1
|
Tayagui A, Sun Y, Nock V, Garrill A. Fabrication of Lab-on-a-Chip Devices to Study the Forces Imparted by Growing Phytophthora Hyphae. Methods Mol Biol 2025; 2892:197-209. [PMID: 39729278 DOI: 10.1007/978-1-0716-4330-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
In this chapter, we describe the design and manufacture of a Lab-on-a-Chip (LoC) device suitable for measuring the μN forces exerted by tips of growing Phytophthora hyphae. LoC describes microfluidic devices, typically made of the polymer polydimethylsiloxane (PDMS), that are increasingly being used to answer fundamental questions in biological, chemical, physical, and medical research. These LoC devices enable the integration of several laboratory functions on small plastic devices that are quick to produce and easy to replicate. While we describe the design and manufacture of one particular device, the methods covered are applicable to any chip design, and such devices could be used to investigate many aspects of Phytophthora biology.
Collapse
Affiliation(s)
- Ayelen Tayagui
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Yiling Sun
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Volker Nock
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Ashley Garrill
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
2
|
Imran M, Moyle PM, Kamato D, Mohammed Y. Advances in, and prospects of, 3D preclinical models for skin drug discovery. Drug Discov Today 2024; 29:104208. [PMID: 39396673 DOI: 10.1016/j.drudis.2024.104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The skin has an important role in regulating homeostasis and protecting the body from endogenous and exogenous microenvironments. Although 3D models for drug discovery have been extensively studied, there is a growing demand for more advanced 3D skin models to enhance skin research. The use of these advanced skin models holds promise across domains such as cosmetics, skin disease treatments, and toxicity testing of new therapeutics. Recent advances include the development of skin-on-a-chip, spheroids, reconstructed skin, organoids, and computational approaches, including quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) research. These innovations are bridging the gap between traditional 2D and advanced 3D models, moving progress from research to clinical applications. In this review, we highlight in vitro and computational skin models with advanced drug discovery for skin-related applications.
Collapse
Affiliation(s)
- Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Peter Michael Moyle
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; School of Environment and Science, Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD 4111, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
3
|
Santos-Ramirez JMDL, Martinez-Gonzalez VG, Mendiola-Escobedo CA, Cotera-Sarabia JM, Gallo-Villanueva RC, Martinez-Duarte R, Perez-Gonzalez VH. Short Communication: Ultralow Voltage Electrokinetic Particle Trapping in DC-iEK Devices Using 9 V Alkaline Batteries as Power Supply. Electrophoresis 2024. [PMID: 39607317 DOI: 10.1002/elps.202400141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/18/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
This contribution describes direct current insulator-based electrokinetic (DC-iEK) microfluidic devices stimulated by 9 V alkaline batteries for the trapping of 2-µm diameter fluorescent polystyrene particles. These devices featured two triangular insulating posts within the fluidic channel. Particle trapping was clearly observed at 18 V (two 9 V batteries connected in series), but only intermittent particle trapping was observed with a single 9 V battery. Particle trapping was determined by measuring the increase in relative fluorescence intensity at the gap region between the single pair of triangular posts. Results demonstrate that the use of low stimulating voltages (deemed as ultralow) in DC-iEK systems may be more suitable for accurate and precise electrokinetic characterization of particles-by exhibiting a very well-localized trapping region with negligible particle oscillations therein, respectively-than for high-performance and high-throughput particle manipulation (i.e., concentration, separation, filtering, or isolation).
Collapse
Affiliation(s)
| | | | | | - Jose M Cotera-Sarabia
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | | | - Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, USA
| | | |
Collapse
|
4
|
Okamoto S, Mori Y, Nakamura S, Kanai Y, Ukita Y, Nagai M, Shibata T. Proposal of a Rapid Detection System Using Image Analysis for ELISA with an Autonomous Centrifugal Microfluidic System. MICROMACHINES 2024; 15:1387. [PMID: 39597199 PMCID: PMC11596746 DOI: 10.3390/mi15111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
In this study, with the aim of adapting an enzyme-linked immunosorbent assay (ELISA) system for point-of-care testing (POCT), we propose an image analysis method for ELISAs using a centrifugal microfluidic device that automatically executes the assay. The developed image analysis method can be used to quantify the color development reaction on a TMB (3,3',5,5'-tetramethylbenzidine) substrate. In a conventional ELISA, reaction stopping reagents are required at the end of the TMB reaction. In contrast, the developed image analysis method can analyze color in the color-developing reaction without a reaction stopping reagent. This contributes to a reduction in total assay time. The microfluidic devices used in this study could execute reagent control for ELISAs by steady rotation. In the demonstration of the assay and image analysis, a calibration curve for mouse IgG detection was successfully prepared, and it was confirmed that the image analysis method had the same performance as the conventional analysis method. Moreover, the changes in the amount of color over time confirmed that a calibration curve equal to the endpoint analysis was obtained within 2 min from the start of the TMB reaction. As the assay time before the TMB reaction was approximately 7.5 min, the developed ELISA system could detect TMB in just 10 min. In conventional methods using a plate reader, the assay required a time of 90 min for manual handling using microwell plates, and in the case of using automatic microfluidic devices, 30 min were required. The time of 10 min realized by this proposed method is equal to the time required for detection in an immunochromatographic assay with a lateral flow assay; therefore, it is expected that ELISAs can be performed sufficiently to adapt to POCT.
Collapse
Affiliation(s)
- Shunya Okamoto
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8122, Japan
| | - Yuto Mori
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8122, Japan
| | - Shota Nakamura
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8122, Japan
| | - Yusuke Kanai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8122, Japan
| | - Yoshiaki Ukita
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu 400-0016, Japan
| | - Moeto Nagai
- Institute for Research on Next-Generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, Toyohashi 441-8122, Japan
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8122, Japan
| |
Collapse
|
5
|
Yilmaz EG, Hacıosmanoğlu N, Jordi SBU, Yilmaz B, Inci F. Revolutionizing IBD research with on-chip models of disease modeling and drug screening. Trends Biotechnol 2024:S0167-7799(24)00284-1. [PMID: 39523166 DOI: 10.1016/j.tibtech.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) comprises chronic inflammatory conditions with complex mechanisms and diverse manifestations, posing significant clinical challenges. Traditional animal models and ethical concerns in human studies necessitate innovative approaches. This review provides an overview of human intestinal architecture in health and inflammation, emphasizing the role of microfluidics and on-chip technologies in IBD research. These technologies allow precise manipulation of cellular and microbial interactions in a physiologically relevant context, simulating the intestinal ecosystem microscopically. By integrating cellular components and replicating 3D tissue architecture, they offer promising models for studying host-microbe interactions, wound healing, and therapeutic approaches. Continuous refinement of these technologies promises to advance IBD understanding and therapy development, inspiring further innovation and cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Eylul Gulsen Yilmaz
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Nedim Hacıosmanoğlu
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Sebastian Bruno Ulrich Jordi
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010, Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010, Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland.
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.
| |
Collapse
|
6
|
Jang Y, Kim H, Oh J. An Array of Carbon Nanofiber Bundle_Based 3D In Vitro Intestinal Microvilli for Mimicking Functional and Physical Activities of the Small Intestine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404842. [PMID: 39212639 DOI: 10.1002/smll.202404842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Researchers have developed in vitro small intestine models of biomimicking microvilli, such as gut-on-a-chip devices. However, fabrication methods developed to date for 2D and 3D in vitro gut still have unsolved limitations. In this study, an innovative fabrication method of a 3D in vitro gut model is introduced for effective drug screening. The villus is formed on a patterned carbon nanofiber (CNF) bundle as a flexible and biocompatible scaffold. Mechanical properties of the fabricated villi structure are investigates. A microfluidic system is applied to induce the movement of CNFs villi. F-actin and Occludin staining of Caco-2 cells on a 2D flat-chip as a control and a 3D gut-chip with or without fluidic stress is observed. A permeability test of FD20 is performed. The proposed 3D gut-chip with fluidic stress achieve the highest value of Papp. Mechano-active stimuli caused by distinct structural and movement effects of CNFs villi as well as stiffness of the suggested CNFs villi not only can help accelerate cell differentiation but also can improve permeability. The proposed 3D gut-chip system further strengthens the potential of the platform to increase the accuracy of various drug tests.
Collapse
Affiliation(s)
- Yeongseok Jang
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Hyojae Kim
- Center for Social Innovation Policy, Office of S&T Policy Planning, Korea Institute of S&T Evaluation and Planning, Eumseong, 27740, Republic of Korea
| | - Jonghyun Oh
- Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
7
|
Bató L, Fürjes P. Vertical Microfluidic Trapping System for Capturing and Simultaneous Electrochemical Detection of Cells. SENSORS (BASEL, SWITZERLAND) 2024; 24:6638. [PMID: 39460118 PMCID: PMC11511429 DOI: 10.3390/s24206638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Electrochemical impedance spectroscopy (EIS) is a non-invasive and label-free method widely used for characterizing cell cultures and monitoring their structure, behavior, proliferation and viability. Microfluidic systems are often used in combination with EIS methods utilizing small dimensions, controllable physicochemical microenvironments and offering rapid real-time measurements. In this work, an electrode array capable of conducting EIS measurements was integrated into a multichannel microfluidic chip which is able to trap individual cells or cell populations in specially designed channels comparable to the size of cells. An application-specific printed circuit board (PCB) was designed for the implementation of the impedance measurement in order to facilitate connection with the device used for taking EIS spectra and for selecting the channels to be measured. The PCB was designed in consideration of the optical screening of trapped cells in parallel with the EIS measurements which allows the comparison of EIS data with optical signals. With continuous EIS measurement, the filling of channels with cell suspension can be followed. Yeast cells were trapped in the microfluidic system and EIS spectra were recorded considering each individual channel, which allows differentiating between the number of trapped cells.
Collapse
Affiliation(s)
- Lilia Bató
- Microsystems Lab, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, H-1121 Budapest, Hungary;
- Doctoral School on Materials Sciences and Technologies, Óbuda University, H-1034 Budapest, Hungary
| | - Péter Fürjes
- Microsystems Lab, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, H-1121 Budapest, Hungary;
| |
Collapse
|
8
|
Beykou M, Bousgouni V, Moser N, Georgiou P, Bakal C. Biocompatibility characterisation of CMOS-based Lab-on-Chip electrochemical sensors for in vitro cancer cell culture applications. Biosens Bioelectron 2024; 262:116513. [PMID: 38941688 DOI: 10.1016/j.bios.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Lab-on-Chip electrochemical sensors, such as Ion-Sensitive Field-Effect Transistors (ISFETs), are being developed for use in point-of-care diagnostics, such as pH detection of tumour microenvironments, due to their integration with standard Complementary Metal Oxide Semiconductor (CMOS) technology. With this approach, the passivation of the CMOS process is used as a sensing layer to minimise post-processing, and Silicon Nitride (Si3N4) is the most common material at the microchip surface. ISFETs have the potential to be used for cell-based assays however, there is a poor understanding of the biocompatibility of microchip surfaces. Here, we quantitatively evaluated cell adhesion, morphogenesis, proliferation and mechano-responsiveness of both normal and cancer cells cultured on a Si3N4, sensor surface. We demonstrate that both normal and cancer cell adhesion decreased on Si3N4. Activation of the mechano-responsive transcription regulators, YAP/TAZ, are significantly decreased in cancer cells on Si3N4 in comparison to standard cell culture plastic, whilst proliferation marker, Ki67, expression markedly increased. Non-tumorigenic cells on chip showed less sensitivity to culture on Si3N4 than cancer cells. Treatment with extracellular matrix components increased cell adhesion in normal and cancer cell cultures, surpassing the adhesiveness of plastic alone. Moreover, poly-l-ornithine and laminin treatment restored YAP/TAZ levels in both non-tumorigenic and cancer cells to levels comparable to those observed on plastic. Thus, engineering the electrochemical sensor surface with treatments will provide a more physiologically relevant environment for future cell-based assay development on chip.
Collapse
Affiliation(s)
- Melina Beykou
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK; Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK; Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| | - Vicky Bousgouni
- Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK
| | - Nicolas Moser
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK; Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK
| | - Pantelis Georgiou
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK; Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| | - Chris Bakal
- Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK; Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Nejati B, Shahhosseini R, Hajiabbasi M, Ardabili NS, Baktash KB, Alivirdiloo V, Moradi S, Rad MF, Rahimi F, Farani MR, Ghazi F, Mobed A, Alipourfard I. Cancer-on-chip: a breakthrough organ-on-a-chip technology in cancer cell modeling. Med Biol Eng Comput 2024:10.1007/s11517-024-03199-5. [PMID: 39400856 DOI: 10.1007/s11517-024-03199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Cancer remains one of the leading causes of death worldwide. The unclear molecular mechanisms and complex in vivo microenvironment of tumors make it difficult to clarify the nature of cancer and develop effective treatments. Therefore, the development of new methods to effectively treat cancer is urgently needed and of great importance. Organ-on-a-chip (OoC) systems could be the breakthrough technology sought by the pharmaceutical industry to address ever-increasing research and development costs. The past decade has seen significant advances in the spatial modeling of cancer therapeutics related to OoC technology, improving physiological exposition criteria. This article aims to summarize the latest achievements and research results of cancer cell treatment simulated in a 3D microenvironment using OoC technology. To this end, we will first discuss the OoC system in detail and then demonstrate the latest findings of the cancer cell treatment study by Ooc and how this technique can potentially optimize better modeling of the tumor. The prospects of OoC systems in the treatment of cancer cells and their advantages and limitations are also among the other points discussed in this study.
Collapse
Affiliation(s)
- Babak Nejati
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | - Vahid Alivirdiloo
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Sadegh Moradi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Fatemeh Rahimi
- Division of Clinical Laboratory, Zahra Mardani Azar Children Training Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhood Ghazi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mobed
- Department of Community Medicine, Faculty of Medicine, Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
10
|
Shen Y, Zhao S, Chen F, Lv Y, Fu L. Enhancing Sensitivity and Selectivity: Current Trends in Electrochemical Immunosensors for Organophosphate Analysis. BIOSENSORS 2024; 14:496. [PMID: 39451709 PMCID: PMC11505628 DOI: 10.3390/bios14100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
This review examines recent advancements in electrochemical immunosensors for the detection of organophosphate pesticides, focusing on strategies to enhance sensitivity and selectivity. The widespread use of these pesticides has necessitated the development of rapid, accurate, and field-deployable detection methods. We discuss the fundamental principles of electrochemical immunosensors and explore innovative approaches to improve their performance. These include the utilization of nanomaterials such as metal nanoparticles, carbon nanotubes, and graphene for signal amplification; enzyme-based amplification strategies; and the design of three-dimensional electrode architectures. The integration of these sensors into microfluidic and lab-on-a-chip devices has enabled miniaturization and automation, while screen-printed and disposable electrodes have facilitated on-site testing. We analyze the challenges faced in real sample analysis, including matrix effects and the stability of biological recognition elements. Emerging trends such as the application of artificial intelligence for data interpretation and the development of aptamer-based sensors are highlighted. The review also considers the potential for commercialization and the hurdles that must be overcome for widespread adoption. Future research directions are identified, including the development of multi-analyte detection platforms and the integration of sensors with emerging technologies like the Internet of Things. This comprehensive overview provides insights into the current state of the field and outlines promising avenues for future development in organophosphate pesticide detection.
Collapse
Affiliation(s)
| | | | | | | | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.S.); (S.Z.); (F.C.); (Y.L.)
| |
Collapse
|
11
|
Karnawat K, Parthasarathy R, Sakhrie M, Karthik H, Krishna KV, Balachander GM. Building in vitro models for mechanistic understanding of liver regeneration in chronic liver diseases. J Mater Chem B 2024; 12:7669-7691. [PMID: 38973693 DOI: 10.1039/d4tb00738g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The liver has excellent regeneration potential and attains complete functional recovery from partial hepatectomy. The regenerative mechanisms malfunction in chronic liver diseases (CLDs), which fuels disease progression. CLDs account for 2 million deaths per year worldwide. Pathophysiological studies with clinical correlation have shown evidence of deviation of normal regenerative mechanisms and its contribution to fueling fibrosis and disease progression. However, we lack realistic in vitro models that can allow experimental manipulation for mechanistic understanding of liver regeneration in CLDs and testing of candidate drugs. In this review, we aim to provide the framework for building appropriate organotypic models for dissecting regenerative responses in CLDs, with the focus on non-alcoholic steatohepatitis (NASH). By drawing parallels with development and hepatectomy, we explain the selection of critical components such as cells, signaling, and, substrate-driven biophysical cues to build an appropriate CLD model. We highlight the organoid-based organotypic models available for NASH disease modeling, including organ-on-a-chip and 3D bioprinted models. With the focus on bioprinting as a fabrication method, we prescribe building in vitro CLD models and testing schemes for exploring the regenerative responses in the bioprinted model.
Collapse
Affiliation(s)
- Khushi Karnawat
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Rithika Parthasarathy
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Mesevilhou Sakhrie
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Harikeshav Karthik
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Konatala Vibhuvan Krishna
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Gowri Manohari Balachander
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| |
Collapse
|
12
|
Rashid MH, Sen P. Recent Advancements in Biosensors for the Detection and Characterization of Amyloids: A Review. Protein J 2024; 43:656-674. [PMID: 38824466 DOI: 10.1007/s10930-024-10205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Modern medicine has increased the human lifespan. However, with an increase in average lifespan risk of amyloidosis increases. Amyloidosis is a condition characterized by protein misfolding and aggregation. Early detection of amyloidosis is crucial, yet conventional diagnostic methods are costly and lack precision, necessitating innovative tools. This review explores recent advancements in diverse amyloid detection methodologies, highlighting the need for interdisciplinary research to develop a miniaturized electrochemical biosensor leveraging nanotechnology. However, the diagnostics industry faces obstacles such as skilled labor shortages, standardized selection processes, and concurrent multi-analyte identification challenges. Research efforts are focused on integrating electrochemical techniques into clinical applications and diagnostics, with the successful transition of miniaturized technologies from development to testing posing a significant hurdle. Label-free transduction techniques like voltammetry and electrochemical impedance spectroscopy (EIS) have gained traction due to their rapid, cost-effective, and user-friendly nature.
Collapse
Affiliation(s)
- Md Harun Rashid
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Priyankar Sen
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
13
|
Kefallinou D, Grigoriou M, Boumpas DT, Tserepi A. Mesenchymal Stem Cell and Hematopoietic Stem and Progenitor Cell Co-Culture in a Bone-Marrow-on-a-Chip Device toward the Generation and Maintenance of the Hematopoietic Niche. Bioengineering (Basel) 2024; 11:748. [PMID: 39199706 PMCID: PMC11352072 DOI: 10.3390/bioengineering11080748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024] Open
Abstract
Bone marrow has raised a great deal of scientific interest, since it is responsible for the vital process of hematopoiesis and is affiliated with many normal and pathological conditions of the human body. In recent years, organs-on-chips (OoCs) have emerged as the epitome of biomimetic systems, combining the advantages of microfluidic technology with cellular biology to surpass conventional 2D/3D cell culture techniques and animal testing. Bone-marrow-on-a-chip (BMoC) devices are usually focused only on the maintenance of the hematopoietic niche; otherwise, they incorporate at least three types of cells for on-chip generation. We, thereby, introduce a BMoC device that aspires to the purely in vitro generation and maintenance of the hematopoietic niche, using solely mesenchymal stem cells (MSCs) and hematopoietic stem and progenitor cells (HSPCs), and relying on the spontaneous formation of the niche without the inclusion of gels or scaffolds. The fabrication process of this poly(dimethylsiloxane) (PDMS)-based device, based on replica molding, is presented, and two membranes, a perforated, in-house-fabricated PDMS membrane and a commercial poly(ethylene terephthalate) (PET) one, were tested and their performances were compared. The device was submerged in a culture dish filled with medium for passive perfusion via diffusion in order to prevent on-chip bubble accumulation. The passively perfused BMoC device, having incorporated a commercial poly(ethylene terephthalate) (PET) membrane, allows for a sustainable MSC and HSPC co-culture and proliferation for three days, a promising indication for the future creation of a hematopoietic bone marrow organoid.
Collapse
Affiliation(s)
- Dionysia Kefallinou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Patr. Gregoriou Ε’ and 27 Neapoleos Str., Aghia Paraskevi, 15341 Athens, Greece;
| | - Maria Grigoriou
- Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (M.G.); (D.T.B.)
| | - Dimitrios T. Boumpas
- Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (M.G.); (D.T.B.)
- 4th Department of Internal Medicine, Attikon University Hospital and Joint Rheumatology Program, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Angeliki Tserepi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Patr. Gregoriou Ε’ and 27 Neapoleos Str., Aghia Paraskevi, 15341 Athens, Greece;
| |
Collapse
|
14
|
Huan Z, Chen Z, Zheng X, Zhang Y, Zhang J, Ma W. Design and optimization of an octuple-electrode array for micro-particle chain rotation via electrorotation integrated with machine vision technology. Analyst 2024; 149:3346-3355. [PMID: 38700251 DOI: 10.1039/d4an00441h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Microparticle rotation is an important process in biomedical engineering, such as biosensors, cell injection or cell morphology. Single particle rotation has been widely investigated, while rotation of particle chains has gained rare attention. In this paper, we utilize a noncontact manipulation method to rotate microparticle chains via electrorotation by designing an octuple-electrode array (OEA). Finite element simulations were conducted for analyzing the desired electrode field and optimizing the structure of microelectrode pairs. The direction of the electric field in the workspace is investigated with different voltage signal inputs through specially designed circuits. In the experiment, microparticles are driven to form several chains in the proposed electrode fields. With the rotation of the electric field, particle chains could be rotated synchronously. Automated rotation and detection of polystyrene microspheres and yeast cell chains are achieved using machine vision technology. Results show that the proposed method could be utilized to rotate ordered microparticles with an appropriate input signal.
Collapse
Affiliation(s)
- Zhijie Huan
- School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, 361024, China.
- College of Control Science and Engineering, China University of Petroleum (East China), Qingdao, China
- Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control, Xiamen, China
| | - Zexiang Chen
- School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, 361024, China.
| | - Xiongbiao Zheng
- School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, 361024, China.
| | - Yiwei Zhang
- School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, 361024, China.
| | - Jingjie Zhang
- Department of Orthopaedic, The 909thHospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Weicheng Ma
- School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, 361024, China.
- Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control, Xiamen, China
| |
Collapse
|
15
|
Sun L, Chen H, Xu D, Liu R, Zhao Y. Developing organs-on-chips for biomedical applications. SMART MEDICINE 2024; 3:e20240009. [PMID: 39188702 PMCID: PMC11236011 DOI: 10.1002/smmd.20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 08/28/2024]
Abstract
In recent years, organs-on-chips have been arousing great interest for their bionic and stable construction of crucial human organs in vitro. Compared with traditional animal models and two-dimensional cell models, organs-on-chips could not only overcome the limitations of species difference and poor predict ability but also be capable of reappearing the complex cell-cell interaction, tissue interface, biofluid and other physiological conditions of humans. Therefore, organs-on-chips have been regarded as promising and powerful tools in diverse fields such as biology, chemistry, medicine and so on. In this perspective, we present a review of organs-on-chips for biomedical applications. After introducing the key elements and manufacturing craft of organs-on-chips, we intend to review their cut-edging applications in biomedical fields, incorporating biological analysis, drug development, robotics and so on. Finally, the emphasis is focused on the perspectives of organs-on-chips.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
| | - Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Dongyu Xu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
16
|
Vasconez Martinez MG, Frauenlob M, Rothbauer M. An update on microfluidic multi-organ-on-a-chip systems for reproducing drug pharmacokinetics: the current state-of-the-art. Expert Opin Drug Metab Toxicol 2024; 20:459-471. [PMID: 38832686 DOI: 10.1080/17425255.2024.2362183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Advances in the accessibility of manufacturing technologies and iPSC-based modeling have accelerated the overall progress of organs-on-a-chip. Notably, the progress in multi-organ systems is not progressing with equal speed, indicating that there are still major technological barriers to overcome that may include biological relevance, technological usability as well as overall accessibility. AREAS COVERED We here review the progress in the field of multi-tissue- and body-on-a-chip pre and post- SARS-CoV-2 pandemic and review five selected studies with increasingly complex multi-organ chips aiming at pharmacological studies. EXPERT OPINION We discuss future and necessary advances in the field of multi-organ chips including how to overcome challenges regarding cell diversity, improved culture conditions, model translatability as well as sensor integrations to enable microsystems to cover organ-organ interactions in not only toxicokinetic but more importantly pharmacodynamic and -kinetic studies.
Collapse
Affiliation(s)
| | - Martin Frauenlob
- CellChipGroup, Institute of Applied Synthetic Chemistry, Technische Universitaet Wien, Vienna, Austria
| | - Mario Rothbauer
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Morais AS, Mendes M, Cordeiro MA, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-Chip: Ubi sumus? Fundamentals and Design Aspects. Pharmaceutics 2024; 16:615. [PMID: 38794277 PMCID: PMC11124787 DOI: 10.3390/pharmaceutics16050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
This review outlines the evolutionary journey from traditional two-dimensional (2D) cell culture to the revolutionary field of organ-on-a-chip technology. Organ-on-a-chip technology integrates microfluidic systems to mimic the complex physiological environments of human organs, surpassing the limitations of conventional 2D cultures. This evolution has opened new possibilities for understanding cell-cell interactions, cellular responses, drug screening, and disease modeling. However, the design and manufacture of microchips significantly influence their functionality, reliability, and applicability to different biomedical applications. Therefore, it is important to carefully consider design parameters, including the number of channels (single, double, or multi-channels), the channel shape, and the biological context. Simultaneously, the selection of appropriate materials compatible with the cells and fabrication methods optimize the chips' capabilities for specific applications, mitigating some disadvantages associated with these systems. Furthermore, the success of organ-on-a-chip platforms greatly depends on the careful selection and utilization of cell resources. Advances in stem cell technology and tissue engineering have contributed to the availability of diverse cell sources, facilitating the development of more accurate and reliable organ-on-a-chip models. In conclusion, a holistic perspective of in vitro cellular modeling is provided, highlighting the integration of microfluidic technology and meticulous chip design, which play a pivotal role in replicating organ-specific microenvironments. At the same time, the sensible use of cell resources ensures the fidelity and applicability of these innovative platforms in several biomedical applications.
Collapse
Affiliation(s)
- Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Marta Agostinho Cordeiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - João J. Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands;
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.S.M.); (M.M.); (M.A.C.); (J.J.S.)
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| |
Collapse
|
18
|
Żuchowska A, Baranowska P, Flont M, Brzózka Z, Jastrzębska E. Review: 3D cell models for organ-on-a-chip applications. Anal Chim Acta 2024; 1301:342413. [PMID: 38553129 DOI: 10.1016/j.aca.2024.342413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Two-dimensional (2D) cultures do not fully reflect the human organs' physiology and the real effectiveness of the used therapy. Therefore, three-dimensional (3D) models are increasingly used in bioanalytical science. Organ-on-a-chip systems are used to obtain cellular in vitro models, better reflecting the human body's in vivo characteristics and allowing us to obtain more reliable results than standard preclinical models. Such 3D models can be used to understand the behavior of tissues/organs in response to selected biophysical and biochemical factors, pathological conditions (the mechanisms of their formation), drug screening, or inter-organ interactions. This review characterizes 3D models obtained in microfluidic systems. These include spheroids/aggregates, hydrogel cultures, multilayers, organoids, or cultures on biomaterials. Next, the methods of formation of different 3D cultures in Organ-on-a-chip systems are presented, and examples of such Organ-on-a-chip systems are discussed. Finally, current applications of 3D cell-on-a-chip systems and future perspectives are covered.
Collapse
Affiliation(s)
- Agnieszka Żuchowska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Patrycja Baranowska
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Magdalena Flont
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Zbigniew Brzózka
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
19
|
Tiktak GP, Gabb A, Brandt M, Diz FR, Bravo-Vásquez K, Peñaherrera-Palma C, Valdiviezo-Rivera J, Carlisle A, Melling LM, Cain B, Megson D, Preziosi R, Shaw KJ. Genetic identification of three CITES-listed sharks using a paper-based Lab-on-a-Chip (LOC). PLoS One 2024; 19:e0300383. [PMID: 38574082 PMCID: PMC10994358 DOI: 10.1371/journal.pone.0300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Threatened shark species are caught in large numbers by artisanal and commercial fisheries and traded globally. Monitoring both which shark species are caught and sold in fisheries, and the export of CITES-restricted products, are essential in reducing illegal fishing. Current methods for species identification rely on visual examination by experts or DNA barcoding techniques requiring specialist laboratory facilities and trained personnel. The need for specialist equipment and/or input from experts means many markets are currently not monitored. We have developed a paper-based Lab-on-a-Chip (LOC) to facilitate identification of three threatened and CITES-listed sharks, bigeye thresher (Alopias superciliosus), pelagic thresher (A. pelagicus) and shortfin mako shark (Isurus oxyrinchus) at market source. DNA was successfully extracted from shark meat and fin samples and combined with DNA amplification and visualisation using Loop Mediated Isothermal Amplification (LAMP) on the LOC. This resulted in the successful identification of the target species of sharks in under an hour, with a working positive and negative control. The LOC provided a simple "yes" or "no" result via a colour change from pink to yellow when one of the target species was present. The LOC serves as proof-of-concept (PoC) for field-based species identification as it does not require specialist facilities. It can be used by non-scientifically trained personnel, especially in areas where there are suspected high frequencies of mislabelling or for the identification of dried shark fins in seizures.
Collapse
Affiliation(s)
- Guuske P. Tiktak
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alexandria Gabb
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
| | - Margarita Brandt
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
- Instituto Biósfera, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Fernando R. Diz
- Marine Conservation Program, WWF Fisheries Ecuador, Guayaquil, Ecuador
| | - Karla Bravo-Vásquez
- Plan de Acción Nacional para la Conservación y el Manejo de Tiburones de Ecuador, Viceministerio de Acuacultura y Pesca, Ministerio de Producción, Comercio Exterior, Inversiones y Pesca, Puerto Pesquero Artesanal de San Mateo, Manta, Manabí, Ecuador
| | | | | | - Aaron Carlisle
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, United States of America
| | - Louise M. Melling
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
| | - Bradley Cain
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
| | - David Megson
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
| | - Richard Preziosi
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Kirsty J. Shaw
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
20
|
Shen F, Gao J, Zhang J, Ai M, Gao H, Liu Z. Vortex sorting of rare particles/cells in microcavities: A review. BIOMICROFLUIDICS 2024; 18:021504. [PMID: 38571909 PMCID: PMC10987199 DOI: 10.1063/5.0174938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Microfluidics or lab-on-a-chip technology has shown great potential for the separation of target particles/cells from heterogeneous solutions. Among current separation methods, vortex sorting of particles/cells in microcavities is a highly effective method for trapping and isolating rare target cells, such as circulating tumor cells, from flowing samples. By utilizing fluid forces and inertial particle effects, this passive method offers advantages such as label-free operation, high throughput, and high concentration. This paper reviews the fundamental research on the mechanisms of focusing, trapping, and holding of particles in this method, designs of novel microcavities, as well as its applications. We also summarize the challenges and prospects of this technique with the hope to promote its applications in medical and biological research.
Collapse
Affiliation(s)
- Feng Shen
- Authors to whom correspondence should be addressed: and
| | - Jie Gao
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Jie Zhang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Mingzhu Ai
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Hongkai Gao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Zhaomiao Liu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
21
|
Zhang Z, Abdalwareth A, Flachenecker G, Angelmahr M, Schade W. Polymer Waveguide Sensor Based on Evanescent Bragg Grating for Lab-on-a-Chip Applications. SENSORS (BASEL, SWITZERLAND) 2024; 24:1234. [PMID: 38400388 PMCID: PMC10893501 DOI: 10.3390/s24041234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
In this work, an evanescent Bragg grating sensor inscribed in a few-mode planar polymer waveguide was integrated into microchannel structures and characterized by various chemical applications. The planar waveguide and the microchannels consisted of epoxide-based polymers. The Bragg grating structure was postprocessed by using point-by-point direct inscription technology. By monitoring the central wavelength shift of the reflected Bragg signal, the sensor showed a temperature sensitivity of -47.75 pm/K. Moreover, the functionality of the evanescent field-based measurements is demonstrated with two application examples: the refractive index sensing of different aqueous solutions and gas-phase hydrogen concentration detection. For the latter application, the sensor was additionally coated with a functional layer based on palladium nanoparticles. During the refractive index sensing measurement, the sensor achieved a sensitivity of 6.5 nm/RIU from air to 99.9% pure isopropyl alcohol. For the gas-phase hydrogen detection, the coated sensor achieved a reproducible concentration detection up to 4 vol% hydrogen. According to the reported experimental results, the integrated Bragg-grating-based waveguide sensor demonstrates high potential for applications based on the lab-on-a-chip concept.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department for Fiber Optical Sensor Systems, Fraunhofer Heinrich Hertz Institute, 38640 Goslar, Germany; (Z.Z.); (A.A.); (M.A.); (W.S.)
- Institute of Energy Research and Physical Technologies, Clausthal University of Technology, 38640 Goslar, Germany
| | - Ahmad Abdalwareth
- Department for Fiber Optical Sensor Systems, Fraunhofer Heinrich Hertz Institute, 38640 Goslar, Germany; (Z.Z.); (A.A.); (M.A.); (W.S.)
- Institute of Energy Research and Physical Technologies, Clausthal University of Technology, 38640 Goslar, Germany
| | - Günter Flachenecker
- Department for Fiber Optical Sensor Systems, Fraunhofer Heinrich Hertz Institute, 38640 Goslar, Germany; (Z.Z.); (A.A.); (M.A.); (W.S.)
| | - Martin Angelmahr
- Department for Fiber Optical Sensor Systems, Fraunhofer Heinrich Hertz Institute, 38640 Goslar, Germany; (Z.Z.); (A.A.); (M.A.); (W.S.)
| | - Wolfgang Schade
- Department for Fiber Optical Sensor Systems, Fraunhofer Heinrich Hertz Institute, 38640 Goslar, Germany; (Z.Z.); (A.A.); (M.A.); (W.S.)
- Institute of Energy Research and Physical Technologies, Clausthal University of Technology, 38640 Goslar, Germany
| |
Collapse
|
22
|
Liang YF, Yang JY, Shen YD, Xu ZL, Wang H. A breakthrough of immunoassay format for hapten: recent insights into noncompetitive immunoassays to detect small molecules. Crit Rev Food Sci Nutr 2024:1-11. [PMID: 38356229 DOI: 10.1080/10408398.2024.2315473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Immunoassay based on the antibodies specific for targets has advantages of high sensitivity, simplicity and low cost, therefore it has received more attention in recent years, especially for the rapid detection of small molecule chemicals present in foods, diagnostics and environments. However, limited by low molecular weight and only one antigenic determinant existed, immunoassays for these small molecule chemicals, namely hapten substances, were commonly performed in a competitive immunoassay format, whose sensitivities were obviously lower than the sandwich enzyme-linked immunosorbent assay generally adaptable for the protein targets. In order to break through the bottleneck of detection format, researchers have designed and established several novel noncompetitive immunoassays for the haptens in the past few years. In this review, we focused on the four representative types of noncompetitive immunoassay formats and described their characteristics and applications in rapid detection of small molecules. Meanwhile, a systematic discussion on the current technologies challenges and the possible solutions were also summarized. This review aims to provide an updated overview of the current state-of-the-art in noncompetitive immunoassay for small molecules, and inspire the development of novel designs for small molecule detection.
Collapse
Affiliation(s)
- Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jin-Yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
R N, Aggarwal A, Sravani AB, Mallya P, Lewis S. Organ-On-A-Chip: An Emerging Research Platform. Organogenesis 2023; 19:2278236. [PMID: 37965897 PMCID: PMC10653779 DOI: 10.1080/15476278.2023.2278236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
In drug development, conventional preclinical and clinical testing stages rely on cell cultures and animal experiments, but these methods may fall short of fully representing human biology. To overcome this limitation, the emergence of organ-on-a-chip (OOC) technology has sparked interest as a transformative approach in drug testing research. By closely replicating human organ responses to external signals, OOC devices hold immense potential in revolutionizing drug efficacy and safety predictions. This review focuses on the advancements, applications, and prospects of OOC devices in drug testing. Based on the latest advances in the field of OOC systems and their clinical applications, this review reflects the effectiveness of OOC devices in replacing human volunteers in certain clinical studies. This review underscores the critical role of OOC technology in transforming drug testing methodologies.
Collapse
Affiliation(s)
- Nithin R
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Ayushi Aggarwal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Anne Boyina Sravani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Pooja Mallya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
24
|
Bouges E, Segers C, Leys N, Lebeer S, Zhang J, Mastroleo F. Human Intestinal Organoids and Microphysiological Systems for Modeling Radiotoxicity and Assessing Radioprotective Agents. Cancers (Basel) 2023; 15:5859. [PMID: 38136404 PMCID: PMC10741417 DOI: 10.3390/cancers15245859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy is a commonly employed treatment for colorectal cancer, yet its radiotoxicity-related impact on healthy tissues raises significant health concerns. This highlights the need to use radioprotective agents to mitigate these side effects. This review presents the current landscape of human translational radiobiology, outlining the limitations of existing models and proposing engineering solutions. We delve into radiotherapy principles, encompassing mechanisms of radiation-induced cell death and its influence on normal and cancerous colorectal cells. Furthermore, we explore the engineering aspects of microphysiological systems to represent radiotherapy-induced gastrointestinal toxicity and how to include the gut microbiota to study its role in treatment failure and success. This review ultimately highlights the main challenges and future pathways in translational research for pelvic radiotherapy-induced toxicity. This is achieved by developing a humanized in vitro model that mimics radiotherapy treatment conditions. An in vitro model should provide in-depth analyses of host-gut microbiota interactions and a deeper understanding of the underlying biological mechanisms of radioprotective food supplements. Additionally, it would be of great value if these models could produce high-throughput data using patient-derived samples to address the lack of human representability to complete clinical trials and improve patients' quality of life.
Collapse
Affiliation(s)
- Eloïse Bouges
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Charlotte Segers
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Natalie Leys
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium;
| | - Jianbo Zhang
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, Location Academic Medical Center, 1105 BK Amsterdam, The Netherlands
| | - Felice Mastroleo
- RadioPharma Research, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.B.); (C.S.); (N.L.)
| |
Collapse
|
25
|
Krakos A. Lab-on-chip technologies for space research - current trends and prospects. Mikrochim Acta 2023; 191:31. [PMID: 38095809 PMCID: PMC10721686 DOI: 10.1007/s00604-023-06084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
The in-depth analysis concerning application of microfluidic instruments for space biology research is presented. The article focuses on recently investigated key scientific fields, i.e., lab-on-chips applied to the biomedical studies performed in the (1) International Space Station and (2) CubeSat nanosatellites. The paper presents also the lab-on-chip devices that were fabricated with a view to future space biology research and to those that to date have been solely been tested under Earth laboratory conditions and/or simulated microgravity environments. NASA and ESA conceptual mission plans for future are also mentioned, concerning for instance "tissue chips" and the ESA-SPHEROIDS campaign. The paper ends with final conclusions and future perspectives regarding lab-on-chip application in the space biology sector and its impact on novel biomedical and pharmaceutical strategies.
Collapse
Affiliation(s)
- Agnieszka Krakos
- Department of Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland.
| |
Collapse
|
26
|
Zhao P, Peng Y, Wang Y, Hu Y, Qin J, Li D, Yan K, Fan Z. Mechanistic study of ultrasound and microbubble enhanced cancer therapy in a 3D vascularized microfluidic cancer model. ULTRASONICS SONOCHEMISTRY 2023; 101:106709. [PMID: 38043461 PMCID: PMC10704430 DOI: 10.1016/j.ultsonch.2023.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Accumulating evidence has shown that ultrasound exposure combined with microbubbles can enhance cancer therapy. However, the underlying mechanisms at the tissue level have not been fully understood yet. The conventional cell culture in vitro lacks complex structure and interaction, while animal studies cannot provide micron-scale dynamic information. To bridge the gap, we designed and assembled a 3D vascularized microfluidic cancer model, particularly suitable for ultrasound and microbubble involved mechanistic studies. Using this model, we first studied SonoVue microbubble traveling dynamics in 3D tissue structure, then resolved SonoVue microbubble cavitation dynamics in tissue mimicking agarose gels at a frame rate of 0.675 M fps, and finally explored the impacts of ultrasound and microbubbles on cancer cell spheroids. Our results demonstrate that microbubble penetration in agarose gel was enhanced by increasing microbubble concentration, flow rate and decreasing viscosity of the gel, and little affected by mild acoustic radiation force. SonoVue microbubble exhibited larger expansion amplitudes in 2 %(w/v) agarose gels than in water, which can be explained theoretically by the relaxation of the cavitation medium. The immediate impacts of ultrasound and SonoVue microbubbles to cancer cell spheroids in the 3D tissue model included improved cancer cell spheroid penetration in micron-scale and sparse direct permanent cancer cell damage. Our study provides new insights of the mechanisms for ultrasound and microbubble enhanced cancer therapy at the tissue level.
Collapse
Affiliation(s)
- Pu Zhao
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yingxiao Peng
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yanjie Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yi Hu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Jixing Qin
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dachao Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Kun Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Zhenzhen Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
27
|
Kawakami T, Shiro C, Nishikawa H, Kong X, Tomiyama H, Yamashita S. A Deep Reinforcement Learning Approach to Droplet Routing for Erroneous Digital Microfluidic Biochips. SENSORS (BASEL, SWITZERLAND) 2023; 23:8924. [PMID: 37960623 PMCID: PMC10649759 DOI: 10.3390/s23218924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Digital microfluidic biochips (DMFBs), which are used in various fields like DNA analysis, clinical diagnosis, and PCR testing, have made biochemical experiments more compact, efficient, and user-friendly than the previous methods. However, their reliability is often compromised by their inability to adapt to all kinds of errors. Errors in biochips can be categorized into two types: known errors, and unknown errors. Known errors are detectable before the start of the routing process using sensors or cameras. Unknown errors, in contrast, only become apparent during the routing process and remain undetected by sensors or cameras, which can unexpectedly stop the routing process and diminish the reliability of biochips. This paper introduces a deep reinforcement learning-based routing algorithm, designed to manage not only known errors but also unknown errors. Our experiments demonstrated that our algorithm outperformed the previous ones in terms of the success rate of the routing, in the scenarios including both known errors and unknown errors. Additionally, our algorithm contributed to detecting unknown errors during the routing process, identifying the most efficient routing path with a high probability.
Collapse
Affiliation(s)
- Tomohisa Kawakami
- Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan; (C.S.); (H.T.)
| | - Chiharu Shiro
- Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan; (C.S.); (H.T.)
| | - Hiroki Nishikawa
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan;
| | - Xiangbo Kong
- Department of Intelligent Robotics, Faculty of Engineering, Toyama Prefectural University, Imizu 939-0398, Japan;
| | - Hiroyuki Tomiyama
- Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan; (C.S.); (H.T.)
| | - Shigeru Yamashita
- College of Information Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan;
| |
Collapse
|
28
|
de Almeida JPB, de A Carvalho V, da Silva LP, do Nascimento ML, de Oliveira SB, Maia MV, Suarez WT, Garcia CD, Dos Santos VB. Lab-on-a-Drone: remote voltammetric analysis of lead in water with real-time data transmission. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4827-4833. [PMID: 37587794 DOI: 10.1039/d3ay01088k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The present work describes a laboratory-on-a-drone (Lab-on-a-Drone) developed to perform in situ detection of contaminants in environmental water samples. Toward this goal, the system was mounted on an unmanned aerial vehicle (UAV) (drone) and remotely controlled via Wi-Fi to acquire a water sample, perform the electrochemical detection step, and then send the voltammetry data to a smartphone. This Lab-on-a-Drone system was also able to recharge its battery using a solar cell, greatly increasing the autonomy of the system, even in the absence of a power line. As a proof of concept, the Lab-on-a-Drone was employed for the detection of Pb2+ in environmental waters, using a simple electrochemical cell containing a miniaturized screen-printed boron-doped diamond electrode (SP-BDDE) as a working electrode, an Ag/AgCl as a reference electrode, and a graphite ink as a counter electrode. For quantification purposes, analytical curves were constructed covering a concentration range from 1.0 μg L-1 (4.83 nmol L-1) to 80.0 μg L-1 (386.10 nmol L-1), featuring a detection limit of 0.062 μg L-1 (0.30 nmol L-1). The Lab-on-a-Drone was applied to monitor a water reservoir in the Metropolitan Region of Recife, Brazil. To evaluate its performance regarding accuracy and precision, a reference method based on inductively coupled plasma optical emission spectrometry (ICP-OES) was applied, and the results obtained by both methods showed no statistical differences (t-test at 95% confidence level, n = 3). These results represent the first demonstration of the capabilities of an adapted UAV for the quantification of electroactive environmental contaminant using voltammetry, with real-time data transmission. Thus, the Lab-on-a-Drone makes it possible to reach difficult-to-access environmental reserves and to monitor potentially polluting activity in distant water bodies. Thus, this tool can be used by governments and non-profit organizations to monitor environmental waters using fast, low-cost, process autonomy with accurate and precise data useful to decision making.
Collapse
Affiliation(s)
- João Paulo B de Almeida
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Vinicius de A Carvalho
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Leandro P da Silva
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Maysa L do Nascimento
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
- Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | | | | | | | | | - Vagner B Dos Santos
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| |
Collapse
|
29
|
Saravanakumar SM, Cicek PV. Microfluidic Mixing: A Physics-Oriented Review. MICROMACHINES 2023; 14:1827. [PMID: 37893264 PMCID: PMC10609072 DOI: 10.3390/mi14101827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023]
Abstract
This comprehensive review paper focuses on the intricate physics of microfluidics and their application in micromixing techniques. Various methods for enhancing mixing in microchannels are explored, with a keen emphasis on the underlying fluid dynamics principles. Geometrical micromixers employ complex channel designs to induce fluid-fluid interface distortions, yielding efficient mixing while retaining manufacturing simplicity. These methods synergize effectively with external techniques, showcasing promising potential. Electrohydrodynamics harnesses electrokinetic phenomena like electroosmosis, electrophoresis, and electrothermal effects. These methods offer dynamic control over mixing parameters via applied voltage, frequency, and electrode positioning, although power consumption and heating can be drawbacks. Acoustofluidics leverages acoustic waves to drive microstreaming, offering localized yet far-reaching effects. Magnetohydrodynamics, though limited in applicability to certain fluids, showcases potential by utilizing magnetic fields to propel mixing. Selecting an approach hinges on trade-offs among complexity, efficiency, and compatibility with fluid properties. Understanding the physics of fluid behavior and rationalizing these techniques aids in tailoring the most suitable micromixing solution. In a rapidly advancing field, this paper provides a consolidated understanding of these techniques, facilitating the informed choice of approach for specific microfluidic mixing needs.
Collapse
Affiliation(s)
| | - Paul-Vahe Cicek
- Microtechnologies Integration & Convergence Research Group, Université du Québec à Montréal (UQAM), Montreal, QC H2X 3Y7, Canada
| |
Collapse
|
30
|
Jang Y, Jung J, Oh J. Bio-Microfabrication of 2D and 3D Biomimetic Gut-on-a-Chip. MICROMACHINES 2023; 14:1736. [PMID: 37763899 PMCID: PMC10537549 DOI: 10.3390/mi14091736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Traditional goal of microfabrication was to limitedly construct nano- and micro-geometries on silicon or quartz wafers using various semiconductor manufacturing technologies, such as photolithography, soft lithography, etching, deposition, and so on. However, recent integration with biotechnologies has led to a wide expansion of microfabrication. In particular, many researchers studying pharmacology and pathology are very interested in producing in vitro models that mimic the actual intestine to study the effectiveness of new drug testing and interactions between organs. Various bio-microfabrication techniques have been developed while solving inherent problems when developing in vitro micromodels that mimic the real large intestine. This intensive review introduces various bio-microfabrication techniques that have been used, until recently, to realize two-dimensional and three-dimensional biomimetic experimental models. Regarding the topic of gut chips, two major review subtopics and two-dimensional and three-dimensional gut chips were employed, focusing on the membrane-based manufacturing process for two-dimensional gut chips and the scaffold-based manufacturing process for three-dimensional gut chips, respectively.
Collapse
Affiliation(s)
- Yeongseok Jang
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Jinmu Jung
- Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| | - Jonghyun Oh
- Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| |
Collapse
|
31
|
Krakos A, Cieślak A, Hartel E, Łabowska MB, Kulbacka J, Detyna J. 3D bio-printed hydrogel inks promoting lung cancer cell growth in a lab-on-chip culturing platform. Mikrochim Acta 2023; 190:349. [PMID: 37572169 PMCID: PMC10423169 DOI: 10.1007/s00604-023-05931-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
The results of a lab-on-chip (LOC) platform fabrication equipped with a hydrogel matrix is reported. A 3D printing technique was used to provide a hybrid, "sandwiched" type structure, including two microfluidic substrates of different origins. Special attention was paid to achieving uniformly bio-printed microfluidic hydrogel layers of a unique composition. Six different hydrogel inks were proposed containing sodium alginate, agar, chitosan, gelatin, methylcellulose, deionized water, or 0.9% NaCl, varying in proportions. All of them exhibited appropriate mechanical properties showing, e.g., the value of elasticity modulus as similar to that of biological tissues, such as skin. Utilizing our biocompatible, entirely 3D bio-printed structure, for the first time, a multi-drug-resistant lung cancer cell line (H69AR) was cultured on-chip. Biological validation of the device was performed qualitatively and quantitatively utilizing LIVE/DEAD assays and Presto blue staining. Although all bio-inks exhibited acceptable cell viability, the best results were obtained for the hydrogel composition including 3% sodium alginate + 7% gelatin + 90% NaCl (0.9%), reaching approximately 127.2% after 24 h and 105.4% after 48 h compared to the control group (100%). Further research in this area will focus on the microfluidic culture of the chosen cancer cell line (H69AR) and the development of novel drug delivery strategies towards appropriate in vivo models for chemotherapy and polychemotherapy treatment.
Collapse
Affiliation(s)
- Agnieszka Krakos
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland.
| | - Adrianna Cieślak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-371, Wroclaw, Poland
| | - Eliza Hartel
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| | - Magdalena Beata Łabowska
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-371, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jerzy Detyna
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-371, Wroclaw, Poland
| |
Collapse
|
32
|
Meyer KV, Winkler S, Lienig P, Dräger G, Bahnemann J. 3D-Printed Microfluidic Perfusion System for Parallel Monitoring of Hydrogel-Embedded Cell Cultures. Cells 2023; 12:1816. [PMID: 37508481 PMCID: PMC10378615 DOI: 10.3390/cells12141816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The use of three-dimensional (3D) cell cultures has become increasingly popular in the contexts of drug discovery, disease modelling, and tissue engineering, as they aim to replicate in vivo-like conditions. To achieve this, new hydrogels are being developed to mimic the extracellular matrix. Testing the ability of these hydrogels is crucial, and the presented 3D-printed microfluidic perfusion system offers a novel solution for the parallel cultivation and evaluation of four separate 3D cell cultures. This system enables easy microscopic monitoring of the hydrogel-embedded cells and significantly reduces the required volumes of hydrogel and cell suspension. This cultivation device is comprised of two 3D-printed parts, which provide four cell-containing hydrogel chambers and the associated perfusion medium chambers. An interfacing porous membrane ensures a defined hydrogel thickness and prevents flow-induced hydrogel detachment. Integrated microfluidic channels connect the perfusion chambers to the overall perfusion system, which can be operated in a standard CO2-incubator. A 3D-printed adapter ensures the compatibility of the cultivation device with standard imaging systems. Cultivation and cell staining experiments with hydrogel-embedded murine fibroblasts confirmed that cell morphology, viability, and growth inside this cultivation device are comparable with those observed within standard 96-well plates. Due to the high degree of customization offered by additive manufacturing, this system has great potential to be used as a customizable platform for 3D cell culture applications.
Collapse
Affiliation(s)
- Katharina V Meyer
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Steffen Winkler
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Pascal Lienig
- Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Gerald Dräger
- Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
33
|
Zhao Y, Wang X, Sun T, Shan P, Zhan Z, Zhao Z, Jiang Y, Qu M, Lv Q, Wang Y, Liu P, Chen S. Artificial intelligence-driven electrochemical immunosensing biochips in multi-component detection. BIOMICROFLUIDICS 2023; 17:041301. [PMID: 37614678 PMCID: PMC10444200 DOI: 10.1063/5.0160808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
Electrochemical Immunosensing (EI) combines electrochemical analysis and immunology principles and is characterized by its simplicity, rapid detection, high sensitivity, and specificity. EI has become an important approach in various fields, such as clinical diagnosis, disease prevention and treatment, environmental monitoring, and food safety. However, EI multi-component detection still faces two major bottlenecks: first, the lack of cost-effective and portable detection platforms; second, the difficulty in eliminating batch differences and accurately decoupling signals from multiple analytes. With the gradual maturation of biochip technology, high-throughput analysis and portable detection utilizing the advantages of miniaturized chips, high sensitivity, and low cost have become possible. Meanwhile, Artificial Intelligence (AI) enables accurate decoupling of signals and enhances the sensitivity and specificity of multi-component detection. We believe that by evaluating and analyzing the characteristics, benefits, and linkages of EI, biochip, and AI technologies, we may considerably accelerate the development of EI multi-component detection. Therefore, we propose three specific prospects: first, AI can enhance and optimize the performance of the EI biochips, addressing the issue of multi-component detection for portable platforms. Second, the AI-enhanced EI biochips can be widely applied in home care, medical healthcare, and other areas. Third, the cross-fusion and innovation of EI, biochip, and AI technologies will effectively solve key bottlenecks in biochip detection, promoting interdisciplinary development. However, challenges may arise from AI algorithms that are difficult to explain and limited data access. Nevertheless, we believe that with technological advances and further research, there will be more methods and technologies to overcome these challenges.
Collapse
Affiliation(s)
- Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066000, Hebei, China
| | - Xiaoai Wang
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066000, Hebei, China
| | - Tingting Sun
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066000, Hebei, China
| | - Peng Shan
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066000, Hebei, China
| | - Zhikun Zhan
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066000, Hebei, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Mingyue Qu
- The PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Ying Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| |
Collapse
|
34
|
Natu R, Herbertson L, Sena G, Strachan K, Guha S. A Systematic Analysis of Recent Technology Trends of Microfluidic Medical Devices in the United States. MICROMACHINES 2023; 14:1293. [PMID: 37512604 PMCID: PMC10384103 DOI: 10.3390/mi14071293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023]
Abstract
In recent years, the U.S. Food and Drug Administration (FDA) has seen an increase in microfluidic medical device submissions, likely stemming from recent advancements in microfluidic technologies. This recent trend has only been enhanced during the COVID-19 pandemic, as microfluidic-based test kits have been used for diagnosis. To better understand the implications of this emerging technology, device submissions to the FDA from 2015 to 2021 containing microfluidic technologies have been systematically reviewed to identify trends in microfluidic medical applications, performance tests, standards used, fabrication techniques, materials, and flow systems. More than 80% of devices with microfluidic platforms were found to be diagnostic in nature, with lateral flow systems accounting for about 35% of all identified microfluidic devices. A targeted analysis of over 40,000 adverse event reports linked to microfluidic technologies revealed that flow, operation, and data output related failures are the most common failure modes for these device types. Lastly, this paper highlights key considerations for developing new protocols for various microfluidic applications that use certain analytes (e.g., blood, urine, nasal-pharyngeal swab), materials, flow, and detection mechanisms. We anticipate that these considerations would help facilitate innovation in microfluidic-based medical devices.
Collapse
Affiliation(s)
- Rucha Natu
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
| | - Luke Herbertson
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
| | - Grazziela Sena
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
| | - Kate Strachan
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
| | - Suvajyoti Guha
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Silver Spring, MD 20993, USA
| |
Collapse
|
35
|
Lehmann S, Kraft FA, Gerken M. Spatially Resolved Protein Binding Kinetics Analysis in Microfluidic Photonic Crystal Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:5637. [PMID: 37420803 DOI: 10.3390/s23125637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
Organ-on-a-Chip systems are emerging as an important in vitro analysis method for drug screening and medical research. For continuous biomolecular monitoring of the cell culture response, label-free detection within the microfluidic system or in the drainage tube is promising. We study photonic crystal slabs integrated with a microfluidic chip as an optical transducer for label-free biomarker detection with a non-contact readout of binding kinetics. This work analyzes the capability of same-channel reference for protein binding measurements by using a spectrometer and 1D spatially resolved data evaluation with a spatial resolution of 1.2 μm. A cross-correlation-based data-analysis procedure is implemented. First, an ethanol-water dilution series is used to obtain the limit of detection (LOD). The median of all row LODs is (2.3±0.4)×10-4 RIU with 10 s exposure time per image and (1.3±0.24)×10-4 RIU with 30 s exposure time. Next, we used a streptavidin-biotin binding process as a test system for binding kinetics. Time series of optical spectra were recorded while constantly injecting streptavidin in DPBS at concentrations of 1.6 nM, 3.3 nM, 16.6 nM and 33.3 nM into one channel half as well as the whole channel. The results show that localized binding within a microfluidic channel is achieved under laminar flow. Furthermore, binding kinetics are fading out at the microfluidic channel edge due to the velocity profile.
Collapse
Affiliation(s)
- Stefanie Lehmann
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| | - Fabio Aldo Kraft
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| | - Martina Gerken
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
36
|
de Freitas CF, de Araújo Santos J, Pellosi DS, Caetano W, Batistela VR, Muniz EC. Recent advances of Pluronic-based copolymers functionalization in biomedical applications. BIOMATERIALS ADVANCES 2023; 151:213484. [PMID: 37276691 DOI: 10.1016/j.bioadv.2023.213484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
The design of polymeric biocompatible nanomaterials for biological and medical applications has received special attention in recent years. Among different polymers, the triblock type copolymers (EO)x(PO)y(EO)x or Pluronics® stand out due its favorable characteristics such as biocompatibility, low tissue adhesion, thermosensitivity, and structural capacity to produce different types of macro and nanostructures, e.g. micelles, vesicles, nanocapsules, nanospheres, and hydrogels. However, Pluronic itself is not the "magic bullet" and its functionalization via chemical synthesis following biologically oriented design rules is usually required aiming to improve its properties. Therefore, this paper presents some of the main publications on new methodologies for synthetic modifications and applications of Pluronic-based nanoconstructs in the biomedical field in the last 15 years. In general, the polymer modifications aim to improve physical-chemical properties related to the micellization process or physical entrapment of drug cargo, responsive stimuli, active targeting, thermosensitivity, gelling ability, and hydrogel formation. Among these applications, it can be highlighted the treatment of malignant neoplasms, infectious diseases, wound healing, cellular regeneration, and tissue engineering. Functionalized Pluronic has also been used for various purposes, including medical diagnosis, medical imaging, and even miniaturization, such as the creation of lab-on-a-chip devices. In this context, this review discusses the main scientific contributions to the designing, optimization, and improvement of covalently functionalized Pluronics aiming at new strategies focused on the multiple areas of the biomedical field.
Collapse
Affiliation(s)
- Camila Fabiano de Freitas
- Department of Chemistry, Federal University of Santa Catarina - UFSC, Eng. Agronômico Andrei Cristian Ferreira, s/n, Trindade, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Jailson de Araújo Santos
- PhD Program in Materials Science and Engineering, Federal University of Piauí, Campus Petrônio Portela, Ininga, Teresina CEP 64049-550, Piauí, Brazil
| | - Diogo Silva Pellosi
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil
| | - Vagner Roberto Batistela
- Department of Pharmacology and Therapeutics, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil
| | - Edvani Curti Muniz
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, 87020-900 Maringá, Paraná, Brazil; Department of Chemistry, Federal University of Piauí, Campus Petronio Portella, Ininga, Teresina CEP 64049-550, Piauí, Brazil.
| |
Collapse
|
37
|
Abstract
The topological properties of an object, associated with an integer called the topological invariant, are global features that cannot change continuously but only through abrupt variations, hence granting them intrinsic robustness. Engineered metamaterials (MMs) can be tailored to support highly nontrivial topological properties of their band structure, relative to their electronic, electromagnetic, acoustic and mechanical response, representing one of the major breakthroughs in physics over the past decade. Here, we review the foundations and the latest advances of topological photonic and phononic MMs, whose nontrivial wave interactions have become of great interest to a broad range of science disciplines, such as classical and quantum chemistry. We first introduce the basic concepts, including the notion of topological charge and geometric phase. We then discuss the topology of natural electronic materials, before reviewing their photonic/phononic topological MM analogues, including 2D topological MMs with and without time-reversal symmetry, Floquet topological insulators, 3D, higher-order, non-Hermitian and nonlinear topological MMs. We also discuss the topological aspects of scattering anomalies, chemical reactions and polaritons. This work aims at connecting the recent advances of topological concepts throughout a broad range of scientific areas and it highlights opportunities offered by topological MMs for the chemistry community and beyond.
Collapse
Affiliation(s)
- Xiang Ni
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Simon Yves
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- Department of Electrical Engineering, City College, The City University of New York, 160 Convent Avenue, New York, New York 10031, United States
- Physics Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
38
|
Hewlin RL, Edwards M, Schultz C. Design and Development of a Traveling Wave Ferro-Microfluidic Device and System Rig for Potential Magnetophoretic Cell Separation and Sorting in a Water-Based Ferrofluid. MICROMACHINES 2023; 14:889. [PMID: 37421122 PMCID: PMC10145302 DOI: 10.3390/mi14040889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 06/29/2023]
Abstract
The timely detection and diagnosis of diseases and accurate monitoring of specific genetic conditions require rapid and accurate separation, sorting, and direction of target cell types toward a sensor device surface. In that regard, cellular manipulation, separation, and sorting are progressively finding application potential within various bioassay applications such as medical disease diagnosis, pathogen detection, and medical testing. The aim of this paper is to present the design and development of a simple traveling wave ferro-microfluidic device and system rig purposed for the potential manipulation and magnetophoretic separation of cells in water-based ferrofluids. This paper details in full: (1) a method for tailoring cobalt ferrite nanoparticles for specific diameter size ranges (10-20 nm), (2) the development of a ferro-microfluidic device for potentially separating cells and magnetic nanoparticles, (3) the development of a water-based ferrofluid with magnetic nanoparticles and non-magnetic microparticles, and (4) the design and development of a system rig for producing the electric field within the ferro-microfluidic channel device for magnetizing and manipulating nonmagnetic particles in the ferro-microfluidic channel. The results reported in this work demonstrate a proof of concept for magnetophoretic manipulation and separation of magnetic and non-magnetic particles in a simple ferro-microfluidic device. This work is a design and proof-of-concept study. The design reported in this model is an improvement over existing magnetic excitation microfluidic system designs in that heat is efficiently removed from the circuit board to allow a range of input currents and frequencies to manipulate non-magnetic particles. Although this work did not analyze the separation of cells from magnetic particles, the results demonstrate that non-magnetic (surrogates for cellular materials) and magnetic entities can be separated and, in some cases, continuously pushed through the channel based on amperage, size, frequency, and electrode spacing. The results reported in this work establish that the developed ferro-microfluidic device may potentially be used as an effective platform for microparticle and cellular manipulation and sorting.
Collapse
Affiliation(s)
- Rodward L. Hewlin
- Center for Biomedical Engineering and Science (CBES), Department of Engineering Technology and Construction Management (ETCM), University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Maegan Edwards
- Center for Biomedical Engineering and Science (CBES), Department of Engineering Technology and Construction Management (ETCM), University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Applied Energy and Electromechanical Systems (AEES), Department of Engineering Technology and Construction Management (ETCM), University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Christopher Schultz
- Center for Biomedical Engineering and Science (CBES), Department of Engineering Technology and Construction Management (ETCM), University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
39
|
Aghababaie M, Foroushani ES, Changani Z, Gunani Z, Mobarakeh MS, Hadady H, Khedri M, Maleki R, Asadnia M, Razmjou A. Recent Advances In the development of enzymatic paper-based microfluidic biosensors. Biosens Bioelectron 2023; 226:115131. [PMID: 36804663 DOI: 10.1016/j.bios.2023.115131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Using microfluidic paper-based analytical devices has attracted considerable attention in recent years. This is mainly due to their low cost, availability, portability, simple design, high selectivity, and sensitivity. Owing to their specific substrates and catalytic functions, enzymes are the most commonly used bioactive agents in μPADs. Enzymatic μPADs are various in design, fabrication, and detection methods. This paper provides a comprehensive review of the development of enzymatic μPADs by considering the methods of detection and fabrication. Particularly, techniques for mass production of these enzymatic μPADs for use in different fields such as medicine, environment, agriculture, and food industries are critically discussed. This paper aims to provide a critical review of μPADs and discuss different fabrication methods as the central parts of the μPADs production categorized into printable and non-printable methods. In addition, state-of-the-art technologies such as fully printed enzymatic μPADs for rapid, low-cost, and mass production and improvement have been considered.
Collapse
Affiliation(s)
- Marzieh Aghababaie
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Elnaz Sarrami Foroushani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Zinat Changani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Zahra Gunani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, FInland.
| | - Mahsa Salehi Mobarakeh
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Mechanical and Aerospace Engineering, Carleton University, Colonel by Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Hanieh Hadady
- Cell Science Research Centre, Royan Institute of Biotechnology, Isfahan, Iran.
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
40
|
Hewlin RL, Edwards M. Continuous Flow Separation of Red Blood Cells and Platelets in a Y-Microfluidic Channel Device with Saw-Tooth Profile Electrodes via Low Voltage Dielectrophoresis. Curr Issues Mol Biol 2023; 45:3048-3067. [PMID: 37185724 PMCID: PMC10136998 DOI: 10.3390/cimb45040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Cell counting and sorting is a vital step in the purification process within the area of biomedical research. It has been widely reported and accepted that the use of hydrodynamic focusing in conjunction with the application of a dielectrophoretic (DEP) force allows efficient separation of biological entities such as platelets from red blood cell (RBC) samples due to their size difference. This paper presents computational results of a multiphysics simulation modelling study on evaluating continuous separation of RBCs and platelets in a microfluidic device design with saw-tooth profile electrodes via DEP. The theoretical cell particle trajectory, particle cell counting, and particle separation distance study results reported in this work were predicted using COMSOL v6.0 Multiphysics simulation software. To validate the numerical model used in this work for the reported device design, we first developed a simple y-channel microfluidic device with square “in fluid” electrodes similar to the design reported previously in other works. We then compared the obtained simulation results for the simple y-channel device with the square in fluid electrodes to the reported experimental work done on this simple design which resulted in 98% agreement. The design reported in this work is an improvement over existing designs in that it can perform rapid separation of RBCs (estimated 99% purification) and platelets in a total time of 6–7 s at a minimum voltage setting of 1 V and at a minimum frequency of 1 Hz. The threshold for efficient separation of cells ends at 1000 kHz for a 1 V setting. The saw-tooth electrode profile appears to be an improvement over existing designs in that the sharp corners reduced the required horizontal distance needed for separation to occur and contributed to a non-uniform DEP electric field. The results of this simulation study further suggest that this DEP separation technique may potentially be applied to improve the efficiency of separation processes of biological sample scenarios and simultaneously increase the accuracy of diagnostic processes via cell counting and sorting.
Collapse
Affiliation(s)
- Rodward L. Hewlin
- Center for Biomedical Engineering and Science (CBES), Department of Engineering Technology and Construction Management (ETCM), University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Applied Energy and Electromechanical Systems (AEES), Department of Engineering Technology and Construction Management (ETCM), University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Maegan Edwards
- Applied Energy and Electromechanical Systems (AEES), Department of Engineering Technology and Construction Management (ETCM), University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
41
|
Rogers G, Barker S, Sharma M, Khakoo S, Utz M. Operando NMR metabolomics of a microfluidic cell culture. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107405. [PMID: 36842430 DOI: 10.1016/j.jmr.2023.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
In this work we demonstrate the use of microfluidic NMR for in situ culture and quantitative analysis of metabolism in hepatocellular carcinoma (HCC) cell lines. A hydrothermal heating system is used to enable continuous in situ NMR observation of HCC cell culture over a 24 h incubation period. This technique is nondestructive, non-invasive and can measure millimolar concentrations at microlitre volumes, within a few minutes and in precisely controlled culture conditions. This is sufficient to observe changes in primary energy metabolism, using around 500-3500 cells per device, and with a time resolution of 17 min. The ability to observe intracellular responses in a time-resolved manner provides a more detailed view of a biological system and how it reacts to stimuli. This capability will allow detailed metabolomic studies of cell-culture based cancer models, enabling quantification of metabolic reporgramming, the metabolic tumor microenvironment, and the metabolic interplay between cancer- and immune cells.
Collapse
Affiliation(s)
- Genevieve Rogers
- School of Medicine, University of Southampton, Tremona Road, Southampton, SO17 1BJ Hampshire, UK
| | - Sylwia Barker
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ Hampshire, UK
| | - Manvendra Sharma
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ Hampshire, UK
| | - Salim Khakoo
- School of Medicine, University of Southampton, Tremona Road, Southampton, SO17 1BJ Hampshire, UK
| | - Marcel Utz
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ Hampshire, UK.
| |
Collapse
|
42
|
Melo-Fonseca F, Carvalho O, Gasik M, Miranda G, Silva FS. Mechanical stimulation devices for mechanobiology studies: a market, literature, and patents review. Biodes Manuf 2023. [DOI: 10.1007/s42242-023-00232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractSignificant advancements in various research and technological fields have contributed to remarkable findings on the physiological dynamics of the human body. To more closely mimic the complex physiological environment, research has moved from two-dimensional (2D) culture systems to more sophisticated three-dimensional (3D) dynamic cultures. Unlike bioreactors or microfluidic-based culture models, cells are typically seeded on polymeric substrates or incorporated into 3D constructs which are mechanically stimulated to investigate cell response to mechanical stresses, such as tensile or compressive. This review focuses on the working principles of mechanical stimulation devices currently available on the market or custom-built by research groups or protected by patents and highlights the main features still open to improvement. These are the features which could be focused on to perform, in the future, more reliable and accurate mechanobiology studies.
Graphic abstract
Collapse
|
43
|
García-Hernández LA, Martínez-Martínez E, Pazos-Solís D, Aguado-Preciado J, Dutt A, Chávez-Ramírez AU, Korgel B, Sharma A, Oza G. Optical Detection of Cancer Cells Using Lab-on-a-Chip. BIOSENSORS 2023; 13:bios13040439. [PMID: 37185514 PMCID: PMC10136345 DOI: 10.3390/bios13040439] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
The global need for accurate and efficient cancer cell detection in biomedicine and clinical diagnosis has driven extensive research and technological development in the field. Precision, high-throughput, non-invasive separation, detection, and classification of individual cells are critical requirements for successful technology. Lab-on-a-chip devices offer enormous potential for solving biological and medical problems and have become a priority research area for microanalysis and manipulating cells. This paper reviews recent developments in the detection of cancer cells using the microfluidics-based lab-on-a-chip method, focusing on describing and explaining techniques that use optical phenomena and a plethora of probes for sensing, amplification, and immobilization. The paper describes how optics are applied in each experimental method, highlighting their advantages and disadvantages. The discussion includes a summary of current challenges and prospects for cancer diagnosis.
Collapse
Affiliation(s)
- Luis Abraham García-Hernández
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Pedro Escobedo, Querétaro C.P. 76703, Mexico
| | | | - Denni Pazos-Solís
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Querétaro C.P. 76130, Mexico
| | - Javier Aguado-Preciado
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Querétaro C.P. 76130, Mexico
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Circuito Exterior S/N Ciudad Universitaria, Mexico City C.P. 04510, Mexico
| | - Abraham Ulises Chávez-Ramírez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Pedro Escobedo, Querétaro C.P. 76703, Mexico
| | - Brian Korgel
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Querétaro C.P. 76130, Mexico
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Pedro Escobedo, Querétaro C.P. 76703, Mexico
| |
Collapse
|
44
|
Borriello M, Tarabella G, D’Angelo P, Liboà A, Barra M, Vurro D, Lombari P, Coppola A, Mazzella E, Perna AF, Ingrosso D. Lab on a Chip Device for Diagnostic Evaluation and Management in Chronic Renal Disease: A Change Promoting Approach in the Patients' Follow Up. BIOSENSORS 2023; 13:373. [PMID: 36979584 PMCID: PMC10046018 DOI: 10.3390/bios13030373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Lab-on-a-chip (LOC) systems are miniaturized devices aimed to perform one or several analyses, normally carried out in a laboratory setting, on a single chip. LOC systems have a wide application range, including diagnosis and clinical biochemistry. In a clinical setting, LOC systems can be associated with the Point-of-Care Testing (POCT) definition. POCT circumvents several steps in central laboratory testing, including specimen transportation and processing, resulting in a faster turnaround time. Provider access to rapid test results allows for prompt medical decision making, which can lead to improved patient outcomes, operational efficiencies, patient satisfaction, and even cost savings. These features are particularly attractive for healthcare settings dealing with complicated patients, such as those affected by chronic kidney disease (CKD). CKD is a pathological condition characterized by progressive and irreversible structural or functional kidney impairment lasting for more than three months. The disease displays an unavoidable tendency to progress to End Stage Renal Disease (ESRD), thus requiring renal replacement therapy, usually dialysis, and transplant. Cardiovascular disease (CVD) is the major cause of death in CKD, with a cardiovascular risk ten times higher in these patients than the rate observed in healthy subjects. The gradual decline of the kidney leads to the accumulation of uremic solutes, with negative effect on organs, especially on the cardiovascular system. The possibility to monitor CKD patients by using non-invasive and low-cost approaches could give advantages both to the patient outcome and sanitary costs. Despite their numerous advantages, POCT application in CKD management is not very common, even if a number of devices aimed at monitoring the CKD have been demonstrated worldwide at the lab scale by basic studies (low Technology Readiness Level, TRL). The reasons are related to both technological and clinical aspects. In this review, the main technologies for the design of LOCs are reported, as well as the available POCT devices for CKD monitoring, with a special focus on the most recent reliable applications in this field. Moreover, the current challenges in design and applications of LOCs in the clinical setting are briefly discussed.
Collapse
Affiliation(s)
- Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | | | | | - Aris Liboà
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (G.T.)
| | - Mario Barra
- CNR-SPIN, c/o Dipartimento di Fisica “Ettore Pancini”, P.le Tecchio, 80, 80125 Naples, Italy
| | - Davide Vurro
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (G.T.)
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | - Annapaola Coppola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | - Elvira Mazzella
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, via Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, via Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
45
|
Tiozzo-Lyon P, Andrade M, Leiva-Sabadini C, Morales J, Olivares A, Ravasio A, Aguayo S. Microfabrication approaches for oral research and clinical dentistry. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2023.1120394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Currently, there is a variety of laboratory tools and strategies that have been developed to investigate in-vivo processes using in-vitro models. Amongst these, microfabrication represents a disruptive technology that is currently enabling next-generation biomedical research through the development of complex laboratory approaches (e.g., microfluidics), engineering of micrometer scale sensors and actuators (micropillars for traction force microscopy), and the creation of environments mimicking cell, tissue, and organ-specific contexts. Although microfabrication has been around for some time, its application in dental and oral research is still incipient. Nevertheless, in recent years multiple lines of research have emerged that use microfabrication-based approaches for the study of oral diseases and conditions with micro- and nano-scale sensitivities. Furthermore, many investigations are aiming to develop clinically relevant microfabrication-based applications for diagnostics, screening, and oral biomaterial manufacturing. Therefore, the objective of this review is to summarize the current application of microfabrication techniques in oral sciences, both in research and clinics, and to discuss possible future applications of these technologies for in-vitro studies and practical patient care. Initially, this review provides an overview of the most employed microfabrication methods utilized in biomedicine and dentistry. Subsequently, the use of micro- and nano-fabrication approaches in relevant fields of dental research such as endodontic and periodontal regeneration, biomaterials research, dental implantology, oral pathology, and biofilms was discussed. Finally, the current and future uses of microfabrication technology for clinical dentistry and how these approaches may soon be widely available in clinics for the diagnosis, prevention, and treatment of relevant pathologies are presented.
Collapse
|
46
|
‘t Hart DC, Yildiz D, Palacio-Castañeda V, Li L, Gumuscu B, Brock R, Verdurmen WPR, van der Vlag J, Nijenhuis T. Co-Culture of Glomerular Endothelial Cells and Podocytes in a Custom-Designed Glomerulus-on-a-Chip Model Improves the Filtration Barrier Integrity and Affects the Glomerular Cell Phenotype. BIOSENSORS 2023; 13:bios13030339. [PMID: 36979551 PMCID: PMC10046631 DOI: 10.3390/bios13030339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Crosstalk between glomerular endothelial cells and glomerular epithelial cells (podocytes) is increasingly becoming apparent as a crucial mechanism to maintain the integrity of the glomerular filtration barrier. However, in vitro studies directly investigating the effect of this crosstalk on the glomerular filtration barrier are scarce because of the lack of suitable experimental models. Therefore, we developed a custom-made glomerulus-on-a-chip model recapitulating the glomerular filtration barrier, in which we investigated the effects of co-culture of glomerular endothelial cells and podocytes on filtration barrier function and the phenotype of these respective cell types. The custom-made glomerulus-on-a-chip model was designed using soft lithography. The chip consisted of two parallel microfluidic channels separated by a semi-permeable polycarbonate membrane. The glycocalyx was visualized by wheat germ agglutinin staining and the barrier integrity of the glomerulus-on-a-chip model was determined by measuring the transport rate of fluorescently labelled dextran from the top to the bottom channel. The effect of crosstalk on the transcriptome of glomerular endothelial cells and podocytes was investigated via RNA-sequencing. Glomerular endothelial cells and podocytes were successfully cultured on opposite sides of the membrane in our glomerulus-on-a-chip model using a polydopamine and collagen A double coating. Barrier integrity of the chip model was significantly improved when glomerular endothelial cells were co-cultured with podocytes compared to monocultures of either glomerular endothelial cells or podocytes. Co-culture enlarged the surface area of podocyte foot processes and increased the thickness of the glycocalyx. RNA-sequencing analysis revealed the regulation of cellular pathways involved in cellular differentiation and cellular adhesion as a result of the interaction between glomerular endothelial cells and podocytes. We present a novel custom-made glomerulus-on-a-chip co-culture model and demonstrated for the first time using a glomerulus-on-a-chip model that co-culture affects the morphology and transcriptional phenotype of glomerular endothelial cells and podocytes. Moreover, we showed that co-culture improves barrier function as a relevant functional readout for clinical translation. This model can be used in future studies to investigate specific glomerular paracrine pathways and unravel the role of glomerular crosstalk in glomerular (patho) physiology.
Collapse
Affiliation(s)
- Daan C. ‘t Hart
- Department of Nephrology, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dilemin Yildiz
- Department of Nephrology, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Valentina Palacio-Castañeda
- Department of Medical Biosciences, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Lanhui Li
- Biosensors and Devices Laboratory, Biomedical Engineering Department, Institute for Complex Molecular Systems, Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Burcu Gumuscu
- Biosensors and Devices Laboratory, Biomedical Engineering Department, Institute for Complex Molecular Systems, Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Roland Brock
- Department of Medical Biosciences, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| | - Wouter P. R. Verdurmen
- Department of Medical Biosciences, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
47
|
de Dios Andres P, Städler B. Micromotor-Assisted Keratinocytes Migration in a Floating Paper Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201251. [PMID: 35694770 DOI: 10.1002/smll.202201251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/21/2022] [Indexed: 06/15/2023]
Abstract
In vitro epidermis models are important to evaluate and study disease progression and possible dermal drug delivery. An in vitro epidermis model using floating paper chips as a scaffold for proliferation and differentiation of primary human keratinocytes is reported. The formation of the four main layers of the epidermis (i.e., basal, spinosum, granulose, and cornified layers) is confirmed. The development of a cornified layer and the tight junction formation are evaluated as well as the alterations of organelles during the differentiation process. Further, this in vitro model is used to assess keratinocyte migration. Finally, magnetic micromotors are assembled, and their ability to aid cell migration on paper chips is confirmed when a static magnetic field is present. Taken together, this attempt to combine bottom-up synthetic biology with dermatology offers interesting opportunities for studying skin disease pathologies and evaluate possible treatments.
Collapse
Affiliation(s)
- Paula de Dios Andres
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus, 8000, Denmark
| |
Collapse
|
48
|
Soto Veliz D, Lin K, Sahlgren C. Organ-on-a-chip technologies for biomedical research and drug development: A focus on the vasculature. SMART MEDICINE 2023; 2:e20220030. [PMID: 37089706 PMCID: PMC7614466 DOI: 10.1002/smmd.20220030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 04/25/2023]
Abstract
Current biomedical models fail to replicate the complexity of human biology. Consequently, almost 90% of drug candidates fail during clinical trials after decades of research and billions of investments in drug development. Despite their physiological similarities, animal models often misrepresent human responses, and instead, trigger ethical and societal debates regarding their use. The overall aim across regulatory entities worldwide is to replace, reduce, and refine the use of animal experimentation, a concept known as the Three Rs principle. In response, researchers develop experimental alternatives to improve the biological relevance of in vitro models through interdisciplinary approaches. This article highlights the emerging organ-on-a-chip technologies, also known as microphysiological systems, with a focus on models of the vasculature. The cardiovascular system transports all necessary substances, including drugs, throughout the body while in charge of thermal regulation and communication between other organ systems. In addition, we discuss the benefits, limitations, and challenges in the widespread use of new biomedical models. Coupled with patient-derived induced pluripotent stem cells, organ-on-a-chip technologies are the future of drug discovery, development, and personalized medicine.
Collapse
Affiliation(s)
- Diosangeles Soto Veliz
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
| | - Kai‐Lan Lin
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
| | - Cecilia Sahlgren
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|
49
|
Podunavac I, Djocos M, Vejin M, Birgermajer S, Pavlovic Z, Kojic S, Petrovic B, Radonic V. 3D-Printed Microfluidic Chip for Real-Time Glucose Monitoring in Liquid Analytes. MICROMACHINES 2023; 14:mi14030503. [PMID: 36984909 PMCID: PMC10052769 DOI: 10.3390/mi14030503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 05/31/2023]
Abstract
The connection of macrosystems with microsystems for in-line measurements is important in different biotechnological processes as it enables precise and accurate monitoring of process parameters at a small scale, which can provide valuable insights into the process, and ultimately lead to improved process control and optimization. Additionally, it allows continuous monitoring without the need for manual sampling and analysis, leading to more efficient and cost-effective production. In this paper, a 3D printed microfluidic (MF) chip for glucose (Glc) sensing in a liquid analyte is proposed. The chip made in Poly(methyl methacrylate) (PMMA) contains integrated serpentine-based micromixers realized via stereolithography with a slot for USB-like integration of commercial DropSens electrodes. After adjusting the sample's pH in the first micromixer, small volumes of the sample and enzyme are mixed in the second micromixer and lead to a sensing chamber where the Glc concentration is measured via chronoamperometry. The sensing potential was examined for Glc concentrations in acetate buffer in the range of 0.1-100 mg/mL and afterward tested for Glc sensing in a cell culturing medium. The proposed chip showed great potential for connection with macrosystems, such as bioreactors, for direct in-line monitoring of a quality parameter in a liquid sample.
Collapse
Affiliation(s)
- Ivana Podunavac
- University of Novi Sad, BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Miroslav Djocos
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Marija Vejin
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Slobodan Birgermajer
- University of Novi Sad, BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Zoran Pavlovic
- University of Novi Sad, BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Sanja Kojic
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Bojan Petrovic
- University of Novi Sad, Faculty of Medicine, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Vasa Radonic
- University of Novi Sad, BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|
50
|
Han J, Park S, Kim JE, Park B, Hong Y, Lim JW, Jeong S, Son H, Kim HB, Seonwoo H, Jang KJ, Chung JH. Development of a Scaffold-on-a-Chip Platform to Evaluate Cell Infiltration and Osteogenesis on the 3D-Printed Scaffold for Bone Regeneration. ACS Biomater Sci Eng 2023; 9:968-977. [PMID: 36701173 DOI: 10.1021/acsbiomaterials.2c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developing a scaffold for efficient and functional bone regeneration remains challenging. To accomplish this goal, a "scaffold-on-a-chip" device was developed as a platform to aid with the evaluation process. The device mimics a microenvironment experienced by a transplanted bone scaffold. The device contains a circular space at the center for scaffold insert and microfluidic channel that encloses the space. Such a design allows for monitoring of cell behavior at the blood-scaffold interphase. MC3T3-E1 cells were cultured with three different types of scaffold inserts to test its capability as an evaluation platform. Cellular behaviors, including migration, morphology, and osteogenesis with each scaffold, were analyzed through fluorescence images of live/dead assay and immunocytochemistry. Cellular behaviors, such as migration, morphology, and osteogenesis, were evaluated. The results revealed that our platform could effectively evaluate the osteoconductivity and osteoinductivity of scaffolds with various properties. In conclusion, our proposed platform is expected to replace current in vivo animal models as a highly relevant in vitro platform and can contribute to the fundamental study of bone regeneration.
Collapse
Affiliation(s)
- Jinsub Han
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea.,Convergence Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangbae Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae Eun Kim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Byeongjoo Park
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea
| | - Yeonggeol Hong
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Korea
| | - Jae Woon Lim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Jeong
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hyunmok Son
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hoon Seonwoo
- Department of Convergent Biosystems Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Korea.,Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju 52828, Korea.,Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jong Hoon Chung
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea.,Convergence Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|