1
|
Banga I, France K, Paul A, Prasad S. E.Co.Tech Breathalyzer: A Pilot Study of a Non-invasive COVID-19 Diagnostic Tool for Light and Non-smokers. ACS MEASUREMENT SCIENCE AU 2024; 4:496-503. [PMID: 39430966 PMCID: PMC11487758 DOI: 10.1021/acsmeasuresciau.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 10/22/2024]
Abstract
Analysis of exhaled breath offers a noninvasive approach to understanding the metabolic state of the body. This study focuses on the efficacy of an innovative Electrochemical Hand-held Breathalyzer COVID-19 Sensing Technology (E.Co.Tech) for predicting COVID-19 infection, specifically in populations of never or former light smokers. The electrochemical nose technology used in this device aims to discriminate changes in exhaled nitric oxide levels, which are associated with COVID-19-linked respiratory inflammation. The methodology combines the device with a machine learning-based algorithm trained on a diverse data set of breath profiles from both infected and noninfected individuals. A cohort of 46 participants, consisting of never or former light smokers, was recruited. Each participant was tested using the E.Co.Tech prototype device and an iHealth COVID-19 antigen rapid test. The performance of the device was assessed by calculating sensitivity, specificity, positive predictive value, and negative predictive value (NPV). The results demonstrated high specificity (91.11%) and NPV (97.62%) for the device in this demographic group. This case study underscores the potential of E.Co.Tech as a valuable tool for point-of-care COVID-19 diagnosis, particularly in populations with unique smoking histories. The technology's high sensitivity and specificity, along with its rapid results, make it a promising candidate for deployment in resource-limited settings and situations where timely detection is crucial for effective public health management. Further large-scale clinical trials and real-world validations are necessary to establish the device's utility across diverse population groups.
Collapse
Affiliation(s)
- Ivneet Banga
- Department
of Biomedical Engineering, University of
Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080, United States
| | - Kordel France
- Department
of Computer Science, University of Texas
at Dallas, 800 W Campbell
Road, Richardson, Texas 75080, United States
| | - Anirban Paul
- Department
of Biomedical Engineering, University of
Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080, United States
| | - Shalini Prasad
- Department
of Biomedical Engineering, University of
Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
2
|
Parnas M, McLane-Svoboda AK, Cox E, McLane-Svoboda SB, Sanchez SW, Farnum A, Tundo A, Lefevre N, Miller S, Neeb E, Contag CH, Saha D. Precision detection of select human lung cancer biomarkers and cell lines using honeybee olfactory neural circuitry as a novel gas sensor. Biosens Bioelectron 2024; 261:116466. [PMID: 38850736 DOI: 10.1016/j.bios.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Human breath contains biomarkers (odorants) that can be targeted for early disease detection. It is well known that honeybees have a keen sense of smell and can detect a wide variety of odors at low concentrations. Here, we employ honeybee olfactory neuronal circuitry to classify human lung cancer volatile biomarkers at different concentrations and their mixtures at concentration ranges relevant to biomarkers in human breath from parts-per-billion to parts-per-trillion. We also validated this brain-based sensing technology by detecting human non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines using the 'smell' of the cell cultures. Different lung cancer biomarkers evoked distinct spiking response dynamics in the honeybee antennal lobe neurons indicating that those neurons encoded biomarker-specific information. By investigating lung cancer biomarker-evoked population neuronal responses from the honeybee antennal lobe, we classified individual human lung cancer biomarkers successfully (88% success rate). When we mixed six lung cancer biomarkers at different concentrations to create 'synthetic lung cancer' vs. 'synthetic healthy' human breath, honeybee population neuronal responses were able to classify those complex breath mixtures reliably with exceedingly high accuracy (93-100% success rate with a leave-one-trial-out classification method). Finally, we employed this sensor to detect human NSCLC and SCLC cell lines and we demonstrated that honeybee brain olfactory neurons could distinguish between lung cancer vs. healthy cell lines and could differentiate between different NSCLC and SCLC cell lines successfully (82% classification success rate). These results indicate that the honeybee olfactory system can be used as a sensitive biological gas sensor to detect human lung cancer.
Collapse
Affiliation(s)
- Michael Parnas
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Autumn K McLane-Svoboda
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Elyssa Cox
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Summer B McLane-Svoboda
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Simon W Sanchez
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Alexander Farnum
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anthony Tundo
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Noël Lefevre
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sydney Miller
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Emily Neeb
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher H Contag
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Debajit Saha
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Prokopiuk A, Wojtas J. Accelerating the Diagnosis of Pandemic Infection Based on Rapid Sampling Algorithm for Fast-Response Breath Gas Analyzers. SENSORS (BASEL, SWITZERLAND) 2024; 24:6164. [PMID: 39409204 PMCID: PMC11478416 DOI: 10.3390/s24196164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
This paper presents a novel technique for extracting the alveolar part of human breath. Gas exchange occurs between blood and inhaled air in the alveoli, which is helpful in medical diagnostics based on breath analysis. Consequently, the alveolar portion of the exhaled air contains specific concentrations of endogenous EVOC (exogenous volatile organic compound), which, among other factors, depend on the person's health condition. As this part of the breath enables the screening for diseases, accurate sample collection for testing is crucial. Inaccurate sampling can significantly alter the composition of the specimen, alter the concentration of EVOC (biomarkers) and adversely affect the diagnosis. Furthermore, the volume of alveolar air is minimal (usually <350 mL), especially in the case of people affected by respiratory system problems. For these reasons, precise sampling is a key factor in the effectiveness of medical diagnostic systems. A new technique ensuring high accuracy and repeatability is presented in the article. It is based on analyzing the changes in carbon dioxide concentration in human breath using a fast and compensated non-dispersive infrared (NDIR) sensor and the simple moving adjacent average (SMAA) algorithm. Research has shown that this method accurately identifies exhalation phases with an uncertainty as low as 20 ms. This provides around 350 ms of breath duration for carrying out additional stages of the diagnostic process using various types of analyzers.
Collapse
Affiliation(s)
| | - Jacek Wojtas
- Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
| |
Collapse
|
4
|
Arulvasan W, Chou H, Greenwood J, Ball ML, Birch O, Coplowe S, Gordon P, Ratiu A, Lam E, Hatch A, Szkatulska M, Levett S, Mead E, Charlton-Peel C, Nicholson-Scott L, Swann S, van Schooten FJ, Boyle B, Allsworth M. High-quality identification of volatile organic compounds (VOCs) originating from breath. Metabolomics 2024; 20:102. [PMID: 39242444 PMCID: PMC11379754 DOI: 10.1007/s11306-024-02163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/10/2024] [Indexed: 09/09/2024]
Abstract
INTRODUCTION Volatile organic compounds (VOCs) can arise from underlying metabolism and are detectable in exhaled breath, therefore offer a promising route to non-invasive diagnostics. Robust, precise, and repeatable breath measurement platforms able to identify VOCs in breath distinguishable from background contaminants are needed for the confident discovery of breath-based biomarkers. OBJECTIVES To build a reliable breath collection and analysis method that can produce a comprehensive list of known VOCs in the breath of a heterogeneous human population. METHODS The analysis cohort consisted of 90 pairs of breath and background samples collected from a heterogenous population. Owlstone Medical's Breath Biopsy® OMNI® platform, consisting of sample collection, TD-GC-MS analysis and feature extraction was utilized. VOCs were determined to be "on-breath" if they met at least one of three pre-defined metrics compared to paired background samples. On-breath VOCs were identified via comparison against purified chemical standards, using retention indexing and high-resolution accurate mass spectral matching. RESULTS 1471 VOCs were present in > 80% of samples (breath and background), and 585 were on-breath by at least one metric. Of these, 148 have been identified covering a broad range of chemical classes. CONCLUSIONS A robust breath collection and relative-quantitative analysis method has been developed, producing a list of 148 on-breath VOCs, identified using purified chemical standards in a heterogenous population. Providing confirmed VOC identities that are genuinely breath-borne will facilitate future biomarker discovery and subsequent biomarker validation in clinical studies. Additionally, this list of VOCs can be used to facilitate cross-study data comparisons for improved standardization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Frederik-Jan van Schooten
- Faculty of Health, Medicine and Life Sciences, Pharmacology and Toxicology, Maastricht University, Maastricht, Netherlands
| | | | | |
Collapse
|
5
|
Li X, Shi L, Long Y, Wang C, Qian C, Li W, Tian Y, Duan Y. Volatile organic compounds in exhaled breath: a promising approach for accurate differentiation of lung adenocarcinoma and squamous cell carcinoma. J Breath Res 2024; 18:046007. [PMID: 39019071 DOI: 10.1088/1752-7163/ad6474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Lung cancer subtyping, particularly differentiating adenocarcinoma (ADC) from squamous cell carcinoma (SCC), is paramount for clinicians to develop effective treatment strategies. In this study, we aimed: (i) to discover volatile organic compound (VOC) biomarkers for precise diagnosis of ADC and SCC, (ii) to investigated the impact of risk factors on ADC and SCC prediction, and (iii) to explore the metabolic pathways of VOC biomarkers. Exhaled breath samples from patients with ADC (n= 149) and SCC (n= 94) were analyzed by gas chromatography-mass spectrometry. Both multivariate and univariate statistical analysis method were employed to identify VOC biomarkers. Support vector machine (SVM) prediction models were developed and validated based on these VOC biomarkers. The impact of risk factors on ADC and SCC prediction was investigated. A panel of 13 VOCs was found to differ significantly between ADC and SCC. Utilizing the SVM algorithm, the VOC biomarkers achieved a specificity of 90.48%, a sensitivity of 83.50%, and an area under the curve (AUC) value of 0.958 on the training set. On the validation set, these VOC biomarkers attained a predictive power of 85.71% for sensitivity and 73.08% for specificity, along with an AUC value of 0.875. Clinical risk factors exhibit certain predictive power on ADC and SCC prediction. Integrating these risk factors into the prediction model based on VOC biomarkers can enhance its predictive accuracy. This work indicates that exhaled breath holds the potential to precisely detect ADCs and SCCs. Considering clinical risk factors is essential when differentiating between these two subtypes.
Collapse
Affiliation(s)
- Xian Li
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo 726000, People's Republic of China
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Lin Shi
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yijing Long
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-source and Eco-environment, College of Life Sciences, Sichuan University, Chengdu 610065, People's Republic of China
| | - Chunyan Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-source and Eco-environment, College of Life Sciences, Sichuan University, Chengdu 610065, People's Republic of China
| | - Cheng Qian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Wenwen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-source and Eco-environment, College of Life Sciences, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
6
|
Jia Z, Ong WQ, Zhang F, Du F, Thavasi V, Thirumalai V. A study of 9 common breath VOCs in 504 healthy subjects using PTR-TOF-MS. Metabolomics 2024; 20:79. [PMID: 39046579 DOI: 10.1007/s11306-024-02139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION This study employs Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) to analyze exhaled breath profiles of 504 healthy adults, focusing on nine common volatile organic compounds (VOCs): acetone, acetaldehyde, acetonitrile, ethanol, isoprene, methanol, propanol, phenol, and toluene. PTR-MS offers real-time VOC measurement, crucial for understanding breath biomarkers and their applications in health assessment. OBJECTIVES The study aims to investigate how demographic factors-gender, age, and smoking history-affect VOC concentrations in exhaled breath. The objective is to enhance our understanding of breath biomarkers and their potential for health monitoring and clinical diagnosis. METHODS Exhaled breath samples were collected using PTR-MS, measuring concentrations of nine VOCs. The data were analyzed to discern distribution patterns across demographic groups. RESULTS Males showed higher average VOC levels for certain compounds. Propanol and methanol concentrations significantly increased with age. Smoking history influenced VOC levels, with differences among non-smokers, current smokers, and ex-smokers. CONCLUSION This research provides valuable insights into demographic influences on exhaled VOC profiles, emphasizing the potential of breath analysis for health assessment. PTR-MS's real-time measurement capabilities are crucial for capturing dynamic VOC changes, offering advantages over conventional methods. These findings lay a foundation for advancements in non-invasive disease detection, highlighting the importance of considering demographics in breath biomarker research.
Collapse
Affiliation(s)
- Zhunan Jia
- Breathonix Pte Ltd, Singapore, Singapore
- University of Oklahoma, Norman, OK, USA
| | | | | | - Fang Du
- Breathonix Pte Ltd, Singapore, Singapore
| | | | | |
Collapse
|
7
|
Chu Y, Ge D, Zhou J, Liu Y, Zheng X, Liu W, Ke L, Lu Y, Chu Y. Controlling glycolysis to generate characteristic volatile organic compounds of lung cancer cells. Sci Rep 2024; 14:16561. [PMID: 39020066 PMCID: PMC11255210 DOI: 10.1038/s41598-024-67379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Characteristic volatile organic compounds (VOCs) are anticipated to be used for the identification of lung cancer cells. However, to date, consistent biomarkers of VOCs in lung cancer cells have not been obtained through direct comparison between cancer and healthy groups. In this study, we regulated the glycolysis, a common metabolic process in cancer cells, and employed solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS) combined with untargeted analysis to identify the characteristic VOCs shared by cancer cells. The VOCs released by three types of lung cancer cells (A549, PC-9, NCI-H460) and one normal lung epithelial cell (BEAS-2B) were detected using SPME-GC-MS, both in their resting state and after treatment with glycolysis inhibitors (2-Deoxy-D-glucose, 2-DG/3-Bromopyruvic acid, 3-BrPA). Untargeted analysis methods were employed to compare the VOC profiles between each type of cancer cell and normal cells before and after glycolysis regulation. Our findings revealed that compared to normal cells, the three types of lung cancer cells exhibited three common differential VOCs in their resting state: ethyl propionate, acetoin, and 3-decen-5-one. Furthermore, under glycolysis control, a single common differential VOC-acetoin was identified. Notably, acetoin levels increased by 2.60-3.29-fold in all three lung cancer cell lines upon the application of glycolysis inhibitors while remaining relatively stable in normal cells. To further elucidate the formation mechanism of acetoin, we investigated its production by blocking glutaminolysis. This interdisciplinary approach combining metabolic biochemistry with MS analysis through interventional synthetic VOCs holds great potential for revolutionizing the identification of lung cancer cells and paving the way for novel cytological examination techniques.
Collapse
Affiliation(s)
- Yajing Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dianlong Ge
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
| | - Jijuan Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yue Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiangxue Zheng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Wenting Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Li Ke
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yan Lu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
| |
Collapse
|
8
|
Chou H, Godbeer L, Allsworth M, Boyle B, Ball ML. Progress and challenges of developing volatile metabolites from exhaled breath as a biomarker platform. Metabolomics 2024; 20:72. [PMID: 38977623 PMCID: PMC11230972 DOI: 10.1007/s11306-024-02142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The multitude of metabolites generated by physiological processes in the body can serve as valuable biomarkers for many clinical purposes. They can provide a window into relevant metabolic pathways for health and disease, as well as be candidate therapeutic targets. A subset of these metabolites generated in the human body are volatile, known as volatile organic compounds (VOCs), which can be detected in exhaled breath. These can diffuse from their point of origin throughout the body into the bloodstream and exchange into the air in the lungs. For this reason, breath VOC analysis has become a focus of biomedical research hoping to translate new useful biomarkers by taking advantage of the non-invasive nature of breath sampling, as well as the rapid rate of collection over short periods of time that can occur. Despite the promise of breath analysis as an additional platform for metabolomic analysis, no VOC breath biomarkers have successfully been implemented into a clinical setting as of the time of this review. AIM OF REVIEW This review aims to summarize the progress made to address the major methodological challenges, including standardization, that have historically limited the translation of breath VOC biomarkers into the clinic. We highlight what steps can be taken to improve these issues within new and ongoing breath research to promote the successful development of the VOCs in breath as a robust source of candidate biomarkers. We also highlight key recent papers across select fields, critically reviewing the progress made in the past few years to advance breath research. KEY SCIENTIFIC CONCEPTS OF REVIEW VOCs are a set of metabolites that can be sampled in exhaled breath to act as advantageous biomarkers in a variety of clinical contexts.
Collapse
|
9
|
Ruszkiewicz DM, Kiland KJ, Mok Y, Bartolomeu C, Borden SA, Thomas P, Lam S, Myers R. Benchmarking breath analysis using peppermint approach with gas chromatography ion mobility spectrometer coupled to micro thermal desorber. J Breath Res 2024; 18:046001. [PMID: 38876091 DOI: 10.1088/1752-7163/ad5863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
The Peppermint Initiative, established within the International Association of Breath Research, introduced the peppermint protocol, a breath analysis benchmarking effort designed to address the lack of inter-comparability of outcomes across different breath sampling techniques and analytical platforms. Benchmarking with gas chromatography-ion mobility spectrometry (GC-IMS) using peppermint has been previously reported however, coupling micro-thermal desorption (µTD) to GC-IMS has not yet, been benchmarked for breath analysis. To benchmarkµTD-GC-IMS for breath analysis using the peppermint protocol. Ten healthy participants (4 males and 6 females, aged 20-73 years), were enrolled to give six breath samples into Nalophan bags via a modified peppermint protocol. Breath sampling after peppermint ingestion occurred over 6 h att= 60, 120, 200, 280, and 360 min. The breath samples (120 cm3) were pre-concentrated in theµTD before being transferred into the GC-IMS for detection. Data was processed using VOCal, including background subtractions, peak volume measurements, and room air assessment. During peppermint washout, eucalyptol showed the highest change in concentration levels, followed byα-pinene andβ-pinene. The reproducibility of the technique for breath analysis was demonstrated by constructing logarithmic washout curves, with the average linearity coefficient ofR2= 0.99. The time to baseline (benchmark) value for the eucalyptol washout was 1111 min (95% CI: 529-1693 min), obtained by extrapolating the average logarithmic washout curve. The study demonstrated thatµTD-GC-IMS is reproducible and suitable technique for breath analysis, with benchmark values for eucalyptol comparable to the gold standard GC-MS.
Collapse
Affiliation(s)
- Dorota M Ruszkiewicz
- Integrative Oncology, BC Cancer Research Institute Vancouver, Vancouver, Canada
- University of British Columbia, Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Kristian J Kiland
- Integrative Oncology, BC Cancer Research Institute Vancouver, Vancouver, Canada
| | - Yoonseo Mok
- Integrative Oncology, BC Cancer Research Institute Vancouver, Vancouver, Canada
| | - Crista Bartolomeu
- Integrative Oncology, BC Cancer Research Institute Vancouver, Vancouver, Canada
| | - Scott A Borden
- Integrative Oncology, BC Cancer Research Institute Vancouver, Vancouver, Canada
| | - Paul Thomas
- Centre for Analytical Science, Chemistry, School of Science, Loughborough University, Loughborough, United Kingdom
| | - Stephen Lam
- Integrative Oncology, BC Cancer Research Institute Vancouver, Vancouver, Canada
- University of British Columbia, Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Renelle Myers
- Integrative Oncology, BC Cancer Research Institute Vancouver, Vancouver, Canada
- University of British Columbia, Faculty of Medicine, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Bayona C, Wrona M, Ranđelović T, Nerín C, Salafranca J, Ochoa I. Development of an organ-on-chip model for the detection of volatile organic compounds as potential biomarkers of tumour progression. Biofabrication 2024; 16:045002. [PMID: 38866002 DOI: 10.1088/1758-5090/ad5764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Early detection of tumours remains a significant challenge due to their invasive nature and the limitations of current monitoring techniques. Liquid biopsies have emerged as a minimally invasive diagnostic approach, wherein volatile organic compounds (VOCs) show potential as compelling candidates. However, distinguishing tumour-specific VOCs is difficult due to the presence of gases from non-tumour tissues and environmental factors. Therefore, it is essential to develop preclinical models that accurately mimic the intricate tumour microenvironment to induce cellular metabolic changes and secretion of tumour-associated VOCs. In this study, a microfluidic device was used to recreate the ischaemic environment within solid tumours for the detection of tumour-derived VOCs. The system represents a significant advance in understanding the role of VOCs as biomarkers for early tumour detection and holds the potential to improve patient prognosis; particularly for inaccessible and rapidly progressing tumours such as glioblastoma.
Collapse
Affiliation(s)
- Clara Bayona
- Tissue Microenvironment (TME) Lab, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Magdalena Wrona
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Teodora Ranđelović
- Tissue Microenvironment (TME) Lab, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Cristina Nerín
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Jesús Salafranca
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
11
|
Lv W, Shi W, Zhang Z, Ru L, Feng W, Tang H, Wang X. Identification of volatile biomarkers for lung cancer from different histological sources: A comprehensive study. Anal Biochem 2024; 690:115527. [PMID: 38565333 DOI: 10.1016/j.ab.2024.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The identification of noninvasive volatile biomarkers for lung cancer is a significant clinical challenge. Through in vitro studies, the recognition of altered metabolism in cell volatile organic compound (VOC) emitting profile, along with the occurrence of oncogenesis, provides insight into the biochemical pathways involved in the production and metabolism of lung cancer volatile biomarkers. In this research, for the first time, a comprehensive comparative analysis of the volatile metabolites in NSCLS cells (A549), SCLC cells (H446), lung normal cells (BEAS-2B), as well as metabolites in both the oxidative stress (OS) group and control group. Specifically, the combination of eleven VOCs, including n-dodecane, acetaldehyde, isopropylbenzene, p-ethyltoluene and cis-1,3-dichloropropene, exhibited potential as volatile biomarkers for lung cancer originating from two different histological sources. Furthermore, the screening process in A549 cell lines resulted in the identification of three exclusive biomarkers, isopropylbenzene, formaldehyde and bromoform. Similarly, the exclusive biomarkers 1,2,4-trimethylbenzene, p-ethyltoluene, and cis-1,3-dichloropropene were present in the H446 cell line. Additionally, significant changes in trans-2-pentene, acetaldehyde, 1,2,4-trimethylbenzene, and bromoform were observed, indicating a strong association with OS. These findings highlight the potential of volatile biomarkers profiling as a means of noninvasive identification for lung cancer diagnosis.
Collapse
Affiliation(s)
- Wei Lv
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wenmin Shi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China.
| | - Lihua Ru
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiangqi Wang
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
12
|
Xie Z, Morris JD, Pan J, Cooke EA, Sutaria SR, Balcom D, Marimuthu S, Parrish LW, Aliesky H, Huang JJ, Rai SN, Arnold FW, Huang J, Nantz MH, Fu XA. Detection of COVID-19 by quantitative analysis of carbonyl compounds in exhaled breath. Sci Rep 2024; 14:14568. [PMID: 38914586 PMCID: PMC11196736 DOI: 10.1038/s41598-024-61735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 06/26/2024] Open
Abstract
COVID-19 has caused a worldwide pandemic, creating an urgent need for early detection methods. Breath analysis has shown great potential as a non-invasive and rapid means for COVID-19 detection. The objective of this study is to detect patients infected with SARS-CoV-2 and even the possibility to screen between different SARS-CoV-2 variants by analysis of carbonyl compounds in breath. Carbonyl compounds in exhaled breath are metabolites related to inflammation and oxidative stress induced by diseases. This study included a cohort of COVID-19 positive and negative subjects confirmed by reverse transcription polymerase chain reaction between March and December 2021. Carbonyl compounds in exhaled breath were captured using a microfabricated silicon microreactor and analyzed by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). A total of 321 subjects were enrolled in this study. Of these, 141 (85 males, 60.3%) (mean ± SD age: 52 ± 15 years) were COVID-19 (55 during the alpha wave and 86 during the delta wave) positive and 180 (90 males, 50%) (mean ± SD age: 45 ± 15 years) were negative. Panels of a total of 34 ketones and aldehydes in all breath samples were identified for detection of COVID-19 positive patients. Logistic regression models indicated high accuracy/sensitivity/specificity for alpha wave (98.4%/96.4%/100%), for delta wave (88.3%/93.0%/84.6%) and for all COVID-19 positive patients (94.7%/90.1%/98.3%). The results indicate that COVID-19 positive patients can be detected by analysis of carbonyl compounds in exhaled breath. The technology for analysis of carbonyl compounds in exhaled breath has great potential for rapid screening and detection of COVID-19 and for other infectious respiratory diseases in future pandemics.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA
| | - James D Morris
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA
| | - Jianmin Pan
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- The Cancer Data Science Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Biostatistics and Informatics Shared Resource, University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Elizabeth A Cooke
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY, USA
| | - Saurin R Sutaria
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Dawn Balcom
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Subathra Marimuthu
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Leslie W Parrish
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Holly Aliesky
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | | | - Shesh N Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- The Cancer Data Science Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Biostatistics and Informatics Shared Resource, University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Forest W Arnold
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY, USA.
| | - Michael H Nantz
- Department of Chemistry, University of Louisville, Louisville, KY, USA.
| | - Xiao-An Fu
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
13
|
Boutsikou E, Hardavella G, Fili E, Bakiri A, Gaitanakis S, Kote A, Samitas K, Gkiozos I. The Role of Biomarkers in Lung Cancer Screening. Cancers (Basel) 2024; 16:1980. [PMID: 38893101 PMCID: PMC11171002 DOI: 10.3390/cancers16111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Lung Cancer Screening (LCS) is an evolving field with variations in its implementation in various countries. There are only scarce data from National LCS programs. AIM We aim to provide an up-to-date overview of the current evidence regarding the use of biomarkers in LCS. MATERIALS AND METHODS A multidisciplinary Task Force experts' panel collaborated and conducted a systematic literature search, followed by screening, review and synthesis of available evidence. RESULTS Biomarkers in LCS could be used to improve risk stratification in high-risk participants, improve clarification regarding indeterminate lung nodules and avoid overdiagnosis in suspicious lung findings. Currently, there seem to be promising biomarkers (blood/serum/breath) that have been studied in various trials; however, there is still a lack of solid evidence in clinical validation that would pave the way for their integration into LCS programs. CONCLUSIONS Biomarkers are the next logical step in improving the LCS pathway and its efficiency by playing an adjuvant role in a minimally invasive way. National LCS programs and pilot studies should integrate biomarkers to validate their accuracy in real-life LCS participants.
Collapse
Affiliation(s)
- Efimia Boutsikou
- Department of Respiratory Medicine and Oncology, “Theageneio” Anti-Cancer Hospital of Thessaloniki, AL. Simeonidi Str., 54639 Thessaloniki, Greece;
| | - Georgia Hardavella
- 4th–9th Department of Respiratory Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece
| | - Eleni Fili
- Health Sciences Library, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| | - Aikaterini Bakiri
- 1st University Department of Respiratory Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| | - Stylianos Gaitanakis
- Department of Thoracic Surgery, 401 Hellenic Army Hospital, Panagiotis Kanellopoulos Av., 11525 Athens, Greece;
| | - Alexandra Kote
- 6th Department of Respiratory Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| | - Konstantinos Samitas
- 7th Department of Respiratory Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| | - Ioannis Gkiozos
- Oncology Unit, 3rd University Department of Internal Medicine, “Sotiria” Athens’ Chest Diseases Hospital, 152 Mesogeion Av., 11527 Athens, Greece;
| |
Collapse
|
14
|
Czippelová B, Nováková S, Šarlinová M, Baranovičová E, Urbanová A, Turianiková Z, Krohová JČ, Halašová E, Škovierová H. Impact of breath sample collection method and length of storage of breath samples in Tedlar bags on the level of selected volatiles assessed using gas chromatography-ion mobility spectrometry (GC-IMS). J Breath Res 2024; 18:036004. [PMID: 38701772 DOI: 10.1088/1752-7163/ad4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
The analysis of volatile organic compounds (VOCs) in exhaled air has attracted the interest of the scientific community because it provides the possibility of monitoring physiological and metabolic processes and non-invasive diagnostics of various diseases. However, this method remains underused in clinical practice as well as in research because of the lack of standardized procedures for the collection, storage and transport of breath samples, which would guarantee good reproducibility and comparability of results. The method of sampling, as well as the storage time of the breath samples in the polymer bags used for sample storage and transport, affect the composition and concentration of VOCs present in the breath samples. The aim of our study was to compare breath samples obtained using two methods with fully disposable equipment: a Haldane sampling tube intended for direct breath collection and breath samples exhaled into a transparent Tedlar bag. The second task was to monitor the stability of selected compounds of real breath samples stored in a Tedlar bag for 6 h. Gas chromatography coupled with ion mobility spectrometry (GC-IMS) implemented in the BreathSpec®device was used to analyse exhaled breath. Our results showed a significant difference in the signal intensity of some volatiles when taking a breath sample with a Haldane tube and a Tedlar bag. Due to its endogenous origin, acetone levels were significantly higher when the Haldane tube sampler was used while elevated levels of 2-propanol and unidentified VOC (designated as VOC 3) in the Tedlar bag samples likely originated from contamination of the Tedlar bags. The VOC stability study revealed compound-specific signal intensity changes of the selected VOCs with storage time in the Tedlar bags, with some volatiles showing increasing signal intensity during storage in Tedlar bags. This limits the use of Tedlar bags only for very limited time and carefully selected purpose. Our results highlight the importance of careful design and implementation of experiments and clinical protocols to obtain relevant and reliable results.
Collapse
Affiliation(s)
- Barbora Czippelová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Slavomíra Nováková
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Miroslava Šarlinová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Eva Baranovičová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | | | - Zuzana Turianiková
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Jana Čerňanová Krohová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Erika Halašová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Henrieta Škovierová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| |
Collapse
|
15
|
Mashhadbani M, Faizabadi E. Investigating the enhancement of lung cancer sensing: the effect of edge halogenation in armchair stanene nanoribbons. Phys Chem Chem Phys 2024; 26:13335-13349. [PMID: 38639922 DOI: 10.1039/d3cp06343g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In this research, we explore the impact of edge passivation using halogen atoms on armchair stanene nanoribbon (ASNR) for the early detection of lung cancer biomarkers. We employ non-equilibrium green function (NEGF) and density functional theory (DFT) methods to evaluate sensing characteristics. The edges of ASNR are passivated with fluorine, chlorine, bromine, and iodine atoms. Our findings indicate a significant enhancement in sensing performance upon halogenation of ASNR. Notable changes in adsorption energy and current for edge-halogenated ASNR configurations demonstrate improved sensing behavior. Moreover, current curves exhibit greater distinctiveness of halogenated ASNR in comparison to hydrogenated ASNR. The calculations indicate a change in adsorption energy (Eads) of -7.59 eV, -7.6 eV, -8.3 eV, and -8.6 eV for the adsorption by styrene on I-ASnNR, Br-ASnNR, toluene on Cl-ASnNR, and styrene on F-ASnNR, respectively. The corresponding sensitivity improves up to 37.33%, 38.09%, 38.35%, and 45.5%, respectively. These findings highlight that the most significant change occurs with the edge fluorination of ASnNR. Our findings underscore the effectiveness of halogen atom edge passivation in ASNR for heightened sensing performance, making it a promising choice for the development of early-detection lung cancer sensors.
Collapse
Affiliation(s)
| | - Edris Faizabadi
- Iran University of Science and Technology, Islamic Republic of Iran.
| |
Collapse
|
16
|
Mitchell MI, Ben-Dov IZ, Liu C, Wang T, Hazan RB, Bauer TL, Zakrzewski J, Donnelly K, Chow K, Ma J, Loudig O. Non-invasive detection of orthotopic human lung tumors by microRNA expression profiling of mouse exhaled breath condensates and exhaled extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:138-164. [PMID: 38863869 PMCID: PMC11165456 DOI: 10.20517/evcna.2023.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Aim The lung is the second most frequent site of metastatic dissemination. Early detection is key to improving survival. Given that the lung interfaces with the external environment, the collection of exhaled breath condensate (EBC) provides the opportunity to obtain biological material including exhaled miRNAs that originate from the lung. Methods In this proof-of-principal study, we used the highly metastatic MDA-MB-231 subline 3475 breast cancer cell line (LM-3475) to establish an orthotopic lung tumor-bearing mouse model and investigate non-invasive detection of lung tumors by analysis of exhaled miRNAs. We initially conducted miRNA NGS and qPCR validation analyses on condensates collected from unrestrained animals and identified significant miRNA expression differences between the condensates of lung tumor-bearing and control mice. To focus our purification of EBC and evaluate the origin of these differentially expressed miRNAs, we developed a system to collect EBC directly from the nose and mouth of our mice. Results Using nanoparticle distribution analyses, TEM, and ONi super-resolution nanoimaging, we determined that human tumor EVs could be increasingly detected in mouse EBC during the progression of secondary lung tumors. Using our customizable EV-CATCHER assay, we purified human tumor EVs from mouse EBC and demonstrated that the bulk of differentially expressed exhaled miRNAs originate from lung tumors, which could be detected by qPCR within 1 to 2 weeks after tail vein injection of the metastatic cells. Conclusion This study is the first of its kind and demonstrates that lung tumor EVs are exhaled in mice and provide non-invasive biomarkers for detection of lung tumors.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Christina Liu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Rachel B. Hazan
- Department of Pathology, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Thomas L. Bauer
- Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune City, NJ 07753, USA
| | - Johannes Zakrzewski
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Kathryn Donnelly
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kar Chow
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| |
Collapse
|
17
|
Chen X, Wan Q. Ru-Doped MoS 2 Monolayer for Exhaled Breath Detection on Early Lung Cancer Diagnosis: A First-Principles Investigation. ACS OMEGA 2024; 9:13951-13959. [PMID: 38559958 PMCID: PMC10976383 DOI: 10.1021/acsomega.3c09191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Nanosensor-based patient exhaled breath detection is a practical and effective way to detect lung cancer early. In this paper, a Ru-doped MoS2 monolayer (Ru-MoS2) is proposed as a promising novel biosensor based on first-principles theory for the detection of three typical early stage lung cancer exhaled volatile organic compounds, namely, C3H4O, C3H6O, and C5H8. Replacement of a S atom in the MoS2 monolayer with a Ru dopant atom to form a stable Ru-MoS2 monolayer with a binding energy of -4.78 eV is further demonstrated by the thermostability and chemical stability analysis as well as improving the adsorption performance of the system for three VOCs. The adsorption configuration structures, adsorption properties, and electronic behavior of the Ru-MoS2 monolayer are investigated by electron deformation density and density of states analysis to gain a comprehensive understanding of the physicochemical properties as sensing material. The results show that the adsorption energies of the Ru-MoS2 monolayer for C3H4O, C3H6O, and C5H8 are 3.42, -1.53, and -2.80 eV, respectively, all of which are chemisorption with excellent adsorption performance. The sensitivities for the three VOCs could be up to 1.09, 140.50, and 5.90, respectively, and the band structure and work function further elucidate the sensing mechanism of the Ru-MoS2 monolayer as a resistive gas sensor. The type and concentration of these exhaled breaths may reflect changes in the patient's physiological and biochemical status and may serve as a probe for the diagnosis of lung cancer. The results in this work could provide a guidance for researchers to explore the practical applications in the early diagnosis of lung cancer by gas sensors.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Rheumatology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Qianqian Wan
- Department of Rheumatology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Kuo PH, Jhong YC, Kuo TC, Hsu YT, Kuo CH, Tseng YJ. A Clinical Breathomics Dataset. Sci Data 2024; 11:203. [PMID: 38355591 PMCID: PMC10866892 DOI: 10.1038/s41597-024-03052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
This study entailed a comprehensive GC‒MS analysis conducted on 121 patient samples to generate a clinical breathomics dataset. Breath molecules, indicative of diverse conditions such as psychological and pathological states and the microbiome, were of particular interest due to their non-invasive nature. The highlighted noninvasive approach for detecting these breath molecules significantly enhances diagnostic and monitoring capacities. This dataset cataloged volatile organic compounds (VOCs) from the breath of individuals with asthma, bronchiectasis, and chronic obstructive pulmonary disease. Uniform and consistent sample collection protocols were strictly adhered to during the accumulation of this extensive dataset, ensuring its reliability. It encapsulates extensive human clinical breath molecule data pertinent to three specific diseases. This consequential clinical breathomics dataset is a crucial resource for researchers and clinicians in identifying and exploring important compounds within the patient's breath, thereby augmenting future diagnostic and therapeutic initiatives.
Collapse
Affiliation(s)
- Ping-Hung Kuo
- National Taiwan University Hospital, No. 1, Changde St., Zhongzheng Dist., Taipei City, 100229, Taiwan
| | - Yue-Chen Jhong
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Tien-Chueh Kuo
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yu-Ting Hsu
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ching-Hua Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
- Drug Research Center, College of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Road, Taipei, 10055, Taiwan
- Department of Pharmacy, School of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Road, Taipei, 10055, Taiwan
| | - Yufeng Jane Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
19
|
Sasiene ZJ, LeBrun ES, Schaller E, Mach PM, Taylor R, Candelaria L, Glaros TG, Baca J, McBride EM. Real-time breath analysis towards a healthy human breath profile. J Breath Res 2024; 18:026003. [PMID: 38198707 DOI: 10.1088/1752-7163/ad1cf1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
The direct analysis of molecules contained within human breath has had significant implications for clinical and diagnostic applications in recent decades. However, attempts to compare one study to another or to reproduce previous work are hampered by: variability between sampling methodologies, human phenotypic variability, complex interactions between compounds within breath, and confounding signals from comorbidities. Towards this end, we have endeavored to create an averaged healthy human 'profile' against which follow-on studies might be compared. Through the use of direct secondary electrospray ionization combined with a high-resolution mass spectrometry and in-house bioinformatics pipeline, we seek to curate an average healthy human profile for breath and use this model to distinguish differences inter- and intra-day for human volunteers. Breath samples were significantly different in PERMANOVA analysis and ANOSIM analysis based on Time of Day, Participant ID, Date of Sample, Sex of Participant, and Age of Participant (p< 0.001). Optimal binning analysis identify strong associations between specific features and variables. These include 227 breath features identified as unique identifiers for 28 of the 31 participants. Four signals were identified to be strongly associated with female participants and one with male participants. A total of 37 signals were identified to be strongly associated with the time-of-day samples were taken. Threshold indicator taxa analysis indicated a shift in significant breath features across the age gradient of participants with peak disruption of breath metabolites occurring at around age 32. Forty-eight features were identified after filtering from which a healthy human breath profile for all participants was created.
Collapse
Affiliation(s)
- Zachary Joseph Sasiene
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Erick Scott LeBrun
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Eric Schaller
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Phillip Michael Mach
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Robert Taylor
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Lionel Candelaria
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Trevor Griffiths Glaros
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Justin Baca
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Ethan Matthew McBride
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| |
Collapse
|
20
|
Alfalasi W, Hussain T, Tit N. Ab initio investigation of functionalization of titanium carbide Ti 3C 2 MXenes to tune the selective detection of lung cancer biomarkers. Sci Rep 2024; 14:1403. [PMID: 38228686 PMCID: PMC10791681 DOI: 10.1038/s41598-024-51692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
Selected volatile organic compounds (VOCs), such as benzene (C6H6), cyclohexane (C6H12), isoprene (C5H8), cyclopropanone (C3H4O), propanol (C3H8O), and butyraldehyde butanal (C4H8O), in exhaled human breath can act as indicators or biomarkers of lung cancer diseases. Detection of such VOCs with low density would pave the way for an early diagnosis of the disease and thus early treatment and cure. In the present investigation, the density-functional theory (DFT) is applied to study the detection of the mentioned VOCs on Ti3C2TX MXenes, saturated with the functional groups Tx = O, F, S, and OH. For selectivity, comparative sensing of other interfering air molecules from exhaled breath, such as O2, N2, CO2, and H2O is further undertaken. Three functionalization (Tx = O, F, and S) are found promising for the selective detection of the studied VOCs, in particular Ti3C2O2 MXenes has shown distinct sensor response toward the C5H8, C6H6, C6H12, and C3H4O. The relatively strong physisorption ([Formula: see text]), triggered between VOC and MXene due to an enhancement of van der Waals interaction, is found responsible to affect the near Fermi level states, which in turn controls the conductivity and consequently the sensor response. Meanwhile, such intermediate-strength interactions remain moderate to yield small desorption recovery time (of order [Formula: see text] using visible light at room temperature. Thus, Ti3C2O2 MXenes are found promising candidate material for reusable biosensor for the early diagnosis of lung cancer diseases through the VOC detection in exhaled breath.
Collapse
Affiliation(s)
- Wadha Alfalasi
- Department of Physics, College of Science, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates
- National Water and Energy Center, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Tanveer Hussain
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - Nacir Tit
- Department of Physics, College of Science, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates.
- National Water and Energy Center, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
21
|
Sutaria SR, Morris JD, Xie Z, Cooke EA, Silvers SM, Long GA, Balcom D, Marimuthu S, Parrish LW, Aliesky H, Arnold FW, Huang J, Fu XA, Nantz MH. A feasibility study on exhaled breath analysis using UV spectroscopy to detect COVID-19. J Breath Res 2023; 18:016004. [PMID: 37875100 PMCID: PMC10620812 DOI: 10.1088/1752-7163/ad0646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/14/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
A 23-subject feasibility study is reported to assess how UV absorbance measurements on exhaled breath samples collected from silicon microreactors can be used to detect COVID-19. The silicon microreactor technology chemoselectively preconcentrates exhaled carbonyl volatile organic compounds and subsequent methanol elution provides samples for analysis. The underlying scientific rationale that viral infection will induce an increase in exhaled carbonyls appears to be supported by the results of the feasibility study. The data indicate statistically significant differences in measured UV absorbance values between healthy and symptomatic COVID-19 positive subjects in the wavelength range from 235 nm to 305 nm. Factors such as subject age were noted as potential confounding variables.
Collapse
Affiliation(s)
- Saurin R Sutaria
- Departments of Chemistry, University of Louisville, Louisville, KY 40292, United States of America
| | - James D Morris
- Chemical Engineering, University of Louisville, Louisville, KY 40292, United States of America
| | - Zhenzhen Xie
- Chemical Engineering, University of Louisville, Louisville, KY 40292, United States of America
| | - Elizabeth A Cooke
- Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Shavonne M Silvers
- Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Grace A Long
- Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Dawn Balcom
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Subathra Marimuthu
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Leslie W Parrish
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Holly Aliesky
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Forest W Arnold
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Jiapeng Huang
- Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40292, United States of America
| | - Xiao-An Fu
- Chemical Engineering, University of Louisville, Louisville, KY 40292, United States of America
| | - Michael H Nantz
- Departments of Chemistry, University of Louisville, Louisville, KY 40292, United States of America
| |
Collapse
|
22
|
Virtanen J, Roine A, Kontunen A, Karjalainen M, Numminen J, Oksala N, Rautiainen M, Kivekäs I. The Detection of Bacteria in the Maxillary Sinus Secretion of Patients With Acute Rhinosinusitis Using an Electronic Nose: A Pilot Study. Ann Otol Rhinol Laryngol 2023; 132:1330-1335. [PMID: 36691987 PMCID: PMC10498650 DOI: 10.1177/00034894231151301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Detecting bacteria as a causative pathogen of acute rhinosinusitis (ARS) is a challenging task. Electronic nose technology is a novel method for detecting volatile organic compounds (VOCs) that has also been studied in association with the detection of several diseases. The aim of this pilot study was to analyze maxillary sinus secretion with differential mobility spectrometry (DMS) and to determine whether the secretion demonstrates a different VOC profile when bacteria are present. METHODS Adult patients with ARS symptoms were examined. Maxillary sinus contents were aspirated for bacterial culture and DMS analysis. k-Nearest neighbor and linear discriminant analysis were used to classify samples as positive or negative, using bacterial cultures as a reference. RESULTS A total of 26 samples from 15 patients were obtained. After leave-one-out cross-validation, k-nearest neighbor produced accuracy of 85%, sensitivity of 67%, specificity of 94%, positive predictive value of 86%, and negative predictive value of 84%. CONCLUSIONS The results of this pilot study suggest that bacterial positive and bacterial negative sinus secretion release different VOCs and that DMS has the potential to detect them. However, as the results are based on limited data, further conclusions cannot be made. DMS is a novel method in disease diagnostics and future studies should examine whether the method can detect bacterial ARS by analyzing exhaled air.
Collapse
Affiliation(s)
- Jussi Virtanen
- Department of Otorhinolaryngology, Head and Neck Surgery, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| | - Antti Roine
- Department of Surgery, Tampere University Hospital, Hatanpää Hospital, Tampere, Finland
- Olfactomics Ltd., Tampere, Finland
| | - Anton Kontunen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
- Olfactomics Ltd., Tampere, Finland
| | - Markus Karjalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
- Olfactomics Ltd., Tampere, Finland
| | - Jura Numminen
- Department of Otorhinolaryngology, Head and Neck Surgery, Tampere University Hospital, Tampere, Finland
| | - Niku Oksala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
- Olfactomics Ltd., Tampere, Finland
- Vascular Centre, Tampere University Hospital, Tampere, Finland
| | - Markus Rautiainen
- Department of Otorhinolaryngology, Head and Neck Surgery, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| | - Ilkka Kivekäs
- Department of Otorhinolaryngology, Head and Neck Surgery, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| |
Collapse
|
23
|
Shitanda I, Oshimoto T, Loew N, Motosuke M, Watanabe H, Mikawa T, Itagaki M. Biosensor development for low-level acetaldehyde gas detection using mesoporous carbon electrode printed on a porous polyimide film. Biosens Bioelectron 2023; 238:115555. [PMID: 37542977 DOI: 10.1016/j.bios.2023.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Acetaldehyde, which is an intermediate product of alcohol metabolism, is known to induce symptoms, including alcohol flushing, vomiting, and headaches in humans. Therefore, real-time monitoring of acetaldehyde levels is crucial to mitigating these health issues. However, current methods for detecting low-concentration gases necessitate the use of complex measurement equipment. In this study, we developed a low-cost, low-detection-limit, enzyme-based electrochemical biosensor for acetaldehyde gas detection that does not require sophisticated equipment. The sensor was constructed by screen-printing electrodes onto a porous polyimide film, using grafted MgO-templated carbon (GMgOC) as working electrode material, carbon for the counter electrode, and silver/silver chloride for the reference electrode. Pyrroloquinoline-quinone-dependent aldehyde dehydrogenase was immobilized on the working electrode, and a chamber was attached to the electrode chip and filled with 1-methoxy-5-methylphenazinium methyl sulfate solution. The sensor can be used to measure acetaldehyde gas concentrations from 0.02 to 0.1 ppm, making it suitable for monitoring human skin gas. This low detection limit was achieved by delivering the analyte through the porous polyimide film on which the electrodes were printed and accumulating acetaldehyde in the mesoporous GMgOC of the working electrode. This mechanism suggests that this sensor design can be adapted to develop other low-detection limit gas sensors, such as those for screening skin gas biomarkers.
Collapse
Affiliation(s)
- Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Taisei Oshimoto
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Noya Loew
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masahiro Motosuke
- Department of Mechanical Engineering, Faculty of Engineering, Tokyo University of Science, 3-1, Shinjuku 6-chome, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Hikari Watanabe
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tsutomu Mikawa
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masayuki Itagaki
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
24
|
Lin LP, Tan MTT. Biosensors for the detection of lung cancer biomarkers: A review on biomarkers, transducing techniques and recent graphene-based implementations. Biosens Bioelectron 2023; 237:115492. [PMID: 37421797 DOI: 10.1016/j.bios.2023.115492] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Lung cancer remains the leading cause of cancer-related death. In addition to chest X-rays and computerised tomography, the detection of cancer biomarkers serves as an emerging diagnostic tool for lung cancer. This review explores biomarkers including the rat sarcoma gene, the tumour protein 53 gene, the epidermal growth factor receptor, the neuron-specific enolase, the cytokeratin-19 fragment 21-1 and carcinoembryonic antigen as potential indicators of lung cancer. Biosensors, which utilise various transduction techniques, present a promising solution for the detection of lung cancer biomarkers. Therefore, this review also explores the working principles and recent implementations of transducers in the detection of lung cancer biomarkers. The transducing techniques explored include optical techniques, electrochemical techniques and mass-based techniques for detecting biomarkers and cancer-related volatile organic compounds. Graphene has outstanding properties in terms of charge transfer, surface area, thermal conductivity and optical characteristics, on top of allowing easy incorporation of other nanomaterials. Exploiting the collective merits of both graphene and biosensor is an emerging trend, as evidenced by the growing number of studies on graphene-based biosensors for the detection of lung cancer biomarkers. This work provides a comprehensive review of these studies, including information on modification schemes, nanomaterials, amplification strategies, real sample applications, and sensor performance. The paper concludes with a discussion of the challenges and future outlook of lung cancer biosensors, including scalable graphene synthesis, multi-biomarker detection, portability, miniaturisation, financial support, and commercialisation.
Collapse
Affiliation(s)
- Lih Poh Lin
- Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology, 53300, Kuala Lumpur, Malaysia; Centre for Multimodal Signal Processing, Tunku Abdul Rahman University of Management and Technology, 53300, Kuala Lumpur, Malaysia
| | - Michelle Tien Tien Tan
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.
| |
Collapse
|
25
|
Banga I, Paul A, Poudyal DC, Muthukumar S, Prasad S. Recent Advances in Gas Detection Methodologies with a Special Focus on Environmental Sensing and Health Monitoring Applications─A Critical Review. ACS Sens 2023; 8:3307-3319. [PMID: 37540230 DOI: 10.1021/acssensors.3c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
With the expansion of the Internet-of-Things (IoT), the use of gas sensors in the field of wearable technology, smart devices, and smart homes has increased manifold. These gas sensors have two key applications─one is the detection of gases present in the environment and the other is the detection of Volatile Organic Compounds (VOCs) that are found in the breath. In this review, we focus systematically on the advancements in the field of various spectroscopic methods such as mass spectrometry-based analysis and point-of-care approach to detect VOCs and gases for environmental monitoring and disease diagnosis. Additionally, we highlight the development of smart sensors that work on the principle of electrochemical detection and provide examples of the same through an extensive literature review. At the end of this review, we highlight various challenges and future perspectives.
Collapse
Affiliation(s)
- Ivneet Banga
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Anirban Paul
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Durgasha C Poudyal
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sriram Muthukumar
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- EnLiSense LLC, 1813 Audubon Pondway, Allen, Texas 75013, United States
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- EnLiSense LLC, 1813 Audubon Pondway, Allen, Texas 75013, United States
| |
Collapse
|
26
|
Wiesel O, Sung SW, Katz A, Leibowitz R, Bar J, Kamer I, Berger I, Nir-Ziv I, Mark Danieli M. A Novel Urine Test Biosensor Platform for Early Lung Cancer Detection. BIOSENSORS 2023; 13:627. [PMID: 37366992 DOI: 10.3390/bios13060627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Early detection is essential to achieving a better outcome and prognosis. Volatile organic compounds (VOCs) reflect alterations in the pathophysiology and body metabolism processes, as shown in various types of cancers. The biosensor platform (BSP) urine test uses animals' unique, proficient, and accurate ability to scent lung cancer VOCs. The BSP is a testing platform for the binary (negative/positive) recognition of the signature VOCs of lung cancer by trained and qualified Long-Evans rats as biosensors (BSs). The results of the current double-blind study show high accuracy in lung cancer VOC recognition, with 93% sensitivity and 91% specificity. The BSP test is safe, rapid, objective and can be performed repetitively, enabling periodic cancer monitoring as well as an aid to existing diagnostic methods. The future implementation of such urine tests as routine screening and monitoring tools has the potential to significantly increase detection rate as well as curability rates with lower healthcare expenditure. This paper offers a first instructive clinical platform utilizing VOC's in urine for detection of lung cancer using the innovative BSP to deal with the pressing need for an early lung cancer detection test tool.
Collapse
Affiliation(s)
- Ory Wiesel
- Division of Thoracic and Esophageal Surgery the Cardiovascular Center, Tzafon Medical Center, Affiliated to Azrieli Faculty of Medicine, Bar-Ilan University, Poriya 1520800, Israel
| | - Sook-Whan Sung
- Department of Thoracic and Cardiovascular Surgery, Ewha Womens University Seoul Hospital, 260 Gonghang-daero, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Amit Katz
- Head of Thoracic Surgery, Rambam Health Care Campus, P.O. Box 9602, Haifa 3109601, Israel
| | - Raya Leibowitz
- Oncology institute, Shamir Medical Center, Zerifin 703001, Israel
| | - Jair Bar
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Ramat Gan 5262000, Israel
| | - Iris Kamer
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Ramat Gan 5262000, Israel
| | - Itay Berger
- Early OM, 4 Meir Ariel St., Natanya 4253063, Israel
| | | | | |
Collapse
|
27
|
Issitt T, Reilly M, Sweeney ST, Brackenbury WJ, Redeker KR. GC/MS analysis of hypoxic volatile metabolic markers in the MDA-MB-231 breast cancer cell line. Front Mol Biosci 2023; 10:1178269. [PMID: 37251079 PMCID: PMC10210155 DOI: 10.3389/fmolb.2023.1178269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Hypoxia in disease describes persistent low oxygen conditions, observed in a range of pathologies, including cancer. In the discovery of biomarkers in biological models, pathophysiological traits present a source of translatable metabolic products for the diagnosis of disease in humans. Part of the metabolome is represented by its volatile, gaseous fraction; the volatilome. Human volatile profiles, such as those found in breath, are able to diagnose disease, however accurate volatile biomarker discovery is required to target reliable biomarkers to develop new diagnostic tools. Using custom chambers to control oxygen levels and facilitate headspace sampling, the MDA-MB-231 breast cancer cell line was exposed to hypoxia (1% oxygen) for 24 h. The maintenance of hypoxic conditions in the system was successfully validated over this time period. Targeted and untargeted gas chromatography mass spectrometry approaches revealed four significantly altered volatile organic compounds when compared to control cells. Three compounds were actively consumed by cells: methyl chloride, acetone and n-Hexane. Cells under hypoxia also produced significant amounts of styrene. This work presents a novel methodology for identification of volatile metabolisms under controlled gas conditions with novel observations of volatile metabolisms by breast cancer cells.
Collapse
Affiliation(s)
- Theo Issitt
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Matthew Reilly
- Department of Biology, University of York, York, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J. Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | | |
Collapse
|
28
|
Alghamdi BM, Alharbi NM, Alade IO, Sultan B, Aburuzaizah MM, Baroud TN, Drmosh QA. Regulating the Electron Depletion Layer of Au/V 2O 5/Ag Thin Film Sensor for Breath Acetone as Potential Volatile Biomarker. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1372. [PMID: 37110957 PMCID: PMC10144657 DOI: 10.3390/nano13081372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Human exhaled breath has been utilized to identify biomarkers for diseases such as diabetes and cancer. The existence of these illnesses is indicated by a rise in the level of acetone in the breath. The development of sensing devices capable of identifying the onset of lung cancer or diabetes is critical for the successful monitoring and treatment of these diseases. The goal of this research is to prepare a novel breath acetone sensor made of Ag NPs/V2O5 thin film/Au NPs by combining DC/RF sputtering and post-annealing as synthesis methods. The produced material was characterized using X-ray diffraction (XRD), UV-Vis, Raman, and atomic force microscopy (AFM). The results revealed that the sensitivity to 50 ppm acetone of the Ag NPs/V2O5 thin film/Au NPs sensor was 96%, which is nearly twice and four times greater than the sensitivity of Ag NPs/V2O5 and pristine V2O5, respectively. This increase in sensitivity can be attributed to the engineering of the depletion layer of V2O5 through the double activation of the V2O5 thin films with uniform distribution of Au and Ag NPs that have different work function values.
Collapse
Affiliation(s)
- Bader Mohammed Alghamdi
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; (B.M.A.); (N.M.A.); (M.M.A.); (T.N.B.)
| | - Nawaf Mutab Alharbi
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; (B.M.A.); (N.M.A.); (M.M.A.); (T.N.B.)
| | | | - Badriah Sultan
- Department of Physics, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed Mansour Aburuzaizah
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; (B.M.A.); (N.M.A.); (M.M.A.); (T.N.B.)
| | - Turki N. Baroud
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; (B.M.A.); (N.M.A.); (M.M.A.); (T.N.B.)
| | - Qasem A. Drmosh
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; (B.M.A.); (N.M.A.); (M.M.A.); (T.N.B.)
- Interdisciplinary Research Centre for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
29
|
Xie Z, Morris JD, Mattingly SJ, Sutaria SR, Huang J, Nantz MH, Fu XA. Analysis of a Broad Range of Carbonyl Metabolites in Exhaled Breath by UHPLC-MS. Anal Chem 2023; 95:4344-4352. [PMID: 36815760 PMCID: PMC10521381 DOI: 10.1021/acs.analchem.2c04604] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Analysis of volatile organic compounds (VOCs) in exhaled breath (EB) has shown great potential for disease detection including lung cancer, infectious respiratory diseases, and chronic obstructive pulmonary disease. Although many breath sample collection and analytical methods have been developed for breath analysis, analysis of metabolic VOCs in exhaled breath is still a challenge for clinical application. Many carbonyl compounds in exhaled breath are related to the metabolic processes of diseases. This work reports a method of ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-MS) for the analysis of a broad range of carbonyl metabolites in exhaled breath. Carbonyl compounds in the exhaled breath were captured by a fabricated silicon microreactor with a micropillar array coated with 2-(aminooxy)ethyl-N,N,N-trimethylammonium (ATM) triflate. A total of six subgroups consisting of saturated aldehydes and ketones, hydroxy-aldehydes, and hydroxy-ketones, unsaturated 2-alkenals, and 4-hydroxy-2-alkenals were identified in the exhaled breath. The combination of a silicon microreactor for the selective capture of carbonyl compounds with UHPLC-MS analysis may provide a quantitative method for the analysis of carbonyls to identify disease markers in exhaled breath.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States
| | - James D. Morris
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States
| | | | - Saurin R. Sutaria
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40292, United States
| | - Michael H. Nantz
- Department of Chemistry, University of Louisville, Louisville, KY 40292, United States
| | - Xiao-An Fu
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, United States
| |
Collapse
|
30
|
Maiti KS. Non-Invasive Disease Specific Biomarker Detection Using Infrared Spectroscopy: A Review. Molecules 2023; 28:2320. [PMID: 36903576 PMCID: PMC10005715 DOI: 10.3390/molecules28052320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Many life-threatening diseases remain obscure in their early disease stages. Symptoms appear only at the advanced stage when the survival rate is poor. A non-invasive diagnostic tool may be able to identify disease even at the asymptotic stage and save lives. Volatile metabolites-based diagnostics hold a lot of promise to fulfil this demand. Many experimental techniques are being developed to establish a reliable non-invasive diagnostic tool; however, none of them are yet able to fulfil clinicians' demands. Infrared spectroscopy-based gaseous biofluid analysis demonstrated promising results to fulfil clinicians' expectations. The recent development of the standard operating procedure (SOP), sample measurement, and data analysis techniques for infrared spectroscopy are summarized in this review article. It has also outlined the applicability of infrared spectroscopy to identify the specific biomarkers for diseases such as diabetes, acute gastritis caused by bacterial infection, cerebral palsy, and prostate cancer.
Collapse
Affiliation(s)
- Kiran Sankar Maiti
- Max–Planck–Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany; ; Tel.: +49-289-14054
- Lehrstuhl für Experimental Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
- Laser-Forschungslabor, Klinikum der Universität München, Fraunhoferstrasse 20, 82152 Planegg, Germany
| |
Collapse
|
31
|
Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep (Hoboken) 2023; 6:e1764. [PMID: 36607830 PMCID: PMC9940009 DOI: 10.1002/cnr2.1764] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cancer is characterized by the rampant proliferation, growth, and infiltration of malignantly transformed cancer cells past their normal boundaries into adjacent tissues. It is the leading cause of death worldwide, responsible for approximately 19.3 million new diagnoses and 10 million deaths globally in 2020. In the United States alone, the estimated number of new diagnoses and deaths is 1.9 million and 609 360, respectively. Implementation of currently existing cancer diagnostic techniques such as positron emission tomography (PET), X-ray computed tomography (CT), and magnetic resonance spectroscopy (MRS), and molecular diagnostic techniques, have enabled early detection rates and are instrumental not only for the therapeutic management of cancer patients, but also for early detection of the cancer itself. The effectiveness of these cancer screening programs are heavily dependent on the rate of accurate precursor lesion identification; an increased rate of identification allows for earlier onset treatment, thus decreasing the incidence of invasive cancer in the long-term, and improving the overall prognosis. Although these diagnostic techniques are advantageous due to lack of invasiveness and easier accessibility within the clinical setting, several limitations such as optimal target definition, high signal to background ratio and associated artifacts hinder the accurate diagnosis of specific types of deep-seated tumors, besides associated high cost. In this review we discuss various imaging, molecular, and low-cost diagnostic tools and related technological advancements, to provide a better understanding of cancer diagnostics, unraveling new opportunities for effective management of cancer, particularly in low- and middle-income countries (LMICs). RECENT FINDINGS Herein we discuss various technological advancements that are being utilized to construct an assortment of new diagnostic techniques that incorporate hardware, image reconstruction software, imaging devices, biomarkers, and even artificial intelligence algorithms, thereby providing a reliable diagnosis and analysis of the tumor. Also, we provide a brief account of alternative low cost-effective cancer therapy devices (CryoPop®, LumaGEM®, MarginProbe®) and picture archiving and communication systems (PACS), emphasizing the need for multi-disciplinary collaboration among radiologists, pathologists, and other involved specialties for improving cancer diagnostics. CONCLUSION Revolutionary technological advancements in cancer imaging and molecular biology techniques are indispensable for the accurate diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Akhil Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Anika Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Bilikere S. Dwarakanath
- Central Research FacilitySri Ramachandra Institute of Higher Education and Research PorurChennaiIndia
- Department of BiotechnologyIndian Academy Degree CollegeBangaloreIndia
| | | | - Rao V. L. Papineni
- PACT & Health LLCBranfordConnecticutUSA
- Department of SurgeryUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
32
|
Verma M, Bahuguna G, Saharan A, Gaur S, Haick H, Gupta R. Room Temperature Humidity Tolerant Xylene Sensor Using a Sn-SnO 2 Nanocomposite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5512-5520. [PMID: 36651864 DOI: 10.1021/acsami.2c22417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Xylene is one of the representative indoor pollutants, even in ppb levels, that affect human health directly. Due to the non-polar and less reactive nature of xylene, its room temperature detection is challenging. This work demonstrates a metallic tin-doped Sn-SnO2 nanocomposite under controlled pH conditions via a simple solvothermal route. The Sn nanoparticles are uniformly distributed inside the SnO2 nanospheres of ∼70 nm with a high specific surface area of 118.8 m2/g. The surface of the Sn-SnO2 nanocomposite exhibits strong affinity toward benzene, toluene, ethylbenzene, and xylene (BTEX) compared to other polar volatile organic compounds (VOCs) such as ethanol, acetone, isopropyl alcohol, formaldehyde, and chloroform tested in this study. The sensor's response is highest for xylene among BTEX molecules. Under ambient room temperature conditions, the sensor exhibits a linear response to xylene in the 1-100 ppm range with a sensitivity of ∼255% at 60 ppm within ∼1.5 s and recovers in ∼40 s. The sensor is hardly affected by humidity variations (40-70%), leading to enhanced reliability and repeatability under dynamic environmental conditions. The meso and microporous nanosphere morphology act as a nanocontainer for non-polar VOCs to diffuse inside the nanostructures, providing easy accessibility. The metallic Sn increases the affinity for less reactive xylene at room temperature. Thus, the nanocatalytic Sn-SnO2 nanocomposite is an active gas/VOC sensing material and provides an effective solution for sensing major indoor pollutants under humid conditions.
Collapse
Affiliation(s)
- Mohit Verma
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan342037, India
| | - Gaurav Bahuguna
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan342037, India
| | - Arpit Saharan
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan342037, India
| | - Snehraj Gaur
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan342037, India
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa3200003, Israel
| | - Ritu Gupta
- Advanced Materials and Devices Laboratory, Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan342037, India
| |
Collapse
|
33
|
Mashhadbani M, Faizabadi E. Early detection of lung cancer biomarkers in exhaled breath by modified armchair stanene nanoribbons. Phys Chem Chem Phys 2023; 25:3875-3889. [PMID: 36647633 DOI: 10.1039/d2cp04940f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study, we analyze armchair stanene nanoribbons as excellent sensing substances for the early diagnosis of lung cancer using density functional theory and the non-equilibrium Green function. Four modified configurations of surface- and edge-defected armchair stanene nanoribbons were studied to improve the sensing performance. Our probes indicated that the adsorption energy of armchair stanene nanoribbons is at least five times greater than that of other previously reported substances, such as single-wall carbon nanotubes, phosphorene, and silicene. A noticeable reduction in the current was observed, implying the high sensitivity of our sensing configurations. The adsorption energy and current results suggest that configurations with a single vacancy and edge defects improve the sensitivity and selectivity of the system because of their free dangling bonds. The calculated results demonstrate that the both-side edge defected armchair stanene nanoribbons reduce the adsorption energy to -8.35 eV and increase the sensitivity up to 45% for toluene detection. This reduction in adsorption energy and the surge of sensitivity shows ultra-high sensing performance, yielding a more efficient structure for the future design of early-diagnosis lung cancer sensing applications, thus improving lung cancer patients' survival and life expectancy.
Collapse
|
34
|
Farnum A, Parnas M, Hoque Apu E, Cox E, Lefevre N, Contag CH, Saha D. Harnessing insect olfactory neural circuits for detecting and discriminating human cancers. Biosens Bioelectron 2023; 219:114814. [PMID: 36327558 DOI: 10.1016/j.bios.2022.114814] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
There is overwhelming evidence that presence of cancer alters cellular metabolic processes, and these changes are manifested in emitted volatile organic compound (VOC) compositions of cancer cells. Here, we take a novel forward engineering approach by developing an insect olfactory neural circuit-based VOC sensor for cancer detection. We obtained oral cancer cell culture VOC-evoked extracellular neural responses from in vivo insect (locust) antennal lobe neurons. We employed biological neural computations of the antennal lobe circuitry for generating spatiotemporal neuronal response templates corresponding to each cell culture VOC mixture, and employed these neuronal templates to distinguish oral cancer cell lines (SAS, Ca9-22, and HSC-3) vs. a non-cancer cell line (HaCaT). Our results demonstrate that three different human oral cancers can be robustly distinguished from each other and from a non-cancer oral cell line. By using high-dimensional population neuronal response analysis and leave-one-trial-out methodology, our approach yielded high classification success for each cell line tested. Our analyses achieved 76-100% success in identifying cell lines by using the population neural response (n = 194) collected for the entire duration of the cell culture study. We also demonstrate this cancer detection technique can distinguish between different types of oral cancers and non-cancer at different time-matched points of growth. This brain-based cancer detection approach is fast as it can differentiate between VOC mixtures within 250 ms of stimulus onset. Our brain-based cancer detection system comprises a novel VOC sensing methodology that incorporates entire biological chemosensory arrays, biological signal transduction, and neuronal computations in a form of a forward-engineered technology for cancer VOC detection.
Collapse
Affiliation(s)
- Alexander Farnum
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Michael Parnas
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Ehsanul Hoque Apu
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Elyssa Cox
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Noël Lefevre
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher H Contag
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Debajit Saha
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
35
|
Westphal K, Dudzik D, Waszczuk-Jankowska M, Graff B, Narkiewicz K, Markuszewski MJ. Common Strategies and Factors Affecting Off-Line Breath Sampling and Volatile Organic Compounds Analysis Using Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). Metabolites 2022; 13:8. [PMID: 36676933 PMCID: PMC9866406 DOI: 10.3390/metabo13010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
An analysis of exhaled breath enables specialists to noninvasively monitor biochemical processes and to determine any pathological state in the human body. Breath analysis holds the greatest potential to remold and personalize diagnostics; however, it requires a multidisciplinary approach and collaboration of many specialists. Despite the fact that breath is considered to be a less complex matrix than blood, it is not commonly used as a diagnostic and prognostic tool for early detection of disordered conditions due to its problematic sampling, analysis, and storage. This review is intended to determine, standardize, and marshal experimental strategies for successful, reliable, and especially, reproducible breath analysis.
Collapse
Affiliation(s)
- Kinga Westphal
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Małgorzata Waszczuk-Jankowska
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Beata Graff
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Michał Jan Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| |
Collapse
|
36
|
Electrospun PVC-nickel phthalocyanine composite nanofiber based conductometric methanol microsensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Khan H, Shah MR, Barek J, Malik MI. Cancer biomarkers and their biosensors: A comprehensive review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Keogh RJ, Riches JC. The Use of Breath Analysis in the Management of Lung Cancer: Is It Ready for Primetime? Curr Oncol 2022; 29:7355-7378. [PMID: 36290855 PMCID: PMC9600994 DOI: 10.3390/curroncol29100578] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Breath analysis is a promising non-invasive method for the detection and management of lung cancer. Exhaled breath contains a complex mixture of volatile and non-volatile organic compounds that are produced as end-products of metabolism. Several studies have explored the patterns of these compounds and have postulated that a unique breath signature is emitted in the setting of lung cancer. Most studies have evaluated the use of gas chromatography and mass spectrometry to identify these unique breath signatures. With recent advances in the field of analytical chemistry and machine learning gaseous chemical sensing and identification devices have also been created to detect patterns of odorant molecules such as volatile organic compounds. These devices offer hope for a point-of-care test in the future. Several prospective studies have also explored the presence of specific genomic aberrations in the exhaled breath of patients with lung cancer as an alternative method for molecular analysis. Despite its potential, the use of breath analysis has largely been limited to translational research due to methodological issues, the lack of standardization or validation and the paucity of large multi-center studies. It is clear however that it offers a potentially non-invasive alternative to investigations such as tumor biopsy and blood sampling.
Collapse
|
39
|
Leong SX, Leong YX, Koh CSL, Tan EX, Nguyen LBT, Chen JRT, Chong C, Pang DWC, Sim HYF, Liang X, Tan NS, Ling XY. Emerging nanosensor platforms and machine learning strategies toward rapid, point-of-need small-molecule metabolite detection and monitoring. Chem Sci 2022; 13:11009-11029. [PMID: 36320477 PMCID: PMC9516957 DOI: 10.1039/d2sc02981b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Speedy, point-of-need detection and monitoring of small-molecule metabolites are vital across diverse applications ranging from biomedicine to agri-food and environmental surveillance. Nanomaterial-based sensor (nanosensor) platforms are rapidly emerging as excellent candidates for versatile and ultrasensitive detection owing to their highly configurable optical, electrical and electrochemical properties, fast readout, as well as portability and ease of use. To translate nanosensor technologies for real-world applications, key challenges to overcome include ultralow analyte concentration down to ppb or nM levels, complex sample matrices with numerous interfering species, difficulty in differentiating isomers and structural analogues, as well as complex, multidimensional datasets of high sample variability. In this Perspective, we focus on contemporary and emerging strategies to address the aforementioned challenges and enhance nanosensor detection performance in terms of sensitivity, selectivity and multiplexing capability. We outline 3 main concepts: (1) customization of designer nanosensor platform configurations via chemical- and physical-based modification strategies, (2) development of hybrid techniques including multimodal and hyphenated techniques, and (3) synergistic use of machine learning such as clustering, classification and regression algorithms for data exploration and predictions. These concepts can be further integrated as multifaceted strategies to further boost nanosensor performances. Finally, we present a critical outlook that explores future opportunities toward the design of next-generation nanosensor platforms for rapid, point-of-need detection of various small-molecule metabolites.
Collapse
Affiliation(s)
- Shi Xuan Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Charlynn Sher Lin Koh
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Emily Xi Tan
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Lam Bang Thanh Nguyen
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Jaslyn Ru Ting Chen
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Carice Chong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Desmond Wei Cheng Pang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Howard Yi Fan Sim
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Xiaochen Liang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore
- School of Biological Sciences, Nanyang Technological University Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore
| |
Collapse
|
40
|
Zanella D, Henin A, Mascrez S, Stefanuto P, Franchina FA, Focant J, Purcaro G. Comprehensive two-dimensional gas chromatographic platforms comparison for exhaled breath metabolites analysis. J Sep Sci 2022; 45:3542-3555. [PMID: 35853166 PMCID: PMC9804543 DOI: 10.1002/jssc.202200164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 01/05/2023]
Abstract
The high potential of exhaled breath for disease diagnosis has been highlighted in numerous studies. However, exhaled breath analysis is suffering from a lack of standardized sampling and analysis procedures, impacting the robustness of inter-laboratory results, and thus hampering proper external validation. The aim of this work was to verify compliance and validate the performance of two different comprehensive two-dimensional gas chromatography coupled to mass spectrometry platforms in different laboratories by monitoring probe metabolites in exhaled breath following the Peppermint Initiative guidelines. An initial assessment of the exhaled breath sampling conditions was performed, selecting the most suitable sampling bag material and volume. Then, a single sampling was performed using Tedlar bags, followed by the trapping of the volatile organic compounds into thermal desorption tubes for the subsequent analysis using two different analytical platforms. The thermal desorption tubes were first analyzed by a (cryogenically modulated) comprehensive two-dimensional gas chromatography system coupled to high-resolution time-of-flight mass spectrometry. The desorption was performed in split mode and the split part was recollected in the same tube and further analyzed by a different (flow modulated) comprehensive two-dimensional gas chromatography system with a parallel detection, specifically using a quadrupole mass spectrometer and a vacuum ultraviolet detector. Both the comprehensive two-dimensional gas chromatography platforms enabled the longitudinal tracking of the peppermint oil metabolites in exhaled breath. The increased sensitivity of comprehensive two-dimensional gas chromatography enabled to successfully monitor over a 6.5 h period a total of 10 target compounds, namely α-pinene, camphene, β-pinene, limonene, cymene, eucalyptol, menthofuran, menthone, isomenthone, and neomenthol.
Collapse
Affiliation(s)
- Delphine Zanella
- Molecular System, Organic & Biological Analytical Chemistry GroupUniversity of LiègeLiègeBelgium
| | - Adèle Henin
- Molecular System, Organic & Biological Analytical Chemistry GroupUniversity of LiègeLiègeBelgium
| | - Steven Mascrez
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Pierre‐Hugues Stefanuto
- Molecular System, Organic & Biological Analytical Chemistry GroupUniversity of LiègeLiègeBelgium
| | - Flavio Antonio Franchina
- Department of Chemistry, Pharmaceutical, and Agricultural SciencesUniversity of FerraraFerraraItaly
| | - Jean‐François Focant
- Molecular System, Organic & Biological Analytical Chemistry GroupUniversity of LiègeLiègeBelgium
| | | |
Collapse
|
41
|
Analysis of volatile organic compounds from deep airway in the lung through intubation sampling. Anal Bioanal Chem 2022; 414:7647-7658. [PMID: 36018334 DOI: 10.1007/s00216-022-04295-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Exhaled volatile organic compounds (VOCs) have been widely applied for the study of disease biomarkers. Oral exhalation and nasal exhalation are two of the most common sampling methods. However, VOCs released from food residues and bacteria in the mouth or upper respiratory tract were also sampled and usually mistaken as that produced from body metabolism. In this study, exhalation from deep airway was first directly collected through intubation sampling and analyzed. The exhalation samples of 35 subjects were collected through a catheter, which was inserted into the trachea or bronchus through the mouth and upper respiratory tract. Then, the VOCs in these samples were detected by proton transfer reaction mass spectrometry (PTR-MS). In addition, fast gas chromatography proton transfer reaction mass spectrometry (FGC-PTR-MS) was used to further determine the VOCs with the same mass-to-charge ratios. The results showed that there was methanol, acetonitrile, ethanol, methyl mercaptan, acetone, isoprene, and phenol in the deep airway. Compared with that in oral exhalation, ethanol, methyl mercaptan, and phenol had lower concentrations. In detail, the median concentrations of ethanol, methyl mercaptan, and phenol were 7.3, 0.6, and 23.9 ppbv, while those in the oral exhalation were 80.0, 5.1, and 71.3 ppbv, respectively, which meant the three VOCs mainly originated from the food residues and bacteria in the mouth or upper respiratory tract, rather than body metabolism. The research results in our study can provide references for expiratory VOC research based on oral and nasal exhalation samplings, which are more feasible in clinical practice.
Collapse
|
42
|
Chen W, Sullivan CD, Lai SN, Yen CC, Jiang X, Peroulis D, Stanciu LA. Noble-Nanoparticle-Decorated Ti 3C 2T x MXenes for Highly Sensitive Volatile Organic Compound Detection. ACS OMEGA 2022; 7:29195-29203. [PMID: 36033655 PMCID: PMC9404467 DOI: 10.1021/acsomega.2c03272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 05/27/2023]
Abstract
Two-dimensional transition-metal carbides and nitrides (MXenes) have been regarded as promising sensing materials because of their high surface-to-volume ratios and outstanding electronic, optical, and mechanical properties with versatile transition-metal and surface chemistries. However, weak gas-molecule adsorption of MXenes poses a serious limitation to their sensitivity and selectivity, particularly for trace amounts of volatile organic compounds (VOCs) at room temperature. To deal with these issues, Au-decorated MXenes are synthesized by a facile solution mixing method for room-temperature sensing of a wide variety of oxygen-based and hydrocarbon-based VOCs. Dynamic sensing experiments reveal that optimal decoration of Au nanoparticles (NPs) on Ti3C2T x MXene significantly elevates the response and selectivity of the flexible sensors, especially in detecting formaldehyde. Au-Ti3C2T x gas sensors exhibited an extremely low limit of detection of 92 ppb for formaldehyde at room temperature. Au-Ti3C2T x provides reliable gas response, low noise level, ultrahigh signal-to-noise ratio, high selectivity, as well as parts per billion level of formaldehyde detection. The prominent mechanism for Au-Ti3C2T x in sensing formaldehyde is elucidated theoretically from density functional theory simulations. The results presented here strongly suggest that decorating noble-metal NPs on MXenes is a feasible strategy for the development of next-generation ultrasensitive sensors for Internet of Things.
Collapse
Affiliation(s)
- Winston
Yenyu Chen
- School
of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck
Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Connor Daniel Sullivan
- School
of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck
Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sz-Nian Lai
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chao-Chun Yen
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung 40227, Taiwan
| | - Xiaofan Jiang
- School
of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dimitrios Peroulis
- School
of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lia A. Stanciu
- School
of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck
Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
43
|
Choueiry F, Barham A, Zhu J. Analyses of lung cancer-derived volatiles in exhaled breath and in vitro models. Exp Biol Med (Maywood) 2022; 247:1179-1190. [PMID: 35410512 PMCID: PMC9335511 DOI: 10.1177/15353702221082634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer incidence and cancer-related deaths in the world. Early diagnosis of pulmonary tumors results in improved survival compared to diagnosis with more advanced disease, yet early disease is not reliably indicated by symptoms. Despite of the improved testing and monitoring techniques for lung cancer in the past decades, most diagnostic tests, such as sputum cytology or tissue biopsies, are invasive and risky, rendering them unfeasible for large population screening. The non-invasive analysis of exhaled breath has gained attentions as an innovative screening method to measure chemical alterations within the human volatilome profile as a result of oncogenesis. More importantly, volatile organic compounds (VOCs) have been correlated to the pathophysiology of disease since the source of volatile compounds relies mostly on endogenous metabolic processes that are altered as a result of disease onset. Therefore, studying VOCs emitted from human breath may assist lung cancer diagnosis, treatment monitoring, and other surveillance of this devastating disease. In this mini review, we evaluated recent human studies that have attempted to identify lung cancer-derived volatiles in exhaled breath of patients. We also examined reported volatiles in cell cultures of lung cancer to better understand the origins of cancer-associated VOCs. We highlight the metabolic processes of lung cancer that could be responsible for the endogenous synthesis of these VOCs and pinpoint the protein-encoding genes involved in these pathways. Finally, we highlight the potential value of a breath test in lung cancer and propose prominent areas for future research required for the incorporation of VOCs-based testing into clinical settings.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210-1132, USA
| | - Addison Barham
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210-1132, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210-1132, USA,James Comprehensive Cancer Center, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA,Jiangjiang Zhu.
| |
Collapse
|
44
|
Issitt T, Sweeney ST, Brackenbury WJ, Redeker KR. Sampling and Analysis of Low-Molecular-Weight Volatile Metabolites in Cellular Headspace and Mouse Breath. Metabolites 2022; 12:599. [PMID: 35888722 PMCID: PMC9315489 DOI: 10.3390/metabo12070599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Volatile compounds, abundant in breath, can be used to accurately diagnose and monitor a range of medical conditions. This offers a noninvasive, low-cost approach with screening applications; however, the uptake of this diagnostic approach has been limited by conflicting published outcomes. Most published reports rely on large scale screening of the public, at single time points and without reference to ambient air. Here, we present a novel approach to volatile sampling from cellular headspace and mouse breath that incorporates multi-time-point analysis and ambient air subtraction revealing compound flux as an effective proxy of active metabolism. This approach to investigating breath volatiles offers a new avenue for disease biomarker discovery and diagnosis. Using gas chromatography mass spectrometry (GC/MS), we focus on low molecular weight, metabolic substrate/by-product compounds and demonstrate that this noninvasive technique is sensitive (reproducible at ~1 µg cellular protein, or ~500,000 cells) and capable of precisely determining cell type, status and treatment. Isolated cellular models represent components of larger mammalian systems, and we show that stress- and pathology-indicative compounds are detectable in mice, supporting further investigation using this methodology as a tool to identify volatile targets in human patients.
Collapse
Affiliation(s)
- Theo Issitt
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Sean T. Sweeney
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - William J. Brackenbury
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Kelly R. Redeker
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
| |
Collapse
|
45
|
MALDI-TOF/MS Analysis of Extracellular Vesicles Released by Cancer Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The direct shedding of extracellular vesicles (EVs) from the plasma membrane is a recognized fundamental method for the intercellular transfer of properties in both physiological and pathological conditions. EVs are classified according to origin, biogenesis, size, content, surface markers, and/or functional properties, and contain various bioactive molecules depending on the physiological state and the type of the cells of origin including lipids, nucleic acids, and proteins. The presence of tumor-derived EVs in body fluids such as blood, ascites, urine, and saliva, together with the important role played in the tumor microenvironment where they intervene at different levels from oncogenesis to metastasis, make EVs a priority target for cancer studies. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can play a leading role in the analysis and characterization of EVs and their load due to its intrinsic advantages such as high throughput, low sample consumption, speed, the cost-effectiveness of the analysis, and the ease of use. This work reviews the main MALDI-TOF applications for the analysis and characterization of extracellular vesicles in the tumor field.
Collapse
|
46
|
Smirnova E, Mallow C, Muschelli J, Shao Y, Thiboutot J, Lam A, Rule AM, Crainiceanu C, Yarmus L. Predictive performance of selected breath volatile organic carbon compounds in stage 1 lung cancer. Transl Lung Cancer Res 2022; 11:1009-1018. [PMID: 35832450 PMCID: PMC9271440 DOI: 10.21037/tlcr-21-953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Abstract
Background Lung cancer remains the leading cause of cancer deaths accounting for almost 25% of all cancer deaths. Breath-based volatile organic compounds (VOCs) have been studied in lung cancer but previous studies have numerous limitations. We conducted a prospective matched case to control study of the ability of preidentified VOC performance in the diagnosis of stage 1 lung cancer (S1LC). Methods Study participants were enrolled in a matched case to two controls study. A case was defined as a patient with biopsy-confirmed S1LC. Controls included a matched control, by risk factors, and a housemate control who resided in the same residence as the case. We included 88 cases, 88 risk-matched, and 49 housemate controls. Each participant exhaled into a Tedlar® bag which was analyzed using gas chromatography-mass spectrometry. For each study participant’s breath sample, the concentration of thirteen previously identified VOCs were quantified and assessed using area under the curve in the detection of lung cancer. Results Four VOCs were above the limit of detection in more than 10% of the samples. Acetoin was the only compound that was significantly associated with S1LC. Acetoin concentration below the 10th percentile (0.026 µg/L) in the training data had accuracy of 0.610 (sensitivity =0.649; specificity =0.583) in the test data. In multivariate logistic models, the best performing models included Acetoin alone (AUC =0.650). Conclusions Concentration of Acetoin in exhaled breath has low discrimination performance for S1LC cases and controls, while there was not enough evidence for twelve additional published VOCs.
Collapse
Affiliation(s)
- Ekaterina Smirnova
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher Mallow
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, FL, USA
| | - John Muschelli
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Yuan Shao
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey Thiboutot
- Section of Interventional Pulmonology, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andres Lam
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Lonny Yarmus
- Section of Interventional Pulmonology, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
47
|
Janssens E, Mol Z, Vandermeersch L, Lagniau S, Vermaelen KY, van Meerbeeck JP, Walgraeve C, Marcq E, Lamote K. Headspace Volatile Organic Compound Profiling of Pleural Mesothelioma and Lung Cancer Cell Lines as Translational Bridge for Breath Research. Front Oncol 2022; 12:851785. [PMID: 35600344 PMCID: PMC9120820 DOI: 10.3389/fonc.2022.851785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 01/05/2023] Open
Abstract
IntroductionMalignant pleural mesothelioma (MPM) is a lethal cancer for which early-stage diagnosis remains a major challenge. Volatile organic compounds (VOCs) in breath proved to be potential biomarkers for MPM diagnosis, but translational studies are needed to elucidate which VOCs originate from the tumor itself and thus are specifically related to MPM cell metabolism.MethodsAn in vitro model was set-up to characterize the headspace VOC profiles of six MPM and two lung cancer cell lines using thermal desorption-gas chromatography-mass spectrometry. A comparative analysis was carried out to identify VOCs that could discriminate between MPM and lung cancer, as well as between the histological subtypes within MPM (epithelioid, sarcomatoid and biphasic).ResultsVOC profiles were identified capable of distinguishing MPM (subtypes) and lung cancer cells with high accuracy. Alkanes, aldehydes, ketones and alcohols represented many of the discriminating VOCs. Discrepancies with clinical findings were observed, supporting the need for studies examining breath and tumor cells of the same patients and studying metabolization and kinetics of in vitro discovered VOCs in a clinical setting.ConclusionWhile the relationship between in vitro and in vivo VOCs is yet to be established, both could complement each other in generating a clinically useful breath model for MPM.
Collapse
Affiliation(s)
- Eline Janssens
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Zoë Mol
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Lore Vandermeersch
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Sabrina Lagniau
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Tumor Immunology Lab, Ghent University, Ghent, Belgium
| | - Karim Y. Vermaelen
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Tumor Immunology Lab, Ghent University, Ghent, Belgium
| | - Jan P. van Meerbeeck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonology and Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Christophe Walgraeve
- Department of Green Chemistry and Technology, Environmental Organic Chemistry and Technology (EnVOC) Research Group, Ghent University, Ghent, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- *Correspondence: Kevin Lamote,
| |
Collapse
|
48
|
Swinarew AS, Flak T, Jarosińska A, Garczyk Ż, Gabor J, Skoczyński S, Brożek G, Paluch J, Popczyk M, Stanula A, Stach S. Polyurethane-Based Porous Carbons Suitable for Medical Application. MATERIALS 2022; 15:ma15093313. [PMID: 35591653 PMCID: PMC9101738 DOI: 10.3390/ma15093313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
The main aim of the study was to synthesize and analyze spectral data to determine the structure and stereometry of the carbon-based porous material internal structure. Samples of a porous biomaterial were synthesized through anionic polymerization following our own patent and then carbonized. The samples were investigated using MALDI ToF MS, FTIR ATR spectroscopy, optic microscopy, SEM, confocal laser scanning microscopy and CMT imaging. The analysis revealed the chemical and stereological structure of the obtained porous biomaterial. Then, the parameters characterizing the pore geometry and the porosity of the samples were calculated. The developed material can be used to collect adsorption of breathing phase samples to determine the parity composition of exhaled air.
Collapse
Affiliation(s)
- Andrzej S. Swinarew
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (T.F.); (Ż.G.); (J.G.); (M.P.); (S.S.)
- Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72A, 40-065 Katowice, Poland;
- Correspondence:
| | - Tomasz Flak
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (T.F.); (Ż.G.); (J.G.); (M.P.); (S.S.)
| | - Agnieszka Jarosińska
- Department of Internal Medicine, Autoimmune and Metabolic Diseases, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 14, 40-572 Katowice, Poland;
| | - Żaneta Garczyk
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (T.F.); (Ż.G.); (J.G.); (M.P.); (S.S.)
| | - Jadwiga Gabor
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (T.F.); (Ż.G.); (J.G.); (M.P.); (S.S.)
| | - Szymon Skoczyński
- Department of Pneumonology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Grzegorz Brożek
- Department of Epidemiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Jarosław Paluch
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, ul. Francuska 20-24, 40-027 Katowice, Poland;
| | - Magdalena Popczyk
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (T.F.); (Ż.G.); (J.G.); (M.P.); (S.S.)
| | - Arkadiusz Stanula
- Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Mikołowska 72A, 40-065 Katowice, Poland;
| | - Sebastian Stach
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (T.F.); (Ż.G.); (J.G.); (M.P.); (S.S.)
| |
Collapse
|
49
|
Kabir KM, Baker MJ, Donald WA. Micro- and nanoscale sensing of volatile organic compounds for early-stage cancer diagnosis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Classification of gases around Pseudomonas aeruginosa and Acinetobacter baumannii by infrared spectroscopy. J Microbiol Methods 2022; 196:106474. [DOI: 10.1016/j.mimet.2022.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/27/2022]
|