegradable, and nontoxic. The 10 wt% O/W emulsions with 0.05 wt% AX were prepared with different concentrations of NFC (0.3-0.7 wt%). After 30 days of storage, droplet size, ζ-potential values, viscosity, encapsulation efficiency (EE), and color were determined. The results show that more stable emulsions are formed with increasing NFC concentrations, which can be attributed to the formulation of the NFC network in the aqueous phase. Notably, the stability of the 0.7 wt% NFC-stabilized emulsion was high, indicating that NFC can improve the emulsion's stability. Moreover, it was found that fat digestibility and AX bioaccessibility decreased with increasing NFC concentrations, which was due to the limitation of lipase accessibility. In contrast, the stability of AX increased with increasing NFC concentrations, which was due to the formation of an NFC layer that acted as a barrier and prevented the degradation of AX during in vitro digestion. Therefore, high concentrations of NFC are useful for functional foods delivering satiety instead of oil-soluble bioactives.
Collapse
|
28
|
Otchere E, McKay BM, English MM, Aryee ANA. Current trends in nano-delivery systems for functional foods: a systematic review. PeerJ 2023; 11:e14980. [PMID: 36949757 PMCID: PMC10026715 DOI: 10.7717/peerj.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/09/2023] [Indexed: 03/19/2023] Open
Abstract
Background Increased awareness of the relationship between certain components in food beyond basic nutrition and health has generated interest in the production and consumption. Functional foods owe much of their health benefits to the presence of bioactive components. Despite their importance, their poor stability, solubility, and bioavailability may require the use of different strategies including nano-delivery systems (NDS) to sustain delivery and protection during handling, storage, and ingestion. Moreover, increasing consumer trend for non-animal sourced ingredients and interest in sustainable production invigorate the need to evaluate the utility of plant-based NDS. Method In the present study, 129 articles were selected after screening from Google Scholar searches using key terms from current literature. Scope This review provides an overview of current trends in the use of bioactive compounds as health-promoting ingredients in functional foods and the main methods used to stabilize these components. The use of plant proteins as carriers in NDS for bioactive compounds and the merits and challenges of this approach are also explored. Finally, the review discusses the application of protein-based NDS in food product development and highlights challenges and opportunities for future research. Key Findings Plant-based NDS is gaining recognition in food research and industry for their role in improving the shelf life and bioavailability of bioactives. However, concerns about safety and possible toxicity limit their widespread application. Future research efforts that focus on mitigating or enhancing their safety for food applications is warranted.
Collapse
Affiliation(s)
- Emmanuel Otchere
- Department of Human Ecology, Delaware State University, Dover, Delaware, United States
| | - Brighid M. McKay
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Marcia M. English
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Alberta N. A. Aryee
- Department of Human Ecology, Delaware State University, Dover, Delaware, United States
| |
Collapse
|
29
|
Pickering emulsion stabilized by gliadin nanoparticles for astaxanthin delivery. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Sun J, Yan J, Dong H, Gao K, Yu K, He C, Mao X. Astaxanthin with different configurations: sources, activity, post-modification and application in foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Vrânceanu M, Galimberti D, Banc R, Dragoş O, Cozma-Petruţ A, Hegheş SC, Voştinaru O, Cuciureanu M, Stroia CM, Miere D, Filip L. The Anticancer Potential of Plant-Derived Nutraceuticals via the Modulation of Gene Expression. PLANTS 2022; 11:plants11192524. [PMID: 36235389 PMCID: PMC9571524 DOI: 10.3390/plants11192524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Current studies show that approximately one-third of all cancer-related deaths are linked to diet and several cancer forms are preventable with balanced nutrition, due to dietary compounds being able to reverse epigenetic abnormalities. An appropriate diet in cancer patients can lead to changes in gene expression and enhance the efficacy of therapy. It has been demonstrated that nutraceuticals can act as powerful antioxidants at the cellular level as well as anticarcinogenic agents. This review is focused on the best studies on worldwide-available plant-derived nutraceuticals: curcumin, resveratrol, sulforaphane, indole-3-carbinol, quercetin, astaxanthin, epigallocatechin-3-gallate, and lycopene. These compounds have an enhanced effect on epigenetic changes such as histone modification via HDAC (histone deacetylase), HAT (histone acetyltransferase) inhibition, DNMT (DNA methyltransferase) inhibition, and non-coding RNA expression. All of these nutraceuticals are reported to positively modulate the epigenome, reducing cancer incidence. Furthermore, the current review addresses the issue of the low bioavailability of nutraceuticals and how to overcome the drawbacks related to their oral administration. Understanding the mechanisms by which nutraceuticals influence gene expression will allow their incorporation into an “epigenetic diet” that could be further capitalized on in the therapy of cancer.
Collapse
Affiliation(s)
- Maria Vrânceanu
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Damiano Galimberti
- Italian Association of Anti-Ageing Physicians, Via Monte Cristallo, 1, 20159 Milan, Italy
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Ovidiu Dragoş
- Department of Kinetotheraphy and Special Motricity, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Simona-Codruţa Hegheş
- Department of Drug Analysis, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Oliviu Voştinaru
- Department of Pharmacology, Physiology and Physiopathology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 16 Universităţii Street, 700115 Iași, Romania
| | - Carmina Mariana Stroia
- Department of Pharmacy, Oradea University, 1 Universităţii Street, 410087 Oradea, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
32
|
Nanocarrier System: State-of-the-Art in Oral Delivery of Astaxanthin. Antioxidants (Basel) 2022; 11:antiox11091676. [PMID: 36139750 PMCID: PMC9495775 DOI: 10.3390/antiox11091676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Astaxanthin (3,3′-dihydroxy-4,4′-diketo-β-β carotene), which belongs to the xanthophyll class, has shown potential biological activity in in vitro and in vivo models including as a potent antioxidant, anti-lipid peroxidation and cardiovascular disease prevention agent. It is mainly extracted from an alga, Haematococcus pluvialis. As a highly lipid-soluble carotenoid, astaxanthin has been shown to have poor oral bioavailability, which limits its clinical applications. Recently, there have been several suggestions and the development of various types of nano-formulation, loaded with astaxanthin to enhance their bioavailability. The employment of nanoemulsions, liposomes, solid lipid nanoparticles, chitosan-based and PLGA-based nanoparticles as delivery vehicles of astaxanthin for nutritional supplementation purposes has proven a higher oral bioavailability of astaxanthin. In this review, we highlight the pharmacological properties, pharmacokinetics profiles and current developments of the nano-formulations of astaxanthin for its oral delivery that are believed to be beneficial for future applications. The limitations and future recommendations are also discussed in this review.
Collapse
|
33
|
Encapsulation techniques perfect the antioxidant action of carotenoids: A systematic review of how this effect is promoted. Food Chem 2022; 385:132593. [PMID: 35276479 DOI: 10.1016/j.foodchem.2022.132593] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/22/2022]
Abstract
Considering that antioxidant activities are directly related to carotenoid functionalities, it is necessary to use techniques that promote the stability of these natural pigments. This systematic review aimed to gather evidence on the effect of encapsulation techniques on the maintenance and/or enhancement of the antioxidant activity of carotenoids. The study was registered in PROSPERO (CRD42020142065). Searches were performed in PubMed, Embase, Virtual Health Library, Scopus, ScienceDirect, and Web of Science databases. Assessment of methodological quality was performed using OHAT. A total of 1577 articles were selected, resulting in 20 eligible studies. Overall, results showed that the mechanisms involved are related to the emergence of new chemical interactions, increased surface area, and the controlled release of carotenoids. Thus, evidence proved that encapsulation could preserve and/or enhance bioactivities of carotenoids, allowing the use in foods to promote benefits on population health.
Collapse
|
34
|
Glycol Chitosan-Astaxanthin Nanoparticles: Water Dispersion, Antioxidant Activity, and Improved Cell Migration. Macromol Res 2022. [DOI: 10.1007/s13233-022-0081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Aneesh P, Ajeeshkumar K, Lekshmi R, Anandan R, Ravishankar C, Mathew S. Bioactivities of astaxanthin from natural sources, augmenting its biomedical potential: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Yusof Z, Khong NM, Choo WS, Foo SC. Opportunities for the marine carotenoid value chain from the perspective of fucoxanthin degradation. Food Chem 2022; 383:132394. [DOI: 10.1016/j.foodchem.2022.132394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/23/2022] [Accepted: 02/06/2022] [Indexed: 12/26/2022]
|
37
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
38
|
Oliveira WQD, Sousa PHMD, Pastore GM. Olfactory and gustatory disorders caused by COVID-19: How to regain the pleasure of eating? Trends Food Sci Technol 2022; 122:104-109. [PMID: 35039714 PMCID: PMC8755554 DOI: 10.1016/j.tifs.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Background Recently, anosmia and ageusia (and their variations) have been reported as frequent symptoms of COVID-19. Olfactory and gustatory stimuli are essential in the perception and pleasure of eating. Disorders in sensory perception may influence appetite and the intake of necessary nutrients when recovering from COVID-19. In this short commentary, taste and smell disorders were reported and correlated for the first time with food science. Scope and approach The objective of this short commentary is to report that taste and smell disorders resulted from COVID-19 may impact eating pleasure and nutrition. It also points out important technologies and trends that can be considered and improved in future studies. Key findings and conclusions Firmer food textures can stimulate the trigeminal nerve, and more vibrant colors are able to increase the modulation of brain metabolism, stimulating pleasure. Allied to this, encapsulation technology enables the production of new food formulations, producing agonist and antagonist agents to trigger or block specific sensations. Therefore, opportunities and innovations in the food industry are wide and multidisciplinary discussions are needed.
Collapse
Affiliation(s)
- Williara Queiroz de Oliveira
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil
| | - Paulo Henrique Machado De Sousa
- Department of Food Technology, Federal University of Ceará, Av. Mister Hull, 2977, Pici University Campus, Fortaleza, Ceará, ZIP 60356-000, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
39
|
Improved Productivity of Astaxanthin from Photosensitive Haematococcus pluvialis Using Phototaxis Technology. Mar Drugs 2022; 20:md20040220. [PMID: 35447893 PMCID: PMC9032356 DOI: 10.3390/md20040220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022] Open
Abstract
Haematococcus pluvialis is a microalgae actively studied for the production of natural astaxanthin, which is a powerful antioxidant for human application. However, it is economically disadvantageous for commercialization owing to the low productivity of astaxanthin. This study reports an effective screening strategy using the negative phototaxis of the H. pluvialis to attain the mutants having high astaxanthin production. A polydimethylsiloxane (PDMS)-based microfluidic device irradiated with a specific light was developed to efficiently figure out the phototactic response of H. pluvialis. The partial photosynthesis deficient (PP) mutant (negative control) showed a 0.78-fold decreased cellular response to blue light compared to the wild type, demonstrating the positive relationship between the photosynthetic efficiency and the phototaxis. Based on this relationship, the Haematococcus mutants showing photosensitivity to blue light were selected from the 10,000 random mutant libraries. The M1 strain attained from the phototaxis-based screening showed 1.17-fold improved growth rate and 1.26-fold increases in astaxanthin production (55.12 ± 4.12 mg g−1) in the 100 L photo-bioreactor compared to the wild type. This study provides an effective selection tool for industrial application of the H. pluvialis with improved astaxanthin productivity.
Collapse
|
40
|
Chitosan oligosaccharide/alginate nanoparticles as an effective carrier for astaxanthin with improving stability, in vitro oral bioaccessibility, and bioavailability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107246] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2022; 65:2-36. [PMID: 34919379 PMCID: PMC8762669 DOI: 10.1021/acs.jmedchem.1c01144] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Ashkan Bigham
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
| | - Sahar Sadeghi
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Sayed Mehdi Dehdashti
- Cellular
and Molecular Biology Research Center, Shahid
Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Navid Rabiee
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
- Department
of Physics, Sharif University of Technology, 11155-9161 Tehran, Iran
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alireza Abedivash
- Department
of Basic Sciences, Sari Agricultural Sciences
and Natural Resources University, 48181-68984 Sari, Iran
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
| | - Behzad Nasseri
- Department
of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, 51664 Tabriz, Iran
| | - Hassan Karimi-Maleh
- School
of Resources and Environment, University
of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Avenue, 610054 Chengdu, PR China
- Department
of Chemical Engineering, Laboratory of Nanotechnology,
Quchan University of Technology, 94771-67335 Quchan, Iran
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus,
2028, 2006 Johannesburg, South Africa
| | - Esmaeel Sharifi
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
- Department
of Tissue Engineering and Biomaterials, School of Advanced Medical
Sciences and Technologies, Hamadan University
of Medical Sciences, 6517838736 Hamadan, Iran
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Pooyan Makvandi
- Centre for
Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
42
|
Ge S, Jia R, Li Q, Liu W, Liu M, Cai D, Zheng M, Liu H, Liu J. Pickering emulsion stabilized by zein/Adzuki bean seed coat polyphenol nanoparticles to enhance the stability and bioaccessibility of astaxanthin. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Srihera N, Li Y, Zhang TT, Wang YM, Yanagita T, Waiprib Y, Xue CH. Preparation and Characterization of Astaxanthin-loaded Liposomes Stabilized by Sea Cucumber Sulfated Sterols Instead of Cholesterol. J Oleo Sci 2022; 71:401-410. [DOI: 10.5650/jos.ess21233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nattha Srihera
- College of Food Science and Engineering, Ocean University of China
| | - Yue Li
- College of Food Science and Engineering, Ocean University of China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University
| | - Yaowapha Waiprib
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University
| | - Chang-Hu Xue
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao)
| |
Collapse
|
44
|
Zhao L, Tao X, Wan C, Dong D, Wang C, Xi Q, Liu Y, Song T. Astaxanthin alleviates inflammatory pain by regulating the p38 mitogen-activated protein kinase and nuclear factor-erythroid factor 2-related factor/heme oxygenase-1 pathways in mice. Food Funct 2021; 12:12381-12394. [PMID: 34825683 DOI: 10.1039/d1fo02326h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory pain is a complex process that has a substantial negative impact on post-injury quality of life. Astaxanthin (AST), which is a lipid-soluble red-orange carotenoid that is found in lobsters, inhibits the development and maintenance of inflammation in mice via its antioxidant and anti-inflammatory activities. However, the specific mechanisms underlying these effects remain unclear. In this study, we aimed to elucidate the mechanism by which astaxanthin alleviated inflammation using a mouse model with Complete Freund's adjuvant (CFA)-induced inflammatory pain. Mechanical allodynia and thermal hyperalgesia were observed on days 1-14 post CFA injection. Expression of p38 mitogen-activated protein kinase (MAPK) in the left paw and L4-6 dorsal root ganglia (DRG) were upregulated in the CFA-induced mice. Expression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways were also increased. Astaxanthin relieved mechanical allodynia and thermal hyperalgesia induced by CFA and inhibited the inflammatory response (e.g., infiltration of inflammatory cells and production of inflammatory factors) in the ipsilateral paw and DRG. Additionally, AST inhibited p38 MAPK and enhanced Nrf2/HO-1 contents in the left paw and DRG, and reversed the pain induced by p38 MAPK agonist and Nrf2 inhibitors. These findings suggest that AST exerts anti-inflammatory effects and regulates p38 MAPK and Nrf2/HO-1 to alleviate inflammatory pain. AST may be a potential therapeutic agent for relieving inflammation.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Xueshu Tao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Chengfu Wan
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Daosong Dong
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Chenglong Wang
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Qi Xi
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Yan Liu
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Tao Song
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| |
Collapse
|
45
|
Roychowdhury R, Srivastava N, Kumari S, Pinnaka AK, Roy Choudhury A. Isolation of an exopolysaccharide from a novel marine bacterium Neorhizobium urealyticum sp. nov. and its utilization in nanoemulsion formation for encapsulation and stabilization of astaxanthin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
An integration study of microalgae bioactive retention: From microalgae biomass to microalgae bioactives nanoparticle. Food Chem Toxicol 2021; 158:112607. [PMID: 34653554 DOI: 10.1016/j.fct.2021.112607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 10/10/2021] [Indexed: 01/02/2023]
Abstract
Microalgae metabolites include biologically active compounds with therapeutic effects such as anticancer, anti-inflammatory and immunomodulation effects. One of the most recent focuses is on utilizing microalgae lipid-based biologically active compounds in food applications. However, most microalgae biological active compounds in their natural forms have common drawbacks like low solubility, low physicochemical stability and strong susceptibility to degradation, which significantly limits their application in foods, therefore, it is important to find solutions to retain their functional properties. In the present work, a comprehensive review on multi-product biorefinery was carried out from upstream processing stage to downstream processing stage, and identify critical processes and factors that impact bioactive material acquisition and retention. Furthermore, since nanoencapsulation technology emerges as an effective solution for microalgae nutraceutical product's retention, this work also focus on the nanoparticle perspective and comprehensively reviews the current nanoencapsulation solutions of the microalgae bioactive extract products. The aim is to depict advances in the formulations of microalage bioactive nanoparticles and provide a critical analysis of the reported nanoparticle formation. Overall, through the investigation of microalgae from biomass to bioactive nanoparticles, we aim to facilitate microalgae nutraceuticals incorporation as high value-added ingredients in more functional food that can improve human health.
Collapse
|
47
|
Liu C, Hu B, Cheng Y, Guo Y, Yao W, Qian H. Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. BIORESOURCE TECHNOLOGY 2021; 337:125398. [PMID: 34139560 DOI: 10.1016/j.biortech.2021.125398] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The demand for carotenoids from natural sources obtained by biological extraction methods is increasing with the development of biotechnology and the continued awareness of food safety. Natural plant-derived carotenoids have a relatively high production cost and are affected by the season, while microbial-derived carotenoids are favored due to their natural, high-efficiency, low production cost, and ease of industrialization. This article reviewed the following aspects of natural carotenoids derived from microorganisms: (1) the structures and properties of main carotenoids; (2) fungal and microalgal sources of the main carotenoids; (3) influencing factors and modes of improvement for carotenoids production; (4) efficient extraction methods for carotenoids; and (5) the commercial value of carotenoids. This review provided a reference and guidance for the development of natural carotenoids derived from microorganisms.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Bin Hu
- School of Biotechnology, Jiangnan University, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
48
|
Cabanillas-Bojórquez LA, Gutiérrez-Grijalva EP, González-Aguilar GA, López-Martinez LX, Castillo-López RI, Bastidas-Bastidas PDJ, Heredia JB. Valorization of Fermented Shrimp Waste with Supercritical CO 2 Conditions: Extraction of Astaxanthin and Effect of Simulated Gastrointestinal Digestion on Its Antioxidant Capacity. Molecules 2021; 26:4465. [PMID: 34361618 PMCID: PMC8348114 DOI: 10.3390/molecules26154465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Lactic acid fermentation increases the bioactive properties of shrimp waste. Astaxanthin is the principal carotenoid present in shrimp waste, which can be found esterified in the liquid fraction (liquor) after its lactic acid fermentation. Supercritical CO2 technology has been proposed as a green alternative to obtain astaxanthin from fermented shrimp waste. This study aimed to optimize astaxanthin extraction by supercritical CO2 technology from fermented liquor of shrimp waste and study bioaccessibility using simulated gastrointestinal digestion (GD) of the optimized extract. A Box-Behnken design with three variables (pressure, temperature, and flow rate) was used to optimize the supercritical CO2 extraction. The optimized CO2 extract was obtained at 300 bar, 60 °C, and 6 mL/min, and the estimated characteristics showed a predictive extraction yield of 11.17%, antioxidant capacity of 1.965 mmol of Trolox equivalent (TE)/g, and astaxanthin concentration of 0.6353 µg/g. The experiment with optimal conditions performed to validate the predicted values showed an extraction yield of 12.62%, an antioxidant capacity of 1.784 mmol TE/g, and an astaxanthin concentration of 0.52 µg/g. The astaxanthin concentration decreased, and the antioxidant capacity of the optimized extract increased during gastrointestinal digestion. In conclusion, our optimized supercritical CO2 process is suitable for obtaining astaxanthin from shrimp by-products after lactic acid fermentation.
Collapse
Affiliation(s)
- Luis Angel Cabanillas-Bojórquez
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km 5.5 Col. Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (L.A.C.-B.); (P.d.J.B.-B.)
| | - Erick Paul Gutiérrez-Grijalva
- Cátedras CONACyT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km 5.5 Col. Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico;
| | - Gustavo Adolfo González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo, A. C. CTAOV, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo CP 83304, Sonora, Mexico;
| | - Leticia Xochitl López-Martinez
- Cátedras CONACyT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo CP 83304, Sonora, Mexico;
| | - Ramón Ignacio Castillo-López
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán CP 80013, Sinaloa, Mexico;
| | - Pedro de Jesús Bastidas-Bastidas
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km 5.5 Col. Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (L.A.C.-B.); (P.d.J.B.-B.)
| | - José Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km 5.5 Col. Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (L.A.C.-B.); (P.d.J.B.-B.)
| |
Collapse
|
49
|
Chen Y, Tie S, Zhang X, Zhang L, Tan M. Preparation and characterization of glycosylated protein nanoparticles for astaxanthin mitochondria targeting delivery. Food Funct 2021; 12:7718-7727. [PMID: 34286807 DOI: 10.1039/d1fo01751a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Novel mitochondria targeting nanocarriers were prepared using triphenylphosphonium bromide (TPP)-modified whey protein isolate (WPI)-dextran (DX) conjugates by self-assembly method for astaxanthin mitochondria targeting delivery. The nanocarriers of astaxanthin-loaded WPI-DX and astaxanthin-loaded TPP-WPI-DX were 135.26 and 193.64 nm, respectively, which exhibited a spherical structure and good dispersibility. The mitochondria targeting nanocarriers had good stability in the stimulated blood fluid. In vitro experiments indicated that the TPP-modified nanocarriers could effectively realize lysosomes escape, and specifically accumulate in the cell mitochondria. Simultaneously, the astaxanthin-loaded nanocarriers could significantly reduce reactive oxygen species generation produced from hydrogen peroxide, protect the normal levels of the mitochondrial membrane potential, and dramatically promote the vitality of leukemia cells in mouse macrophage (RAW 264.7) cells. The present study highlights the promising application of mitochondria targeting nanocarriers for enhanced delivery of astaxanthin.
Collapse
Affiliation(s)
- Yannan Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, P. R. China.
| | | | | | | | | |
Collapse
|
50
|
Sánchez CO, Zavaleta EB, García GU, Solano GL, Díaz MR. Krill oil microencapsulation: Antioxidant activity, astaxanthin retention, encapsulation efficiency, fatty acids profile, in vitro bioaccessibility and storage stability. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|