1
|
Santos MKR, Seghetto R, Hauptli L, Paiano D, da Silva AS, Benetti Filho V, Wagner G, de Oliveira Moraes P. Blended phytogenics as an alternative to growth-promoting antibiotics in newly weaned piglets. Trop Anim Health Prod 2024; 57:5. [PMID: 39710793 DOI: 10.1007/s11250-024-04225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/29/2024] [Indexed: 12/24/2024]
Abstract
The research aimed to evaluate the effects of a commercial blend of phytogenic compounds on the digestibility, antioxidant system, intestinal microbiota, and performance of weaned piglets. Two experiments compared three treatments (diets): control, zinc bacitracin (300 g/t) and blended phytogenic compounds (400 g/t). The first experiment analised of digestibility of the dry matter, organic matter, crude protein, crude energy and metabolizable energy, in addition to blood parameters and gut microbiota in 15 piglets commercial cross-bred, weaned at 28 days of age, castrated males, weighing 9.40 ± 0.622 kg housed in metabolic cages. In the second experiment, performance was evaluated on 108 piglets commercial cross-bred, weaned at 26 days of age, females and castrated males, weighing 7.52 ± 0.356 kg housed in collective stalls with 1,5 m² (3 animals/stall). A completely randomized design was used. The data were subjected to analysis of variance, and the means compared by the Tukey test at 5% significance. There were no differences in piglet digestibility and performance. There was a reduction in the levels of the enzyme superoxide dismutase, lipid peroxidation, and haptoglobulin, and an increase in the levels of the non-protein thiol compound and IgA for the animals receiving the phytogenic compound when compared with the piglets of the other treatments (p < 0.05). A tendency in diversity was observed in the intestinal microbiota of piglets receiving the phytogenic compound in the feed (p = 0.054). Due to its important role in the antioxidant system and intestinal microbiota, it is suggested that the blend of phytogenic additives can replace antibiotics growth promoters in the diet of newly weaned piglets.
Collapse
Affiliation(s)
- Manoela Karolina Ribeiro Santos
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil
| | - Ronaldo Seghetto
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil
| | - Lucélia Hauptli
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil
| | - Diovani Paiano
- Universidade do Estado de Santa Catarina, Beloni Trombeta Zanin 680E - Santo Antônio, Chapecó, 89815-630, SC, Brazil
| | - Aleksandro Schafer da Silva
- Universidade do Estado de Santa Catarina, Beloni Trombeta Zanin 680E - Santo Antônio, Chapecó, 89815-630, SC, Brazil
| | - Vilmar Benetti Filho
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil
| | - Glauber Wagner
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil
| | - Priscila de Oliveira Moraes
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil.
| |
Collapse
|
2
|
Heras-Molina A, Estellé J, Vázquez-Gómez M, López-García A, Pesantez-Pacheco JL, Astiz S, Garcia-Contreras C, Escudero R, Isabel B, Gonzalez-Bulnes A, Óvilo C. The impact of host genetics on porcine gut microbiota composition excluding maternal and postnatal environmental influences. PLoS One 2024; 19:e0315199. [PMID: 39652543 PMCID: PMC11627362 DOI: 10.1371/journal.pone.0315199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
The gut microbiota of the pig is being increasingly studied due to its implications for host homeostasis and the importance of the pig as a meat source and biomedical model of human diseases. However, most studies comparing the microbiome between different breeds do not consider the influence of maternal environment during the colonization of the microbiota. The aim of the present study was to compare the gut microbiota during postnatal growth between two pig genotypes (purebred Iberian vs. crossbreds Iberian x Large White pigs), gestated in a single maternal environment (pure Iberian mothers) inseminated with heterospermic semen. Postnatally, piglets were maintained in the same environmental conditions, and their microbiota was studied at 60 and 210 days old. Results showed that age had the greatest influence on alpha and beta diversity, and genotype also affected beta diversity at both ages. There were differences in the microbiome profile between genotypes at the ASV and genus levels when jointly analyzing the total number of samples, which may help to explain phenotypical differences. When each time-point was analyzed individually, there were more differences at 210 days-old than 60 days-old. Fecal short-chain fatty acids (SCFA) were also affected by age, but not by genotype. These results may be a basis for further research on host genotype interactions with the gut microbiota.
Collapse
Affiliation(s)
- Ana Heras-Molina
- Faculty of Veterinary Medicine, UCM, Ciudad Universitaria s/n, Madrid, Spain
- CSIC-INIA, Madrid, Spain
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Marta Vázquez-Gómez
- Sorbonne université, INSERM, Nutrition et obésités: approaches systémiques, Nutriomics, Paris, France
| | | | - José-Luis Pesantez-Pacheco
- CSIC-INIA, Madrid, Spain
- School of Veterinary Medicine and Zootechnics, Faculty of Agricultural Sciences, University of Cuenca, Cuenca, Ecuador
| | | | | | - Rosa Escudero
- Faculty of Veterinary Medicine, UCM, Ciudad Universitaria s/n, Madrid, Spain
| | - Beatriz Isabel
- Faculty of Veterinary Medicine, UCM, Ciudad Universitaria s/n, Madrid, Spain
| | - Antonio Gonzalez-Bulnes
- Faculty of Veterinary Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | |
Collapse
|
3
|
Brandi LA, Nunes AT, Faleiros CA, Poleti MD, Oliveira ECDM, Schmidt NT, Sousa RLM, Fukumasu H, Balieiro JCC, Brandi RA. Dietary Energy Sources Affect Cecal and Fecal Microbiota of Healthy Horses. Animals (Basel) 2024; 14:3494. [PMID: 39682460 DOI: 10.3390/ani14233494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Different energy sources are often used in horse diets to enhance health and performance. Understanding how diet impacts the cecal and fecal microbiota is crucial for meeting the nutritional needs of horses. High-throughput sequencing and qPCR were used to compare the fecal and cecal microbiota of five healthy horses receiving three different diets: hay diet (HAY), hay + starch and sugar (SS), and hay + fiber and oil ingredients (FO). Assessment of short-chain fatty acids, pH, and buffer capacity was also performed. The HAY diet was associated with the highest values of fecal pH; the FO and SS diets were associated with higher values of BC6 in the cecum, and the SS diet had higher BC5 values in feces (p < 0.05). HAY was associated with a lower alpha diversity in feces and with a higher abundance of Treponema, Fibrobacter, Lachnospiraceae AC2044, and Prevotellaceae UCG-003 in feces. SS was associated with a higher abundance of Desulfovibrio, the Lachnospiraceae AC2044 group, and Streptococcus in the cecum, and Streptococcus and Prevotellaceae UCG-001 in feces, while FO was associated with higher Prevotella, Prevotellaceae UCG-003, and Akkermansia in the cecum, and the Rikenellaceae RC9 gut group and Ruminococcus in feces. This study indicated that different energy sources can influence cecal and fecal microbiota composition and fecal diversity without significantly affecting fermentation processes under experimental conditions. These findings suggest that the diets studied may not pose immediate health risks; however, further research is needed to generalize these effects on gastrointestinal microbiota in broader equine populations.
Collapse
Affiliation(s)
- Laura A Brandi
- Department of Animal Science, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Alanne T Nunes
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Camila A Faleiros
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Mirele D Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Elisângela C de M Oliveira
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Natalia T Schmidt
- Department of Animal Science, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Ricardo L M Sousa
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Julio C C Balieiro
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Roberta A Brandi
- Department of Animal Science, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| |
Collapse
|
4
|
Cheng Y, Ren Y, Zhang W, Lu J, Xie F, Fang YD, Fan X, He W, Wang W. Regionalization of intestinal microbiota and metabolites in the small intestine of the Bactrian camel. Front Immunol 2024; 15:1464664. [PMID: 39660142 PMCID: PMC11628504 DOI: 10.3389/fimmu.2024.1464664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Peyer's patches (PPs) are crucial antigen-inductive sites of intestinal mucosal immunity. Prior research indicated that, in contrast to other ruminants, PPs in the small intestine of Bactrian camels are found in the duodenum, jejunum, and ileum and display polymorphism. Using this information, we analyzed the microbial and metabolic characteristics in various segments of the Bactrian camel's small intestine to further elucidate how the immune system varies across different regions. Methods In this study, the microbiota and metabolite of 36 intestinal mucosal samples, including duodenal (D-PPs), jejunal (J-PPs), and ileal PPs (I-PPs), were profiled for six Bactrian camels using 16S rRNA gene sequencing and liquid chromatography with tandem mass spectrometry (LC-MS/MS). To confirm meaningful associations, we conducted connection analyses on the significantly different objects identified in each group's results. ELISA was used to analyze the levels of IgA, IgG, and IgM in the same tissues. Results The microbiota and metabolite profiles of J-PPs and I-PPs were found to be similar, whereas those of D-PPs were more distinct. In J-PPs and I-PPs, the dominant bacterial genera included Clostridium, Turicibacter, and Shigella. In contrast, D-PPs had a significant increase in the abundance of Prevotella, Fibrobacter, and Succinobacter. Regarding the metabolomics, D-PPs exhibited high levels of polypeptides, acetylcholine, and histamine. On the other hand, J-PPs and I-PPs were characterized by an enrichment of free amino acids, such as L-arginine, L-glutamic acid, and L-serine. These metabolic differences mainly involve amino acid production and metabolic processes. Furthermore, the distribution of intestinal immunoglobulins highlighted the specificity of D-PPs. Our results indicated that proinflammatory microbes and metabolites were significantly enriched in D-PPs. In contrast, J-PPs and I-PPs contained substances that more effectively enhance immune responses, as evidenced by the differential distribution of IgA, IgG, and IgM. Discussion The intestinal microenvironment of Bactrian camels displays distinct regional disparities, which we propose are associated with variations in immunological function throughout different segments of the small intestine. This study highlights the specific traits of the intestinal microbiota and metabolites in Bactrian camels, offering a valuable reference for understanding the relationship between regional intestinal immunity and the general health and disease of the host.
Collapse
Affiliation(s)
- Yujiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Ren
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Ferri I, Dell'Anno M, Quiese A, Castiglioni B, Cremonesi P, Biscarini F, Canala B, Santoru M, Colombini A, Ruffo G, Baldi A, Rossi L. Microbiota modulation by the inclusion of Tenebrio molitor larvae as alternative to fermented soy protein concentrate in growing pigs diet. Vet Res Commun 2024; 49:26. [PMID: 39570524 DOI: 10.1007/s11259-024-10588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024]
Abstract
Tenebrio molitor meal represents a promising protein source for animal nutrition due to its low environmental impact and high nutritional value. To date, there is limited data in the literature regarding the effects of Tenebrio molitor meal on the modulation of gut microbiota in growing animals, with most results focusing on poultry rather than pigs. The aim of this study was to evaluate the effects of replacing fermented soy protein concentrate with Tenebrio molitor meal on gut microbiota and feed digestibility in growing pigs. A total of 14 growing pigs (80 ± 2 days old) were randomly allotted to two groups: the control group (CON) was fed a commercial diet containing 4% fermented soy protein concentrate (48% crude protein), and the treatment group (TM) was fed a basal diet containing 5% of T. molitor larvae meal formulated to be isonitrogenous and isoenergetic. The study lasted 28 days. Animals were weekly weighted and feed refuse was routinely measured. Fecal, blood samples, and rectal swabs were collected for analysis. No differences were observed in growth and diet digestibility for the protein and lipid components throughout the trial. No differences in the serum concentrations of albumin, globulin, urea, and interleukin-6 were registered in both groups, suggesting an unaltered health status. The TM group showed a significant difference in the beta diversity index considering the total duration of the trial (treatment effect evaluated with PERMANOVA, R2 0.0771, p value = 0.0099) showing an increased abundance of Elusimicrobium spp. and a decrease in Asteroplasma spp. in TM compared to the CON group (p < 0.05). Obtained findings indicate that 5% T. molitor meal can be included as a partial replacement for soy in growing pig formula without impairing pig growth and gut microbiota composition.
Collapse
Affiliation(s)
- Irene Ferri
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Matteo Dell'Anno
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy.
| | - Alessandro Quiese
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 26900, Lodi, Italy
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 26900, Lodi, Italy
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 26900, Lodi, Italy
| | - Benedetta Canala
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Matteo Santoru
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Alessia Colombini
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Giancarlo Ruffo
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| |
Collapse
|
6
|
Zheng Y, Li Y, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Tan H, Luo J, Yan H, He J. Grape seed proanthocyanidins improves growth performance, antioxidative capacity, and intestinal microbiota in growing pigs. Front Microbiol 2024; 15:1501211. [PMID: 39633810 PMCID: PMC11615056 DOI: 10.3389/fmicb.2024.1501211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Grape seed proanthocyanidin (GSP) is a kind of plant polyphenols with a wide variety of biological activities. In this study, we explored the effect of dietary GSP supplementation on growth performance, nutrient digestibility, and intestinal microbiota in growing pigs. A total of 180 growing pigs (30.37 ± 0.31 kg) were randomly assigned to five treatment groups, each consisting of six replicate pens with six pigs per pen. The pigs received either a basal diet (control) or a basal diet supplemented with GSP at 15, 30, 60, or 120 mg/kg. The trial lasted for 33 days, and blood and fecal samples were collected for biochemical measurements. GSP supplementation at a dose from 30 to 120 mg/kg decreased the ratio of feed intake to gain (F:G) (p < 0.05). GSP also increased the digestibility of dry matter, crude protein, ether extract, and gross energy (p < 0.05). GSP supplementation at 30 mg/kg increased the serum concentrations of immunoglobulin (Ig) A (p < 0.05). Interestingly, GSP supplementation at 60 mg/kg decreased the serum concentrations of urea and malondialdehyde (p < 0.05). However, the serum concentrations of glutathione peroxidase and total superoxide dismutase were significantly increased upon GSP supplementation (p < 0.05). Importantly, GSP supplementation at 120 mg/kg significantly increased the abundance of the phylum Firmicutes, but decreased the abundance of phylum Bacteroidetes and Epsilonbacteraeota in the feces (p < 0.05). Moreover, GSP supplementation significantly elevated the abundance of genus Lactobacillus, but decreased the abundance of genus Prevotellaceae NK3B31 (p < 0.05). Dietary GSP supplementation improves the growth performance and nutrient digestibility in growing pigs, which may be associated with enhancement of the antioxidative capacity, as well as improvement in gut microbiota. This study may promote the use of GSP in animal nutrition and the feed industry.
Collapse
Affiliation(s)
- Yuyang Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Huize Tan
- Wens Foodstuff Group Co., Ltd., Yunfu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Rahman R, Fouhse JM, Ju T, Fan Y, S Marcolla C, Pieper R, Brook RK, Willing BP. A comparison of wild boar and domestic pig microbiota does not reveal a loss of microbial species but an increase in alpha diversity and opportunistic genera in domestic pigs. Microbiol Spectr 2024; 12:e0084324. [PMID: 39162552 PMCID: PMC11448168 DOI: 10.1128/spectrum.00843-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
The microbiome of wild animals is believed to be co-evolved with host species, which may play an important role in host physiology. It has been hypothesized that the rigorous hygienic practices in combination with antibiotics and diets with simplified formulas used in the modern swine industry may negatively affect the establishment and development of the gut microbiome. In this study, we evaluated the fecal microbiome of 90 domestic pigs sampled from nine farms in Canada and 39 wild pigs sampled from three different locations on two continents (North America and Europe) using 16S rRNA gene amplicon sequencing. Surprisingly, the gut microbiome in domestic pigs exhibited higher alpha-diversity indices than wild pigs (P < 0.0001). The wild pig microbiome showed a lower Firmicutes-to-Bacteroidetes ratio and a higher presence of bacterial phyla Elusimicrobiota, Verrucomicrobiota, Cyanobacteria, and Fibrobacterota when compared to their domestic counterparts. At the genus level, the wild pig microbiome had enriched genera that were known for fiber degradation and short-chain fatty acid production. Interestingly, the phylum Fusobacteriota was only observed in domestic pigs. We identified 31 ASVs that were commonly found in the pig gut microbiome, regardless of host sources, which could be recognized as members of the core gut microbiome. Interestingly, we found five ASVs missing in domestic pigs that were prevalent in wild ones, whereas domestic pigs harbored 59 ASVs that were completely absent in wild pigs. The present study sheds light on the impact of domestication on the pig gut microbiome, including the gain of new genera, which might provide the basis to identify novel targets to manipulate the pig gut microbiome for improved health. IMPORTANCE The microbiome of pigs plays a crucial role in shaping host physiology and health. This study sought to identify if domestication and current rearing practices have resulted in a loss of co-evolved bacterial species by comparing the microbiome of wild boar and conventionally raised pigs. It provides a comparison of domestic and wild pigs with the largest sample sizes and is the first to examine wild boars from multiple sites and continents. We were able to identify core microbiome members that were shared between wild and domestic populations, and on the contrary to expectation, few microbes were identified to be lost from wild boar. Nevertheless, the microbiome of wild boars had a lower abundance of important pathogenic genera and was distinct from domestic pigs. The differences in the microbial composition may identify an opportunity to shift the microbial community of domestic pigs towards that of wild boar with the intent to reduce pathogen load.
Collapse
Affiliation(s)
- Rajibur Rahman
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, Edmonton, Alberta, Canada
| | - Janelle M Fouhse
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, Edmonton, Alberta, Canada
| | - Tingting Ju
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, Edmonton, Alberta, Canada
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yi Fan
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, Edmonton, Alberta, Canada
| | - Camila S Marcolla
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, Edmonton, Alberta, Canada
| | - Robert Pieper
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße, Berlin, Germany
| | - Ryan K Brook
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Chen K, Dai Z, Zhang Y, Wu S, Liu L, Wang K, Shen D, Li C. Effects of Microencapsulated Essential Oils on Growth and Intestinal Health in Weaned Piglets. Animals (Basel) 2024; 14:2705. [PMID: 39335294 PMCID: PMC11428891 DOI: 10.3390/ani14182705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The study investigated the effects of microencapsulated essential oils (MEO) on the growth performance, diarrhea, and intestinal microenvironment of weaned piglets. The 120 thirty-day-old weaned piglets (Duroc × Landrace × Yorkshire, 8.15 ± 0.07 kg) were randomly divided into four groups and were fed with a basal diet (CON) or CON diet containing 300 (L-MEO), 500 (M-MEO), and 700 (H-MEO) mg/kg MEO, respectively, and data related to performance were measured. The results revealed that MEO supplementation increased the ADG and ADFI in weaned piglets (p < 0.05) compared with CON, and reduced diarrhea rates in nursery pigs (p < 0.05). MEO supplementation significantly increased the duodenum's V:C ratio and the jejunal villi height of weaned piglets (p < 0.05). The addition of MEO significantly increased the T-AOC activity in the jejunum of piglets (p < 0.05), but only L-MEO decreased the MDA concentration (p < 0.01). H-MEO group significantly increases the content of isobutyric acid (p < 0.05) in the piglet colon, but it does not affect the content of other acids. In addition, MEO supplementation improved appetite in the nursery and increased the diversity and abundance of beneficial bacteria in the intestinal microbiome. In conclusion, these findings indicated that MEO supplementation improves growth and intestinal health in weaned piglets.
Collapse
Affiliation(s)
- Ketian Chen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China; (K.C.); (Z.D.); (L.L.); (K.W.); (D.S.)
| | - Zhiqi Dai
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China; (K.C.); (Z.D.); (L.L.); (K.W.); (D.S.)
| | - Yijian Zhang
- Shanghai Menon Animal Nutrition Technology Co., Ltd., Shanghai 201800, China; (Y.Z.); (S.W.)
| | - Sheng Wu
- Shanghai Menon Animal Nutrition Technology Co., Ltd., Shanghai 201800, China; (Y.Z.); (S.W.)
| | - Le Liu
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China; (K.C.); (Z.D.); (L.L.); (K.W.); (D.S.)
| | - Kai Wang
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China; (K.C.); (Z.D.); (L.L.); (K.W.); (D.S.)
| | - Dan Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China; (K.C.); (Z.D.); (L.L.); (K.W.); (D.S.)
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China; (K.C.); (Z.D.); (L.L.); (K.W.); (D.S.)
| |
Collapse
|
9
|
Lee H, Park W, No J, Hyung NW, Lee JY, Kim S, Yang H, Lee P, Kim E, Oh KB, Yoo JG, Lee S. Comparing Gut Microbial Composition and Functional Adaptations between SPF and Non-SPF Pigs. J Microbiol Biotechnol 2024; 34:1484-1490. [PMID: 38960872 PMCID: PMC11294643 DOI: 10.4014/jmb.2402.02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 07/05/2024]
Abstract
The gut microbiota is a key factor significantly impacting host health by influencing metabolism and immune function. Its composition can be altered by genetic factors, as well as environmental factors such as the host's surroundings, diet, and antibiotic usage. This study aims to examine how the characteristics of the gut microbiota in pigs, used as source animals for xenotransplantation, vary depending on their rearing environment. We compared the diversity and composition of gut microbiota in fecal samples from pigs raised in specific pathogen-free (SPF) and conventional (non-SPF) facilities. The 16S RNA metagenome sequencing results revealed that pigs raised in non-SPF facilities exhibited greater gut microbiota diversity compared to those in SPF facilities. Genera such as Streptococcus and Ruminococcus were more abundant in SPF pigs compared to non-SPF pigs, while Blautia, Bacteroides, and Roseburia were only observed in SPF pigs. Conversely, Prevotella was exclusively present in non-SPF pigs. It was predicted that SPF pigs would show higher levels of processes related to carbohydrate and nucleotide metabolism, and environmental information processing. On the other hand, energy and lipid metabolism, as well as processes associated with genetic information, cell communication, and diseases, were predicted to be more active in the gut microbiota of non-SPF pigs. This study provides insights into how the presence or absence of microorganisms, including pathogens, in pig-rearing facilities affects the composition and function of the pigs' gut microbiota. Furthermore, this serves as a reference for tracing whether xenotransplantation source pigs were maintained in a pathogen-controlled environment.
Collapse
Affiliation(s)
- Haesun Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanjugun, Jeollabuk-do 55365, Republic of Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jingu No
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanjugun, Jeollabuk-do 55365, Republic of Korea
| | - Nam Woong Hyung
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanjugun, Jeollabuk-do 55365, Republic of Korea
| | - Ju-Yeong Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanjugun, Jeollabuk-do 55365, Republic of Korea
| | - Seokho Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanjugun, Jeollabuk-do 55365, Republic of Korea
| | - Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanjugun, Jeollabuk-do 55365, Republic of Korea
| | - Poongyeon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanjugun, Jeollabuk-do 55365, Republic of Korea
| | - Eunju Kim
- Hanwoo Research Institute, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanjugun, Jeollabuk-do 55365, Republic of Korea
| | - Jae Gyu Yoo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanjugun, Jeollabuk-do 55365, Republic of Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanjugun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
10
|
Torres MC, Breyer GM, Riveros Escalona MA, Mayer FQ, Muterle Varela AP, Ariston de Carvalho Azevedo V, Matiuzzi da Costa M, Aburjaile FF, Dorn M, Brenig B, Ribeiro de Itapema Cardoso M, Siqueira FM. Exploring bacterial diversity and antimicrobial resistance gene on a southern Brazilian swine farm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124146. [PMID: 38740246 DOI: 10.1016/j.envpol.2024.124146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The bacterial composition of and the circulation of antimicrobial resistance genes (ARGs) in waste from Brazilian swine farms are still poorly understood. Considering that antimicrobial resistance (AMR) is one of the main threats to human, animal, and environmental health, the need to accurately assess the load of ARGs released into the environment is urgent. Therefore, this study aimed to characterize the microbiota in a swine farm in southern Brazil and the resistome in swine farm wastewater treated in a series of waste stabilization ponds (WSPs). Samples were collected from farm facilities and the surrounding environment, representing all levels of swine manure within the treatment system. Total metagenomic sequencing was performed on samples from WSPs, and 16S-rDNA sequencing was performed on all the collected samples. The results showed increased bacterial diversity in WSPs, characterized by the presence of Caldatribacteriota, Cloacimonadota, Desulfobacterota, Spirochaetota, Synergistota, and Verrucomicrobiota. Furthermore, resistance genes to tetracyclines, lincosamides, macrolides, rifamycin, phenicol, and genes conferring multidrug resistance were detected in WSPs samples. Interestingly, the most abundant ARG was linG, which confers resistance to the lincosamides. Notably, genes conferring macrolide (mphG and mefC) and rifamycin (rpoB_RIF) resistance appeared in greater numbers in the late WSPs. These drugs are among the high-priority antibiotic classes for human health. Moreover, certain mobile genetic elements (MGEs) were identified in the samples, notably tnpA, which was found in high abundance. These elements are of particular concern due to their potential to facilitate the dissemination of ARGs among bacteria. In summary, the results indicate that, in the studied farm, the swine manure treatment system could not eliminate ARGs and MGEs. Our results validate concerns about Brazil's swine production system. The misuse and overuse of antimicrobials during animal production must be avoided to mitigate AMR.
Collapse
Affiliation(s)
- Mariana Costa Torres
- Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91540-000, Brazil; Postgraduate Program in Veterinary Science, Brazil
| | - Gabriela Merker Breyer
- Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91540-000, Brazil; Postgraduate Program in Veterinary Science, Brazil
| | | | - Fabiana Quoos Mayer
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91501-970, Brazil
| | - Ana Paula Muterle Varela
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91501-970, Brazil
| | | | - Mateus Matiuzzi da Costa
- Department of Biological Sciences, Federal University of Vale do São Francisco, Petrolina, PE - 56306-410, Brazil
| | | | - Marcio Dorn
- Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91501-970, Brazil; Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91501-970, Brazil
| | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg August University Göttingen, 37073, Göttingen, Germany
| | | | - Franciele Maboni Siqueira
- Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91540-000, Brazil; Postgraduate Program in Veterinary Science, Brazil; Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS - 91501-970, Brazil.
| |
Collapse
|
11
|
Ferreres-Serafini L, Martín-Orúe SM, Sadurní M, Jiménez J, Moreno-Muñoz JA, Castillejos L. Supplementing infant milk formula with a multi-strain synbiotic and osteopontin enhances colonic microbial colonization and modifies jejunal gene expression in lactating piglets. Food Funct 2024; 15:6536-6552. [PMID: 38807503 DOI: 10.1039/d4fo00489b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A total of ninety-six weaned piglets were assigned to four dietary treatments in a 2 × 2 design. The treatments included: a standard milk formula (CTR); CTR + probiotics (6.4 × 108 cfu L-1Bifidobacterium longum subsp. infantis CECT 7210 and 1.1 × 108 cfu L-1Lactobacillus rhamnosus NH001) + prebiotics (galacto-oligosaccharides 4.36 g L-1 and human-milk-oligosaccharide 0.54 g L-1) (SYN); CTR + osteopontin (0.43 g L-1) (OPN); and CTR + SYN + OPN (CON). Daily records including feed intake, body weight, and clinical signs, were maintained throughout the 15-day trial. At the end of the study samples from blood, digestive content, and gut tissues were collected to determine serum TNF-α, intestinal fermentative activity (SCFA and ammonia), colonic microbiota (16S rRNA Illumina-MiSeq), histomorphology, and jejunal gene expression (Open-Array). No statistical differences were found in weight gain; however, the animals supplemented with osteopontin exhibited higher feed intake. In terms of clinical signs, synbiotic supplementation led to a shorter duration of diarrhoea episodes. Regarding gut health, the sequenced faecal microbiota revealed better control of potentially dysbiotic bacteria with the CON diet at day 15. In the colon compartment, a significant increase in SCFA concentration, a decrease in ammonia concentration, and a significant decrease in intraepithelial lymphocyte counts were particularly observed in CON animals. The supplemented diets were also associated with modified jejunal gene expression. The synbiotic combination was characterized by the upregulation of genes related to intestinal maturation (ALPI, SI) and nutrient transport (SLC13A1, SLC15A1, SLC5A1, SLC7A8), and the downregulation of genes related to the response to pathogens (GBP1, IDO, TLR4) or the inflammatory response (IDO, IL-1β, TGF-β1). Osteopontin promoted the upregulation of a digestive function gene (GCG). Correlational analysis between the microbiota population and various intestinal environmental factors (SCFA concentration, histology, and gene expression) proposes mechanisms of communication between the gut microbiota and the host. In summary, these results suggest an improvement in the colonic colonization process and a better modulation of the immune response when milk formula is supplemented with the tested synbiotic combined with osteopontin, benefiting from a synergistic effect.
Collapse
Affiliation(s)
- Laia Ferreres-Serafini
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Susana Mª Martín-Orúe
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Meritxell Sadurní
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jesús Jiménez
- Laboratorios Ordesa S.L., Parc Científic de Barcelona, C/Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - José Antonio Moreno-Muñoz
- Laboratorios Ordesa S.L., Parc Científic de Barcelona, C/Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - Lorena Castillejos
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
12
|
Breyer GM, De Carli S, Muterle Varela AP, Mann MB, Frazzon J, Quoos Mayer F, Siqueira FM. Carrier state of enterotoxigenic Escherichia coli virulence markers in pigs: Effects on gut microbiota modulation and immune markers transcription. Microb Pathog 2024; 191:106662. [PMID: 38663640 DOI: 10.1016/j.micpath.2024.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/01/2024] [Accepted: 04/20/2024] [Indexed: 05/24/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in pigs at early age, leading to high mortality rates and significant economic losses in the swine industry. ETEC effect on gut microbiota and immune system is mostly studied in diarrheic model under controlled laboratory conditions, however its impact on asymptomatic carriers remains unknown. Thus, we investigated whether ETEC can modulate gut microbiota or regulate the transcription of immune markers in asymptomatic pigs in farm environment. Stool samples from newborn piglets, nursery and growing pigs, and sows were screened for ETEC markers, then submitted to 16S-rDNA sequencing to explore gut microbiota composition in carriers (ETEC+) and non-carriers (ETEC-) animals. We observed a reduced α-diversity in ETEC+ animals (p < 0.05), while bacterial compositions were mostly driven by ageing (p > 0.05). Prevotella marked ETEC-carrier group, while Rikenellaceae RC9 gut group was a marker for a healthy gut microbiota, suggesting that they might be biomarker candidates for surveillance and supplementation purposes. Furthermore, we observed transcription regulation of il6 and tff2 genes in ETEC+ in newborn and nursery stages, respectively. Our findings indicate that ETEC presence modulate gut microbiota and the immune response in asymptomatic pigs; nevertheless, further studies using a probabilistic design must be performed to assess the effect of ETEC presence on gut imbalance in pigs despite the age bias.
Collapse
Affiliation(s)
- Gabriela Merker Breyer
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal Do Rio Grande Do Sul, Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação Em Ciências Veterinárias, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Silvia De Carli
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal Do Rio Grande Do Sul, Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação Em Ciências Veterinárias, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ana Paula Muterle Varela
- Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Michele Bertoni Mann
- Programa de Pós-Graduação Em Microbiologia Agrícola e Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Jeverson Frazzon
- Programa de Pós-Graduação Em Microbiologia Agrícola e Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil; Laboratório de Bioquímica e Biologia Molecular de Microrganismos, Departamento de Ciência de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa Em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Eldorado Do Sul, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Franciele Maboni Siqueira
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal Do Rio Grande Do Sul, Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação Em Ciências Veterinárias, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
13
|
Arsenault M, Lillie B, Nadeem K, Khafipour E, Farzan A. Progression of swine fecal microbiota during early stages of life and its association with performance: a longitudinal study. BMC Microbiol 2024; 24:182. [PMID: 38789948 PMCID: PMC11127378 DOI: 10.1186/s12866-024-03336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND It is vital to understand healthy gut microbiota composition throughout early life stages when environments are changing, and immunity is developing. There are limited large-scale longitudinal studies classifying healthy succession of swine microbiota. The objectives of this study were to (a) determine the microbiota composition of fecal samples collected from piglets within a few days after birth until one-week post-weaning, and (b) investigate the associations of early fecal microbiota with pig growth performance in nursery and later growing stages. Fecal samples were collected from nine cohorts of 40 pigs (n = 360) from distinct farrowing sources in Ontario and Quebec, Canada at four timepoints from birth to one-week post-weaning, with pig body weight was recorded at each fecal sampling. RESULTS Microbiota was dominated by the phyla Firmicutes, Bacteroides and Proteobacteria. There were notable differences in genera abundance between pigs from different provinces and farming systems. Over the early life stage, the genera Bacteroides, Escherichia/Shigella, and Clostridium cluster XIVa were abundant preweaning, while Prevotella dominated post-weaning. Hierarchical clustering identified three major stages of microbiota development, each associated with distinct composition. Stage one occurs from birth to 7 days, stage two from 7 days after birth until weaning, and stage three from weaning to one-week post-weaning. Three enterotypes were identified in stage two that showed differences in growth before weaning, and in the grower production stage. Piglets with a microbiota enterotype characterized by higher abundance of Prevotella and unclassified Ruminococcaceae had lower growth performance in the pre-weaning stage, and the growing stage. CONCLUSION These findings help identify the timing of microbiota shifts across early swine life which may be the optimal time for external intervention to shift the microbiota to a beneficial state. The project findings should help decrease antimicrobial use, increase animal welfare, and have positive economic impacts.
Collapse
Affiliation(s)
| | - Brandon Lillie
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Khurram Nadeem
- Department of Mathematics & Statistics, University of Guelph, Guelph, ON, Canada
| | | | - Abdolvahab Farzan
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
14
|
Choi H, Duarte YG, Pasquali GAM, Kim SW. Investigation of the nutritional and functional roles of a combinational use of xylanase and β-glucanase on intestinal health and growth of nursery pigs. J Anim Sci Biotechnol 2024; 15:63. [PMID: 38704593 PMCID: PMC11070102 DOI: 10.1186/s40104-024-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Xylanase and β-glucanase combination (XG) hydrolyzes soluble non-starch polysaccharides that are anti-nutritional compounds. This study aimed to evaluate the effects of increasing levels of XG on intestinal health and growth performance of nursery pigs. METHODS Forty pigs (6.5 ± 0.4 kg) were assigned to 5 dietary treatments and fed for 35 d in 3 phases (11, 9, and 15 d, respectively). Basal diets mainly included corn, soybean meal, and corn distiller's dried grains with solubles, contained phytase (750 FTU/kg), and were supplemented with 5 levels of XG at (1) 0, (2) 280 TXU/kg xylanase and 125 TGU/kg β-glucanase, (3) 560 and 250, (4) 840 and 375, or (5) 1,120 and 500, respectively. Growth performance was measured. On d 35, all pigs were euthanized and jejunal mucosa, jejunal digesta, jejunal tissues, and ileal digesta were collected to determine the effects of increasing XG levels and XG intake on intestinal health. RESULTS Increasing XG intake tended to quadratically decrease (P = 0.059) viscosity of jejunal digesta (min: 1.74 mPa·s at 751/335 (TXU/TGU)/kg). Increasing levels of XG quadratically decreased (P < 0.05) Prevotellaceae (min: 0.6% at 630/281 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically increased (P < 0.05) Lactobacillaceae (max: 40.3% at 608/271 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically decreased (P < 0.05) Helicobacteraceae (min: 1.6% at 560/250 (TXU/TGU)/kg) in the jejunal mucosa. Increasing levels of XG tended to linearly decrease (P = 0.073) jejunal IgG and tended to quadratically increase (P = 0.085) jejunal villus height to crypt depth ratio (max: 2.62 at 560/250 (TXU/TGU)/kg). Increasing XG intake tended to linearly increase the apparent ileal digestibility of dry matter (P = 0.087) and ether extract (P = 0.065). Increasing XG intake linearly increased (P < 0.05) average daily gain. CONCLUSIONS A combinational use of xylanase and β-glucanase would hydrolyze the non-starch polysaccharides fractions, positively modulating the jejunal mucosa-associated microbiota. Increased intake of these enzyme combination possibly reduced digesta viscosity and humoral immune response in the jejunum resulting in improved intestinal structure, and ileal digestibility of nutrients, and finally improving growth of nursery pigs. The beneficial effects were maximized at a combination of 550 to 800 TXU/kg xylanase and 250 to 360 TGU/kg β-glucanase.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Yesid Garavito Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
15
|
Zhao BC, Wang TH, Chen J, Qiu BH, Xu YR, Li JL. Essential oils improve nursery pigs' performance and appetite via modulation of intestinal health and microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:174-188. [PMID: 38357573 PMCID: PMC10864218 DOI: 10.1016/j.aninu.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 02/16/2024]
Abstract
Optimal intestinal health and functionality are essential for animal health and performance, and simultaneously intestinal nutrient transporters and intestinal peptides are also involved in appetite and feed intake control mechanisms. Given the potential of essential oil (EO) in improving animal performance and improving feed palatability, we hypothesized that dietary supplementation of cinnamaldehyde and carvacrol could improve performance and appetite of nursery pigs by modulating intestinal health and microbiota. Cinnamaldehyde (100 mg/kg), carvacrol (100 mg/kg), and their mixtures (including 50 mg/kg cinnamaldehyde and 50 mg/kg carvacrol) were supplemented into the diets of 240 nursery pigs for 42 d, and data related to performance were measured. Thereafter, the influence of EO on intestinal health, appetite and gut microbiota and their correlations were explored. EO supplementation increased (P < 0.05) the body weight, average daily gain (ADG) and average daily feed intake (ADFI) of piglets, and reduced (P < 0.05) diarrhea rates in nursery pigs. Furthermore, EO increased (P < 0.05) the intestinal absorption area and the abundance of tight junction proteins, and decreased (P < 0.05) intestinal permeability and local inflammation. In terms of intestinal development and the mucus barrier, EO promoted intestinal development and increased (P < 0.05) the number of goblet cells. Additionally, we found that piglets in the EO-supplemented group had upregulated (P < 0.05) levels of transporters and digestive enzymes in the intestine, which were significantly associated with daily gain and feed utilization. In addition, EO supplementation somewhat improved appetite in nursery pigs, increased the diversity of the gut microbiome and the abundance of beneficial bacteria, and there was a correlation between altered bacterial structure and appetite-related hormones. These findings indicate that EO is effective in promoting growth performance and nutrient absorption as well as in regulating appetite by improving intestinal health and bacterial structure.
Collapse
Affiliation(s)
- Bi-Chen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tian-Hao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bai-Hao Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
16
|
Buiatte V, Fonseca A, Alonso Madureira P, Nakashima Vaz AC, Tizioto PC, Centola Vidal AM, Ganda E, de Azevedo Ruiz VL. A comparative study of the bacterial diversity and composition of nursery piglets' oral fluid, feces, and housing environment. Sci Rep 2024; 14:4119. [PMID: 38374338 PMCID: PMC10876639 DOI: 10.1038/s41598-024-54269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/10/2024] [Indexed: 02/21/2024] Open
Abstract
The oral cavity is the portal of entry for many microorganisms that affect swine, and the swine oral fluid has been used as a specimen for the diagnosis of several infectious diseases. The oral microbiota has been shown to play important roles in humans, such as protection against non-indigenous bacteria. In swine, studies that have investigated the microbial composition of the oral cavity of pigs are scarce. This study aimed to characterize the oral fluid microbiota of weaned pigs from five commercial farms in Brazil and compare it to their respective fecal and environmental microbiotas. Bacterial compositions were determined by 16S rRNA gene sequencing and analyzed in R Studio. Oral fluid samples were significantly less diverse (alpha diversity) than pen floor and fecal samples (P < 0.01). Alpha diversity changed among farms in oral fluid and pen floor samples, but no differences were observed in fecal samples. Permutational ANOVA revealed that beta diversity was significantly different among sample types (P = 0.001) and farms (P = 0.001), with separation of sample types (feces, pen floor, and oral fluid) on the principal coordinates analysis. Most counts obtained from oral fluid samples were classified as Firmicutes (80.4%) and Proteobacteria (7.7%). The genera Streptococcus, members of the Pasteurellaceae family, and Veillonella were differentially abundant in oral fluid samples when compared to fecal samples, in which Streptococcus was identified as a core genus that was strongly correlated (SparCC) with other taxa. Firmicutes and Bacteroidota were the most relatively abundant phyla identified in fecal and pen floor samples, and Prevotella_9 was the most classified genus. No differentially abundant taxa were identified when comparing fecal samples and pen floor samples. We concluded that under the conditions of our study, the oral fluid microbiota of weaned piglets is different (beta diversity) and less diverse (alpha diversity) than the fecal and environmental microbiotas. Several differentially abundant taxa were identified in the oral fluid samples, and some have been described as important colonizers of the oral cavity in human microbiome studies. Further understanding of the relationship between the oral fluid microbiota and swine is necessary and would create opportunities for the development of innovative solutions that target the microbiota to improve swine health and production.
Collapse
Affiliation(s)
- Vinicius Buiatte
- Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ana Fonseca
- Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Paloma Alonso Madureira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Andréia Cristina Nakashima Vaz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | - Ana Maria Centola Vidal
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Erika Ganda
- Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Vera Letticie de Azevedo Ruiz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Pirassununga, SP, Brazil.
| |
Collapse
|
17
|
Sebastià C, Folch JM, Ballester M, Estellé J, Passols M, Muñoz M, García-Casco JM, Fernández AI, Castelló A, Sánchez A, Crespo-Piazuelo D. Interrelation between gut microbiota, SCFA, and fatty acid composition in pigs. mSystems 2024; 9:e0104923. [PMID: 38095419 PMCID: PMC10804976 DOI: 10.1128/msystems.01049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024] Open
Abstract
The gut microbiota is a key player in the host metabolism. Some bacteria are able to ferment non-digestible compounds and produce short-chain fatty acids that the host can later transform and accumulate in tissue. In this study, we aimed to better understand the relationships between the microorganisms and the short-chain fatty acid composition of the rectal content, including the possible linkage with the fatty acid composition in backfat and muscle of the pig. We studied a Duroc × Iberian crossbred population, and we found significant correlations between different bacterial and archaeal genera and the fatty acid profile. The abundance of n-butyric acid in the rectal content was positively associated with Prevotella spp. and negatively associated with Akkermansia spp., while conversely, the abundance of acetic acid was negatively and positively associated with the levels of Prevotella spp. and Akkermansia spp., respectively. The most abundant genus, Rikenellaceae RC9 gut group, had a positive correlation with palmitic acid in muscle and negative correlations with stearic acid in backfat and oleic acid in muscle. These results suggest the possible role of Prevotella spp. and Akkermansia spp. as biomarkers for acetic and n-butyric acids, and the relationship of Rikenellaceae RC9 gut group with the lipid metabolism, building up the potential, although indirect, role of the microbiota in the modification of the backfat and muscle fatty acid composition of the host.IMPORTANCEThe vital role of the gut microbiota on its host metabolism makes it essential to know how its modulation is mirrored on the fatty acid composition of the host. Our findings suggest Prevotella spp. and Akkermansia spp. as potential biomarkers for the levels of beneficial short-chain fatty acids and the possible influence of Rikenellaceae RC9 gut group in the backfat and muscle fatty acid composition of the pig.
Collapse
Affiliation(s)
- Cristina Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Josep M. Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Magí Passols
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | | | - Ana I. Fernández
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Armand Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Daniel Crespo-Piazuelo
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| |
Collapse
|
18
|
Liu Z, Liu M, Wang H, Qin P, Di Y, Jiang S, Li Y, Huang L, Jiao N, Yang W. Glutamine attenuates bisphenol A-induced intestinal inflammation by regulating gut microbiota and TLR4-p38/MAPK-NF-κB pathway in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115836. [PMID: 38154151 DOI: 10.1016/j.ecoenv.2023.115836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Bisphenol A (BPA), as a kind of widely exerted environmental hazardous material, brings toxicity to both humans and animals. This study aimed to investigate the role of glutamine (Gln) in intestinal inflammation and microbiota in BPA-challenged piglets. Thirty-two piglets were randomly divided into four groups according to 2 factors including BPA (0 vs. 0.1%) and Gln (0 vs. 1%) supplemented in basal diet for a 42-day feeding experiment. The results showed BPA exposure impaired piglet growth, induced intestinal inflammation and disturbed microbiota balance. However, dietary Gln supplementation improved the growth performance, while decreasing serum pro-inflammatory cytokine levels in BPA-challenged piglets. In addition, Gln attenuated intestinal mucosal damage and inflammation by normalizing the activation of toll-like receptor 4 (TLR4)-p38/MAPK-nuclear factor-kappa B (NF-κB) pathway caused by BPA. Moreover, dietary Gln supplementation decreased the abundance of Actinobacteriota and Proteobacteria, and attenuated the decreased abundance of Roseburia, Prevotella, Romboutsia and Phascolarctobacterium and the content of short-chain fatty acids in cecum contents caused by BPA exposure. Moreover, there exerted potential relevance between the gut microbiota and pro-inflammatory cytokines and cecal short-chain fatty acids. In conclusion, Gln is critical nutrition for attenuating BPA-induced intestinal inflammation, which is partially mediated by regulating microbial balance and suppressing the TLR4/p38 MAPK/NF-κB signaling.
Collapse
Affiliation(s)
- Zihao Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Min Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Huiru Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Pengxiang Qin
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yanjiao Di
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Libo Huang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China.
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
19
|
Harlow K, Summers KL, Oliver WT, Wells JE, Crouse M, Neville BW, Rempel LA, Rivera I, Ramsay TG, Davies CP. Weaning transition, but not the administration of probiotic candidate Kazachstania slooffiae, shaped the gastrointestinal bacterial and fungal communities in nursery piglets. Front Vet Sci 2024; 10:1303984. [PMID: 38274656 PMCID: PMC10808496 DOI: 10.3389/fvets.2023.1303984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
As in-feed antibiotics are phased out of swine production, producers are seeking alternatives to facilitate improvements in growth typically seen from this previously common feed additive. Kazachstania slooffiae is a prominent commensal fungus in the swine gut that peaks in relative abundance shortly after weaning and has beneficial interactions with other bacteriome members important for piglet health. In this study, piglets were supplemented with K. slooffiae to characterize responses in piglet health as well as fungal and bacterial components of the microbiome both spatially (along the entire gastrointestinal tract and feces) and temporally (before, during, and after weaning). Litters were assigned to one of four treatments: no K. slooffiae (CONT); one dose of K. slooffiae 7 days before weaning (day 14; PRE); one dose of K. slooffiae at weaning (day 21; POST); or one dose of K. slooffiae 7 days before weaning and one dose at weaning (PREPOST). The bacteriome and mycobiome were analyzed from fecal samples collected from all piglets at day 14, day 21, and day 49, and from organ samples along the gastrointestinal (GI) tract at day 21 and day 49. Blood samples were taken at day 14 and day 49 for cytokine analysis, and fecal samples were assayed for antimicrobial resistance. While some regional shifts were seen in response to K. slooffiae administration in the mycobiome of the GI tract, no remarkable changes in weight gain or health of the animals were observed, and changes were more likely due to sow and the environment. Ultimately, the combined microbiome changed most considerably following the transition from suckling to nursery diets. This work describes the mycobiome along the piglet GI tract through the weaning transition for the first time. Based on these findings, K. slooffiae administered at this concentration may not be an effective tool to hasten colonization of K. slooffiae in the piglet GI tract around the weaning transition nor support piglet growth, microbial gut health, or immunity. However, diet and environment greatly influence microbial community development.
Collapse
Affiliation(s)
- KaLynn Harlow
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, United States
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Katie Lynn Summers
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - William T. Oliver
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - James E. Wells
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Matthew Crouse
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Bryan W. Neville
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Lea A. Rempel
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Israel Rivera
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Timothy G. Ramsay
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Cary Pirone Davies
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
20
|
Correa F, Luise D, Virdis S, Negrini C, Polimeni B, Amarie RE, Serra A, Biagi G, Trevisi P. Reduction of amylose-amylopectin ratio in low-protein diets: impacts on growth performance and intestinal health in weaned pigs. J Anim Sci 2024; 102:skae370. [PMID: 39657905 DOI: 10.1093/jas/skae370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024] Open
Abstract
Improving the synchrony between amino acids (AAs) and glucose appearance in the blood can support the growth performance of weaned pigs fed a low crude protein (CP) diet. This can be achieved using a diet with a low amylose-to-amylopectin ratio (AM/AP). The aim of this experiment was to evaluate whether reducing the AM/AP by using a corn variety characterized by a high amylopectin content, in the weaning diet can sustain growth performance and improve the intestinal health of pigs fed a low-CP diet. At weaning (25 ± 2 d), 90 pigs were assigned to 3 treatment groups: 1) control group (CTR), fed a standard diet with a medium-high CP content and high AM/AP (days 0 to 13: 18.0% CP, 0.13 AM/AP; days 14 to 27: 16.6% CP, 0.30 AM/AP; days 28 to 49: 16.7% CP, 0.15 AM/AP); 2) a group fed a low-CP diet with a high AM/AP (LP) (days 0 to 13: 16.0% CP, 0.17 AM/AP; days 13 to 27: 14.7% CP, 0.17 AM/AP; days 28 to 49: 14.5% CP, 0.25 AM/AP); 3) a group fed a low CP and a low AM/AP diet (LPLA) (days 0 to 13: 16.0% CP, 0.09 AM/AP; days 14 to 27: 14.7% CP, 0.05 AM/AP; days 28 to 49: 14.5% CP, 0.09 AM/AP). Pigs were weighted weakly until day 49. Fecal samples were collected on days 10 and 42 (12 samples/group/timepoint) for ammonia and calprotectin content and microbiota profile characterization. Until day 28, body weight (BW) of pigs from CTR was not different from pigs of the LPLA group, whereas it was higher from pigs of the LP group (P < 0.05). Thereafter, CTR group had greater BW compared with LP and LPLA groups for all the other timepoints considered (P < 0.05). From days 0 to 7 LPLA group had a lower incidence of diarrhea than the LP group (P = 0.04). On day 10, LPLA group had a greater alpha diversity (Shannon and InvSimpson indices), than the CTR (P = 0.03) and LP (P = 0.04) groups. On day 42, LPLA group had significantly greater InvSimpson diversity than LP group (P = 0.028). On day 10, LP group was characterized by greater abundance of Lactobacillus (LDA score = 5.15, P = 0.02), Clostridium-sensu-stricto-1 (LDA score = 4.90, P = 0.02) and Oscillospiraceae NK4A214-group (LDA score = 4.87, P = 0.004), whereas LPLA group was characterized by greater abundance of Prevotella (LDA score = 5.04, P = 0.003) and Agathobacter (LDA score = 4.77, P = 0.05). In conclusion, while reducing CP levels may negatively impact growth performance, when combined with higher amylopectin levels, it can reduce the incidence of diarrhea and increase fecal microbial diversity.
Collapse
Affiliation(s)
- Federico Correa
- Department of Agro-Food Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Diana Luise
- Department of Agro-Food Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Sara Virdis
- Department of Agro-Food Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Clara Negrini
- Department of Agro-Food Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Barbara Polimeni
- Department of Agro-Food Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Roxana Elena Amarie
- Department of Agricuture, Food and Environment, University of Pisa, Pisa, Italy
| | - Andrea Serra
- Department of Agricuture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giacomo Biagi
- Department of Veterinary Science, University of Bologna, Ozzano dell'Emilia, Italy
| | - Paolo Trevisi
- Department of Agro-Food Sciences and Technologies, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Yosi F, Lerch F, Vötterl JC, Koger S, Verhovsek D, Metzler-Zebeli BU. Lactation-related dynamics of bacterial and fungal microbiomes in feces of sows and gut colonization in suckling and newly weaned piglets. J Anim Sci 2024; 102:skae321. [PMID: 39460650 PMCID: PMC11604110 DOI: 10.1093/jas/skae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024] Open
Abstract
Changes in the gut microbial composition of the sow during lactation may influence the gut microbial colonization in their offspring, for which less information was available in the literature. This study aimed to assess: 1) the changes that occur in the bacterial and fungal communities in sow feces during the 28-d lactation period as well as in gastric and cecal digesta of piglets until one week after weaning, and 2) bacterial and fungal taxa in cecal digesta of the piglets postweaning that associate with fecal consistency. Aside from sow milk, piglets had access to creep feed from day of life (DoL) 3. Fecal samples from sows for microbial analysis were collected (n = 20) on days postpartum (DPP) 1, 6, 13, 20, and 27, as well as from weaned piglets for fecal scoring on DoL 30 and 34. Gastric and cecal digesta of piglets was collected on DoL3, 7, 14, 21, 28, 31, and 35 (n = 5/sex/DoL). Progressing lactation affected bacterial and fungal communities in sow feces, including 10.3- and 3.0-fold increases in the relative abundances of Lactobacillus from DPP1 to 6 and Kazachstania from DPP1 to 13, respectively (P < 0.001). Although time- and gut-site-related differences existed, bacterial and fungal taxa found in sow feces were also present in gastric and cecal digesta of piglets, which supports their role in gut colonization in neonatal piglets. In piglets, bacterial and fungal alpha-diversities showed certain fluctuations during the suckling period, whereby weaning affected the fungal than bacterial diversity at both gut sites (P < 0.05). At both gut sites, Lactobacillus largely increased from DoL3 to 7 and remained a dominating taxon until DoL35 (P < 0.05). Postweaning, plant-glycan fermenters (e.g., Prevotella-9) seemed to replace milk-glycan fermenting Fusobacterium and Bacteroides (P < 0.05). In gastric and cecal digesta, Kazachstania, Tausonia, Candida, and Blumeria were dominating fungi from DoL3 to 35, with Kazachstania becoming even more dominant postweaning (P < 0.001). Fecal consistency was softer on DoL34 than 30 (P < 0.05). Correlation analysis identified that softer feces were linked to the relative abundances of plant-glycan and proteolytic bacterial taxa including pathobionts (e.g., Clostridium sensu stricto) in the cecum on DoL34. However, the potential association between cecal mold and plant-pathogenic fungi Talaromyces, Mrakia, and Blumeria and softer feces are worth investigating in the future in relation to (gut) health of piglets.
Collapse
Affiliation(s)
- Fitra Yosi
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Department of Animal Science, Faculty of Agriculture, University of Sriwijaya, Palembang 30662, Indonesia
| | - Frederike Lerch
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Julia C Vötterl
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Simone Koger
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Doris Verhovsek
- Clinical Centre for Population Medicine in Fish, Pig and Poultry, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Barbara U Metzler-Zebeli
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Centre for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| |
Collapse
|
22
|
Larsen C, Offersen SM, Brunse A, Pirolo M, Kar SK, Guadabassi L, Thymann T. Effects of early postnatal gastric and colonic microbiota transplantation on piglet gut health. J Anim Sci Biotechnol 2023; 14:158. [PMID: 38143275 PMCID: PMC10749501 DOI: 10.1186/s40104-023-00954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/22/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Diarrhea is a major cause of reduced growth and mortality in piglets during the suckling and weaning periods and poses a major threat to the global pig industry. Diarrhea and gut dysbiosis may in part be prevented via improved early postnatal microbial colonization of the gut. To secure better postnatal gut colonization, we hypothesized that transplantation of colonic or gastric content from healthy donors to newborn recipients would prevent diarrhea in the recipients in the post-weaning period. Our objective was to examine the impact of transplanting colonic or gastric content on health and growth parameters and paraclinical parameters in recipient single-housed piglets exposed to a weaning transition and challenged with enterotoxigenic Escherichia coli (ETEC). METHODS Seventy-two 1-day-old piglets were randomized to four groups: colonic microbiota transplantation (CMT, n = 18), colonic content filtrate transplantation (CcFT, n = 18), gastric microbiota transplantation (GMT, n = 18), or saline (CON, n = 18). Inoculations were given on d 2 and 3 of life, and all piglets were milk-fed until weaning (d 20) and shortly after challenged with ETEC (d 24). We assessed growth, diarrhea prevalence, ETEC concentration, organ weight, blood parameters, small intestinal morphology and histology, gut mucosal function, and microbiota composition and diversity. RESULTS Episodes of diarrhea were seen in all groups during both the milk- and the solid-feeding phase, possibly due to stress associated with single housing. However, CcFT showed lower diarrhea prevalence on d 27, 28, and 29 compared to CON (all P < 0.05). CcFT also showed a lower ETEC prevalence on d 27 (P < 0.05). CMT showed a higher alpha diversity and a difference in beta diversity compared to CON (P < 0.05). Growth and other paraclinical endpoints were similar across groups. CONCLUSION In conclusion, only CcFT reduced ETEC-related post-weaning diarrhea. However, the protective effect was marginal, suggesting that higher doses, more effective modalities of administration, longer treatment periods, and better donor quality should be explored by future research to optimize the protective effects of transplantation.
Collapse
Affiliation(s)
- Christina Larsen
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Simone Margaard Offersen
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Anders Brunse
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Mattia Pirolo
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Soumya Kanti Kar
- Animal Nutrition, Wageningen Livestock Research, Wageningen University & Research, 1 De Elst, 6708, Wageningen, The Netherlands
| | - Luca Guadabassi
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark
| | - Thomas Thymann
- Department of Veterinary and Animal Science, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
23
|
Bonde CS, Mejer H, Myhill LJ, Zhu L, Jensen P, Büdeyri Gökgöz N, Krych L, Nielsen DS, Skovgaard K, Thamsborg SM, Williams AR. Dietary seaweed (Saccharina latissima) supplementation in pigs induces localized immunomodulatory effects and minor gut microbiota changes during intestinal helminth infection. Sci Rep 2023; 13:21931. [PMID: 38081984 PMCID: PMC10713666 DOI: 10.1038/s41598-023-49082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Brown seaweeds have a rich bioactive content known to modulate biological processes, including the mucosal immune response and microbiota function, and may therefore have the potential to control enteric pathogens. Here, we tested if dietary seaweed (Saccharina latissima) supplementation could modulate pig gut health with a specific focus on parasitic helminth burdens, gut microbiota composition, and host immune response during a five week feeding period in pigs co-infected with the helminths Ascaris suum and Oesophagostomum dentatum. We found that inclusion of fermented S. latissima (Fer-SL) at 8% of the diet increased gut microbiota α-diversity with higher relative abundances of Firmicutes, Tenericutes, Verrucomicrobia, Spirochaetes and Elusimicrobia, and lower abundance of Prevotella copri. In the absence of helminth infection, transcription of immune-related genes in the intestine was only moderately influenced by dietary seaweed. However, Fer-SL modulated the transcriptional response to infection in a site-specific manner in the gut, with an attenuation of infection-induced gene expression in the jejunum and an amplification of gene expression in the colon. Effects on systemic immune parameters (e.g. blood lymphocyte populations) were limited, indicating the effects of Fer-SL were mainly localized to the intestinal tissues. Despite previously documented in vitro anti-parasitic activity against pig helminths, Fer-SL inclusion did not significantly affect parasite egg excretion or worm establishment. Collectively, our results show that although Fer-SL inclusion did not reduce parasite burdens, it may modify the gut environment during enteric parasite infection, which encourages continued investigations into the use of seaweeds or related products as novel tools to improve gut health.
Collapse
Affiliation(s)
- Charlotte Smith Bonde
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Penille Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
24
|
Meyer S, Hüttig N, Zenk M, Jäckel U, Pöther D. Bioaerosols in swine confinement buildings: A metaproteomic view. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:684-697. [PMID: 37919246 PMCID: PMC10667663 DOI: 10.1111/1758-2229.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Swine confinement buildings represent workplaces with high biological air pollution. It is suspected that individual components of inhalable air are causatives of chronic respiratory disease that are regularly detected among workers. In order to understand the relationship between exposure and stress, it is necessary to study the components of bioaerosols in more detail. For this purpose, bioaerosols from pig barns were collected on quartz filters and analysed via a combinatorial approach of 16S rRNA amplicon sequencing and metaproteomics. The study reveals the presence of peptides from pigs, their feed and microorganisms. The proportion of fungal peptides detected is considered to be underrepresented compared to bacterial peptides. In addition, the metaproteomic workflow enabled functional predictions about the discovered peptides. Housekeeping proteins were found in particular, but also evidence for the presence of bacterial virulence factors (e.g., serralysin-like metalloprotease) as well as plant (e.g., chitinase) and fungal allergens (e.g., alt a10). Metaproteomic analyses can thus be used to identify factors that may be relevant to the health of pig farmers. Accordingly, such studies could be used in the future to assess the adverse health potential of an occupationally relevant bioaerosol and help consider defined protective strategies for workers.
Collapse
Affiliation(s)
- Susann Meyer
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | - Nicole Hüttig
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | - Marianne Zenk
- Research Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Udo Jäckel
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | | |
Collapse
|
25
|
Popov IV, Einhardt Manzke N, Sost MM, Verhoeven J, Verbruggen S, Chebotareva IP, Ermakov AM, Venema K. Modulation of Swine Gut Microbiota by Phytogenic Blends and High Concentrations of Casein in a Validated Swine Large Intestinal In Vitro Model. Vet Sci 2023; 10:677. [PMID: 38133228 PMCID: PMC10748322 DOI: 10.3390/vetsci10120677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Phytogenic feed additives are gaining popularity in livestock as a replacement for antibiotic growth promotors. Some phytogenic blends (PB) positively affect the production performance, inhibit pathogens within the gut microbiota, and improve the overall health of farm animals. In this study, a swine large intestine in vitro model was used to evaluate the effect of two PBs, alone or in combination with casein, on swine gut microbiota. As a result, the combination of casein with PB1 had the most beneficial effects on swine gut microbiota, as it increased the relative abundance of some commensal bacteria and two genera (Lactobacillus and Oscillospiraceae UCG-002), which are associated with greater production performance in pigs. At the same time, supplementation with PBs did not lead to an increase in opportunistic pathogens, indicating their safety for pigs. Both PBs showed fewer changes in swine gut microbiota compared to interventions with added casein. In contrast, casein supplementation significantly increased beta diversity and the relative abundance of commensal as well as potentially beneficial bacteria. In conclusion, the combination of casein with PBs, in particular PB1, had the most beneficial effects among the studied supplements in vitro, with respect to microbiota modulation and metabolite production, although this data should be proven in further in vivo studies.
Collapse
Affiliation(s)
- Igor V. Popov
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia (A.M.E.)
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340 Sochi, Russia
| | | | - Mônica Maurer Sost
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
| | - Sanne Verbruggen
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
| | - Iuliia P. Chebotareva
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia (A.M.E.)
- Division of Nanobiomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340 Sochi, Russia
| | - Alexey M. Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia (A.M.E.)
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (I.V.P.); (M.M.S.); (S.V.)
| |
Collapse
|
26
|
Gomes-Neto JC, Pavlovikj N, Korth N, Naberhaus SA, Arruda B, Benson AK, Kreuder AJ. Salmonella enterica induces biogeography-specific changes in the gut microbiome of pigs. Front Vet Sci 2023; 10:1186554. [PMID: 37781286 PMCID: PMC10537282 DOI: 10.3389/fvets.2023.1186554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Swine are a major reservoir of an array of zoonotic Salmonella enterica subsp. enterica lineage I serovars including Derby, Typhimurium, and 4,[5],12:i:- (a.k.a. Monophasic Typhimurium). In this study, we assessed the gastrointestinal (GI) microbiome composition of pigs in different intestinal compartments and the feces following infection with specific zoonotic serovars of S. enterica (S. Derby, S. Monophasic, and S. Typhimurium). 16S rRNA based microbiome analysis was performed to assess for GI microbiome changes in terms of diversity (alpha and beta), community structure and volatility, and specific taxa alterations across GI biogeography (small and large intestine, feces) and days post-infection (DPI) 2, 4, and 28; these results were compared to disease phenotypes measured as histopathological changes. As previously reported, only S. Monophasic and S. Typhimurium induced morphological alterations that marked an inflammatory milieu restricted to the large intestine in this experimental model. S. Typhimurium alone induced significant changes at the alpha- (Simpson's and Shannon's indexes) and beta-diversity levels, specifically at the peak of inflammation in the large intestine and feces. Increased community dispersion and volatility in colonic apex and fecal microbiomes were also noted for S. Typhimurium. All three Salmonella serovars altered community structure as measured by co-occurrence networks; this was most prominent at DPI 2 and 4 in colonic apex samples. At the genus taxonomic level, a diverse array of putative short-chain fatty acid (SCFA) producing bacteria were altered and often decreased during the peak of inflammation at DPI 2 and 4 within colonic apex and fecal samples. Among all putative SCFA producing bacteria, Prevotella showed a broad pattern of negative correlation with disease scores at the peak of inflammation. In addition, Prevotella 9 was found to be significantly reduced in all Salmonella infected groups compared to the control at DPI 4 in the colonic apex. In conclusion, this work further elucidates that distinct swine-related zoonotic serovars of S. enterica can induce both shared (high resilience) and unique (altered resistance) alterations in gut microbiome biogeography, which helps inform future investigations of dietary modifications aimed at increasing colonization resistance against Salmonella through GI microbiome alterations.
Collapse
Affiliation(s)
- Joao Carlos Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Natasha Pavlovikj
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nate Korth
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Samantha A. Naberhaus
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Bailey Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Andrew K. Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
27
|
Huaiquipán R, Quiñones J, Díaz R, Velásquez C, Sepúlveda G, Velázquez L, Paz EA, Tapia D, Cancino D, Sepúlveda N. Review: Effect of Experimental Diets on the Microbiome of Productive Animals. Microorganisms 2023; 11:2219. [PMID: 37764062 PMCID: PMC10536378 DOI: 10.3390/microorganisms11092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
The microorganisms that inhabit the gastrointestinal tract are responsible for multiple chains of reactions that affect their environment and modify the internal metabolism, their study receives the name of microbiome, which has become more relevant in recent years. In the near future, the challenges related to feeding are anticipated to escalate, encompassing the nutritional needs to sustain an overpopulated world. Therefore, it is expected that a better understanding of the interactions between microorganisms within the digestive tract will allow their modulation in order to provide an improvement in the immune system, feed efficiency or the promotion of nutritional characteristics in production animals, among others. In the present study, the main effects of experimental diets in production animals were described, emphasizing the diversity of the bacterial populations found in response to the diets, ordering them between polygastric and monogastric animals, and then describing the experimental diets used and their effect on the microorganisms. It is hoped that this study will help as a first general approach to the study of the role of the microbiome in production animals under different diets.
Collapse
Affiliation(s)
- Rodrigo Huaiquipán
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - John Quiñones
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Rommy Díaz
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Carla Velásquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Gastón Sepúlveda
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Lidiana Velázquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Erwin A. Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - Daniela Tapia
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - David Cancino
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
28
|
Tams KW, Larsen I, Hansen JE, Spiegelhauer H, Strøm-Hansen AD, Rasmussen S, Ingham AC, Kalmar L, Kean IRL, Angen Ø, Holmes MA, Pedersen K, Jelsbak L, Folkesson A, Larsen AR, Strube ML. The effects of antibiotic use on the dynamics of the microbiome and resistome in pigs. Anim Microbiome 2023; 5:39. [PMID: 37605221 PMCID: PMC10440943 DOI: 10.1186/s42523-023-00258-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
Antibiotics are widely used in pig farming across the world which has led to concerns about the potential impact on human health through the selection of antibiotic resistant pathogenic bacteria. This worry has resulted in the development of a production scheme known as pigs Raised Without Antibiotics (RWA), in which pigs are produced in commercial farms, but are ear-tagged as RWA until slaughter unless they receive treatment, thus allowing the farmer to sell the pigs either as premium priced RWA or as conventional meat. Development of antibiotic resistance in pig farming has been studied in national surveys of antibiotic usage and resistance, as well as in experimental studies of groups of pigs, but not in individual pigs followed longitudinally in a commercial pig farm. In this study, a cohort of RWA designated pigs were sampled at 10 time points from birth until slaughter along with pen-mates treated with antibiotics at the same farm. From these samples, the microbiome, determined using 16S sequencing, and the resistome, as determined using qPCR for 82 resistance genes, was investigated, allowing us to examine the difference between RWA pigs and antibiotic treated pigs. We furthermore included 176 additional pigs from six different RWA farms which were sampled at the slaughterhouse as an endpoint to substantiate the cohort as well as for evaluation of intra-farm variability. The results showed a clear effect of age in both the microbiome and resistome composition from early life up until slaughter. As a function of antibiotic treatment, however, we observed a small but significant divergence between treated and untreated animals in their microbiome composition immediately following treatment, which disappeared before 8 weeks of age. The effect on the resistome was evident and an effect of treatment could still be detected at week 8. In animals sampled at the slaughterhouse, we observed no difference in the microbiome or the resistome as a result of treatment status but did see a strong effect of farm origin. Network analysis of co-occurrence of microbiome and resistome data suggested that some resistance genes may be transferred through mobile genetic elements, so we used Hi-C metagenomics on a subset of samples to investigate this. We conclude that antibiotic treatment has a differential effect on the microbiome vs. the resistome and that although resistance gene load is increased by antibiotic treatment load, this effect disappears before slaughter. More studies are needed to elucidate the optimal way to rear pigs without antibiotics.
Collapse
Affiliation(s)
- Katrine Wegener Tams
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Inge Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1871, Copenhagen, Denmark
| | - Julie Elvekjær Hansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Henrik Spiegelhauer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | | | - Sophia Rasmussen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anna Cäcilia Ingham
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), 2300, Copenhagen, Denmark
| | - Lajos Kalmar
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Øystein Angen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), 2300, Copenhagen, Denmark
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Karl Pedersen
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89, Uppsala, Sweden
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anders Folkesson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anders Rhod Larsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), 2300, Copenhagen, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
29
|
Skoufos I, Nelli A, Venardou B, Lagkouvardos I, Giannenas I, Magklaras G, Zacharis C, Jin L, Wang J, Gouva E, Skoufos S, Bonos E, Tzora A. Use of an Innovative Silage of Agro-Industrial Waste By-Products in Pig Nutrition: A Pilot Study of Its Effects on the Pig Gastrointestinal Microbiota. Microorganisms 2023; 11:1723. [PMID: 37512895 PMCID: PMC10384456 DOI: 10.3390/microorganisms11071723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to evaluate whether dietary supplementation with an innovative silage (IS) created using 60% olive mill waste, 20% grape pomace, and 20% deproteinised feta cheese waste solids can modulate the composition of the intestinal microbiota in weaned (Exp. 1) and finishing (Exp. 2) pigs. In Exp. 1 (40 day supplementation), forty-five crossbred weaned pigs were randomly assigned to the 0% (Control), 5%, or 10% IS groups (15 replicates/experimental diet). In Exp. 2 (60 day supplementation), eighteen finishing pigs from Exp. 1 were fed the control diet for 8 weeks before being re-assigned to their original experimental groups and fed with the 0% (Control), 5%, or 10% IS diets (six replicates/experimental diet). Performance parameters were recorded. Ileal and caecal digesta and mucosa were collected at the end of each experiment for microbiota analysis using 16S rRNA gene sequencing (five pigs/experimental diet for Exp. 1 and six pigs/experimental diet for Exp. 2). No significant effects on pig growth parameters were observed in both experiments. In Exp. 1, 5% IS supplementation increased the relative abundance of the Prevotellaceae family, Coprococcus genus, and Alloprevotella rava (OTU_48) and reduced the relative abundance of Lactobacillus genus in the caecum compared to the control and/or 10% IS diets (p < 0.05). In Exp. 2, 5% IS supplementation led to compositionally more diverse and different ileal and caecal microbiota compared to the control group (p < 0.05; p = 0.066 for β-diversity in ileum). Supplementation with the 5% IS increased the relative abundance of Clostridium celatum/disporicum/saudiense (OTU_3) in the ileum and caecum and Bifidobacterium pseudolongum (OTU_17) in the caecum and reduced the relative abundance of Streptococcus gallolyticus/alactolyticus (OTU_2) in the caecum compared to the control diet (p < 0.05). Similar effects on C. celatum/disporicum/saudiense and S. gallolyticus/alactolyticus were observed with the 10% IS diet in the caecum (p < 0.05). IS has the potential to beneficially alter the composition of the gastrointestinal microbiota in pigs.
Collapse
Affiliation(s)
- Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Aikaterini Nelli
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Brigkita Venardou
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Ilias Lagkouvardos
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Magklaras
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Christos Zacharis
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Lizhi Jin
- Meritech (Asia Pacific) Biotech Pte Ltd., Singapore 079903, Singapore
| | - Jin Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Evangelia Gouva
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Stylianos Skoufos
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Eleftherios Bonos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Athina Tzora
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| |
Collapse
|
30
|
Effects of dietary oat supplementation on carcass traits, muscle metabolites, amino acid profiles, and its association with meat quality of Small-tail Han sheep. Food Chem 2023; 411:135456. [PMID: 36669340 DOI: 10.1016/j.foodchem.2023.135456] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/04/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Oat supplementation of the ruminant diet can improve growth performance and meat quality traits, but the role of muscle metabolites has not been evaluated. This study aimed to establish whether oat grass supplementation (OS) of Small-tail Han sheep improved growth performance and muscle tissue metabolites that are associated with better meat quality and flavor. After 90-day, OS fed sheep had higher live-weight and carcass-weight, and lower carcass fat. Muscle metabolomics analysis showed that OS fed sheep had higher levels of taurine, l-carnitine, inosine-5'-monophospgate, cholic acid, and taurocholic acid, which are primarily involved in taurine and hypotaurine metabolism, purine metabolism, and bile acid biosynthesis and secretion, decreased fat accumulation and they promote functional or flavor metabolites. OS also increased muscle levels of amino acids that are attributed to better quality and flavorsome mutton. These findings provided further evidence for supplementing sheep with oat grass to improve growth performance and meat quality.
Collapse
|
31
|
Mahmud MR, Jian C, Uddin MK, Huhtinen M, Salonen A, Peltoniemi O, Venhoranta H, Oliviero C. Impact of Intestinal Microbiota on Growth Performance of Suckling and Weaned Piglets. Microbiol Spectr 2023; 11:e0374422. [PMID: 37022154 PMCID: PMC10269657 DOI: 10.1128/spectrum.03744-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/13/2022] [Indexed: 04/07/2023] Open
Abstract
Small-scale studies investigating the relationship between pigs' intestinal microbiota and growth performance have generated inconsistent results. We hypothesized that on farms under favorable environmental conditions (e.g., promoting sow nest-building behavior, high colostrum production, low incidence of diseases and minimal use of antimicrobials), the piglet gut microbiota may develop toward a population that promotes growth and reduces pathogenic bacteria. Using 16S rRNA gene amplicon sequencing, we sampled and profiled the fecal microbiota from 170 individual piglets throughout suckling and postweaning periods (in total 670 samples) to track gut microbiota development and its potential association with growth. During the suckling period, the dominant genera were Lactobacillus and Bacteroides, the latter being gradually replaced by Clostridium sensu scricto 1 as piglets aged. The gut microbiota during the nursery stage, not the suckling period, predicted the average daily growth (ADG) of piglets. The relative abundances of SCFA-producing genera, in particular Faecalibacterium, Megasphaera, Mitsuokella, and Subdoligranulum, significantly correlated with high ADG of weaned piglets. In addition, the succession of the gut microbiota in high-ADG piglets occurred faster and stabilized sooner upon weaning, whereas the gut microbiota of low-ADG piglets continued to mature after weaning. Overall, our findings suggest that weaning is the major driver of gut microbiota variation in piglets with different levels of overall growth performance. This calls for further research to verify if promotion of specific gut microbiota, identified here at weaning transition, is beneficial for piglet growth. IMPORTANCE The relationship between pigs' intestinal microbiota and growth performance is of great importance for improving piglets' health and reducing antimicrobial use. We found that gut microbiota variation is significantly associated with growth during weaning and the early nursery period. Importantly, transitions toward a mature gut microbiota enriched with fiber-degrading bacteria mostly complete upon weaning in piglets with better growth. Postponing the weaning age may therefore favor the development of fiber degrading gut bacteria, conferring the necessary capacity to digest and harvest solid postweaning feed. The bacterial taxa associated with piglet growth identified herein hold potential to improve piglet growth and health.
Collapse
Affiliation(s)
- Md Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Md Karim Uddin
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Heli Venhoranta
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Claudio Oliviero
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Rattigan R, Lawlor PG, Cormican P, Crespo-Piazuelo D, Cullen J, Phelan JP, Ranjitkar S, Crispie F, Gardiner GE. Maternal and/or post-weaning supplementation with Bacillus altitudinis spores modulates the microbial composition of colostrum, digesta and faeces in pigs. Sci Rep 2023; 13:8900. [PMID: 37264062 DOI: 10.1038/s41598-023-33175-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/08/2023] [Indexed: 06/03/2023] Open
Abstract
This study examined the effects of maternal and/or post-weaning Bacillus altitudinis supplementation on the microbiota in sow colostrum and faeces, and offspring digesta and faeces. Sows (n = 12/group) were assigned to: (1) standard diet (CON), or (2) CON supplemented with probiotic B. altitudinis spores (PRO) from day (d)100 of gestation to weaning (d26 of lactation). At weaning, offspring were assigned to CON or PRO for 28d, resulting in: (1) CON/CON, (2) CON/PRO, (3) PRO/CON, and (4) PRO/PRO, after which all received CON. Samples were collected from sows and selected offspring (n = 10/group) for 16S rRNA gene sequencing. Rothia was more abundant in PRO sow colostrum. Sow faeces were not impacted but differences were identified in offspring faeces and digesta. Most were in the ileal digesta between PRO/CON and CON/CON on d8 post-weaning; i.e. Bacteroidota, Alloprevotella, Prevotella, Prevotellaceae, Turicibacter, Catenibacterium and Blautia were more abundant in PRO/CON, with Firmicutes and Blautia more abundant in PRO/PRO compared with CON/CON. Lactobacillus was more abundant in PRO/CON faeces on d118 post-weaning. This increased abundance of polysaccharide-fermenters (Prevotella, Alloprevotella, Prevotellaceae), butyrate-producers (Blautia) and Lactobacillus likely contributed to previously reported improvements in growth performance. Overall, maternal, rather than post-weaning, probiotic supplementation had the greatest impact on intestinal microbiota.
Collapse
Affiliation(s)
- Ruth Rattigan
- Eco-Innovation Research Centre, Department of Science, Waterford Campus, South East Technological University, Waterford, Ireland
| | - Peadar G Lawlor
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul Cormican
- Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Daniel Crespo-Piazuelo
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - James Cullen
- Eco-Innovation Research Centre, Department of Science, Waterford Campus, South East Technological University, Waterford, Ireland
| | - John P Phelan
- Eco-Innovation Research Centre, Department of Science, Waterford Campus, South East Technological University, Waterford, Ireland
| | - Samir Ranjitkar
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Research Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Gillian E Gardiner
- Eco-Innovation Research Centre, Department of Science, Waterford Campus, South East Technological University, Waterford, Ireland.
| |
Collapse
|
33
|
Jerez-Bogota K, Jensen M, Højberg O, Cormican P, Lawlor PG, Gardiner GE, Canibe N. Antibacterial plant combinations prevent postweaning diarrhea in organically raised piglets challenged with enterotoxigenic Escherichia coli F18. Front Vet Sci 2023; 10:1095160. [PMID: 37077951 PMCID: PMC10106643 DOI: 10.3389/fvets.2023.1095160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Antibiotics and zinc oxide restrictions encourage the search for alternatives to combat intestinal pathogens, including enterotoxigenic Escherichia coli (ETEC), a major cause of postweaning diarrhea (PWD) in pigs. PWD causes important economic losses for conventional and organic farming. This study investigated the effect of dietary supplementation with garlic and apple pomace or blackcurrant on infection indicators and the fecal microbiota of organic-raised piglets challenged with ETEC-F18. For 21 days, 32 piglets (7-weeks-old) were randomly assigned to one of four groups: non-challenge (NC); ETEC-challenged (PC); ETEC-challenged receiving garlic and apple pomace (3 + 3%; GA); ETEC-challenged receiving garlic and blackcurrant (3 + 3%; GB). ETEC-F18 was administered (8 mL; 109 CFU/ml) on days 1 and 2 postweaning. The 1st week, PC had lower average daily gain than those in the NC, GA, and GB groups (P < 0.05). NC pigs showed neither ETEC-F18 shedding nor signs of diarrhea. The PC group had higher diarrhea incidence and lower fecal dry matter than NC (≈5–10 days; 95% sEBCI). The GA and GB groups showed reduced ETEC-F18 and fedA gene shedding, higher fecal dry matter, and lower diarrhea incidence than the PC (≈5–9 days; 95% sEBCI). The NC, GA, and GB had normal hematology values during most of the study, whereas the PC had increased (P < 0.05) red blood cells, hemoglobin, and hematocrit on day 7. Haptoglobin and pig-MAP increased in all groups, peaking on day 7, but PC showed the greatest increase (P < 0.05). The fecal microbiota of PC pigs had reduced α-diversity (day 7; P < 0.05) and higher volatility (days 3–14; P < 0.05). Escherichia, Campylobacter, and Erysipelothrix were more abundant in the PC than in the NC, GB, and GA groups (log2FC > 2; P < 0.05), whereas Catenibacterium, Dialister, and Mitsoukella were more abundant in the NC, GB, and GA than in the PC group (log2FC > 2; P < 0.05). Prevotella and Lactobacillus were more abundant in the GB group (log2FC > 2, P < 0.05). In conclusion, dietary supplementation of GA and GB limited ETEC proliferation, reduced PWD, and beneficially impacted the fecal microbiota's diversity, composition, and stability.
Collapse
Affiliation(s)
- Kevin Jerez-Bogota
- Department of Food Science, Aarhus University, Aarhus, Denmark
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Martin Jensen
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Ole Højberg
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Paul Cormican
- Animal Bioscience Research Centre, Teagasc Grange, Meath, Ireland
| | - Peadar G. Lawlor
- Pig Development Department, Teagasc Animal and Grassland Research and Innovation Centre, Fermoy, Ireland
| | - Gillian E. Gardiner
- Department of Science, Eco-Innovation Research Centre, Southeast Technological University, Waterford, Ireland
| | - Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
- *Correspondence: Nuria Canibe
| |
Collapse
|
34
|
Jiang Q, Xie C, Chen L, Xiao H, Xie Z, Zhu X, Ma L, Yan X. Identification of gut microbes associated with feed efficiency by daily-phase feeding strategy in growing-finishing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 12:42-53. [PMID: 36381065 PMCID: PMC9647424 DOI: 10.1016/j.aninu.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 06/08/2023]
Abstract
Feed efficiency is one of the most important issues for sustainable pig production. Daily-phase feeding (DPF) is a form of precision feeding that could improve feed efficiency in pigs. Gut microbiota can regulate host nutrient digestion, absorption, and metabolism. However, which key microbes may play a vital role in improving the feed efficiency during DPF remains unclear. In the present study, we used a DPF program compared to a three-phase feeding (TPF) program in growing-finishing pigs to investigate the effects of gut microbiota on feed efficiency. A total of 204 Landrace × Yorkshire pigs (75 d) were randomly assigned into 2 treatments. Each treatment was replicated 8 times with 13 to 15 pigs per replicate pen. Pigs in the TPF group were fed with a commercial feeding program that supplied fixed feed for phases I, II, and III, starting at 81, 101, and 132 d of age, respectively, and pigs in the DPF group were fed a blend of adjacent phase feed from 81 to 155 d at a gradual daily ratio and phase III feed from 155 to 180 d of age. Daily feed intake and body weight were recorded by a computerized device in the feeders. Feces and blood samples were collected from 1 pig per replicate at 155 and 180 d of age. The results showed that the DPF program remarkably improved the feed efficiency at 155 d (P < 0.001) and 180 d of age (P < 0.001), with a significant reduction of the intake of crude protein (P < 0.01), net energy (P < 0.001), crude fiber (P < 0.001), ether extract (P < 0.01), and ash (P < 0.001). The daily-phase feeding program increased the abundance of Prevotella copri (P < 0.05) and Paraprevotella clara (P < 0.05), while it decreased the abundance of Ocilibacter (P < 0.05) at 155 d of age. The results of correlation analysis indicated that the differentially abundant microbiota communities were closely associated with 20 metabolites which enriched amino acid and phenylalanine metabolism. Our results suggest that 2 key microbes may contribute to feed efficiency during daily-phase feeding strategies in pigs.
Collapse
Affiliation(s)
- Qin Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Chunlin Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Lingli Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Hongli Xiao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Zhilian Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Xiaoyan Zhu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
35
|
Luo S, Hou Y, Xie L, Zhang H, Liu C, Chen T. Effects of microwave on the potential microbiota modulating effects of agro-industrial by-product fibers among different individuals. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
36
|
Zhou X, Ma Y, Yang C, Zhao Z, Ding Y, Zhang Y, Wang P, Zhao L, Li C, Su Z, Wang X, Ming W, Zeng L, Kang X. Rumen and Fecal Microbiota Characteristics of Qinchuan Cattle with Divergent Residual Feed Intake. Microorganisms 2023; 11:microorganisms11020358. [PMID: 36838323 PMCID: PMC9964965 DOI: 10.3390/microorganisms11020358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Residual feed intake (RFI) is one of the indicators of feed efficiency. To investigate the microbial characteristics and differences in the gastrointestinal tract of beef cattle with different RFI, a metagenome methodology was used to explore the characteristics of the rumen and fecal microbiota in 10 Qinchuan cattle (five in each of the extremely high and extremely low RFI groups). The results of taxonomic annotation revealed that Bacteroidetes and Firmicutes were the most dominant phyla in rumen and feces. Prevotella was identified as a potential biomarker in the rumen of the LRFI group by the LEfSe method, while Turicibacter and Prevotella might be potential biomarkers of the HRFI and LRFI group in feces, respectively. Functional annotation revealed that the microbiota in the rumen of the HRFI group had a greater ability to utilize dietary polysaccharides and dietary protein. Association analysis of rumen microbes (genus level) with host genes revealed that microbiota including Prevotella, Paraprevotella, Treponema, Oscillibacter, and Muribaculum, were significantly associated with differentially expressed genes regulating RFI. This study discovered variances in the microbial composition of rumen and feces of beef cattle with different RFIs, demonstrating that differences in microbes may play a critical role in regulating the bovine divergent RFI phenotype variations.
Collapse
|
37
|
Zhao Q, Yu J, Zhou H, Wang X, Zhang C, Hu J, Hu Y, Zheng H, Zeng F, Yue C, Gu L, Wang Z, Zhao F, Zhou P, Zhang H, Huang N, Wu W, Zhou Y, Li J. Intestinal dysbiosis exacerbates the pathogenesis of psoriasis-like phenotype through changes in fatty acid metabolism. Signal Transduct Target Ther 2023; 8:40. [PMID: 36710269 PMCID: PMC9884668 DOI: 10.1038/s41392-022-01219-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 01/31/2023] Open
Abstract
The intestinal microbiota has been associated with host immunity as well as psoriasis; however, the mechanism of intestinal microbiota regulating psoriasis needs to be demonstrated systematically. Here, we sought to examine its role and mechanism of action in the pathogenesis of psoriasis. We found that the severity of psoriasis-like skin phenotype was accompanied by changes in the composition of the intestinal microbiota. We performed co-housing and fecal microbial transplantation (FMT) experiments using the K14-VEGF transgenic mouse model of psoriasis and demonstrated that the transfer of intestinal microbiota from mice with severe psoriasis-like skin phenotype exacerbated psoriasiform skin inflammation in mice with mild symptoms, including increasing the infiltration and differentiation of Th17, and increased the abundance of Prevotella, while decreasing that of Parabacteroides distasonis, in the colon. These alterations affected fatty acid metabolism, increasing the abundance of oleic and stearic acids. Meanwhile, gentamicin treatment significantly reduced the abundance of Prevotella and alleviated the psoriasis-like symptoms in both K14-VEGF mice and imiquimod (IMQ)-induced psoriasis-like mice. Indeed, administration of oleic and stearic acids exacerbated psoriasis-like symptoms and increased Th17 and monocyte-derived dendritic cell infiltration in the skin lesion areas in vivo, as well as increased the secretion of IL-23 by stimulating DCs in vitro. At last, we found that, treatment of PDE-4 inhibitor alleviated psoriasis-like phenotype of K14-VEGF mice accompanied by the recovery of intestinal microbiota, including the decrease of Prevotella and increase of Parabacteroides distasonis. Overall, our findings reveal that the intestinal microbiota modulates host metabolism and psoriasis-like skin inflammation in mice, suggesting a new target for the clinical diagnosis and treatment of psoriasis.
Collapse
Affiliation(s)
- Qixiang Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiadong Yu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hong Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaoyan Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chen Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jing Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yawen Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huaping Zheng
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Fanlian Zeng
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chengcheng Yue
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Linna Gu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhen Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Fulei Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Pei Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Haozhou Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Nongyu Huang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenling Wu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yifan Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
38
|
Dang DX, Lee H, Lee SJ, Song JH, Mun S, Lee KY, Han K, Kim IH. Tributyrin and anise mixture supplementation improves growth performance, nutrient digestibility, jejunal villus height, and fecal microbiota in weaned pigs. Front Vet Sci 2023; 10:1107149. [PMID: 36777676 PMCID: PMC9911537 DOI: 10.3389/fvets.2023.1107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction The objective of this study was to investigate the effects of dietary supplementation of tributyrin and anise mixture (TA) on growth performance, apparent nutrient digestibility, fecal noxious gas emission, fecal score, jejunal villus height, hematology parameters, and fecal microbiota of weaned pigs. Methods A total of 150 21-day-old crossbred weaned pigs [(Landrace × Yorkshire) × Duroc] were used in a randomized complete block design experiment. All pigs were randomly assigned to 3 groups based on the initial body weight (6.19 ± 0.29 kg). Each group had 10 replicate pens with 5 pigs (three barrows and two gilts) per pen. The experimental period was 42 days and consisted of 3 phases (phase 1, days 1-7; phase 2, days 8-21; phase 3, days 22-42). Dietary treatments were based on a corn-soybean meal-basal diet and supplemented with 0.000, 0.075, or 0.150% TA. Results and discussion We found that dietary supplementation of graded levels of TA linearly improved body weight, body weight gain, average daily feed intake, and feed efficiency (P < 0.05). TA supplementation also had positive effects on apparent dry matter, crude protein, and energy digestibility (P < 0.05) and jejunal villus height (P < 0.05). The emission of ammonia from feces decreased linearly with the dose of TA increased (P < 0.05). Moreover, TA supplementation was capable to regulate the fecal microbiota diversity, manifesting in a linearly increased Chao1 index and observed species and a linearly decreased Pielou's index (P < 0.05). The abundance of Lactobacillus reuteri, Lactobacillus amylovorus, Clostridium butyricum were increased, while the abundance of Prevotella copri was decreased, by treatment (P < 0.05). Therefore, we speculated that TA supplementation would improve growth performance and reduce fecal ammonia emission through improving nutrient digestibility, which was attributed to the increase of jejunal villus height and the regulation of fecal microbiota.
Collapse
Affiliation(s)
- De Xin Dang
- Department of Animal Resources Science, Dankook University, Cheonan-si, Republic of Korea
| | - Haeun Lee
- Department of Bioconvergence Engineering, Dankook University, Yongin-si, Republic of Korea
| | - Seung Jae Lee
- Department of Animal Resources Science, Dankook University, Cheonan-si, Republic of Korea
| | - Jun Ho Song
- Department of Animal Resources Science, Dankook University, Cheonan-si, Republic of Korea
| | - Seyoung Mun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan-si, Republic of Korea,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan-si, Republic of Korea
| | | | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin-si, Republic of Korea,Department of Microbiology, College of Science & Technology, Dankook University, Cheonan-si, Republic of Korea,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan-si, Republic of Korea,*Correspondence: Kyudong Han ✉
| | - In Ho Kim
- Department of Animal Resources Science, Dankook University, Cheonan-si, Republic of Korea,In Ho Kim ✉
| |
Collapse
|
39
|
Gurung M, Rosa F, Yelvington B, Terry N, Read QD, Piccolo BD, Moody B, Tripp P, Pittman HE, Fay BL, Ross TJ, Sikes JD, Flowers JB, Fox R, LeRoith T, Talatala R, Bar-Yoseph F, Yeruva L. Evaluation of a Plant-Based Infant Formula Containing Almonds and Buckwheat on Gut Microbiota Composition, Intestine Morphology, Metabolic and Immune Markers in a Neonatal Piglet Model. Nutrients 2023; 15:383. [PMID: 36678256 PMCID: PMC9861483 DOI: 10.3390/nu15020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
A controlled-neonatal piglet trial was conducted to evaluate the impact of a plant-based infant formula containing buckwheat and almonds as the main source of protein compared to a commercially available dairy-based formula on the gut health parameters. Two day old piglets were fed either a plant-based or a dairy-based formula until day 21. Gut microbiome, cytokines, growth and metabolism related outcomes, and intestinal morphology were evaluated to determine the safety of the plant-based infant formula. This study reported that the plant-based formula-fed piglets had a similar intestinal microbiota composition relative to the dairy-based formula-fed group. However, differential abundance of specific microbiota species was detected within each diet group in the small and large intestinal regions and fecal samples. Lactobacillus delbrueckii, Lactobacillus crispatus, and Fusobacterium sp. had higher abundance in the small intestine of plant-based formula-fed piglets compared to the dairy-based group. Bacteroides nordii, Enterococcus sp., Lactobacillus crispatus, Prevotella sp., Ruminococcus lactaris, Bacteroides nordii, Eisenbergiella sp., Lactobacillus crispatus, Prevotella sp., and Akkermansia muciniphila had greater abundance in the large intestine of the plant based diet fed piglets relative to the dairy-based diet group. In the feces, Clostridiales, Bacteroides uniformis, Butyricimonasvirosa, Cloacibacillus porcorum, Clostridium clostridioforme, and Fusobacterium sp. were abundant in dairy-based group relative to the plant-based group. Lachnospiraceae, Clostridium scindens, Lactobacillus coleohominis, and Prevetolla sp. had greater abundance in the feces of the plant-based group in comparison to the dairy-based group. Gut morphology was similar between the plant and the dairy-based formula-fed piglets. Circulatory cytokines, magnesium, triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH), vitamin D, vitamin K, and IgE levels were similar among all piglets independent of dietary group. Overall, the present study demonstrated that a plant-based formula with buckwheat and almonds as the primary source of protein can support similar gut microbiota growth and health outcomes compared to a dairy-based infant formula.
Collapse
Affiliation(s)
- Manoj Gurung
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Fernanda Rosa
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79409, USA
| | - Brooke Yelvington
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Nathan Terry
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Quentin D. Read
- USDA-ARS, Southeast Area, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian D. Piccolo
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Becky Moody
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Patricia Tripp
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Hoy E. Pittman
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Bobby L. Fay
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Talyor J. Ross
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - James D. Sikes
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | | | - Renee Fox
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences & Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rachelanne Talatala
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | | | - Laxmi Yeruva
- USDA-ARS, South East Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| |
Collapse
|
40
|
Vötterl JC, Lerch F, Schwartz-Zimmermann HE, Sassu EL, Schwarz L, Renzhammer R, Bünger M, Koger S, Sharma S, Sener-Aydemir A, Quijada NM, Selberherr E, Berthiller F, Metzler-Zebeli BU. Plant-oriented microbiome inoculum modulates age-related maturation of gut-mucosal expression of innate immune and barrier function genes in suckling and weaned piglets. J Anim Sci 2023; 101:skad165. [PMID: 37217284 PMCID: PMC10259255 DOI: 10.1093/jas/skad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/19/2023] [Indexed: 05/24/2023] Open
Abstract
In the immediate time after weaning, piglets often show symptoms of gut inflammation. The change to a plant-based diet, lack of sow milk, and the resulting novel gut microbiome and metabolite profile in digesta may be causative factors for the observed inflammation. We used the intestinal loop perfusion assay (ILPA) to investigate jejunal and colonic expression of genes for antimicrobial secretion, oxidative stress, barrier function, and inflammatory signaling in suckling and weaned piglets when exposed to "plant-oriented" microbiome (POM) representing postweaning digesta with gut-site specific microbial and metabolite composition. Two serial ILPA were performed in two replicate batches, with 16 piglets preweaning (days 24 to 27) and 16 piglets postweaning (days 38 to 41). Two jejunal and colonic loops were perfused with Krebs-Henseleit buffer (control) or with the respective POM for 2 h. Afterward, RNA was isolated from the loop tissue to determine the relative gene expression. Age-related effects in jejunum included higher expression of genes for antimicrobial secretions and barrier function as well as reduced expression of pattern-recognition receptors post- compared to preweaning (P < 0.05). Age-related effects in the colon comprised downregulation of the expression of pattern-recognition receptors post- compared to preweaning (P < 0.05). Likewise, age reduced the colonic expression of genes encoding for cytokines, antimicrobial secretions, antioxidant enzymes, and tight-junction proteins post- compared to preweaning. Effect of POM in the jejunum comprised an increased the expression of toll-like receptors compared to the control (P < 0.05), demonstrating a specific response to microbial antigens. Similarly, POM administration upregulated the jejunal expression of antioxidant enzymes (P < 0.05). The POM perfusion strongly upregulated the colonic expression of cytokines and altered the expression of barrier function genes, fatty acid receptors and transporters, and antimicrobial secretions (P < 0.05). In conclusion, results indicated that POM signaled via altering the expression of pattern-recognition receptors in the jejunum, which in turn activated the secretory defense and decreased mucosal permeability. In the colon, POM may have acted pro-inflammatory via upregulated cytokine expression. Results are valuable for the formulation of transition feeds for the immediate time after weaning to maintain mucosal immune tolerance towards the novel digesta composition.
Collapse
Affiliation(s)
- Julia C Vötterl
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Frederike Lerch
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Heidi E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln an der Donau, Austria
| | - Elena L Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Lukas Schwarz
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Rene Renzhammer
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Moritz Bünger
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Simone Koger
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Narciso M Quijada
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, 3430 Tulln an der Donau, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln an der Donau, Austria
| | - Barbara U Metzler-Zebeli
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
41
|
Yu DY, Oh SH, Kim IS, Kim GI, Kim JA, Moon YS, Jang JC, Lee SS, Jung JH, Park HC, Cho KK. Effects of lactic acid bacteria fermented feed and three types of lactic acid bacteria (L. plantarum, L. acidophilus, B. animalis) on intestinal microbiota and T cell polarization (Th1, Th2, Th17, Treg) in the intestinal lymph nodes and spleens of rats. Anim Biosci 2023; 36:156-166. [PMID: 36397706 PMCID: PMC9834648 DOI: 10.5713/ab.22.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE In this study, we investigated the effects of Rubus coreanus-derived lactic acid bacteria (LAB) fermented feed (RC-LAB fermented feed) and three types of LAB (Lactobacillus plantarum, Lactobacillus acidophilus, Bifidobacterium animalis) on the expression of transcription factors and cytokines in Th1, Th2, Th17, and Treg cells in the intestinal lymph nodes and spleens of rats. In addition, the effect on intestinal microbiota composition and body weight was investigated. METHODS Five-week-old male rats were assigned to five treatments and eight replicates. The expression of transcription factors and cytokines of Th1, Th2, Th17, and Treg cells in the intestinal lymph nodes and spleens was analyzed using real-time reverse transcriptase polymerase chain reaction assays. Intestinal tract microbiota compositions were analyzed by next-generation sequencing and quantitative polymerase chain reaction assays. RESULTS RC-LAB fermented feed and three types of LAB increased the expression of transcription factors and cytokines in Th1, Treg cells and Galectin-9, but decreased in Th2 and Th17 cells. In addition, the intestinal microbiota composition changed, the body weight and Firmicutes to Bacteroidetes (F/B) ratio decreased, and the relative abundance of LAB increased. CONCLUSION LAB fermented feed and three types of LAB showed an immune modulation effect by inducing T cell polarization and increased LAB in the intestinal microbiota.
Collapse
Affiliation(s)
- Da Yoon Yu
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| | - Sang-Hyon Oh
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| | - In Sung Kim
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| | - Gwang Il Kim
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| | - Jeong A Kim
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| | - Yang Soo Moon
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52725,
Korea
| | - Jae Cheol Jang
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea
| | - Sang Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Sunchon 57922,
Korea
| | | | | | - Kwang Keun Cho
- Division of Animal Science, Gyeongsang National University, Jinju 52725,
Korea,Corresponding Author: Kwang Keun Cho, Tel: +82-55-772-3286, Fax: +82-55-772-3689, E-mail:
| |
Collapse
|
42
|
Betancur-Murillo CL, Aguilar-Marín SB, Jovel J. Prevotella: A Key Player in Ruminal Metabolism. Microorganisms 2022; 11:microorganisms11010001. [PMID: 36677293 PMCID: PMC9866204 DOI: 10.3390/microorganisms11010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Ruminants are foregut fermenters that have the remarkable ability of converting plant polymers that are indigestible to humans into assimilable comestibles like meat and milk, which are cornerstones of human nutrition. Ruminants establish a symbiotic relationship with their microbiome, and the latter is the workhorse of carbohydrate fermentation. On the other hand, during carbohydrate fermentation, synthesis of propionate sequesters H, thus reducing its availability for the ultimate production of methane (CH4) by methanogenic archaea. Biochemically, methane is the simplest alkane and represents a downturn in energetic efficiency in ruminants; environmentally, it constitutes a potent greenhouse gas that negatively affects climate change. Prevotella is a very versatile microbe capable of processing a wide range of proteins and polysaccharides, and one of its fermentation products is propionate, a trait that appears conspicuous in P. ruminicola strain 23. Since propionate, but not acetate or butyrate, constitutes an H sink, propionate-producing microbes have the potential to reduce methane production. Accordingly, numerous studies suggest that members of the genus Prevotella have the ability to divert the hydrogen flow in glycolysis away from methanogenesis and in favor of propionic acid production. Intended for a broad audience in microbiology, our review summarizes the biochemistry of carbohydrate fermentation and subsequently discusses the evidence supporting the essential role of Prevotella in lignocellulose processing and its association with reduced methane emissions. We hope this article will serve as an introduction to novice Prevotella researchers and as an update to others more conversant with the topic.
Collapse
Affiliation(s)
- Claudia Lorena Betancur-Murillo
- Escuela de Ciencias Básicas, Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, UNAD, Bogotá 111511, Colombia
| | | | - Juan Jovel
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
- Correspondence:
| |
Collapse
|
43
|
Ramos Meyers G, Samouda H, Bohn T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients 2022; 14:5361. [PMID: 36558520 PMCID: PMC9788597 DOI: 10.3390/nu14245361] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that the gut microbiota plays a significant role in modulating inflammatory and immune responses of their host. In recent years, the host-microbiota interface has gained relevance in understanding the development of many non-communicable chronic conditions, including cardiovascular disease, cancer, autoimmunity and neurodegeneration. Importantly, dietary fibre (DF) and associated compounds digested by the microbiota and their resulting metabolites, especially short-chain fatty acids (SCFA), were significantly associated with health beneficial effects, such as via proposed anti-inflammatory mechanisms. However, SCFA metabolic pathways are not fully understood. Major steps include production of SCFA by microbiota, uptake in the colonic epithelium, first-pass effects at the liver, followed by biodistribution and metabolism at the host's cellular level. As dietary patterns do not affect all individuals equally, the host genetic makeup may play a role in the metabolic fate of these metabolites, in addition to other factors that might influence the microbiota, such as age, birth through caesarean, medication intake, alcohol and tobacco consumption, pathogen exposure and physical activity. In this article, we review the metabolic pathways of DF, from intake to the intracellular metabolism of fibre-derived products, and identify possible sources of inter-individual variability related to genetic variation. Such variability may be indicative of the phenotypic flexibility in response to diet, and may be predictive of long-term adaptations to dietary factors, including maladaptation and tissue damage, which may develop into disease in individuals with specific predispositions, thus allowing for a better prediction of potential health effects following personalized intervention with DF.
Collapse
Affiliation(s)
- Guilherme Ramos Meyers
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Hanen Samouda
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
44
|
Llauradó-Calero E, Climent E, Chenoll E, Ballester M, Badiola I, Lizardo R, Torrallardona D, Esteve-Garcia E, Tous N. Influence of dietary n-3 long-chain fatty acids on microbial diversity and composition of sows' feces, colostrum, milk, and suckling piglets' feces. Front Microbiol 2022; 13:982712. [PMID: 36545207 PMCID: PMC9760940 DOI: 10.3389/fmicb.2022.982712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/07/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction Very little is known about the impact of n-3 long-chain fatty acids (n-3 LCFAs) on the microbiota of sows and their piglets. The aim of this study was to evaluate the effect of n-3 LCFA in sow diets on the microbiota composition of sows' feces, colostrum, and milk as well as that of piglets' feces. Methods Twenty-two sows were randomly assigned to either a control or an n-3 LCFA diet from service to weaning. Sows' and piglets' performance was monitored. The gestating and lactating sows' microbiomes in feces, colostrum, and milk were characterized by 16s ribosomal RNA gene sequencing. The fecal microbiome from the two lowest (>800 g) and the two highest birth weight piglets per litter was also characterized, and the LPS levels in plasma were analyzed at weaning. Results and Discussion n-3 LCFA increased microbiota alpha diversity in suckling piglets' and gestating sows' feces. However, no effects were observed in colostrum, milk, or lactating sows' feces. Dietary n-3 LCFA modified the microbiota composition of gestating sows' feces, milk, and suckling piglets' feces, without affecting lactating sows' feces or colostrum. In gestating sows' feces and milk, the decrease in genus Succinivibrio and the increase of Proteobacteria phylum, due to the increased genera Brenneria and Escherichia, respectively, stand out. In the feces of suckling piglets, the higher abundance of the beneficial genus Akkermansia and Bacteroides, and different species of Lactobacillus are highlighted. In addition, positive correlations for families and genera were found between lactating sows' feces and milk, milk and suckling piglets' feces, and lactating sows' feces and suckling piglets' feces. To conclude, dietary n-3 LCFA had a positive impact on the microbiome of suckling piglet's feces by increasing microbial diversity and some beneficial bacteria populations, had a few minor modifications on the microbiome of milk and gestating sows' feces and did not change the microbiome in lactating sows' feces or colostrum. Therefore, this study shows the effect of dietary n-3 LCFA on the microbiota of sows, colostrum, milk, and suckling piglets during the lactation period providing crucial information on the microbiota status at the early stages of life, which have an impact on the post-weaning.
Collapse
Affiliation(s)
- Eudald Llauradó-Calero
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), Tarragona, Spain
| | | | | | - Maria Ballester
- Animal Breeding and Genetics, Institute for Food and Agricultural Research and Technology (IRTA), Tarragona, Spain
| | - Ignacio Badiola
- Animal Health-CReSA, Institute for Food and Agricultural Research and Technology (IRTA), Bellaterra, Spain
| | - Rosil Lizardo
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), Tarragona, Spain
| | - David Torrallardona
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), Tarragona, Spain
| | - Enric Esteve-Garcia
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), Tarragona, Spain
| | - Núria Tous
- Animal Nutrition, Institute for Food and Agricultural Research and Technology (IRTA), Tarragona, Spain,*Correspondence: Núria Tous,
| |
Collapse
|
45
|
Li Y, Ma Q, Shi X, Liu G, Wang C. Integrated multi-omics reveals novel microbe-host lipid metabolism and immune interactions in the donkey hindgut. Front Immunol 2022; 13:1003247. [PMID: 36466834 PMCID: PMC9716284 DOI: 10.3389/fimmu.2022.1003247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/04/2022] [Indexed: 09/07/2023] Open
Abstract
Evidence has shown that gut microbiota play a key role in host metabolism and health; however, little is known about the microbial community in the donkey hindgut as well as the interactions that occur between gut microbes and the host. This study aimed to explore the gut microbiome differences by analyzing the microbial community and differentially expressed genes (DEGs) related to lipid metabolism and the immune system along the donkey hindgut. The hindgut tissues (cecum, ventral colon, and dorsal colon) were separated, and the contents of each section were collected from six male donkeys for multi-omics analysis. There were significant differences in terms of dominant bacteria among the three sections, especially between the cecum and dorsal colon sites. For instance, species belonging to Prevotella and Treponema were most abundant in the cecum, while the Clostridiales_bacterium, Streptococcus_equinus, Ruminococcaceae_bacterium, etc., were more abundant in the dorsal colon. Apart from propionate, the concentrations of acetate, isobutyrate, valerate and isovalerate were all lower in the cecum than in the dorsal colon (p < 0.05). Furthermore, we identified some interesting DEGs related to lipid metabolism (e.g., ME1, MBOAT1, ACOX1, ACOX2 and LIPH) and the immune system (e.g., MUC3B, mucin-2-like, IL17RC, IL1R2, IL33, C1QA, and MMP9) between the cecum and dorsal colon and found that the PPAR pathway was mainly enriched in the cecum. Finally, we found a complex relationship between the gut microbiome and gene expression, especially with respect to the immune system, and combined with protein-protein interaction (PPI) data, suggesting that the PPAR pathway might be responsible, at least in part, for the role of the hindgut microbiota in the donkeys' gut homeostasis. Our data provide an in-depth understanding of the interaction between the microbiota and function in the healthy equine hindgut and may also provide guidance for improving animal performance metrics (such as product quality) and equine welfare.
Collapse
Affiliation(s)
| | | | | | | | - Changfa Wang
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
46
|
Springer A, Wagner L, Koehler S, Klinger S, Breves G, Brüggemann DA, Strube C. Modulation of the porcine intestinal microbiota in the course of Ascaris suum infection. Parasit Vectors 2022; 15:433. [PMID: 36397169 PMCID: PMC9673396 DOI: 10.1186/s13071-022-05535-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background The porcine roundworm Ascaris suum impairs feed conversion and weight gain, but its effects on intestinal microbiota remain largely unexplored. Methods Modulation of the intestinal microbiota was assessed in pigs that were infected once with 10,000 A. suum eggs and pigs that received a trickle infection (1000 eggs/day over 10 days), compared with a non-infected control group. Six pigs each were sacrificed per group at days 21, 35 and 49 post-infection (p.i.). Faecal samples taken weekly until slaughter and ingesta samples from different intestinal compartments were subjected to next-generation sequencing of the bacterial 16S rRNA gene. Results The results revealed marked differences between the single- and the trickle-infected group. Single infection caused a remarkable but transient decrease in microbial diversity in the caecum, which was not observed in the trickle-infected group. However, an increase in short-chain fatty acid-producing genera in the caecum on day 21 p.i., which shifted to a decrease on day 35 p.i., was common to both groups, possibly related to changes in excretory–secretory products following the parasite’s final moult. Faecal microbial interaction networks were more similar between the single-infected and control group than the trickle-infected group. In addition, a lower degree of similarity over time indicated that A. suum trickle infection prevented microbiota stabilization. Conclusions These different patterns may have important implications regarding the comparability of experimental infections with natural scenarios characterized by continuous exposure, and should be confirmed by further studies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05535-w.
Collapse
|
47
|
Yu DY, Oh SH, Kim IS, Kim GI, Kim JA, Moon YS, Jang JC, Lee SS, Jung JH, Park J, Cho KK. Intestinal microbial composition changes induced by Lactobacillus plantarum GBL 16, 17 fermented feed and intestinal immune homeostasis regulation in pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1184-1198. [PMID: 36812041 PMCID: PMC9890339 DOI: 10.5187/jast.2022.e89] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
In this study, Rubus coreanus (R. coreanus) byproducts with high polyphenol content were fermented with R. coreanus-derived lactic acid bacteria (Lactobacillus plantarum GBL 16 and 17). Then the effect of R. coreanus-derived lactic acid bacteria fermented feed (RC-LAB fermented feed) with probiotics (Bacillus subtills, Aspergillus oryzae, Yeast) as a feed additive for pigs on the composition of intestinal microbes and the regulation of intestinal immune homeostasis was investigated. Seventy-two finishing Berkshire pigs were randomly allotted to four different treatment groups and 18 replicates. RC-LAB fermented feed with probiotics increased the genera Lactobacillus, Streptococcus, Mitsuokella, Prevotella, Bacteroides spp., Roseburia spp., and Faecalibacterium prausnitzii, which are beneficial bacteria of the digestive tract of pigs. Also, RC-LAB fermented feed with probiotics decreased the genera Clostridium, Terrisporobacter, Romboutsia, Kandleria, Megasphaera and Escherichia, which are harmful bacteria. In particular, the relative abundance of the genera Lactobacillus and Streptococcus increased by an average of 8.51% and 4.68% in the treatment groups and the classes Clostridia and genera Escherichia decreased by an average of 27.05% and 2.85% in the treatment groups. In mesenteric lymph nodes (MLN) and spleens, the mRNA expression of transcription factors and cytokines in Th1 and Treg cells increased and the mRNA expression of Th2 and Th17 transcription factors and cytokines decreased, indicating a regulatory effect on intestinal immune homeostasis. RC-LAB fermented feed regulates gut immune homeostasis by influencing the composition of beneficial and detrimental microorganisms in the gut and regulating the balance of Th1/Th2 and Th17/Treg cells.
Collapse
Affiliation(s)
- Da Yoon Yu
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Sang-Hyon Oh
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - In Sung Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Gwang Il Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Jeong A Kim
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Yang Soo Moon
- Division of Animal Bioscience &
Integrated Biotechnology, Gyeongsang National University,
Jinju 52725, Korea
| | - Jae Cheol Jang
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea
| | - Sang Suk Lee
- Department of Animal Science and
Technology, Sunchon National University, Sunchon 57922,
Korea
| | | | - Jun Park
- Department of Animal Biotechnology,
Jeonbok National University, Jeonju 54896, Korea
| | - Kwang Keun Cho
- Division of Animal Science, Gyeongsang
National University, Jinju 52725, Korea,Corresponding author: Kwang Keun Cho
Division of Animal Science, Gyeongsang National University, Jinju 52725, Korea.
Tel: +82-55-772-3286 E-mail:
| |
Collapse
|
48
|
Diether NE, Nam SL, Fouhse J, Le Thanh BV, Stothard P, Zijlstra RT, Harynuk J, de la Mata P, Willing BP. Dietary benzoic acid and supplemental enzymes alter fiber-fermenting taxa and metabolites in the cecum of weaned pigs. J Anim Sci 2022; 100:skac324. [PMID: 36205053 PMCID: PMC9683507 DOI: 10.1093/jas/skac324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Inclusion of enzymes and organic acids in pig diets is an important strategy supporting decreased antibiotic usage in pork production. However, limited knowledge exists about how these additives impact intestinal microbes and their metabolites. To examine the effects of benzoic acid and enzymes on gut microbiota and metabolome, 160 pigs were assigned to one of four diets 7 days after weaning: a control diet or the addition of 0.5% benzoic acid, 0.045% dietary enzymes (phytase, β-glucanase, xylanase, and α-amylase), or both and fed ad libitum for 21 to 22 d. Individual growth performance and group diarrhea incidence data were collected throughout the experimental period. A decrease of 20% in pen-level diarrhea incidence from days 8 to 14 in pigs-fed both benzoic acid and enzymes compared to the control diet (P = 0.047). Cecal digesta samples were collected at the end of the experimental period from 40 piglets (n = 10 per group) and evaluated for differences using 16S rRNA sequencing and two-dimensional gas chromatography and time-of-flight mass spectrometry (GCxGC-TOFMS). Analysis of cecal microbiota diversity revealed that benzoic acid altered microbiota composition (Unweighted Unifrac, P = 0.047, r2 = 0.07) and decreased α-diversity (Shannon, P = 0.041; Faith's Phylogenetic Diversity, P = 0.041). Dietary enzymes increased fiber-fermenting bacterial taxa such as Prevotellaceae. Two-step feature selection identified 17 cecal metabolites that differed among diets, including increased microbial cross-feeding product 1,2-propanediol in pigs-fed benzoic acid-containing diets. In conclusion, dietary benzoic acid and enzymes affected the gut microbiota and metabolome of weaned pigs and may support the health and resolution of postweaning diarrhea.
Collapse
Affiliation(s)
- Natalie E Diether
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Seo Lin Nam
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Janelle Fouhse
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Bich V Le Thanh
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Paul Stothard
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Ruurd T Zijlstra
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - James Harynuk
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Paulina de la Mata
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
49
|
Hankel J, Sander S, Muthukumarasamy U, Strowig T, Kamphues J, Jung K, Visscher C. Microbiota of vaccinated and non-vaccinated clinically inconspicuous and conspicuous piglets under natural Lawsonia intracellularis infection. Front Vet Sci 2022; 9:1004506. [DOI: 10.3389/fvets.2022.1004506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Lawsonia (L.) intracellularis is a widespread, economically important bacterium causing the porcine proliferative enteropathy (PPE). In this study, we evaluated intestinal microbiota of naturally exposed L. intracellularis-positive pigs under standardized conditions. To obtain three independent repetitions, 27 L. intracellularis-infected pigs (19.0 ± 1.50 kg body weight) from one farm were divided into three groups at an age of 7 to 8 weeks (nine pigs/group). Pigs were either vaccinated against L. intracellularis via oral drenching on their 21st day of life (attenuated live vaccine) or non-vaccinated and selected according to clinical findings (pigs without deviating fecal consistency or with moderate to soft fecal consistency). Comparison of the clinically inconspicuous piglets that differed regarding their vaccination status showed fewer significant differences in fecal microbiota composition. The vaccination led to an overall enrichment of bacterial species belonging to the order Clostridiales, while species of the genus Collinsella and Prevotella were decreased. Several bacterial species belonging to the order Bacteroidales, mainly of the family Prevotellacecae, often closely matching Prevotella copri differed significantly between non-vaccinated clinically inconspicuous and conspicuous piglets. Whether those bacterial species play a role in mitigating the severity of an L. intracellularis infection remains to be defined.
Collapse
|
50
|
Espinoza JL, Torralba M, Leong P, Saffery R, Bockmann M, Kuelbs C, Singh S, Hughes T, Craig JM, Nelson KE, Dupont CL. Differential network analysis of oral microbiome metatranscriptomes identifies community scale metabolic restructuring in dental caries. PNAS NEXUS 2022; 1:pgac239. [PMID: 36712365 PMCID: PMC9802336 DOI: 10.1093/pnasnexus/pgac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Dental caries is a microbial disease and the most common chronic health condition, affecting nearly 3.5 billion people worldwide. In this study, we used a multiomics approach to characterize the supragingival plaque microbiome of 91 Australian children, generating 658 bacterial and 189 viral metagenome-assembled genomes with transcriptional profiling and gene-expression network analysis. We developed a reproducible pipeline for clustering sample-specific genomes to integrate metagenomics and metatranscriptomics analyses regardless of biosample overlap. We introduce novel feature engineering and compositionally-aware ensemble network frameworks while demonstrating their utility for investigating regime shifts associated with caries dysbiosis. These methods can be applied when differential abundance modeling does not capture statistical enrichments or the results from such analysis are not adequate for providing deeper insight into disease. We identified which organisms and metabolic pathways were central in a coexpression network as well as how these networks were rewired between caries and caries-free phenotypes. Our findings provide evidence of a core bacterial microbiome that was transcriptionally active in the supragingival plaque of all participants regardless of phenotype, but also show highly diagnostic changes in the ways that organisms interact. Specifically, many organisms exhibit high connectedness with central carbon metabolism to Cardiobacterium and this shift serves a bridge between phenotypes. Our evidence supports the hypothesis that caries is a multifactorial ecological disease.
Collapse
Affiliation(s)
- Josh L Espinoza
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA,Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037, USA,Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Manolito Torralba
- Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Pamela Leong
- Epigenetics, Murdoch Children's Research Institute and Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Epigenetics, Murdoch Children's Research Institute and Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Michelle Bockmann
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Claire Kuelbs
- Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Suren Singh
- Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Toby Hughes
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jeffrey M Craig
- Epigenetics, Murdoch Children's Research Institute and Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia,IMPACT Strategic Research Centre, Deakin University School of Medicine, Geelong, VIC 3220, Australia
| | - Karen E Nelson
- Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, La Jolla, CA 92037, USA,Department of Human Biology and Genomic Medicine, J. Craig Venter Institute, Rockville, MD 20850, USA
| | | |
Collapse
|