1
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
2
|
Smith CIE, Burger JA, Zain R. Estimating the Number of Polygenic Diseases Among Six Mutually Exclusive Entities of Non-Tumors and Cancer. Int J Mol Sci 2024; 25:11968. [PMID: 39596040 PMCID: PMC11593959 DOI: 10.3390/ijms252211968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
In the era of precision medicine with increasing amounts of sequenced cancer and non-cancer genomes of different ancestries, we here enumerate the resulting polygenic disease entities. Based on the cell number status, we first identified six fundamental types of polygenic illnesses, five of which are non-cancerous. Like complex, non-tumor disorders, neoplasms normally carry alterations in multiple genes, including in 'Drivers' and 'Passengers'. However, tumors also lack certain genetic alterations/epigenetic changes, recently named 'Goners', which are toxic for the neoplasm and potentially constitute therapeutic targets. Drivers are considered essential for malignant transformation, whereas environmental influences vary considerably among both types of polygenic diseases. For each form, hyper-rare disorders, defined as affecting <1/108 individuals, likely represent the largest number of disease entities. Loss of redundant tumor-suppressor genes exemplifies such a profoundly rare mutational event. For non-tumor, polygenic diseases, pathway-centered taxonomies seem preferable. This classification is not readily feasible in cancer, but the inclusion of Drivers and possibly also of epigenetic changes to the existing nomenclature might serve as initial steps in this direction. Based on the detailed genetic alterations, the number of polygenic diseases is essentially countless, but different forms of nosologies may be used to restrict the number.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8, SE-141 52 Huddinge, Sweden;
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, SE-141 86 Huddinge, Sweden
| | - Jan A. Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8, SE-141 52 Huddinge, Sweden;
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
3
|
da Veiga Moreira J, Schwartz L, Jolicoeur M. In Vitro Methylene Blue and Carboplatin Combination Triggers Ovarian Cancer Cells Death. Int J Mol Sci 2024; 25:11005. [PMID: 39456787 PMCID: PMC11507203 DOI: 10.3390/ijms252011005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Ovarian cancer presents a dire prognosis and high mortality rates, necessitating the exploration of alternative therapeutic avenues, particularly in the face of platinum-based chemotherapy resistance. Conventional treatments often overlook the metabolic implications of cancer, but recent research has highlighted the pivotal role of mitochondria in cancer pathogenesis and drug resistance. This study delves into the metabolic landscape of ovarian cancer treatment, focusing on modulating mitochondrial activity using methylene blue (MB). Investigating two epithelial ovarian cancer (EOC) cell lines, OV1369-R2 and OV1946, exhibiting disparate responses to carboplatin, we sought to identify metabolic nodes, especially those linked to mitochondrial dysfunction, contributing to chemo-resistance. Utilizing ARPE-19, a normal retinal epithelial cell line, as a control model, our study reveals MB's distinct cellular uptake, with ARPE-19 absorbing 5 to 7 times more MB than OV1946 and OV1369-R2. Treatment with 50 µM MB (MB-50) effectively curtailed the proliferation of both ovarian cancer cell lines. Furthermore, MB-50 exhibited the ability to quell glutaminolysis and the Warburg effect in cancer cell cultures. Regarding mitochondrial energetics, MB-50 spurred oxygen consumption, disrupted glycolytic pathways, and induced ATP depletion in the chemo-sensitive OV1946 cell line. These findings highlight the potential of long-term MB exposure as a strategy to improve the chemotherapeutic response in ovarian cancer cells. The ability of MB to stimulate oxygen consumption and enhance mitochondrial activity positions it as a promising candidate for ovarian cancer therapy, shedding light on the metabolic pressures exerted on mitochondria and their modulation by MB, thus contributing to a deeper understanding of mitochondrial dysregulation and the metabolic underpinnings of cancer cell proliferation.
Collapse
Affiliation(s)
- Jorgelindo da Veiga Moreira
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC H3C 3A7, Canada;
| | - Laurent Schwartz
- Assistance Publique des Hôpitaux de Paris, Avenue Victoria, 75003 Paris, France;
| | - Mario Jolicoeur
- Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC H3C 3A7, Canada;
| |
Collapse
|
4
|
Valerio J, Borro M, Proietti E, Pisciotta L, Olarinde IO, Fernandez Gomez M, Alvarez Pinzon AM. Systematic Review and Clinical Insights: The Role of the Ketogenic Diet in Managing Glioblastoma in Cancer Neuroscience. J Pers Med 2024; 14:929. [PMID: 39338183 PMCID: PMC11433106 DOI: 10.3390/jpm14090929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Recent scientific research has shown that the ketogenic diet may have potential benefits in a variety of medical fields, which has led to the diet receiving a substantial amount of attention. Clinical and experimental research on brain tumors has shown that the ketogenic diet has a satisfactory safety profile. This safety profile has been established in a variety of applications, including the management of obesity and the treatment of drug-resistant epileptic cases. However, in human studies, the impact of ketogenic therapy on the growth of tumors and the life expectancy of patients has not provided results that are well characterized. Consequently, our purpose is to improve the comprehension of these features by succinctly presenting the developments and conclusions that have been gained from the most recent study that pertains to this non-pharmacological technique. According to the findings of our study, patients with brain tumors who stick to a ketogenic diet are more likely to experience improved survival rates. However, it is required to conduct additional research on humans in order to more accurately define the anti-tumor efficiency of this diet as well as the underlying processes that support the therapeutic effects of this dieting regimen.
Collapse
Affiliation(s)
- Jose Valerio
- Neurosurgery Oncology Center of Excellence, Neurosurgery Department, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA
| | - Matteo Borro
- Internal Medicine Unit, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Elisa Proietti
- Department of Internal Medicine (DIMI), University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Livia Pisciotta
- Department of Internal Medicine (DIMI), University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Operative Unit of Dietetics and Clinical Nutrition, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Immanuel O Olarinde
- Neurosurgery Department, Latino America Valerio Foundation, Weston, FL 33331, USA
| | | | - Andres Mauricio Alvarez Pinzon
- MCIFAU Cancer Center of Excellence, Memorial Cancer Institute, Memorial Healthcare System, Hollywood, FL 33021, USA
- Cancer Neuroscience Program, The Institute of Neuroscience of Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute for Human Health and Disease Intervention, Division of Research, FAU Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
5
|
Klement RJ. The optimal amino acid pattern for humans and its implications for nutrition of cancer patients. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:25. [PMID: 39184928 PMCID: PMC11341996 DOI: 10.21037/tbcr-24-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, Germany
| |
Collapse
|
6
|
Martinez P, Baghli I, Gourjon G, Seyfried TN. Mitochondrial-Stem Cell Connection: Providing Additional Explanations for Understanding Cancer. Metabolites 2024; 14:229. [PMID: 38668357 PMCID: PMC11051897 DOI: 10.3390/metabo14040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The cancer paradigm is generally based on the somatic mutation model, asserting that cancer is a disease of genetic origin. The mitochondrial-stem cell connection (MSCC) proposes that tumorigenesis may result from an alteration of the mitochondria, specifically a chronic oxidative phosphorylation (OxPhos) insufficiency in stem cells, which forms cancer stem cells (CSCs) and leads to malignancy. Reviewed evidence suggests that the MSCC could provide a comprehensive understanding of all the different stages of cancer. The metabolism of cancer cells is altered (OxPhos insufficiency) and must be compensated by using the glycolysis and the glutaminolysis pathways, which are essential to their growth. The altered mitochondria regulate the tumor microenvironment, which is also necessary for cancer evolution. Therefore, the MSCC could help improve our understanding of tumorigenesis, metastases, the efficiency of standard treatments, and relapses.
Collapse
Affiliation(s)
- Pierrick Martinez
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | - Ilyes Baghli
- International Society for Orthomolecular Medicine, Toronto, ON M4B 3M9, Canada;
| | - Géraud Gourjon
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | | |
Collapse
|
7
|
Vainshelboim B, Myers J. Cardiorespiratory Fitness and Incidence of Digestive System Cancers in Men. J Gastrointest Cancer 2024; 55:410-417. [PMID: 37917299 DOI: 10.1007/s12029-023-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE To assess the association between cardiorespiratory fitness (CRF) and incidence of digestive system cancers (DSCs) in men. METHODS A prospective cohort of 4,540 men aged 55.2 ± 13.1 years who were free from malignancy at baseline was studied. Exposure was CRF quantified from treadmill exercise testing (individualized ramp protocol) in metabolic equivalents (METs). Incidence of DSCs was the primary outcome, utilizing medical records of any new diagnosed DSC. Cox proportional hazard analyses were conducted adjusting for established cancer risk factors. RESULTS Mean CRF was 8.3 ± 3.5 METs. During 13 ± 7.6 years follow up, 250 (5.5%) DSC cases were diagnosed (colorectal = 163, gallbladder = 46, liver = 23, esophagus = 8, pancreas = 7 and other digestive organ cancers = 3). For each 1-MET increase in CRF there were 6% [Hazard Ratio = 0.94, 95% CI (0.91-0.98), p = 0.006], and 9% [Hazard Ratio = 0.91, 95% CI (0.85-0.97), p = 0.006] lower risks of DSC incidence in the total cohort and among men younger than 60 years old, respectively. Additionally, each 1-MET increase in CRF was associated with 9% lower risks of DSC incidence among never and current smokers. CRF was not associated with DSC incidence among men ≥ 60 years old and among former smokers. CONCLUSION Higher CRF was associated with lower risk of DSC incidence in men, particularly in those younger than 60 years, and never and current smokers. These findings suggest that higher CRF has potential preventive benefits against the development of DSCs, although additional large studies are needed. CRF screening and achieving higher levels could serve as a complementary preventive strategy for public health.
Collapse
Affiliation(s)
- Baruch Vainshelboim
- Center for Tobacco Research, Division of Medical Oncology, Department of Internal Medicine, the Ohio State University, Columbus, OH, 43214, USA.
| | - Jonathan Myers
- Cardiology Division, Veterans Affairs Palo Alto Health Care System and Stanford University, Palo Alto, CA, 94304, USA
| |
Collapse
|
8
|
Klement RJ. Anti-tumor effects of ketogenic diets and their synergism with other treatments in mice: Bayesian evidence synthesis of 1755 individual mouse survival data. Biomed J 2024; 47:100609. [PMID: 37245566 PMCID: PMC10900256 DOI: 10.1016/j.bj.2023.100609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Ketogenic diets (KDs) are high-fat diets with putative anti-tumor effects. The aim of this study was to synthesize the evidence for the anti-tumor effects of KDs in mice, with a focus on their possible synergism with chemotherapy (CT), radiotherapy (RT), or targeted therapies (TT). METHODS Relevant studies were retrieved from a literature search. A total of 43 articles reporting on 65 mouse experiments fulfilled the inclusion criteria, and 1755 individual mouse survival times were collated from the study authors or the publications. The restricted mean survival time ratio (RMSTR) between the KD and control groups served as the effect size. Bayesian evidence synthesis models were used to estimate pooled effect sizes and to assess the impact of putative confounders and synergism between KD and other therapies. RESULTS Overall, there was a significant survival-prolonging effect of KD monotherapy (RMSTR = 1.161 ± 0.040), which was confirmed in meta-regression accounting for syngeneic versus xenogeneic models, early versus late KD start and subcutaneous versus other organ growth. Combining the KD with RT or TT, but not CT, was associated with a further 30% (RT) or 21% (TT) prolongation of survival. An analysis accounting for 15 individual tumor entities showed that KDs exerted significant survival-prolonging effects in pancreatic cancer (all treatment combinations), gliomas (KD + RT and KD + TT), head and neck cancer (KD + RT), and stomach cancer (KD+RT and KD + TT). CONCLUSIONS This analytical study confirmed the overall anti-tumor effects of KDs in a large number of mouse experiments and provides evidence for synergistic effects with RT and TT.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, Germany.
| |
Collapse
|
9
|
Klement RJ, Sweeney RA. Metabolic factors associated with the prognosis of oligometastatic patients treated with stereotactic body radiotherapy. Cancer Metastasis Rev 2023; 42:927-940. [PMID: 37261610 DOI: 10.1007/s10555-023-10110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Over the past two decades, it has been established that cancer patients with oligometastases, i.e., only a few detectable metastases confined to one or a few organs, may benefit from an aggressive local treatment approach such as the application of high-precision stereotactic body radiotherapy (SBRT). Specifically, some studies have indicated that achieving long-term local tumor control of oligometastases is associated with prolonged overall survival. This motivates investigations into which factors may modify the dose-response relationship of SBRT by making metastases more or less radioresistant. One such factor relates to the uptake of the positron emission tomography tracer 2-deoxy-2-[18F]fluoro-D-glucose (FDG) which reflects the extent of tumor cell glycolysis or the Warburg effect, respectively. Here we review the biological mechanisms how the Warburg effect drives tumor cell radioresistance and metastasis and draw connections to clinical studies reporting associations between high FDG uptake and worse clinical outcomes after SBRT for oligometastases. We further review the evidence for distinct metabolic phenotypes of metastases preferentially seeding to specific organs and their possible translation into distinct radioresistance. Finally, evidence that obesity and hyperglycemia also affect outcomes after SBRT will be presented. While delivered dose is the main determinant of a high local tumor control probability, there might be clinical scenarios when metabolic targeting could make the difference between achieving local control or not, for example when doses have to be compromised in order to spare neighboring high-risk organs, or when tumors are expected to be highly therapy-resistant due to heavy pretreatment such as chemotherapy and/or radiotherapy.
Collapse
Affiliation(s)
- Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany.
| | - Reinhart A Sweeney
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| |
Collapse
|
10
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
11
|
Seyfried TN, Mukherjee P, Lee DC, Ta L, Nations L. Case report: Resolution of malignant canine mast cell tumor using ketogenic metabolic therapy alone. Front Nutr 2023; 10:1157517. [PMID: 37057065 PMCID: PMC10086349 DOI: 10.3389/fnut.2023.1157517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundMast cell tumors (MCT) are common neoplasms in dogs and are similar to most other malignant cancers in requiring glucose for growth, regardless of histological grade. Ketogenic metabolic therapy (KMT) is emerging as a non-toxic nutritional intervention for cancer management in animals and humans alike. We report the case of a 7 years-old Pit Bull terrier that presented in 2011 with a cutaneous mast cell tumor under the right nostril.MethodsThe patient’s parent refused standard of care (SOC) and steroid medication after initial tumor diagnosis due to the unacceptable adverse effects of these treatments. Following tumor diagnosis, the patient’s diet was switched from Ol’Roy dog food to raw vegetables with cooked fish. The tumor continued to grow on this diet until July, 2013 when the diet was switched to a carbohydrate free, raw calorie restricted ketogenic diet consisting mostly of chicken and oils. A dog food calculator was used to reduce calories to 60% (40% calorie restriction) of that consumed on the original diet. A total of 444 kilocalories were given twice/day at 12 h intervals with one medium-sized raw radish given as a treat between each meal.ResultsThe tumor grew to about 3–4 cm and invaded surrounding tissues while the patient was on the raw vegetable, cooked fish diet. The tumor gradually disappeared over a period of several months when the patient was switched to the carbohydrate free calorie restricted ketogenic diet. The patient lost 2.5 kg during the course of the calorie restriction and maintained an attentive and active behavior. The patient passed away without pain on June 4, 2019 (age 15 years) from failure to thrive due to an enlarged heart with no evidence of mast cell tumor recurrence.ConclusionThis is the first report of a malignant cutaneous mast cell tumor in a dog treated with KMT alone. The resolution of the tumor in this canine patient could have been due to the diet-induced energy stress and the restriction of glucose-driven aerobic fermentation that is essential for the growth of most malignant tumors. Further studies are needed to determine if this non-toxic dietary therapeutic strategy could be effective in managing other canine patients with malignant mast cell tumors.
Collapse
Affiliation(s)
- Thomas N. Seyfried
- Department of Biology, Boston College, Chestnut Hill, MA, United States
- *Correspondence: Thomas N. Seyfried,
| | - Purna Mukherjee
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Derek C. Lee
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Linh Ta
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Loren Nations
- Veterinary Healthcare Associates, Winter Haven, FL, United States
| |
Collapse
|
12
|
Anderson G. Amyotrophic Lateral Sclerosis Pathoetiology and Pathophysiology: Roles of Astrocytes, Gut Microbiome, and Muscle Interactions via the Mitochondrial Melatonergic Pathway, with Disruption by Glyphosate-Based Herbicides. Int J Mol Sci 2022; 24:ijms24010587. [PMID: 36614029 PMCID: PMC9820185 DOI: 10.3390/ijms24010587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The pathoetiology and pathophysiology of motor neuron loss in amyotrophic lateral sclerosis (ALS) are still to be determined, with only a small percentage of ALS patients having a known genetic risk factor. The article looks to integrate wider bodies of data on the biological underpinnings of ALS, highlighting the integrative role of alterations in the mitochondrial melatonergic pathways and systemic factors regulating this pathway across a number of crucial hubs in ALS pathophysiology, namely glia, gut, and the muscle/neuromuscular junction. It is proposed that suppression of the mitochondrial melatonergic pathway underpins changes in muscle brain-derived neurotrophic factor, and its melatonergic pathway mimic, N-acetylserotonin, leading to a lack of metabolic trophic support at the neuromuscular junction. The attenuation of the melatonergic pathway in astrocytes prevents activation of toll-like receptor agonists-induced pro-inflammatory transcription factors, NF-kB, and yin yang 1, from having a built-in limitation on inflammatory induction that arises from their synchronized induction of melatonin release. Such maintained astrocyte activation, coupled with heightened microglia reactivity, is an important driver of motor neuron susceptibility in ALS. Two important systemic factors, gut dysbiosis/permeability and pineal melatonin mediate many of their beneficial effects via their capacity to upregulate the mitochondrial melatonergic pathway in central and systemic cells. The mitochondrial melatonergic pathway may be seen as a core aspect of cellular function, with its suppression increasing reactive oxygen species (ROS), leading to ROS-induced microRNAs, thereby altering the patterning of genes induced. It is proposed that the increased occupational risk of ALS in farmers, gardeners, and sportsmen and women is intimately linked to exposure, whilst being physically active, to the widely used glyphosate-based herbicides. This has numerous research and treatment implications.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK
| |
Collapse
|
13
|
Hwang CY, Choe W, Yoon KS, Ha J, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer. Nutrients 2022; 14:nu14224932. [PMID: 36432618 PMCID: PMC9694619 DOI: 10.3390/nu14224932] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The ketone bodies (KBs) β-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, β-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.
Collapse
Affiliation(s)
- Chi Yeon Hwang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| |
Collapse
|
14
|
Bory Prevez H, Soutelo Jimenez AA, Roca Oria EJ, Heredia Kindelán JA, Morales González M, Villar Goris NA, Hernández Mesa N, Sierra González VG, Infantes Frometa Y, Montijano JI, Cabrales LEB. Simulations of surface charge density changes during the untreated solid tumour growth. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220552. [PMID: 36465673 PMCID: PMC9709566 DOI: 10.1098/rsos.220552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Understanding untreated tumour growth kinetics and its intrinsic behaviour is interesting and intriguing. The aim of this study is to propose an approximate analytical expression that allows us to simulate changes in surface charge density at the cancer-surrounding healthy tissue interface during the untreated solid tumour growth. For this, the Gompertz and Poisson equations are used. Simulations reveal that the unperturbed solid tumour growth is closely related to changes in the surface charge density over time between the tumour and the surrounding healthy tissue. Furthermore, the unperturbed solid tumour growth is governed by temporal changes in this surface charge density. It is concluded that results corroborate the correspondence between the electrical and physiological parameters in the untreated cancer, which may have an essential role in its growth, progression, metastasis and protection against immune system attack and anti-cancer therapies. In addition, the knowledge of surface charge density changes at the cancer-surrounding healthy tissue interface may be relevant when redesigning the molecules in chemotherapy and immunotherapy taking into account their polarities. This can also be true in the design of completely novel therapies.
Collapse
Affiliation(s)
- Henry Bory Prevez
- Departamento de Control Automático, Facultad de Ingeniería Eléctrica, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | - Eduardo José Roca Oria
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | - Maraelys Morales González
- Departamento de Farmacia, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Narciso Antonio Villar Goris
- Departamento de Ciencia e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
- Universidad Autónoma de Santo Domingo, Santo Domingo, República Dominicana
| | | | | | | | - Juan Ignacio Montijano
- Departamento de Matemática Aplicada, Instituto Universitario de Matemática y Aplicaciones, Universidad de Zaragoza, Zaragoza, España
| | - Luis Enrique Bergues Cabrales
- Departamento de Ciencia e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
- Departamento de Matemática Aplicada, Instituto Universitario de Matemática y Aplicaciones, Universidad de Zaragoza, Zaragoza, España
| |
Collapse
|
15
|
Dialysis as a Novel Adjuvant Treatment for Malignant Cancers. Cancers (Basel) 2022; 14:cancers14205054. [PMID: 36291840 PMCID: PMC9600214 DOI: 10.3390/cancers14205054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary There is a clear need for new cancer therapies as many cancers have a very short long-term survival rate. For most advanced cancers, therapy resistance limits the benefit of any single-agent chemotherapy, radiotherapy, or immunotherapy. Cancer cells show a greater dependence on glucose and glutamine as fuel than healthy cells do. In this article, we propose using 4- to 8-h dialysis treatments to change the blood composition, i.e., lowering glucose and glutamine levels, and elevating ketone levels—thereby disrupting major metabolic pathways important for cancer cell survival. The dialysis’ impact on cancer cells include not only metabolic effects, but also redox balance, immunological, and epigenetic effects. These pleiotropic effects could potentially enhance the effectiveness of traditional cancer treatments, such as radiotherapies, chemotherapies, and immunotherapies—resulting in improved outcomes and longer survival rates for cancer patients. Abstract Cancer metabolism is characterized by an increased utilization of fermentable fuels, such as glucose and glutamine, which support cancer cell survival by increasing resistance to both oxidative stress and the inherent immune system in humans. Dialysis has the power to shift the patient from a state dependent on glucose and glutamine to a ketogenic condition (KC) combined with low glutamine levels—thereby forcing ATP production through the Krebs cycle. By the force of dialysis, the cancer cells will be deprived of their preferred fermentable fuels, disrupting major metabolic pathways important for the ability of the cancer cells to survive. Dialysis has the potential to reduce glucose levels below physiological levels, concurrently increase blood ketone body levels and reduce glutamine levels, which may further reinforce the impact of the KC. Importantly, ketones also induce epigenetic changes imposed by histone deacetylates (HDAC) activity (Class I and Class IIa) known to play an important role in cancer metabolism. Thus, dialysis could be an impactful and safe adjuvant treatment, sensitizing cancer cells to traditional cancer treatments (TCTs), potentially making these significantly more efficient.
Collapse
|
16
|
NMR-Based Metabolomic Analysis of Plasma in Patients with Adult Congenital Heart Disease and Associated Pulmonary Arterial Hypertension: A Pilot Study. Metabolites 2022; 12:metabo12090845. [PMID: 36144249 PMCID: PMC9504385 DOI: 10.3390/metabo12090845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Patients with unrepaired congenital heart disease (CHD) are prone to pulmonary arterial hypertension (PAH). The ovine pulmonary arterial smooth muscle cells exposed to increased pulmonary blood flow (PBF) exhibited hyperproliferation and metabolic alterations, but the metabolic disorders of patients with CHD and associated PAH (PAH-CHD) have not yet been fully understood. Adult CHD patients were prospectively included and divided into the PAH-CHD group (n = 24) and CHD group (n = 38), while healthy adults were included as healthy control (HC) group (n = 29). Plasma from each subject was prepared for nuclear magnetic resonance (NMR) detection. 1H-NMR spectra were acquired using 850 MHz NMR spectrometer. A total of 28 metabolites were identified from the NMR spectra and their relative concentrations were calculated and analyzed by multivariate and univariate statistical analyses and metabolic pathway analysis. Receiver operating characteristic (ROC) curve analysis and correlation analysis were performed to identify potential biomarkers and assess their roles in clinical assessment. Multivariate statistical analysis showed that the metabolic profile of PAH-CHD was altered relative to CHD or HC, while that of CHD was altered relative to HC. The identified characteristic metabolites were alanine, glucose, glycine, threonine and lactate, and the areas under the ROC curves (AUCs) were 0.769, 0.808, 0.711, 0.842 and 0.817, respectively. Multivariate ROC curve analysis showed AUCs ranging from 0.895 to 0.955 for the combination of these characteristic metabolites. The correlation analysis indicated that lactate and threonine were significantly correlated with mean pulmonary arterial pressure, pulmonary vascular resistance and N-terminal pro-B-type natriuretic peptide. The increased PBF could trigger global metabolic alterations in patients with CHD, which were more severe in patients with PAH-CHD. The characteristic metabolites have the potential to be biomarkers of PAH-CHD, which could be used for its noninvasive diagnosis, severity and prognosis assessment, thereby improving the management of PAH-CHD.
Collapse
|
17
|
Seyfried TN, Arismendi-Morillo G, Zuccoli G, Lee DC, Duraj T, Elsakka AM, Maroon JC, Mukherjee P, Ta L, Shelton L, D'Agostino D, Kiebish M, Chinopoulos C. Metabolic management of microenvironment acidity in glioblastoma. Front Oncol 2022; 12:968351. [PMID: 36059707 PMCID: PMC9428719 DOI: 10.3389/fonc.2022.968351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM), similar to most cancers, is dependent on fermentation metabolism for the synthesis of biomass and energy (ATP) regardless of the cellular or genetic heterogeneity seen within the tumor. The transition from respiration to fermentation arises from the documented defects in the number, the structure, and the function of mitochondria and mitochondrial-associated membranes in GBM tissue. Glucose and glutamine are the major fermentable fuels that drive GBM growth. The major waste products of GBM cell fermentation (lactic acid, glutamic acid, and succinic acid) will acidify the microenvironment and are largely responsible for drug resistance, enhanced invasion, immunosuppression, and metastasis. Besides surgical debulking, therapies used for GBM management (radiation, chemotherapy, and steroids) enhance microenvironment acidification and, although often providing a time-limited disease control, will thus favor tumor recurrence and complications. The simultaneous restriction of glucose and glutamine, while elevating non-fermentable, anti-inflammatory ketone bodies, can help restore the pH balance of the microenvironment while, at the same time, providing a non-toxic therapeutic strategy for killing most of the neoplastic cells.
Collapse
Affiliation(s)
- Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA, United States
- *Correspondence: Thomas N. Seyfried,
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Giulio Zuccoli
- The Program for the Study of Neurodevelopment in Rare Disorders (NDRD), University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek C. Lee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Tomas Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, Madrid, Spain
| | - Ahmed M. Elsakka
- Neuro Metabolism, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Joseph C. Maroon
- Department of Neurosurgery, University of Pittsburgh, Medical Center, Pittsburgh, PA, United States
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Linh Ta
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | | | - Dominic D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | | | | |
Collapse
|
18
|
Nath S. Supercomplex supercomplexes: Raison d’etre and functional significance of supramolecular organization in oxidative phosphorylation. Biomol Concepts 2022; 13:272-288. [DOI: 10.1515/bmc-2022-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Following structural determination by recent advances in electron cryomicroscopy, it is now well established that the respiratory Complexes I–IV in oxidative phosphorylation (OXPHOS) are organized into supercomplexes in the respirasome. Nonetheless, the reason for the existence of the OXPHOS supercomplexes and their functional role remains an enigma. Several hypotheses have been proposed for the existence of these supercomplex supercomplexes. A commonly-held view asserts that they enhance catalysis by substrate channeling. However, this – and other views – has been challenged based on structural and biophysical information. Hence, new ideas, concepts, and frameworks are needed. Here, a new model of energy transfer in OXPHOS is developed on the basis of biochemical data on the pure competitive inhibition of anionic substrates like succinate by the classical anionic uncouplers of OXPHOS (2,4-dinitrophenol, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, and dicoumarol), and pharmacological data on the unique site-selective, energy-linked inhibition of energy conservation pathways in mitochondria induced by the guanidine derivatives. It is further found that uncouplers themselves are site-specific and exhibit differential selectivity and efficacy in reversing the inhibition caused by the Site 1/Complex I or Site 2/Complexes II–III-selective guanidine derivatives. These results lead to new vistas and sufficient complexity in the network of energy conservation pathways in the mitochondrial respiratory chain that necessitate discrete points of interaction with two classes of guanidine derivatives and uncoupling agents and thereby separate and distinct energy transfer pathways between Site 1 and Site 2 and the intermediate that energizes adenosine triphosphate (ATP) synthesis by Complex V. Interpretation based on Mitchell’s single-ion chemiosmotic theory that postulates only a single energy pool is inadequate to rationalize the data and account for the required complexity. The above results and available information are shown to be explained by Nath’s two-ion theory of energy coupling and ATP synthesis, involving coupled movement of succinate anions and protons, along with the requirement postulated by the theory for maintenance of homeostasis and ion translocation across the energy-transducing membrane of both succinate monoanions and succinate dianions by Complexes I–V in the OXPHOS supercomplexes. The new model of energy transfer in mitochondria is mapped onto the solved structures of the supercomplexes and integrated into a consistent model with the three-dimensional electron microscope computer tomography visualization of the internal structure of the cristae membranes in mammalian mitochondria. The model also offers valuable insights into diseased states induced in type 2 diabetes and especially in Alzheimer’s and other neurodegenerative diseases that involve mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| |
Collapse
|
19
|
Pantziarka P, Blagden S. Inhibiting the Priming for Cancer in Li-Fraumeni Syndrome. Cancers (Basel) 2022; 14:cancers14071621. [PMID: 35406393 PMCID: PMC8997074 DOI: 10.3390/cancers14071621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Li-Fraumeni Syndrome (LFS) is a rare cancer pre-disposition syndrome associated with a germline mutation in the TP53 tumour suppressor gene. People with LFS have a 90% chance of suffering one or more cancers in their lifetime. No treatments exist to reduce this cancer risk. This paper reviews the evidence for how cancers start in people with LFS and proposes that a series of commonly used non-cancer drugs, including metformin and aspirin, can help reduce that lifetime risk of cancer. Abstract The concept of the pre-cancerous niche applies the ‘seed and soil’ theory of metastasis to the initial process of carcinogenesis. TP53 is at the nexus of this process and, in the context of Li-Fraumeni Syndrome (LFS), is a key determinant of the conditions in which cancers are formed and progress. Important factors in the creation of the pre-cancerous niche include disrupted tissue homeostasis, cellular metabolism and chronic inflammation. While druggability of TP53 remains a challenge, there is evidence that drug re-purposing may be able to address aspects of pre-cancerous niche formation and thereby reduce the risk of cancer in individuals with LFS.
Collapse
Affiliation(s)
- Pan Pantziarka
- The George Pantziarka TP53 Trust, London KT1 2JP, UK
- The Anti-Cancer Fund, Brusselsesteenweg 11, 1860 Meise, Belgium
- Correspondence:
| | - Sarah Blagden
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
20
|
Metabolomics and the Multi-Omics View of Cancer. Metabolites 2022; 12:metabo12020154. [PMID: 35208228 PMCID: PMC8880085 DOI: 10.3390/metabo12020154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is widely regarded to be a genetic disease. Indeed, over the past five decades, the genomic perspective on cancer has come to almost completely dominate the field. However, this genome-only view is incomplete and tends to portray cancer as a disease that is highly heritable, driven by hundreds of complex genetic interactions and, consequently, difficult to prevent or treat. New evidence suggests that cancer is not as heritable or purely genetic as once thought and that it really is a multi-omics disease. As highlighted in this review, the genome, the exposome, and the metabolome all play roles in cancer’s development and manifestation. The data presented here show that >90% of cancers are initiated by environmental exposures (the exposome) which lead to cancer-inducing genetic changes. The resulting genetic changes are, then, propagated through the altered DNA of the proliferating cancer cells (the genome). Finally, the dividing cancer cells are nourished and sustained by genetically reprogrammed, cancer-specific metabolism (the metabolome). As shown in this review, all three “omes” play roles in initiating cancer. Likewise, all three “omes” interact closely, often providing feedback to each other to sustain or enhance tumor development. Thanks to metabolomics, these multi-omics feedback loops are now much more evident and their roles in explaining the hallmarks of cancer are much better understood. Importantly, this more holistic, multi-omics view portrays cancer as a disease that is much more preventable, easier to understand, and potentially, far more treatable.
Collapse
|
21
|
Sebestyén A, Dankó T, Sztankovics D, Moldvai D, Raffay R, Cervi C, Krencz I, Zsiros V, Jeney A, Petővári G. The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev 2022; 40:989-1033. [PMID: 35029792 PMCID: PMC8825419 DOI: 10.1007/s10555-021-10006-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Despite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.
Collapse
|
22
|
Vinogradskaya GR, Ivanov AV, Kushch AA. Mechanisms of Survival of Cytomegalovirus-Infected Tumor Cells. Mol Biol 2022; 56:668-683. [PMID: 36217337 PMCID: PMC9534468 DOI: 10.1134/s0026893322050132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Human cytomegalovirus (HCMV) DNA and proteins are often detected in malignant tumors, warranting studies of the role that HCMV plays in carcinogenesis and tumor progression. HCMV proteins were shown to regulate the key processes involved in tumorigenesis. While HCMV as an oncogenic factor just came into focus, its ability to promote tumor progression is generally recognized. The review discusses the viral factors and cell molecular pathways that affect the resistance of cancer cells to therapy. CMV inhibits apoptosis of tumor cells, that not only promotes tumor progression, but also reduces the sensitivity of cells to antitumor therapy. Autophagy was found to facilitate either cell survival or cell death in different tumor cells. In leukemia cells, HCMV induces a "protective" autophagy that suppresses apoptosis. Viral factors that mediate drug resistance and their interactions with key cell death pathways are necessary to further investigate in order to develop agents that can restore the tumor sensitivity to anticancer drugs.
Collapse
Affiliation(s)
- G. R. Vinogradskaya
- Konstantinov St. Petersburg Institute of Nuclear Physics, National Research Center “Kurchatov Institute”, 188300 Gatchina, Leningrad oblast Russia
| | - A. V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. A Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
23
|
Yin X, Li W, Zhang J, Zhao W, Cai H, Zhang C, Liu Z, Guo Y, Wang J. AMPK-Mediated Metabolic Switching Is High Effective for Phytochemical Levo-Tetrahydropalmatine (l-THP) to Reduce Hepatocellular Carcinoma Tumor Growth. Metabolites 2021; 11:metabo11120811. [PMID: 34940569 PMCID: PMC8703446 DOI: 10.3390/metabo11120811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Targeting cancer cell metabolism has been an attractive approach for cancer treatment. However, the role of metabolic alternation in cancer is still unknown whether it functions as a tumor promoter or suppressor. Applying the cancer gene-metabolism integrative network model, we predict adenosine monophosphate-activated protein kinase (AMPK) to function as a central hub of metabolic landscape switching in specific liver cancer subtypes. For the first time, we demonstrate that the phytochemical levo-tetrahydropalmatine (l-THP), a Corydalis yanhusuo-derived clinical drug, as an AMPK activator via autophagy-mediated metabolic switching could kill the hepatocellular carcinoma HepG2 cells. Mechanistically, l-THP promotes the autophagic response by activating the AMPK-mTOR-ULK1 and the ROS-JNK-ATG cascades and impairing the ERK/AKT signaling. All these processes ultimately synergize to induce the decreased mitochondrial oxidative phosphorylation (OXPHOS) and mitochondrial damage. Notably, silencing AMPK significantly inhibits the autophagic flux and recovers the decreased OXPHOS metabolism, which results in HepG2 resistance to l-THP treatment. More importantly, l-THP potently reduces the growth of xenograft HepG2 tumor in nude mice without affecting other organs. From this perspective, our findings support the conclusion that metabolic change is an alternative approach to influence the development of HCC.
Collapse
Affiliation(s)
- Xunzhe Yin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (H.C.); (C.Z.)
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (W.L.); (J.Z.); (W.Z.)
| | - Wenbo Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (W.L.); (J.Z.); (W.Z.)
| | - Jiaxin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (W.L.); (J.Z.); (W.Z.)
| | - Wenjing Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (W.L.); (J.Z.); (W.Z.)
| | - Huaxing Cai
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (H.C.); (C.Z.)
| | - Chi Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (H.C.); (C.Z.)
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (W.L.); (J.Z.); (W.Z.)
- Correspondence: (Z.L.); (Y.G.)
| | - Yan Guo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (H.C.); (C.Z.)
- Correspondence: (Z.L.); (Y.G.)
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794-3400, USA;
| |
Collapse
|