1
|
Ticinesi A, Siniscalchi C, Meschi T, Nouvenne A. Gut microbiome and bone health: update on mechanisms, clinical correlations, and possible treatment strategies. Osteoporos Int 2025; 36:167-191. [PMID: 39643654 DOI: 10.1007/s00198-024-07320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
The intestinal microbiome is increasingly regarded as a relevant modulator of the pathophysiology of several age-related conditions, including frailty, sarcopenia, and cognitive decline. Aging is in fact associated with alteration of the equilibrium between symbiotic bacteria and opportunistic pathogens, leading to dysbiosis. The microbiome is able to regulate intestinal permeability and systemic inflammation, has a central role in intestinal amino acid metabolism, and produces a large number of metabolites and byproducts, with either beneficial or detrimental consequences for the host physiology. Recent evidence, from both preclinical animal models and clinical studies, suggests that these microbiome-centered pathways could contribute to bone homeostasis, regulating the balance between osteoblast and osteoclast function. In this systematic review, we provide an overview of the mechanisms involved in the gut-bone axis, with a particular focus on microbiome function and microbiome-derived mediators including short-chain fatty acids. We also review the current evidence linking gut microbiota dysbiosis with osteopenia and osteoporosis, and the results of the intervention studies on pre-, pro-, or post-biotics targeting bone mineral density loss in both animal models and human beings, indicating knowledge gaps and highlighting possible avenues for future research.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy.
| | - Carmine Siniscalchi
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| |
Collapse
|
2
|
Yang W, Xia S, Jia X, Zhu Y, Li L, Jiang C, Ji H, Shi F. Utilizing surface-enhanced Raman spectroscopy for the adjunctive diagnosis of osteoporosis. Eur J Med Res 2024; 29:476. [PMID: 39343945 PMCID: PMC11440806 DOI: 10.1186/s40001-024-02081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Osteoporosis (OP) is a chronic disease characterized by diminished bone mass and structural deterioration, ultimately leading to compromised bone strength and an increased risk of fractures. Diagnosis primarily relies on medical imaging findings and clinical symptoms. This study aims to explore an adjunctive diagnostic technique for OP based on surface-enhanced Raman scattering (SERS). Serum SERS spectra from the normal, low bone density, and osteoporosis groups were analyzed to discern OP-related expression profiles. This study utilized partial least squares (PLS) and support vector machine (SVM) algorithms to establish an OP diagnostic model. The combination of Raman peak assignments and spectral difference analysis reflected biochemical changes associated with OP, including amino acids, carbohydrates, and collagen. Using the PLS-SVM approach, sensitivity, specificity, and accuracy for screening OP were determined to be 77.78%, 100%, and 88.24%, respectively. This study demonstrates the substantial potential of SERS as an adjunctive diagnostic technology for OP.
Collapse
Affiliation(s)
- Weihang Yang
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Shuang Xia
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Xu Jia
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Yuwei Zhu
- Orthopedics Department, Suzhou BOE Hospital, Suzhou, 215000, China
| | - Liang Li
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Cheng Jiang
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Hongjian Ji
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| | - Fengchao Shi
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China.
| |
Collapse
|
3
|
Dzubanova M, Benova A, Ferencakova M, Coupeau R, Tencerova M. Nutrition and Bone Marrow Adiposity in Relation to Bone Health. Physiol Res 2024; 73:S107-S138. [PMID: 38752771 PMCID: PMC11412336 DOI: 10.33549/physiolres.935293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/29/2024] [Indexed: 09/04/2024] Open
Abstract
Bone remodeling is energetically demanding process. Energy coming from nutrients present in the diet contributes to function of different cell type including osteoblasts, osteocytes and osteoclasts in bone marrow participating in bone homeostasis. With aging, obesity and osteoporosis the function of key building blocks, bone marrow stromal cells (BMSCs), changes towards higher accumulation of bone marrow adipose tissue (BMAT) and decreased bone mass, which is affected by diet and sex dimorphism. Men and women have unique nutritional needs based on physiological and hormonal changes across the life span. However, the exact molecular mechanisms behind these pathophysiological conditions in bone are not well-known. In this review, we focus on bone and BMAT physiology in men and women and how this approach has been taken by animal studies. Furthermore, we discuss the different diet interventions and impact on bone and BMAT in respect to sex differences. We also discuss the future perspective on precision nutrition with a consideration of sex-based differences which could bring better understanding of the diet intervention in bone health and weight management.
Collapse
Affiliation(s)
- M Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
4
|
Ji J, Gu Z, Li N, Dong X, Wang X, Yao Q, Zhang Z, Zhang L, Cao L. Gut microbiota alterations in postmenopausal women with osteoporosis and osteopenia from Shanghai, China. PeerJ 2024; 12:e17416. [PMID: 38832037 PMCID: PMC11146318 DOI: 10.7717/peerj.17416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Background The importance of the gut microbiota in maintaining bone homeostasis has been increasingly emphasized by recent research. This study aimed to identify whether and how the gut microbiome of postmenopausal women with osteoporosis and osteopenia may differ from that of healthy individuals. Methods Fecal samples were collected from 27 individuals with osteoporosis (OP), 44 individuals with osteopenia (ON), and 23 normal controls (NC). The composition of the gut microbial community was analyzed by 16S rRNA gene sequencing. Results No significant difference was found in the microbial composition between the three groups according to alpha and beta diversity. At the phylum level, Proteobacteria and Fusobacteriota were significantly higher and Synergistota was significantly lower in the ON group than in the NC group. At the genus level, Roseburia, Clostridia_UCG.014, Agathobacter, Dialister and Lactobacillus differed between the OP and NC groups as well as between the ON and NC groups (p < 0.05). Linear discriminant effect size (LEfSe) analysis results showed that one phylum community and eighteen genus communities were enriched in the NC, ON and OP groups, respectively. Spearman correlation analysis showed that the abundance of the Dialister genus was positively correlated with BMD and T score at the lumbar spine (p < 0.05). Functional predictions revealed that pathways relevant to amino acid biosynthesis, vitamin biosynthesis, and nucleotide metabolism were enriched in the NC group. On the other hand, pathways relevant to metabolites degradation and carbohydrate metabolism were mainly enriched in the ON and OP groups respectively. Conclusions Our findings provide new epidemiologic evidence regarding the relationship between the gut microbiota and postmenopausal bone loss, laying a foundation for further exploration of therapeutic targets for the prevention and treatment of postmenopausal osteoporosis (PMO).
Collapse
Affiliation(s)
- Jiaqing Ji
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengrong Gu
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiong Wang
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Qiang Yao
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Luodian Hospital, Baoshan District, Shanghai, China
| |
Collapse
|
5
|
Xue Y, Wang X, Liu H, Kang J, Liang X, Yao A, Dou Z. Assessment of the relationship between gut microbiota and bone mineral density: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1298838. [PMID: 38841058 PMCID: PMC11150656 DOI: 10.3389/fmicb.2024.1298838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Background Emerging evidence from observational studies and clinical trials suggests a connection between the gut microbiota and variations in bone mineral density (BMD). Nonetheless, the specific association between gut microbiota and BMD alterations at different skeletal sites has not been comprehensively explored. To address this, we employed Genome-Wide Association Study (GWAS) summary statistics from a publicly accessible database, conducting a two-sample Mendelian Randomization analysis to elucidate the potential causal relationship between gut microbiota composition and BMD. Methods This study utilized two distinct thresholds for screening instrumental variables (IVs), followed by an extensive series of quality control procedures to identify IVs that were significantly related to exposure. Gut microbiota were classified into two sets based on hierarchical levels: phylum, class, order, family, and genus. Bone mineral density (BMD) data were systematically collected from four skeletal sites: femoral neck, lumbar spine, forearm, and heel. For Mendelian Randomization (MR) analysis, robust methods including Inverse-Variance Weighting (IVW) and the Wald Ratio Test were employed. Additional analytical tests such as the Outlier Test, Heterogeneity Test, 'Leave-One-Out' Test, and Pleiotropy Test were conducted to assess the impact of horizontal pleiotropy, heterogeneities, and the genetic variation stability of gut microbiota on BMD causal associations. The MR Steiger Directionality Test was applied to exclude studies with potential directional biases. Results In this two-sample Mendelian randomization analysis, we utilized five sets of exposure GWAS (Genome-Wide Association Studies) summary statistics and four sets of outcome GWAS summary statistics. The initial analysis, applying a threshold of p < 5 × 10-6, identified 48 significant causal relationships between genetic liability in the gut microbiome and bone mineral density (BMD). A subsequent analysis with a more stringent threshold of p < 5 × 10-8 uncovered 14 additional causal relationships. Upon applying the Bonferroni correction, 9 results from the first analysis and 10 from the second remained statistically significant. Conclusion Our MR analysis revealed a causal relationship between gut microbiota and bone mineral density at all sites, which could lead to discoveries in future mechanistic and clinical studies of microbiota-associated osteoporosis.
Collapse
Affiliation(s)
- Yuan Xue
- Graduate School, College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuan Wang
- Graduate School, College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
- Dean’s Office, Shanxi Vocational College of Health, Taiyuan, China
| | - Honglin Liu
- Graduate School, College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Junfeng Kang
- Department of Orthopedics, Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Xiaohong Liang
- Department of Orthopedics, Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Aina Yao
- Department of Brain Disease, Shanxi Acupuncture and Moxibustion Hospital, Taiyuan, China
| | - Zhifang Dou
- Graduate School, College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| |
Collapse
|
6
|
Zheng HY, Wang L, Zhang R, Ding R, Yang CX, Du ZQ. Valine induces inflammation and enhanced adipogenesis in lean mice by multi-omics analysis. Front Nutr 2024; 11:1379390. [PMID: 38803448 PMCID: PMC11128663 DOI: 10.3389/fnut.2024.1379390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction The branched-chain amino acids (BCAAs) are essential to mammalian growth and development but aberrantly elevated in obesity and diabetes. Each BCAA has an independent and specific physio-biochemical effect on the host. However, the exact molecular mechanism of the detrimental effect of valine on metabolic health remains largely unknown. Methods and results This study showed that for lean mice treated with valine, the hepatic lipid metabolism and adipogenesis were enhanced, and the villus height and crypt depth of the ileum were significantly increased. Transcriptome profiling on white and brown adipose tissues revealed that valine disturbed multiple signaling pathways (e.g., inflammation and fatty acid metabolism). Integrative cecal metagenome and metabolome analyses found that abundances of Bacteroidetes decreased, but Proteobacteria and Helicobacter increased, respectively; and 87 differential metabolites were enriched in several molecular pathways (e.g., inflammation and lipid and bile acid metabolism). Furthermore, abundances of two metabolites (stercobilin and 3-IAA), proteins (AMPK/pAMPK and SCD1), and inflammation and adipogenesis-related genes were validated. Discussion Valine treatment affects the intestinal microbiota and metabolite compositions, induces gut inflammation, and aggravates hepatic lipid deposition and adipogenesis. Our findings provide novel insights into and resources for further exploring the molecular mechanism and biological function of valine on lipid metabolism.
Collapse
Affiliation(s)
- Hui-Yi Zheng
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Li Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Rong Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Ran Ding
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Cai-Xia Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
- Center of Animal Breeding Technology Innovation of Hubei Province, Wuhan, China
| |
Collapse
|
7
|
Simpson AMR, De Souza MJ, Damani J, Rogers CJ, Williams NI, Weaver CM, Ferruzzi MG, Nakatsu CH. Gut microbes differ in postmenopausal women responding to prunes to maintain hip bone mineral density. Front Nutr 2024; 11:1389638. [PMID: 38706560 PMCID: PMC11067506 DOI: 10.3389/fnut.2024.1389638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Foods high in phenolics such as prunes have been shown to exert protective effects on bone mineral density (BMD), but only certain individuals experience these benefits. This post-hoc analysis of a 12-month randomized controlled trial aimed to identify the relationship among the gut microbiome, immune responses, and bone protective effects of prunes on postmenopausal women. Subjects who consumed 50-100 g prunes daily were divided into responders (n = 20) and non-responders (n = 32) based on percent change in total hip bone mineral density (BMD, ≥1% or ≤-1% change, respectively). DXA scans were used to determine body composition and BMD. Immune markers were measured using immunoassays and flow cytometry. Targeted phenolic metabolites were analyzed using ultra performance liquid chromatography-tandem mass spectrometry. The fecal microbiota was characterized through 16S rRNA gene PCR amplicon sequencing. After 12 months of prune consumption, anti-inflammatory markers showed responders had significantly lower levels of IL-1β and TNF-α. QIIME2 sequence analysis showed that microbiomes of responders and non-responders differed in alpha (Shannon and Faith PD, Kruskal-Wallis p < 0.05) and beta diversity (unweighted Unifrac, PERMANOVA p < 0.04) metrics both before and after prune treatment. Furthermore, responders had a higher abundance of bacterial families Oscillospiraceae and Lachnospiraceae (ANCOM-BC p < 0.05). These findings provide evidence that postmenopausal women with initial low BMD can benefit from prunes if they host certain gut microbes. These insights can guide precision nutrition strategies to improve BMD tailored to diet and microbiome composition.
Collapse
Affiliation(s)
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, College Park, PA, United States
| | - Janhavi Damani
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, College Park, PA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, College Park, PA, United States
| | - Nancy I Williams
- Department of Nutritional Sciences, The Pennsylvania State University, College Park, PA, United States
| | - Connie M Weaver
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mario G Ferruzzi
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
Liang B, Shi X, Wang X, Ma C, Leslie WD, Lix LM, Shi X, Kan B, Yang S. Association between amino acids and recent osteoporotic fracture: a matched incident case-control study. Front Nutr 2024; 11:1360959. [PMID: 38567247 PMCID: PMC10985241 DOI: 10.3389/fnut.2024.1360959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Context Osteoporotic fracture is a major public health issue globally. Human research on the association between amino acids (AAs) and fracture is still lacking. Objective To examine the association between AAs and recent osteoporotic fractures. Methods This age and sex matched incident case-control study identified 44 recent x-ray confirmed fracture cases in the Second Hospital of Jilin University and 88 community-based healthy controls aged 50+ years. Plasma AAs were measured by high performance liquid chromatography coupled with mass spectrometry. After adjusting for covariates (i.e., body mass index, milk intake >1 time/week, falls and physical activity), we conducted conditional logistical regression models to test the association between AAs and fracture. Results Among cases there were 23 (52.3%) hip fractures and 21 (47.7%) non-hip fractures. Total, essential, and non-essential AAs were significantly lower in cases than in controls. In the multivariable conditional logistic regression models, after adjusting for covariates, each standard deviation increase in the total (odds ratio [OR]: 0.304; 95% confidence interval [CI]: 0.117-0.794), essential (OR: 0.408; 95% CI: 0.181-0.923) and non-essential AAs (OR: 0.290; 95%CI: 0.107-0.782) was negatively associated with recent fracture. These inverse associations were mainly found for hip fracture, rather than non-hip fractures. Among these AAs, lysine, alanine, arginine, glutamine, histidine and piperamide showed the significantly negative associations with fracture. Conclusion There was a negative relationship between AAs and recent osteoporotic fracture; such relationship appeared to be more obvious for hip fracture.
Collapse
Affiliation(s)
- Bing Liang
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiao tong University, Xi’an, China
| | - Xinyan Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xinwei Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chao Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - William D. Leslie
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Lisa M. Lix
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Bo Kan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shuman Yang
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
López-Montoya P, Rivera-Paredez B, Palacios-González B, Morán-Ramos S, López-Contreras BE, Canizales-Quinteros S, Salmerón J, Velázquez-Cruz R. Dietary Patterns Are Associated with the Gut Microbiome and Metabolic Syndrome in Mexican Postmenopausal Women. Nutrients 2023; 15:4704. [PMID: 38004098 PMCID: PMC10675332 DOI: 10.3390/nu15224704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Postmenopausal women are at an increased risk of developing metabolic syndrome (MetS) due to hormonal changes and lifestyle factors. Gut microbiota (GM) have been linked to the development of MetS, and they are influenced by dietary habits. However, the interactions between dietary patterns (DP) and the GM of postmenopausal women, as well as their influence on MetS, still need to be understood. The present study evaluated the DP and microbiota composition of postmenopausal Mexican women with MetS and those in a control group. Diet was assessed using a food frequency questionnaire, and the GM were profiled using 16S rRNA gene sequencing. Greater adherence to a "healthy" DP was significantly associated with lower values of MetS risk factors. GM diversity was diminished in women with MetS, and it was negatively influenced by an "unhealthy" DP. Moreover, a higher intake of fats and proteins, as well as lower amounts of carbohydrates, showed a reduction in some of the short-chain fatty acid-producing genera in women with MetS, as well as increases in some harmful bacteria. Furthermore, Roseburia abundance was positively associated with dietary fat and waist circumference, which may explain 7.5% of the relationship between this macronutrient and MetS risk factors. These findings suggest that GM and diet interactions are important in the development of MetS in postmenopausal Mexican women.
Collapse
Affiliation(s)
- Priscilla López-Montoya
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Berenice Rivera-Paredez
- Centro de Investigación en Políticas, Población y Salud de la Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (B.R.-P.)
| | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable, Centro de Investigación Sobre Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14330, Mexico;
| | - Sofia Morán-Ramos
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (B.E.L.-C.); (S.C.-Q.)
| | - Blanca E. López-Contreras
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (B.E.L.-C.); (S.C.-Q.)
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (B.E.L.-C.); (S.C.-Q.)
| | - Jorge Salmerón
- Laboratorio de Envejecimiento Saludable, Centro de Investigación Sobre Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14330, Mexico;
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| |
Collapse
|
10
|
Li Y, Si Y, Ma Y, Yin H. Application and prospect of metabolomics in the early diagnosis of osteoporosis: a narrative review. Bioanalysis 2023; 15:1369-1379. [PMID: 37695026 DOI: 10.4155/bio-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
This paper reviews the application of metabolomics in the early diagnosis of osteoporosis in recent years. The authors searched electronic databases for the keywords "metabolomics", "osteoporosis" and "biomarkers", then analyzed the relationship between functional markers and osteoporosis using categorical summarization. Lipid metabolism, amino acid metabolism and energy metabolism are closely related to osteoporosis development and can become early diagnostic markers of the condition. However, the existing studies in metabolomics suffer from varying application methods, difficulty in identifying isomers, small study cohorts and insufficient research on metabolic mechanisms. Consequently, it is important for future research to focus on broadening and standardizing the scope of the application of metabolomics. High-quality studies on a large scale should also be conducted while promoting the early diagnosis of osteoporosis in a more precise, comprehensive and sensitive manner.
Collapse
Affiliation(s)
- Yan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Yuhao Si
- School of Acupuncture-Moxibustion & Tuina, School of Regimen & Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, China
- Laboratory for New Techniques of Restoration & Reconstruction of Orthopedics & Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, China
| | - Yong Ma
- Laboratory for New Techniques of Restoration & Reconstruction of Orthopedics & Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, China
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, China
| | - Heng Yin
- Department of Traumatology & Orthopedics, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, 214071, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, 214071, China
| |
Collapse
|
11
|
Bohn T, Balbuena E, Ulus H, Iddir M, Wang G, Crook N, Eroglu A. Carotenoids in Health as Studied by Omics-Related Endpoints. Adv Nutr 2023; 14:1538-1578. [PMID: 37678712 PMCID: PMC10721521 DOI: 10.1016/j.advnut.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
Carotenoids have been associated with risk reduction for several chronic diseases, including the association of their dietary intake/circulating levels with reduced incidence of obesity, type 2 diabetes, certain types of cancer, and even lower total mortality. In addition to some carotenoids constituting vitamin A precursors, they are implicated in potential antioxidant effects and pathways related to inflammation and oxidative stress, including transcription factors such as nuclear factor κB and nuclear factor erythroid 2-related factor 2. Carotenoids and metabolites may also interact with nuclear receptors, mainly retinoic acid receptor/retinoid X receptor and peroxisome proliferator-activated receptors, which play a role in the immune system and cellular differentiation. Therefore, a large number of downstream targets are likely influenced by carotenoids, including but not limited to genes and proteins implicated in oxidative stress and inflammation, antioxidation, and cellular differentiation processes. Furthermore, recent studies also propose an association between carotenoid intake and gut microbiota. While all these endpoints could be individually assessed, a more complete/integrative way to determine a multitude of health-related aspects of carotenoids includes (multi)omics-related techniques, especially transcriptomics, proteomics, lipidomics, and metabolomics, as well as metagenomics, measured in a variety of biospecimens including plasma, urine, stool, white blood cells, or other tissue cellular extracts. In this review, we highlight the use of omics technologies to assess health-related effects of carotenoids in mammalian organisms and models.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Emilio Balbuena
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Hande Ulus
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Genan Wang
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States.
| |
Collapse
|
12
|
Mullin BH, Ribet ABP, Pavlos NJ. Bone Trans-omics: Integrating Omics to Unveil Mechanistic Molecular Networks Regulating Bone Biology and Disease. Curr Osteoporos Rep 2023; 21:493-502. [PMID: 37410317 PMCID: PMC10543827 DOI: 10.1007/s11914-023-00812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE OF REVIEW Recent advancements in "omics" technologies and bioinformatics have afforded researchers new tools to study bone biology in an unbiased and holistic way. The purpose of this review is to highlight recent studies integrating multi-omics data gathered from multiple molecular layers (i.e.; trans-omics) to reveal new molecular mechanisms that regulate bone biology and underpin skeletal diseases. RECENT FINDINGS Bone biologists have traditionally relied on single-omics technologies (genomics, transcriptomics, proteomics, and metabolomics) to profile measureable differences (both qualitative and quantitative) of individual molecular layers for biological discovery and to investigate mechanisms of disease. Recently, literature has grown on the implementation of integrative multi-omics to study bone biology, which combines computational and informatics support to connect multiple layers of data derived from individual "omic" platforms. This emerging discipline termed "trans-omics" has enabled bone biologists to identify and construct detailed molecular networks, unveiling new pathways and unexpected interactions that have advanced our mechanistic understanding of bone biology and disease. While the era of trans-omics is poised to revolutionize our capacity to answer more complex and diverse questions pertinent to bone pathobiology, it also brings new challenges that are inherent when trying to connect "Big Data" sets. A concerted effort between bone biologists and interdisciplinary scientists will undoubtedly be needed to extract physiologically and clinically meaningful data from bone trans-omics in order to advance its implementation in the field.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, 2nd Floor "M" Block QEII Medical Centre, Nedlands, WA, 6009, Australia
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Amy B P Ribet
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, 2nd Floor "M" Block QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Nathan J Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, 2nd Floor "M" Block QEII Medical Centre, Nedlands, WA, 6009, Australia.
| |
Collapse
|
13
|
Merrill LC, Mangano KM. Racial and Ethnic Differences in Studies of the Gut Microbiome and Osteoporosis. Curr Osteoporos Rep 2023; 21:578-591. [PMID: 37597104 DOI: 10.1007/s11914-023-00813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the scientific evidence published in the past 5 years examining the epidemiology of bone health as it relates to the gut microbiome, across race and ethnicity groups. RECENT FINDINGS The link between the gut microbiome and bone health is well established and is supported by numerous biological mechanisms. However, human study research in this field is dominated by studies of older adults residing in Asian countries. A limited number of epidemiological and randomized controlled trials have been conducted with individuals in other countries; however, they are marked by their racial and ethnic homogeneity, use varied measures of the gut microbiome, and different interventions (where applicable), making comparisons across race and ethnic groups difficult. As the global prevalence of osteoporosis increases, the need for lifestyle interventions is critical. Existing data suggest that racial and ethnic differences in gut microbiome exist. Studies examining the relation between bone health and gut microbial structure and function across diverse racial and ethnic groups are needed to determine appropriate microbiome-based interventions.
Collapse
Affiliation(s)
- Lisa C Merrill
- Department of Public Health, University of Massachusetts Lowell, 61 Wilder Street, O'Leary 540, Lowell, MA, 01854, USA
| | - Kelsey M Mangano
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Suite 4, Lowell, MA, 01854, USA.
| |
Collapse
|
14
|
Lau KT, Krishnamoorthy S, Sing CW, Cheung CL. Metabolomics of Osteoporosis in Humans: A Systematic Review. Curr Osteoporos Rep 2023; 21:278-288. [PMID: 37060383 DOI: 10.1007/s11914-023-00785-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW To systematically review recent studies investigating the association between metabolites and bone mineral density (BMD) in humans. METHODS Using predefined keywords, we searched literature published from Jan 1, 2019 to Feb 20, 2022 in PubMed, Web of Science, Embase, and Scopus. Studies that met the predefined exclusion criteria were excluded. Among the included studies, we identified metabolites that were reported to be associated with BMD by at least three independent studies. RECENT FINDINGS A total of 170 studies were retrieved from the databases. After excluding studies that did not meet our predefined inclusion criteria, 16 articles were used in this review. More than 400 unique metabolites in blood were shown to be significantly associated with BMD. Of these, three metabolites were reported by ≥ 3 studies, namely valine, leucine and glycine. Glycine was consistently shown to be inversely associated with BMD, while valine was consistently observed to be positively associated with BMD. Inconsistent associations with BMD was observed for leucine. With advances in metabolomics technology, an increasing number of metabolites associated with BMD have been identified. Two of these metabolites, namely valine and glycine, were consistently associated with BMD, highlighting their potential for clinical application in osteoporosis. International collaboration with a larger population to conduct clinical studies on these metabolites is warranted. On the other hand, given that metabolomics could be affected by genetics and environmental factors, whether the inconsistent association of the metabolites with BMD is due to the interaction between metabolites and genes and/or lifestyle warrants further study.
Collapse
Affiliation(s)
- Kat-Tik Lau
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Suhas Krishnamoorthy
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Chor-Wing Sing
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Ching Lung Cheung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Pak Shek Kok, Hong Kong.
| |
Collapse
|
15
|
Can probiotics decrease the risk of postmenopausal osteoporosis in women? PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
16
|
Cellular and Molecular Mechanisms Associating Obesity to Bone Loss. Cells 2023; 12:cells12040521. [PMID: 36831188 PMCID: PMC9954309 DOI: 10.3390/cells12040521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Obesity is an alarming disease that favors the upset of other illnesses and enhances mortality. It is spreading fast worldwide may affect more than 1 billion people by 2030. The imbalance between excessive food ingestion and less energy expenditure leads to pathological adipose tissue expansion, characterized by increased production of proinflammatory mediators with harmful interferences in the whole organism. Bone tissue is one of those target tissues in obesity. Bone is a mineralized connective tissue that is constantly renewed to maintain its mechanical properties. Osteoblasts are responsible for extracellular matrix synthesis, while osteoclasts resorb damaged bone, and the osteocytes have a regulatory role in this process, releasing growth factors and other proteins. A balanced activity among these actors is necessary for healthy bone remodeling. In obesity, several mechanisms may trigger incorrect remodeling, increasing bone resorption to the detriment of bone formation rates. Thus, excessive weight gain may represent higher bone fragility and fracture risk. This review highlights recent insights on the central mechanisms related to obesity-associated abnormal bone. Publications from the last ten years have shown that the main molecular mechanisms associated with obesity and bone loss involve: proinflammatory adipokines and osteokines production, oxidative stress, non-coding RNA interference, insulin resistance, and changes in gut microbiota. The data collection unveils new targets for prevention and putative therapeutic tools against unbalancing bone metabolism during obesity.
Collapse
|
17
|
Mei Z, Yin MT, Sharma A, Wang Z, Peters BA, Chandran A, Weber KM, Ross RD, Gustafson D, Zheng Y, Kaplan RC, Burk RD, Qi Q. Gut microbiota and plasma metabolites associated with bone mineral density in women with or at risk of HIV infection. AIDS 2023; 37:149-159. [PMID: 36205320 PMCID: PMC9742192 DOI: 10.1097/qad.0000000000003400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To evaluate gut microbiota (GMB) alterations and metabolite profile perturbations associated with bone mineral density (BMD) in the context of HIV infection. DESIGN Cross-sectional studies of 58 women with chronic HIV infection receiving antiretroviral therapy and 33 women without HIV infection. METHODS We examined associations of GMB and metabolites with BMD among 91 women. BMD was measured by dual-energy X-ray absorptiometry (DXA), and T -scores of lumbar spine or total hip less than -1 defined low BMD. GMB was measured by 16S rRNA V4 region sequencing on fecal samples, and plasma metabolites were measured by liquid chromatography-tandem mass spectrometry. Associations of GMB with plasma metabolites were assessed in a larger sample (418 women; 280 HIV+ and 138 HIV-). RESULTS Relative abundances of five predominant bacterial genera ( Dorea , Megasphaera , unclassified Lachnospiraceae, Ruminococcus , and Mitsuokella ) were higher in women with low BMD compared with those with normal BMD (all linear discriminant analysis (LDA) scores >2.0). A distinct plasma metabolite profile was identified in women with low BMD, featuring lower levels of several metabolites belonging to amino acids, carnitines, caffeine, fatty acids, pyridines, and retinoids, compared with those with normal BMD. BMD-associated bacterial genera, especially Megasphaera , were inversely associated with several BMD-related metabolites (e.g. 4-pyridoxic acid, C4 carnitine, creatinine, and dimethylglycine). The inverse association of Megasphaera with dimethylglycine was more pronounced in women with HIV infection compared with those without HIV infection ( P for interaction = 0.016). CONCLUSION Among women with and at risk of HIV infection, we identified altered GMB and plasma metabolite profiles associated with low BMD.
Collapse
Affiliation(s)
- Zhendong Mei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
| | - Michael T Yin
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
| | - Aruna Chandran
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Ryan D Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Deborah Gustafson
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
- Department of Pediatrics, Albert Einstein College of Medicine
- Department of Microbiology and Immunology, and Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
- Department of Nutrition and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Guo M, Liu H, Yu Y, Zhu X, Xie H, Wei C, Mei C, Shi Y, Zhou N, Qin K, Li W. Lactobacillus rhamnosus GG ameliorates osteoporosis in ovariectomized rats by regulating the Th17/Treg balance and gut microbiota structure. Gut Microbes 2023; 15:2190304. [PMID: 36941563 PMCID: PMC10038048 DOI: 10.1080/19490976.2023.2190304] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND With increasing knowledge about the gut - bone axis, more studies for treatments based on the regulation of postmenopausal osteoporosis by gut microbes are being conducted. Based on our previous work, this study was conducted to further investigate the therapeutic effects of Lactobacillus rhamnosus GG (LGG) on ovariectomized (OVX) model rats and the immunological and microecological mechanisms involved. RESULTS We found a protective effect of LGG treatment in OVX rats through changes in bone microarchitecture, bone biomechanics, and CTX-I, PINP, Ca, and RANKL expression levels. LGG was more advantageous in promoting osteogenesis, which may be responsible for the alleviation of osteoporosis. Th17 cells were imbalanced with Treg cells in mediastinal lymph nodes and bone marrow, with RORγt and FOXP3 expression following a similar trend. TNF-α and IL-17 expression in colon and bone marrow increased, while TGF-β and IL-10 expression decreased; however, LGG treatment modulated these changes and improved the Th17/Treg balance significantly. Regarding the intestinal barrier, we found that LGG treatment ameliorated estrogen deficiency-induced inflammation and mucosal damage and increased the expression of GLP-2 R and tight junction proteins. Importantly, 16S rRNA sequencing showed a significant increase in the Firmicutes/Bacteroidetes ratio during estrogen deficiency. Dominant intestinal flora showed significant differences in composition; LGG treatment regulated the various genera that were imbalanced in OVX, along with modifying those that did not change significantly in other groups with respect to the intestinal barrier, inflammation development, and bile acid metabolism. CONCLUSIONS Overall, LGG ameliorated estrogen deficiency-induced osteoporosis by regulating the gut microbiome and intestinal barrier and stimulating Th17/Treg balance in gut and bone.
Collapse
Affiliation(s)
- Mengyu Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanjin Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinting Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingyu Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenxu Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Mei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nong Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kunming Qin
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Gao N, Yang Y, Liu S, Fang C, Dou X, Zhang L, Shan A. Gut-Derived Metabolites from Dietary Tryptophan Supplementation Quench Intestinal Inflammation through the AMPK-SIRT1-Autophagy Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16080-16095. [PMID: 36521060 DOI: 10.1021/acs.jafc.2c05381] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tryptophan has drawn wide attention due to its involvement in improving intestinal immune defense directly and indirectly by regulating metabolic pathways. The study aims to elucidate the potential modulating roles of tryptophan to protect against intestinal inflammation and elucidate the underlying molecular mechanisms. The protective effects of tryptophan against intestinal inflammation are examined in the lipopolysaccharide (LPS)-induced inflammatory model. We first found that tryptophan markedly (p < 0.01) inhibited proinflammatory cytokines production and nuclear factor κB (NF-κB) pathway activation upon LPS challenge. Next, we demonstrated that tryptophan (p < 0.05) attenuated LPS-caused intestinal mucosal barrier damage by increasing the number of goblet cells, mucins, and antimicrobial peptides (AMPs) in the ileum of mice. In addition, tryptophan (p < 0.05) inhibited LPS-induced autophagic flux through the AMP-activated protein kinase (AMPK)-sirtuin 1 (SIRT1) pathway in the intestinal systems to maintain autophagy homeostasis. Meanwhile, tryptophan also reshaped the gut microbiota composition in LPS-challenge mice by increasing the abundance of short-chain fatty acid (SCFA)-producing bacteria such as Acetivibrio (0.053 ± 0.017 to 0.21 ± 0.0041%). Notably, dietary tryptophan resulted in the activation of metabolic pathways during the inflammatory response. Furthermore, exogenous treatment of tryptophan metabolites kynurenine (Kyn) and 5-HT in porcine intestinal epithelial cells (IPEC-J2 cells) reproduced similar protective effects as tryptophan to attenuate LPS-induced intestinal inflammation through regulating the AMPK-SIRT1-autophagy. Taken together, the present study indicates that tryptophan exhibits intestinal protective and immunoregulatory effects resulting from the activation of metabolic pathways, maintenance of gut mucosal barrier integrity, microbiota composition, and AMPK-SIRT1-autophagy level.
Collapse
Affiliation(s)
- Nan Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Siqi Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Chunyang Fang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiujing Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Ul-Haq A, Seo H, Jo S, Park H, Kim S, Lee Y, Lee S, Jeong JH, Song H. Characterization of Fecal Microbiomes of Osteoporotic Patients in Korea. Pol J Microbiol 2022; 71:601-613. [PMID: 36537058 PMCID: PMC9944973 DOI: 10.33073/pjm-2022-045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/11/2022] [Indexed: 12/24/2022] Open
Abstract
An imbalanced gut microbiome has been linked to a higher risk of many bone-related diseases. The objective of this study was to discover biomarkers of osteoporosis (OP). So, we collected 76 stool samples (60 human controls and 16 OP patients), extracted DNA, and performed 16S ribosomal ribonucleic acid (rRNA) gene-based amplicon sequencing. Among the taxa with an average taxonomic composition greater than 1%, only the Lachnospira genus showed a significant difference between the two groups. The Linear Discriminant Effect Size analysis and qPCR experiments indicated the Lachnospira genus as a potential biomarker of OP. Moreover, a total of 11 metabolic pathways varied between the two groups. Our study concludes that the genus Lachnospira is potentially crucial for diagnosing and treating osteoporosis. The findings of this study might help researchers better understand OP from a microbiome perspective. This research might develop more effective diagnostic and treatment methods for OP in the future.
Collapse
Affiliation(s)
- Asad Ul-Haq
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea,Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Sujin Jo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Hyuna Park
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Youngkyoung Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Saebim Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea, H.-Y. Song, Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea; Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea; J.-H. Jeong, Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea;
| | - Ho‑Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea, H.-Y. Song, Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea; Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea; J.-H. Jeong, Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea;
| |
Collapse
|
21
|
Huang R, Liu P, Bai Y, Huang J, Pan R, Li H, Su Y, Zhou Q, Ma R, Zong S, Zeng G. Changes in the gut microbiota of osteoporosis patients based on 16S rRNA gene sequencing: a systematic review and meta-analysis. J Zhejiang Univ Sci B 2022; 23:1002-1013. [PMID: 36518053 PMCID: PMC9758719 DOI: 10.1631/jzus.b2200344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND: Osteoporosis (OP) has become a major public health issue, threatening the bone health of middle-aged and elderly people from all around the world. Changes in the gut microbiota (GM) are correlated with the maintenance of bone mass and bone quality. However, research results in this field remain highly controversial, and no systematic review or meta-analysis of the relationship between GM and OP has been conducted. This paper addresses this shortcoming, focusing on the difference in the GM abundance between OP patients and healthy controls based on previous 16S ribosomal RNA (rRNA) gene sequencing results, in order to provide new clinical reference information for future customized prevention and treatment options of OP. METHODS: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we comprehensively searched the databases of PubMed, Web of Science, Embase, Cochrane Library, and China National Knowledge Infrastructure (CNKI). In addition, we applied the R programming language version 4.0.3 and Stata 15.1 software for data analysis. We also implemented the Newcastle-Ottawa Scale (NOS), funnel plot analysis, sensitivity analysis, Egger's test, and Begg's test to assess the risk of bias. RESULTS: This research ultimately considered 12 studies, which included the fecal GM data of 2033 people (604 with OP and 1429 healthy controls). In the included research papers, it was observed that the relative abundance of Lactobacillus and Ruminococcus increased in the OP group, while the relative abundance for Bacteroides of Bacteroidetes increased (except for Ireland). Meanwhile, Firmicutes, Blautia, Alistipes, Megamonas, and Anaerostipes showed reduced relative abundance in Chinese studies. In the linear discriminant analysis Effect Size (LEfSe) analysis, certain bacteria showed statistically significant results consistently across different studies. CONCLUSIONS: This observational meta-analysis revealed that changes in the GM were correlated with OP, and variations in some advantageous GM might involve regional differences.
Collapse
Affiliation(s)
- Rui Huang
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Pan Liu
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Yiguang Bai
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics, Nanchong Central Hospital, the Second Clinical Institute of North Sichuan Medical College, Nanchong 637000, China
| | - Jieqiong Huang
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Rui Pan
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Huihua Li
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Yeping Su
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China
| | - Quan Zhou
- Department of Wound Repair, the First People's Hospital of Nanning, Nanning 530022, China
| | - Ruixin Ma
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shaohui Zong
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Gaofeng Zeng
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China. ,
| |
Collapse
|
22
|
Damani JJ, De Souza MJ, VanEvery HL, Strock NCA, Rogers CJ. The Role of Prunes in Modulating Inflammatory Pathways to Improve Bone Health in Postmenopausal Women. Adv Nutr 2022; 13:1476-1492. [PMID: 34978320 PMCID: PMC9526830 DOI: 10.1093/advances/nmab162] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 12/30/2021] [Indexed: 01/28/2023] Open
Abstract
The prevalence of osteoporosis among women aged 50 y and older is expected to reach 13.6 million by 2030. Alternative nonpharmaceutical agents for osteoporosis, including nutritional interventions, are becoming increasingly popular. Prunes (dried plums; Prunus domestica L.) have been studied as a potential whole-food dietary intervention to mitigate bone loss in preclinical models of osteoporosis and in osteopenic postmenopausal women. Sixteen preclinical studies using in vivo rodent models of osteopenia or osteoporosis have established that dietary supplementation with prunes confers osteoprotective effects both by preventing and reversing bone loss. Increasing evidence from 10 studies suggests that, in addition to antiresorptive effects, prunes exert anti-inflammatory and antioxidant effects. Ten preclinical studies have found that prunes and/or their polyphenol extracts decrease malondialdehyde and NO secretion, increase antioxidant enzyme expression, or suppress NF-κB activation and proinflammatory cytokine production. Two clinical trials have investigated the impact of dried plum consumption (50-100 g/d for 6-12 mo) on bone health in postmenopausal women and demonstrated promising effects on bone mineral density and bone biomarkers. However, less is known about the impact of prune consumption on oxidative stress and inflammatory mediators in humans and their possible role in modulating bone outcomes. In this review, the current state of knowledge on the relation between inflammation and bone health is outlined. Findings from preclinical and clinical studies that have assessed the effect of prunes on oxidative stress, inflammatory mediators, and bone outcomes are summarized, and evidence supporting a potential role of prunes in modulating inflammatory and immune pathways is highlighted. Key future directions to bridge the knowledge gap in the field are proposed.
Collapse
Affiliation(s)
- Janhavi J Damani
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Hannah L VanEvery
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nicole C A Strock
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Tang S, Xie J, Fang W, Wen X, Yin C, Meng Q, Zhong R, Chen L, Zhang H. Chronic heat stress induces the disorder of gut transport and immune function associated with endoplasmic reticulum stress in growing pigs. ANIMAL NUTRITION 2022; 11:228-241. [PMID: 36263409 PMCID: PMC9556788 DOI: 10.1016/j.aninu.2022.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
|
24
|
de Sire A, Gallelli L, Marotta N, Lippi L, Fusco N, Calafiore D, Cione E, Muraca L, Maconi A, De Sarro G, Ammendolia A, Invernizzi M. Vitamin D Deficiency in Women with Breast Cancer: A Correlation with Osteoporosis? A Machine Learning Approach with Multiple Factor Analysis. Nutrients 2022; 14:1586. [PMID: 35458148 PMCID: PMC9031622 DOI: 10.3390/nu14081586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/16/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignant tumor in women in Europe and North America, and the use of aromatase inhibitors (AIs) is recommended in women affected by estrogen receptor-positive BCs. AIs, by inhibiting the enzyme that converts androgens into estrogen, cause a decrement in bone mineral density (BMD), with a consequent increased risk of fragility fractures. This study aimed to evaluate the role of vitamin D3 deficiency in women with breast cancer and its correlation with osteoporosis and BMD modifications. This observational cross-sectional study collected the following data regarding bone health: osteoporosis and osteopenia diagnosis, lumbar spine (LS) and femoral neck bone mineral density (BMD), serum levels of 25-hydroxyvitamin D3 (25(OH)D3), calcium and parathyroid hormone. The study included 54 women with BC, mean age 67.3 ± 8.16 years. Given a significantly low correlation with the LS BMD value (r2 = 0.30, p = 0.025), we assessed the role of vitamin D3 via multiple factor analysis and found that BMD and vitamin D3 contributed to the arrangement of clusters, reported as vectors, providing similar trajectories of influence to the construction of the machine learning model. Thus, in a cohort of women with BC undergoing Ais, we identified a very low prevalence (5.6%) of patients with adequate bone health and a normal vitamin D3 status. According to our cluster model, we may conclude that the assessment and management of bone health and vitamin D3 status are crucial in BC survivors.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (N.M.); (A.A.)
| | - Luca Gallelli
- Operative Unit of Clinical Pharmacology, Mater Domini University Hospital, Department of Health Science, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (L.G.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Nicola Marotta
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (N.M.); (A.A.)
| | - Lorenzo Lippi
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (L.L.); (A.M.); (M.I.)
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20126 Milan, Italy;
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Dario Calafiore
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy;
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, 87036 Rende, Italy;
| | - Lucia Muraca
- Department of General Medicine, ASP 7, 88100 Catanzaro, Italy;
| | - Antonio Maconi
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (L.L.); (A.M.); (M.I.)
| | - Giovambattista De Sarro
- Operative Unit of Clinical Pharmacology, Mater Domini University Hospital, Department of Health Science, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (L.G.); (G.D.S.)
- Research Center FAS@UMG, Department of Health Science, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (N.M.); (A.A.)
| | - Marco Invernizzi
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy; (L.L.); (A.M.); (M.I.)
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy
| |
Collapse
|
25
|
Tsiantas K, Konteles SJ, Kritsi E, Sinanoglou VJ, Tsiaka T, Zoumpoulakis P. Effects of Non-Polar Dietary and Endogenous Lipids on Gut Microbiota Alterations: The Role of Lipidomics. Int J Mol Sci 2022; 23:ijms23084070. [PMID: 35456888 PMCID: PMC9024800 DOI: 10.3390/ijms23084070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Advances in sequencing technologies over the past 15 years have led to a substantially greater appreciation of the importance of the gut microbiome to the health of the host. Recent outcomes indicate that aspects of nutrition, especially lipids (exogenous or endogenous), can influence the gut microbiota composition and consequently, play an important role in the metabolic health of the host. Thus, there is an increasing interest in applying holistic analytical approaches, such as lipidomics, metabolomics, (meta)transcriptomics, (meta)genomics, and (meta)proteomics, to thoroughly study the gut microbiota and any possible interplay with nutritional or endogenous components. This review firstly summarizes the general background regarding the interactions between important non-polar dietary (i.e., sterols, fat-soluble vitamins, and carotenoids) or amphoteric endogenous (i.e., eicosanoids, endocannabinoids-eCBs, and specialized pro-resolving mediators-SPMs) lipids and gut microbiota. In the second stage, through the evaluation of a vast number of dietary clinical interventions, a comprehensive effort is made to highlight the role of the above lipid categories on gut microbiota and vice versa. In addition, the present status of lipidomics in current clinical interventions as well as their strengths and limitations are also presented. Indisputably, dietary lipids and most phytochemicals, such as sterols and carotenoids, can play an important role on the development of medical foods or nutraceuticals, as they exert prebiotic-like effects. On the other hand, endogenous lipids can be considered either prognostic indicators of symbiosis or dysbiosis or even play a role as specialized mediators through dietary interventions, which seem to be regulated by gut microbiota.
Collapse
Affiliation(s)
- Konstantinos Tsiantas
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Spyridon J. Konteles
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Eftichia Kritsi
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Vassilia J. Sinanoglou
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
| | - Thalia Tsiaka
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| | - Panagiotis Zoumpoulakis
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (K.T.); (S.J.K.); (E.K.); (V.J.S.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece
- Correspondence: (T.T.); (P.Z.)
| |
Collapse
|
26
|
16S rRNA Gene Sequencing Revealed Changes in Gut Microbiota Composition during Pregnancy and Lactation in Mice Model. Vet Sci 2022; 9:vetsci9040169. [PMID: 35448667 PMCID: PMC9024687 DOI: 10.3390/vetsci9040169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The gut microbiota play a vital role in regulating endocrine-mediated metabolism, immunity, and energy metabolism. However, little is known about the gut microbiota and metabolite composition and development throughout pregnancy and lactation. Here, we used amplicon sequencing to analyze the gut microbiota composition of 35 female mice in five stages of pregnancy and lactation, namely, non-receptive (NR) stages, sexually-receptive (SR) stages, at day 15 of pregnancy (Pre_D15), at the day of birth (Del), and at day 10 of lactation (Lac_D10). The results revealed that the α diversity of gut microbiota was significantly increased during pregnancy and lactation. In addition, the principal coordinate analysis (PCoA) conducted on the amplicon sequence variants’ (ASVs’) distribution of the 16S rRNA amplicons indicated that the microbiota composition was significantly different among the five groups. Based on a random forest analysis, Oscillospira, Dehalobacterium, and Alistipes were the most important microbiota. The abundance of Allobaculum, Oscillospira, and Ruminococcus were negatively correlated with the serum progesterone concentration, while the abundance of Oscillospira was positively correlated with the propionate and valerate concentration in the caecal contents. Moreover, the concentration of acetate and propionate in the Del and Lac_D10 stages was significantly lower than in the SR and Pre_D15 stages. Our findings indicate that some gut microbes and metabolites vary considerably at the different stages of pregnancy and during lactation stages, which can potentially be used as microbial biomarkers. These results provide information on the potential use of the identified microbes as probiotics to maintain a healthy pregnancy and lactation.
Collapse
|
27
|
Yang X, Zhu Q, Zhang L, Pei Y, Xu X, Liu X, Lu G, Pan J, Wang Y. Causal relationship between gut microbiota and serum vitamin D: evidence from genetic correlation and Mendelian randomization study. Eur J Clin Nutr 2022; 76:1017-1023. [DOI: 10.1038/s41430-021-01065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022]
|
28
|
Liao Y, Li D, Zhou X, Peng Z, Meng Z, Liu R, Yang W. Pyruvate Might Bridge Gut Microbiota and Muscle Health in Aging Mice After Chronic High Dose of Leucine Supplementation. Front Med (Lausanne) 2021; 8:755803. [PMID: 34881260 PMCID: PMC8645596 DOI: 10.3389/fmed.2021.755803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The previous studies demonstrated that there might be complex and close relationships among leucine supplementation, gut microbiota, and muscle health, which still needs further investigation. Aims: This study aimed to explore the associations of gut microbiota with muscle health after leucine intake. Methods: In this study, 19-month-old male C57BL/6j mice (n = 12/group) were supplemented with ultrapure water, low dose of leucine (500 mg/kg·d), and high dose of leucine (1,250 mg/kg·d) for 12 weeks by oral gavage. The mice fecal samples in each group before and after supplementation were collected for baseline and endpoint gut microbiota analysis by using 16S rDNA amplicon sequencing. Meanwhile, ultrasound measurement, H&E staining, myofiber cross-sectional area (CSA) measurement, and western blotting were performed in the quadriceps subsequently. The pyruvate levels were detected in feces. Results: Improvement in muscle of histology and ultrasonography were observed after both low and high dose of leucine supplementation. High dose of leucine supplementation could promote skeletal muscle health in aging mice via regulating AMPKα/SIRT1/PGC-1α. The richness and diversities of microbiota as well as enriched metabolic pathways were altered after leucine supplementation. Firmicutes-Bacteroidetes ratio was significantly decreased in high-leucine group. Moreover, pyruvate fermentation to propanoate I were negatively associated with differential species and the pyruvate levels were significantly increased in feces after high dose of leucine supplementation. Conclusions: Chronic high dose of leucine supplementation changed gut microbiota composition and increased pyruvate levels in the feces, which possibly provides a novel direction for promoting muscle health in aging mice.
Collapse
Affiliation(s)
- Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Liu
- Department of Preventive Medicine, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Cassemiro NS, Sanches LB, Kato NN, Ruller R, Carollo CA, de Mello JCP, Dos Santos Dos Anjos E, Silva DB. New derivatives of the iridoid specioside from fungal biotransformation. Appl Microbiol Biotechnol 2021; 105:7731-7741. [PMID: 34568964 DOI: 10.1007/s00253-021-11504-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/11/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
Iridoids are widely found from species of Bignoniaceae family and exhibit several biological activities, such as anti-inflammatory, antimicrobial, antioxidant, and antitumor. Specioside is an iridoid found from Tabebuia species, mainly in Tabebuia aurea. Thus, here fungus-mediated biotransformation of the iridoid specioside was investigated by seven fungi. The fungus-mediated biotransformation reactions resulted in a total of nineteen different analogs by fungus Aspergillus niger, Aspergillus flavus, Aspergillus japonicus, Aspergillus terreus, Aspergillus niveus, Penicillium crustosum, and Thermoascus aurantiacus. Non-glycosylated specioside was the main metabolite observed. The other analogs were yielded from ester hydrolysis, hydroxylation, methylation, and hydrogenation reactions. The non-glycosylated specioside and coumaric acid were yielded by all fungi-mediated biotransformation. Thus, fungus applied in this study showed the ability to perform hydroxylation and glycosidic, as well as ester hydrolysis reactions from glycosylated iridoid. KEY POINTS: • The biotransformation of specioside by seven fungi yielded nineteen analogs. • The non-glycosylated specioside was the main analog obtained. • Ester hydrolysis, hydroxylation, methylation, and hydrogenation reactions were observe.
Collapse
Affiliation(s)
- Nadla Soares Cassemiro
- Laboratório de Produtos Naturais E Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos E Nutrição (FACFAN), Universidade Federal Do Mato Grosso Do Sul, Av. Costa e Silva, s/nº, Campo Grande, MS, 79070-900, Brazil
| | - Luana Bonifácio Sanches
- Laboratório de Produtos Naturais E Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos E Nutrição (FACFAN), Universidade Federal Do Mato Grosso Do Sul, Av. Costa e Silva, s/nº, Campo Grande, MS, 79070-900, Brazil
| | - Natalia Naomi Kato
- Laboratório de Produtos Naturais E Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos E Nutrição (FACFAN), Universidade Federal Do Mato Grosso Do Sul, Av. Costa e Silva, s/nº, Campo Grande, MS, 79070-900, Brazil
| | - Roberto Ruller
- Laboratório de Bioquímica, Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
| | - Carlos Alexandre Carollo
- Laboratório de Produtos Naturais E Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos E Nutrição (FACFAN), Universidade Federal Do Mato Grosso Do Sul, Av. Costa e Silva, s/nº, Campo Grande, MS, 79070-900, Brazil
| | - João Carlos Palazzo de Mello
- Laboratório de Biologia Farmacêutica, Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Edson Dos Santos Dos Anjos
- Laboratório de Bioquímica, Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso Do Sul (UFMS), Campo Grande, MS, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais E Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos E Nutrição (FACFAN), Universidade Federal Do Mato Grosso Do Sul, Av. Costa e Silva, s/nº, Campo Grande, MS, 79070-900, Brazil.
| |
Collapse
|
30
|
Tu Y, Yang R, Xu X, Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol 2021; 110:525-537. [PMID: 33884666 DOI: 10.1002/jlb.3mr0321-755r] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023] Open
Abstract
The gastrointestinal tract is colonized by trillions of microorganisms, consisting of bacteria, fungi, and viruses, known as the "second gene pool" of the human body. In recent years, the microbiota-gut-bone axis has attracted increasing attention in the field of skeletal health/disorders. The involvement of gut microbial dysbiosis in multiple bone disorders has been recognized. The gut microbiota regulates skeletal homeostasis through its effects on host metabolism, immune function, and hormonal secretion. Owing to the essential role of the gut microbiota in skeletal homeostasis, novel gut microbiota-targeting therapeutics, such as probiotics and prebiotics, have been proven effective in preventing bone loss. However, more well-controlled clinical trials are still needed to evaluate the long-term efficacy and safety of these ecologic modulators in the treatment of bone disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ran Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
31
|
Siebert JC, Saint-Cyr M, Borengasser SJ, Wagner BD, Lozupone CA, Görg C. CANTARE: finding and visualizing network-based multi-omic predictive models. BMC Bioinformatics 2021; 22:80. [PMID: 33607938 PMCID: PMC7896366 DOI: 10.1186/s12859-021-04016-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND One goal of multi-omic studies is to identify interpretable predictive models for outcomes of interest, with analytes drawn from multiple omes. Such findings could support refined biological insight and hypothesis generation. However, standard analytical approaches are not designed to be "ome aware." Thus, some researchers analyze data from one ome at a time, and then combine predictions across omes. Others resort to correlation studies, cataloging pairwise relationships, but lacking an obvious approach for cohesive and interpretable summaries of these catalogs. METHODS We present a novel workflow for building predictive regression models from network neighborhoods in multi-omic networks. First, we generate pairwise regression models across all pairs of analytes from all omes, encoding the resulting "top table" of relationships in a network. Then, we build predictive logistic regression models using the analytes in network neighborhoods of interest. We call this method CANTARE (Consolidated Analysis of Network Topology And Regression Elements). RESULTS We applied CANTARE to previously published data from healthy controls and patients with inflammatory bowel disease (IBD) consisting of three omes: gut microbiome, metabolomics, and microbial-derived enzymes. We identified 8 unique predictive models with AUC > 0.90. The number of predictors in these models ranged from 3 to 13. We compare the results of CANTARE to random forests and elastic-net penalized regressions, analyzing AUC, predictions, and predictors. CANTARE AUC values were competitive with those generated by random forests and penalized regressions. The top 3 CANTARE models had a greater dynamic range of predicted probabilities than did random forests and penalized regressions (p-value = 1.35 × 10-5). CANTARE models were significantly more likely to prioritize predictors from multiple omes than were the alternatives (p-value = 0.005). We also showed that predictive models from a network based on pairwise models with an interaction term for IBD have higher AUC than predictive models built from a correlation network (p-value = 0.016). R scripts and a CANTARE User's Guide are available at https://sourceforge.net/projects/cytomelodics/files/CANTARE/ . CONCLUSION CANTARE offers a flexible approach for building parsimonious, interpretable multi-omic models. These models yield quantitative and directional effect sizes for predictors and support the generation of hypotheses for follow-up investigation.
Collapse
Affiliation(s)
- Janet C Siebert
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Martine Saint-Cyr
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J Borengasser
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Catherine A Lozupone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carsten Görg
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| |
Collapse
|