1
|
Govender P, Ghai M. Population-specific differences in the human microbiome: Factors defining the diversity. Gene 2025; 933:148923. [PMID: 39244168 DOI: 10.1016/j.gene.2024.148923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Differences in microbial communities at different body habitats define the microbiome composition of the human body. The gut, oral, skin vaginal fluid and tissue microbiome, are pivotal for human development and immune response and cross talk between these microbiomes is evident. Population studies reveal that various factors, such as host genetics, diet, lifestyle, aging, and geographical location are strongly associated with population-specific microbiome differences. The present review discusses the factors that shape microbiome diversity in humans, and microbiome differences in African, Asian and Caucasian populations. Gut microbiome studies show that microbial species Bacteroides is commonly found in individuals living in Western countries (Caucasian populations), while Prevotella is prevalent in non-Western countries (African and Asian populations). This association is mainly due to the high carbohydrate, high fat diet in western countries in contrast to high fibre, low fat diets in African/ Asian regions. Majority of the microbiome studies focus on the bacteriome component; however, interesting findings reveal that increased bacteriophage richness, which makes up the virome component, correlates with decreased bacterial diversity, and causes microbiome dysbiosis. An increase of Caudovirales (bacteriophages) is associated with a decrease in enteric bacteria in inflammatory bowel diseases. Future microbiome studies should evaluate the interrelation between bacteriome and virome to fully understand their significance in the pathogenesis and progression of human diseases. With ethnic health disparities becoming increasingly apparent, studies need to emphasize on the association of population-specific microbiome differences and human diseases, to develop microbiome-based therapeutics. Additionally, targeted phage therapy is emerging as an attractive alternative to antibiotics for bacterial infections. With rapid rise in microbiome research, focus should be on standardizing protocols, advanced bioinformatics tools, and reducing sequencing platform related biases. Ultimately, integration of multi-omics data (genomics, transcriptomics, proteomics and metabolomics) will lead to precision models for personalized microbiome therapeutics advancement.
Collapse
Affiliation(s)
- Priyanka Govender
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| |
Collapse
|
2
|
Al-Alousy NW, Al-Nasiri FS. Bacterial infections associated with cutaneous leishmaniasis in Salah Al-Din province, Iraq. Microb Pathog 2025; 198:107144. [PMID: 39579944 DOI: 10.1016/j.micpath.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Bacterial co-infection with cutaneous leishmaniasis (CL) can effect on the clinical appearance of lesions and delay the healing process. The pattern of bacterial pathogens involved has rarely been investigated in Iraq. The aim of present study was to identify the bacterial agents contaminating CL and their susceptibility to commonly used antibiotics. Four hundred cases of CL were diagnosed in Salah El-Din General Hospital, Iraq. A total of 424 ulcer samples obtained from 400 patients of CL were cultured, and all isolates were diagnosed based on phenotypic characteristics of colonies, bacterial cells and using biochemical tests. No bacterial growth appeared in 124 cases (29.25 %) of the total number of examined ulcer samples, whereas 300 cases (70.75 %) were contaminated. Both Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes) and Gram-negative bacterial species (Escherichi coli, Klebsiella spp., Pseudomonas aeruginosa) were present. The infection with S. aureus represented the highest percentage (26.42 %), while Ps. aeruginosa had the lowest percentage (2.83 %) compared with other bacterial infections. The sensitivity of the isolated bacteria associated with CL was tested against a number of antibiotics (Amoxicillin, Ampicillin, Cefixime, Chloramphenlcol, Doxycycline, Tetracycline). Resistance to Amoxicillin, Ampicillin, and Cefixime was generally high. While, Chloramphenicol showed absolute effectiveness against isolated bacteria. The results of the current study show that bacterial infections should be considered in diagnosing and treating CL lesions, with Chloramphenicol demonstrating the highest efficiency in treating such bacterial infections. The present study also suggests that hygiene, use of suitable disinfectants, controlling of antibiotic administration and prescription in hospitals and pharmacies must be ensured. In addition, regular surveillance in the endemic area will help control bacterial co-infection and hamper the occurrence of drug-resistant pathogens. The lesion care and management of secondary bacterial infection are essential and anti -leishmanial therapy in CL may be more effective when combined with antibiotics. Future molecular studies are needed to identify the species of Leishmania causing CL in Iraq to gain a better understanding of their clinical manifestations (dry or moist ulcers) and their associated bacteria.
Collapse
|
3
|
Madaan T, Doan K, Hartman A, Gherardini D, Ventrola A, Zhang Y, Kotagiri N. Advances in Microbiome-Based Therapeutics for Dermatological Disorders: Current Insights and Future Directions. Exp Dermatol 2024; 33:e70019. [PMID: 39641544 DOI: 10.1111/exd.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
The human skin hosts an estimated 1000 bacterial species that are essential for maintaining skin health. Extensive clinical and preclinical studies have established the significant role of the skin microbiome in dermatological disorders such as atopic dermatitis, psoriasis, diabetic foot ulcers, hidradenitis suppurativa and skin cancers. In these conditions, the skin microbiome is not only altered but, in some cases, implicated in disease pathophysiology. Microbiome-based therapies (MBTs) represent an emerging category of live biotherapeutic products with tremendous potential as a novel intervention platform for skin diseases. Beyond using established wild-type strains native to the skin, these therapies can be enhanced to express targeted therapeutic molecules, offering more tailored treatment approaches. This review explores the role of the skin microbiome in various common skin disorders, with a particular focus on the development and therapeutic potential of MBTs for treating these conditions.
Collapse
Affiliation(s)
- Tushar Madaan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kyla Doan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Alexandra Hartman
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Dominick Gherardini
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Alec Ventrola
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yuhang Zhang
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nalinikanth Kotagiri
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Zhou J, Mehling A, Wang Q, Wang X, Hu X, Song L. Age-related changes in the bacterial composition of healthy female facial skin in Beijing area. Int J Cosmet Sci 2024; 46:982-994. [PMID: 39049756 DOI: 10.1111/ics.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Exploring the effects of age on microbial community structure and understanding the effects of chronological ageing as well as sun exposure on microbial community diversity. METHOD The microbial characteristics of the facial skin of 98 adult women aged 18-70 years were studied using 16S rRNA gene sequencing, and differences based on age and reported sun exposure were assessed. RESULTS The cheek skin's bacterial diversity and richness increased with age. The relative abundance of Cutibacterium decreased with age, while the relative abundance of Corynebacterium, Anaerococcus, Paracoccus, Micrococcus, Kocuria, Kytococcus, and Chryseobacterium increased. In addition, an increase in Micrococcus and a decrease in Cutibacterium were observed in volunteers with more than 2 h of daily sun exposure compared to volunteers with <2 h of daily sun exposure. Under low-sunlight conditions, Cutibacterium was more prevalent in the youth group, and Corynebacterium, Anaerococcus, and Kytococcus were more prevalent in the older group. CONCLUSION The diversity and composition of the bacterial community on the cheeks are affected by age and extrinsic factors (sun exposure) may also play a role in this.
Collapse
Affiliation(s)
- Jin Zhou
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | | | - Qiujing Wang
- BASF East Asia Regional Headquarters Ltd., Hong Kong, SAR, China
| | | | - Xinyue Hu
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Liya Song
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
5
|
Haykal D, Cartier H, Dréno B. Dermatological Health in the Light of Skin Microbiome Evolution. J Cosmet Dermatol 2024; 23:3836-3846. [PMID: 39248208 PMCID: PMC11626341 DOI: 10.1111/jocd.16557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND The complex ecosystem of the skin microbiome is essential for skin health by acting as a primary defense against infections, regulating immune responses, and maintaining barrier integrity. This literature review aims to consolidate existing information on the skin microbiome, focusing on its composition, functionality, importance, and its impact on skin aging. METHODS An exhaustive exploration of scholarly literature was performed utilizing electronic databases including PubMed, Google Scholar, and ResearchGate, focusing on studies published between 2011 and 2024. Keywords included "skin microbiome," "skin microbiota," and "aging skin." Studies involving human subjects that focused on the skin microbiome's relationship with skin health were included. Out of 100 initially identified studies, 70 met the inclusion criteria and were reviewed. RESULTS Studies showed that aging is associated with a reduction in the variety of microorganisms of the skin microbiome, leading to an increased susceptibility to skin conditions. Consequently, this underlines the interest in bacteriotherapy, mainly topical probiotics, to reinforce the skin microbiome in older adults, suggesting improvements in skin health and a reduction in age-related skin conditions. Further exploration is needed into the microbiome's role in skin health and the development of innovative, microbe-based skincare products. Biotherapeutic approaches, including the use of phages, endolysins, probiotics, prebiotics, postbiotics, and microbiome transplantation, can restore balance and enhance skin health. This article also addresses regulatory standards in the EU and the USA that ensure the safety and effectiveness of microbial skincare products. CONCLUSION This review underscores the need to advance research on the skin microbiome's role in cosmetic enhancements and tailored skincare solutions, highlighting a great interest in leveraging microbial communities for dermatological benefits.
Collapse
Affiliation(s)
| | | | - Brigitte Dréno
- Department of Dermato‐CancerologyCHU Nantes—Hôtel‐Dieu CRCINANantesFrance
| |
Collapse
|
6
|
Ferrara F, Valacchi G. Role of microbiota in the GUT-SKIN AXIS responses to outdoor stressors. Free Radic Biol Med 2024; 225:894-909. [PMID: 39505118 DOI: 10.1016/j.freeradbiomed.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Beside the respiratory tract, the skin and the gut represent the first defensive lines of our body against the external insults displaying many important biochemical features able to maintain the epithelial barrier integrity and to regulate the tissue immune responses. The human microbiome is essential in maintaining the tissue homeostasis and its dysregulation may lead to tissue conditions including inflammatory pathologies. Among all external insults, air pollutants have been shown to cause oxidative stress damage within the target tissues via an OxInflammatory response. Dysregulation of the gut microbiome (dysbiosis) by outdoor stressors, including air pollutants, may promote the exacerbation of the skin tissue damage via the interplay between the gut-skin axis. The intent of this review is to highlight the ability of exogenous stressors to modulate the human gut-skin axis via a redox regulated mechanism affecting the microbiome and therefore contributing to the development and aggravation of gut and skin conditions.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceuticals and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy; Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC, 28081, USA; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
7
|
Kramer A, Dahl MB, Bengtsson MM, Boyce JM, Heckmann M, Meister M, Papke R, Pittet D, Reinhard A, Slevogt H, Wang H, Zwicker P, Urich T, Seifert U. No detrimental effect on the hand microbiome of health care staff by frequent alcohol-based antisepsis. Am J Infect Control 2024:S0196-6553(24)00846-0. [PMID: 39551096 DOI: 10.1016/j.ajic.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND The importance of ethanol-based hand rubs (EBHR) to prevent health care-associated infections is undisputed. However, there is a lack of meaningful data regarding the influence of EBHRs on skin microbiome. METHODS Four nurses in a neonatal intensive care unit were included. After a leave of 14 days, samples were taken before the first hand rubbing action and at the end of shift, with continued sampling on days 1, 7 and 28. To analyze the hand microbiome, microbial cells were collected using the glove-juice technique. Pro- and eukaryotic community profiles were created using amplicon sequencing of 16S and 18S rRNA gene markers. RESULTS On average, hand antisepsis was performed 108 times per 8-hour work shift. Microbial communities were dominated by typical taxa found on human skin. In addition, a clear nurse-specific (i.e. individual) microbiome signature could be observed. For Prokaryota, daily exposure led to the end-of-the-day microbiomes being more similar to each other across nurses. In contrast, longitudinal effect of 28 day-application revealed more similarity of the Eukaryotic community. CONCLUSIONS Frequent occupational use of EBHR did not adversely affect the composition of the human hand microbiome. Thus, daily hand antisepsis retains its significance as the most important procedure for infection control.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany; Section Antiseptic Stewardship of the German Society of Hospital Hygiene e. V., Berlin, Germany
| | - Mathilde Borg Dahl
- Institute of Microbiology, Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | - Mia M Bengtsson
- Institute of Microbiology, Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | | | - Matthias Heckmann
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, Greifswald, Germany; DZKJ (German Centre for Child and Adolescent Health), partner site Greifswald/Rostock, Greifswald, Germany
| | - Mareike Meister
- Institute of Microbiology, Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | - Roald Papke
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany; Section Antiseptic Stewardship of the German Society of Hospital Hygiene e. V., Berlin, Germany
| | - Didier Pittet
- Infection Control Programme and WHO Collaborating Centre on Infection Prevention and Control & Antimicrobial Resistance, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Anne Reinhard
- Institute of Microbiology, Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), Breath, Hannover, Germany; Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Haitao Wang
- Institute of Microbiology, Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | - Paula Zwicker
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany; Section Antiseptic Stewardship of the German Society of Hospital Hygiene e. V., Berlin, Germany
| | - Tim Urich
- Institute of Microbiology, Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Section Antiseptic Stewardship of the German Society of Hospital Hygiene e. V., Berlin, Germany; Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
8
|
Vorapreechapanich A, Thammahong A, Chatsuwan T, Edwards SW, Kumtornrut C, Chantawarangul K, Chatproedprai S, Wananukul S, Chiewchengchol D. Perturbations in the skin microbiome of infantile and adult seborrheic dermatitis and new treatment options based on restoring a healthy skin microbiome. Int J Dermatol 2024. [PMID: 39526559 DOI: 10.1111/ijd.17568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Seborrheic dermatitis (SD) is a common, multifaceted skin condition, but its undefined etiology hampers the development of effective therapeutic strategies. In this review, we describe the intricate relationship between the skin microbiome and the pathogenesis of SD, focusing on the complex interplay between three major groups of organisms that can either induce inflammation (Malassezia spp., Staphylococcus aureus) or else promote healthy skin (Propionibacterium spp.). We describe how the disequilibrium of these microorganisms in the skin microbiome can develop skin inflammation in SD patients. Understanding these complex interactions of the skin microbiome has led to development of novel probiotics (e.g., Vitreoscilla spp. and Lactobacillus spp.) to restore normal skin physiology in SD. There are also differences in the skin microbiomes of healthy and SD infant and adult patients that impact pathogenesis and prompt different management strategies. A deeper understanding of the skin microbiome and its dynamic interactions will provide valuable insights into the pathogenesis of SD and prompt further development of targeted probiotic treatments to restore the balance of the skin microbiome in SD patients.
Collapse
Affiliation(s)
- Akira Vorapreechapanich
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Arsa Thammahong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Chanat Kumtornrut
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Karaked Chantawarangul
- Division of Pediatric Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Susheera Chatproedprai
- Division of Pediatric Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siriwan Wananukul
- Division of Pediatric Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Direkrit Chiewchengchol
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Podbielski A, Köller T, Warnke P, Barrantes I, Kreikemeyer B. Whole genome sequencing distinguishes skin colonizing from infection-associated Cutibacterium acnes isolates. Front Cell Infect Microbiol 2024; 14:1433783. [PMID: 39512589 PMCID: PMC11540793 DOI: 10.3389/fcimb.2024.1433783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Cutibacterium acnes can both be a helpful colonizer of the human skin as well as the causative agent of acne and purulent infections. Until today, it is a moot point whether there are C. acnes strains exclusively devoted to be part of the skin microbiome and others, that carry special features enabling them to cause disease. So far, the search for the molecular background of such diverse behavior has led to inconsistent results. Methods In the present study, we prospectively collected C. acnes strains from 27 infected persons and 18 healthy controls employing rigid selection criteria to ensure their role as infectious agent or colonizer. The genome sequences from these strains were obtained and carefully controlled for quality. Results Deduced traditional phylotyping assigned almost all superficial isolates to type IA1, while the clinical strains were evenly distributed between types IA1, IB, and II. Single locus sequence typing (SLST) showed a predominance of A1 type for the control strains, whereas 56% of the clinical isolates belonged to types A1, H1 and K8. Pangenome analysis from all the present strains and 30 published genomes indicated the presence of an open pangenome. Except for three isolates, the colonizing strains clustered in clades separate from the majority of clinical strains, while 4 clinical strains clustered with the control strains. Identical results were obtained by a single nucleotide polymorphism (SNP) analysis. However, there were no significant differences in virulence gene contents in both groups. Discussion Genome-wide association studies (GWAS) from both the pangenome and SNP data consistently showed genomic differences between both groups located in metabolic pathway and DNA repair genes. Thus, the different behavior of colonizing and infectious C. acnes strains could be due to special metabolic capacities or flexibilities rather than specific virulence traits.
Collapse
Affiliation(s)
- Andreas Podbielski
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Thomas Köller
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Philipp Warnke
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Israel Barrantes
- Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
10
|
Yapa P, Munaweera I, Weerasekera MM, Weerasinghe L. Synergistic antimicrobial nanofiber membranes based on metal incorporated silica nanoparticles as advanced antimicrobial layers. RSC Adv 2024; 14:33919-33940. [PMID: 39463479 PMCID: PMC11503530 DOI: 10.1039/d4ra05052e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
In this post-new-normal era, the public prioritizes preventive measures over curing, which is a constructive approach to staying healthy. In this study, an innovative antimicrobial membrane material has been developed, showcasing the promising potential for various applications. The metal-doped silica nanoparticles (Ag, Cu, and Co) were incorporated into a cellulose acetate (CA) polymer-based nanofiber membrane using the electrospinning technique. The metal nanoparticles were doped into a silanol network of silica nanoparticles. The fabricated membranes underwent detailed characterization using a wide range of techniques including PXRD, FTIR, Raman, SEM, TEM, TGA, and tensile testing. These analyses provided compelling evidence confirming the successful incorporation of metal-doped silica nanoparticles (Ag, Cu, and Co) into cellulose-based nanofibers. The band gap energies of the fabricated CA mats lie below 3.00 eV, confirming that they are visible light active. The trimetallic silica nanohybrid exhibited the lowest band gap energy of 2.84 eV, proving the self-sterilizing ability of the CA mats. The DPPH assay further confirmed the best radical scavenging activity by the trimetallic silica nanohybrid incorporated nanofiber mat (91.77 ± 0.88%). The antimicrobial activity was assessed by using the bacterial ATCC strains of Staphylococcus aureus, Streptococcus pneumoniae, MRSA (Methicillin-resistant Staphylococcus aureus), Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa and fungal strains; quality control samples of Trichophyton rubrum, Microsporum gypsium, and Aspergillus niger, as well as the ATCC strain of Candida albicans. The trimetallic silica nanohybrid-incorporated CA membranes demonstrated the most significant inhibition zones. The reported findings substantiate the self-sterilizing mat's viability, affordability, efficacy against a broad spectrum of microbial strains, cost-effectiveness, and biodegradability. Furthermore, the mat serves as a dual-purpose physical and biological barrier against microbes, affirming its potential impact.
Collapse
Affiliation(s)
- Piumika Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| | - Manjula M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| |
Collapse
|
11
|
Duda-Madej A, Viscardi S, Pacyga K, Kupczyński R, Mączka W, Grabarczyk M, Pacyga P, Topola E, Ostrówka M, Bania J, Szumny A, Wińska K. Antibiofilm and Antimicrobial Potentials of Novel Synthesized Sulfur Camphor Derivatives. Int J Mol Sci 2024; 25:10895. [PMID: 39456678 PMCID: PMC11507198 DOI: 10.3390/ijms252010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The question being posed by scientists around the world is how different chemical modifications of naturally occurring compounds will affect their antimicrobial properties. In the current study, sulfur derivatives of camphor containing a sulfur atom were tested to detect their antimicrobial and antibiofilm potentials. The new compounds were tested on eight Gram-positive strains (S. aureus (3 isolates), S. epidermidis (4 isolates), and E. faecalis (1 isolate)) and eight Gram-negative strains (E. coli (6 isolates), A. baumannii (1 isolate), and P. aeruginosa (1 isolate)). The ability of the strains to eradicate a biofilm was evaluated under standard stationary and flow-through conditions using the Bioflux system. Two synthesized compounds, namely rac-thiocamphor (1a) and (S, S)-(+)-thiocamphor (2a), exhibited an effect on the 24 h biofilm formed by the Gram-positive strains. Our results are an important contribution to the science of natural compounds and allow us to classify our sulfur derivatives of camphor as potential prophylactic agents in treating skin infections, antiseptics, and disinfectants. The Gram-negative strains were excluded from further stages of the tests due to their high activity (MIC ≥ 512 µg/mL). On the other hand, the compound with the strongest antimicrobial activity against the Gram-positive strains was 2a, as it led led to a reductions in cell viability of 17-52% (for MIC), 37-66% (for 2MIC), and 40-94% (for 4MIC). In addition, the experimental retention index of thiocamphor was calculated for the first time.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.)
| | - Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland (R.K.)
| | - Robert Kupczyński
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland (R.K.)
| | - Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (W.M.); (A.S.); (K.W.)
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (W.M.); (A.S.); (K.W.)
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.)
| | - Michał Ostrówka
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland;
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (W.M.); (A.S.); (K.W.)
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (W.M.); (A.S.); (K.W.)
| |
Collapse
|
12
|
Radaschin DS, Iancu AV, Ionescu AM, Gurau G, Niculet E, Bujoreanu FC, Beiu C, Tatu AL, Popa LG. Comparative Analysis of the Cutaneous Microbiome in Psoriasis Patients and Healthy Individuals-Insights into Microbial Dysbiosis: Final Results. Int J Mol Sci 2024; 25:10583. [PMID: 39408916 PMCID: PMC11477231 DOI: 10.3390/ijms251910583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Psoriasis is one of the most frequent chronic inflammatory skin diseases and exerts a significant psychological impact, causing stigmatization, low self-esteem and depression. The pathogenesis of psoriasis is remarkably complex, involving genetic, immune and environmental factors, some of which are still incompletely explored. The cutaneous microbiome has become more and more important in the pathogenesis of inflammatory skin diseases such as acne, rosacea, atopic dermatitis and psoriasis. Dysbiosis of the skin microbiome could be linked to acute flare ups in psoriatic disease, as recent studies suggest. Given this hypothesis, we conducted a study in which we evaluated the cutaneous microbiome of psoriasis patients and healthy individuals. In our study, we collected multiple samples using swab sampling, adhesive tape and punch biopsies. Our results are similar to other studies in which the qualitative and quantitative changes found in the cutaneous microbiome of psoriasis patients are different than healthy individuals. Larger, standardized studies are needed in order to elucidate the microbiome changes in psoriasis patients, clarify their role in the pathogenesis of psoriasis, decipher the interactions between the commensal microorganisms of the same and different niches and between microbiomes and the host and identify new therapeutic strategies.
Collapse
Affiliation(s)
- Diana Sabina Radaschin
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (F.C.B.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University, 800008 Galati, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania; (A.V.I.); (G.G.); (E.N.)
| | | | - Gabriela Gurau
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania; (A.V.I.); (G.G.); (E.N.)
| | - Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania; (A.V.I.); (G.G.); (E.N.)
| | - Florin Ciprian Bujoreanu
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (F.C.B.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University, 800008 Galati, Romania
| | - Cristina Beiu
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania;
| | - Alin Laurentiu Tatu
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (F.C.B.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University, 800008 Galati, Romania
| | - Liliana Gabriela Popa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania;
| |
Collapse
|
13
|
Kowalczyk M, Domaradzki P, Ziomek M, Skałecki P, Kaliniak-Dziura A, Żółkiewski P, Chmielowiec-Korzeniowska A, Kędzierska-Matysek M, Ukalska-Jaruga A, Grenda T, Nuvoloni R, Florek M. Effect of VP, MAP and combined packaging systems on the physicochemical properties and microbiological status of veal from unweaned calves. Meat Sci 2024; 216:109590. [PMID: 38991480 DOI: 10.1016/j.meatsci.2024.109590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
The packaging system is one of the factors influencing the preservation of the nutritional value, microbiological safety, and sensory attributes of meat. The study investigated changes in physicochemical and microbiological properties taking place during 15-day refrigerated storage of two calf muscles, the longissimus lumborum (LL) and semitendinosus (ST), packaged in three systems, respectively, vacuum packing (VP), modified atmosphere packaging (MAP, 80% O2 + 20% CO2), and a combined system (VP + MAP, 8 d in VP followed by 7 d in MAP). LL and ST stored in VP had significantly lower levels of lipid oxidation, higher α-tocopherol content, and higher instrumentally measured tenderness in comparison with the samples stored in MAP. On the other hand, the MAP samples had lower purge loss at 5 and 15 days, a higher proportion of oxymyoglobin up to 10 days of storage, and a better microbiological status. Calf muscle samples stored in the VP + MAP system had intermediate values for TBARS and α-tocopherol content and at the same time were the most tender and had the lowest counts of Pseudomonas and Enterobacteriaceae bacteria at 15 days. All packaging systems ensured relatively good quality of veal characteristics up to the last day of storage. However, for MAP at 15 days of storage, unfavourable changes in colour (a high level of metmyoglobin and a decrease in oxymyoglobin, redness and R630/580 ratio) and in the lipid fraction (a high TBARS value and a significant decrease in α-tocopherol content) were observed.
Collapse
Affiliation(s)
- Marek Kowalczyk
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Piotr Domaradzki
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Monika Ziomek
- Department of Food Hygiene of Animal Origin, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland.
| | - Piotr Skałecki
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Agnieszka Kaliniak-Dziura
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Paweł Żółkiewski
- Department of Cattle Breeding and Genetic Resources Conservation, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Anna Chmielowiec-Korzeniowska
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Monika Kędzierska-Matysek
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Aleksandra Ukalska-Jaruga
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, Puławy 24-100, Poland.
| | - Tomasz Grenda
- National Veterinary Research Institute, 57, Partyzantów Avenue, 24-100 Puławy, Poland.
| | - Roberta Nuvoloni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy.
| | - Mariusz Florek
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| |
Collapse
|
14
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
15
|
Borrego-Ruiz A, Borrego JJ. Microbial Dysbiosis in the Skin Microbiome and Its Psychological Consequences. Microorganisms 2024; 12:1908. [PMID: 39338582 PMCID: PMC11433878 DOI: 10.3390/microorganisms12091908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The homeostasis of the skin microbiome can be disrupted by both extrinsic and intrinsic factors, leading to a state of dysbiosis. This imbalance has been observed at the onset of persistent skin diseases that are closely linked to mental health conditions like anxiety and depression. This narrative review explores recent findings on the relationship between the skin microbiome and the pathophysiology of specific skin disorders, including acne vulgaris, atopic dermatitis, psoriasis, and wound infections. Additionally, it examines the psychological impact of these skin disorders, emphasizing their effect on patients' quality of life and their association with significant psychological consequences, such as anxiety, depression, stress, and suicidal ideation in the most severe cases.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
16
|
Jung Y, Kim RH, Lee EK, Seo CH, Joo SY, Shin JH, Cho YS. Effect of extracorporeal shock wave therapy on the microbial community in burn scars: retrospective case-control study. Int J Surg 2024; 110:01279778-990000000-01949. [PMID: 39259575 PMCID: PMC11634101 DOI: 10.1097/js9.0000000000002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND The effectiveness of extracorporeal shock wave therapy (ESWT) has been demonstrated in various medical fields, including burn medicine. It promotes wound healing, improves blood flow, and modulates the inflammatory responses. The recovery speed and outcomes of skin diseases are influenced by the skin microbiome; however, studies examining the effects of specific treatments on the skin microbiome are lacking. This study investigated the impact of ESWT on the skin microbiome of burn patients, focusing on the microbial diversity and community structure within burn scars. MATERIALS AND METHODS In the retrospective case-control study, nineteen patients with burn scars were treated with ESWT, and changes in their skin microbiome were evaluated. ESWT was administered weekly for three months, and samples were collected from the ESWT-treated burn scars and untreated normal skin. Blood chemistry, and pain and itching scores were evaluated during sample collection. The collected samples were then subjected to 16S rRNA sequencing. Microbial community analysis was conducted using the QIIME2 and R packages. RESULTS After ESWT, changes in alpha diversity indices were observed in burn scars. Faith phylogenetic diversity (P<0.05) and observed features (P<0.01) increased, whereas the evenness index decreased (P<0.01); no marked changes were noted in untreated skin. Beta diversity analysis showed stable microbial community structures in both the treated and untreated areas. A considerable increase in Micrococcus and Staphylococcus abundance was observed. Network analysis revealed a more open microbial network structure after ESWT, indicating adaptive changes in the microbial community. CONCLUSION ESWT enhances microbial diversity and modifies microbial community structure in burn scars, promoting a more balanced and functionally supportive microbiome. ESWT aids in scar remodeling and positively influences skin microbiome dynamics, contributing to improved skin health and recovery.
Collapse
Affiliation(s)
- Yeongyun Jung
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine
| | - Ryeong-Hui Kim
- NGS Core Facility, Kyungpook National University, Daegu, Republic of Korea
| | - Eun Kyung Lee
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul
| | - Jae-Ho Shin
- NGS Core Facility, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul
| |
Collapse
|
17
|
Wang D, Wang F, Huang Z, Li A, Dai W, Leng H, Jin L, Li Z, Sun K, Feng J. Structure and assembly process of skin fungal communities among bat species in northern China. Front Microbiol 2024; 15:1458258. [PMID: 39309528 PMCID: PMC11414763 DOI: 10.3389/fmicb.2024.1458258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Background The skin fungal communities of animals play a crucial role in maintaining host health and defending against pathogens. Because fungal infections can affect the skin microbiota of bats, gaining a comprehensive understanding of the characteristics of healthy bat skin fungal communities and the ecological processes driving them provides valuable insights into the interactions between pathogens and fungi. Methods We used Kruskal-Wallis tests and Permutational Multivariate Analysis of Variance (PERMANOVA) to clarify differences in skin fungal community structure among bat species. A Generalized Linear Model (GLM) based on a quasi-Poisson distribution and partial distance-based redundancy analysis (db-RDA) was performed to assess the influence of variables on skin fungal communities. Using community construction models to explore the ecological processes driving fungal community changes, t-tests and Wilcoxon tests were used to compare the alpha diversity and species abundance differences between the fungal structure on bat species' skin and the environmental fungal pool. Results We found significant differences in the composition and diversity of skin fungal communities among bat species influenced by temperature, sampling site, and body mass index. Trophic modes and skin fungal community complexity also varied among bat species. Null model and neutral model analysis demonstrated that deterministic processes dominated the assembly of skin fungal communities, with homogeneous selection as the predominant process. Skin fungal communities on bat species were impacted by the environmental fungal reservoir, and actively selected certain amplicon sequence variants (ASVs) from the environmental reservoir to adhere to the skin. Conclusion In this study, we revealed the structure and the ecological process driving the skin fungal community across bat species in northern China. Overall, these results broaden our knowledge of skin fungal communities among bat species, which may be beneficial to potential strategies for the protection of bats in China.
Collapse
Affiliation(s)
- Denghui Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Fan Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Zihao Huang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Aoqiang Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Zhongle Li
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
| |
Collapse
|
18
|
Sun C, Hu G, Yi L, Ge W, Yang Q, Yang X, He Y, Liu Z, Chen WH. Integrated analysis of facial microbiome and skin physio-optical properties unveils cutotype-dependent aging effects. MICROBIOME 2024; 12:163. [PMID: 39232827 PMCID: PMC11376020 DOI: 10.1186/s40168-024-01891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Our facial skin hosts millions of microorganisms, primarily bacteria, crucial for skin health by maintaining the physical barrier, modulating immune response, and metabolizing bioactive materials. Aging significantly influences the composition and function of the facial microbiome, impacting skin immunity, hydration, and inflammation, highlighting potential avenues for interventions targeting aging-related facial microbes amidst changes in skin physiological properties. RESULTS We conducted a multi-center and deep sequencing survey to investigate the intricate interplay of aging, skin physio-optical conditions, and facial microbiome. Leveraging a newly-generated dataset of 2737 species-level metagenome-assembled genomes (MAGs), our integrative analysis highlighted aging as the primary driver, influencing both facial microbiome composition and key skin characteristics, including moisture, sebum production, gloss, pH, elasticity, and sensitivity. Further mediation analysis revealed that skin characteristics significantly impacted the microbiome, mostly as a mediator of aging. Utilizing this dataset, we uncovered two consistent cutotypes across sampling cities and identified aging-related microbial MAGs. Additionally, a Facial Aging Index (FAI) was formulated based on the microbiome, uncovering the cutotype-dependent effects of unhealthy lifestyles on skin aging. Finally, we distinguished aging related microbial pathways influenced by lifestyles with cutotype-dependent effect. CONCLUSIONS Together, our findings emphasize aging's central role in facial microbiome dynamics, and support personalized skin microbiome interventions by targeting lifestyle, skin properties, and aging-related microbial factors. Video Abstract.
Collapse
Affiliation(s)
- Chuqing Sun
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Guoru Hu
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liwen Yi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Ge
- Department of Dermatology, Huazhong University of Science and Technology Hospital, Wuhan, 430074, China
| | - Qingyu Yang
- Department of Dermatology, Huazhong University of Science and Technology Hospital, Wuhan, 430074, China
| | - Xiangliang Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- National Engineering Research Center for Nanomedicine, Wuhan, 430074, China
| | - Yifan He
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510799, China.
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Wei-Hua Chen
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
19
|
Park YC, Choi SY, Cha Y, Yoon HW, Son YM. Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression. J Microbiol 2024; 62:709-725. [PMID: 39240507 DOI: 10.1007/s12275-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.
Collapse
Affiliation(s)
- Young Chae Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo Yeon Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yunah Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyeong Won Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
20
|
Huang L, Huang H, Liang X, Su Q, Ye L, Zhai C, Huang E, Pang J, Zhong X, Shi M, Chen L. Skin locations inference and body fluid identification from skin microbial patterns for forensic applications. Forensic Sci Int 2024; 362:112152. [PMID: 39067177 DOI: 10.1016/j.forsciint.2024.112152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/15/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Given that microbiological analysis can be an alternative method that overcomes the shortcomings of traditional forensic technology, and skin samples may be the most common source of cases, the analysis of skin microbiome was investigated in this study. High-throughput sequencing targeting the V3-V4 region of 16S rRNA gene was performed to reveal the skin microbiome of healthy individuals in Guangdong Han. The bacterial diversity of the palm, navel, groin and plantar of the same individual was analyzed. The overall classification based on 16S rRNA gene amplicons revealed that the microbial composition of skin samples from different anatomical parts was different, and the dominant bacterial genus of the navel, plantar, groin and palm skin were dominated by Cutibacterium, Staphylococcus, Corynebacterium and Staphylococcus, respectively. PCoA analysis showed that the skin at these four anatomical locations could only be grouped into three clusters. A predictive model based on random forest algorithm showed the potential to accurately distinguish these four anatomical locations, which indicated that specific bacteria with low abundance were the key taxa. In addition, the skin microbiome in this study is significantly different from the dominant microbiome in saliva and vaginal secretions identified in our previous study, and can be distinguished from these two tissue fluids. In conclusion, the present findings on the community and microbial structure details of the human skin may reveal its potential application value in assessing the location of skin samples and the type of body fluids in forensic medicine.
Collapse
Affiliation(s)
- Litao Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hongyan Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaomin Liang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qin Su
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Linying Ye
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chuangyan Zhai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Enping Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Junjie Pang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - XingYu Zhong
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Meisen Shi
- Criminal Justice College of China University of Political Science and Law, Beijing 100088, China.
| | - Ling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
21
|
Delanghe L, De Boeck I, Van Malderen J, Gehrmann T, Allonsius CN, Bron PA, Claes I, Hagendorens M, Leysen J, Wittouck S, Lebeer S. The inner elbow skin microbiome contains Lactobacillus among its core taxa and varies with age, season and lifestyle. MICROBIOME RESEARCH REPORTS 2024; 3:43. [PMID: 39741954 PMCID: PMC11684916 DOI: 10.20517/mrr.2024.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 01/03/2025]
Abstract
Background: The human skin microbiome plays an essential role in protecting against pathogens and other external substances. This open ecosystem is also influenced by personal and environmental factors, but the precise impact of these factors, such as lifestyle and season, is understudied. We focused here on the inner elbow, a skin site prone to inflammatory conditions like atopic dermatitis and psoriasis. Methods: We collected skin swabs from the inner elbow of 52 children and adults, with no signs of skin disorders, in the winter and summer seasons. Samples were analyzed using metagenomic shallow shotgun sequencing. In addition, metadata were collected using questionnaires on health, lifestyle, and environmental factors. Results: The core inner elbow community, taxa with a prevalence of 95% or higher, consisted of several well-known skin taxa, such as Staphylococcus hominis, Staphylococcus capitis, Staphylococcus epidermidis, and Cutibacterium acnes. In addition, Streptococcus and Lactobacillus species were also found to be highly prevalent members of the skin microbiota, especially in the age group up to 3 years old. Of all investigated factors, age appeared to be the major driver defining the skin microbiome composition and longitudinal stability over the seasons. Differential abundance analysis using three statistical tests also pointed out that specific skin species were significantly associated with sampling season, age, hygiene practices, vitamin D supplements, probiotics, and the number of household members. Conclusion: This study identifies novel factors influencing the inner elbow skin microbiome composition and paves the way for future comparative and intervention studies in skin disorders such as atopic dermatitis.
Collapse
Affiliation(s)
- Lize Delanghe
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| | - Ilke De Boeck
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| | - Joke Van Malderen
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| | - Thies Gehrmann
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| | | | - Peter A. Bron
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| | | | - Margo Hagendorens
- Department of Pediatrics, University Hospital Antwerp/University of Antwerp, Edegem 2650, Belgium
| | - Julie Leysen
- Department of Dermatology, University Hospital Antwerp/University of Antwerp, Edegem 2650, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerpen 2020, Belgium
| |
Collapse
|
22
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
23
|
De Pessemier B, López CD, Taelman S, Verdonck M, Chen Y, Stockman A, Lambert J, Van de Wiele T, Callewaert C. Comparative Whole Metagenome Analysis in Lesional and Nonlesional Scalp Areas of Patients with Psoriasis Capitis and Healthy Individuals. J Invest Dermatol 2024:S0022-202X(24)01984-5. [PMID: 39128495 DOI: 10.1016/j.jid.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024]
Abstract
Psoriasis is an immune-mediated inflammatory disorder, where the majority of the patients suffer from psoriasis capitis or scalp psoriasis. Current therapeutics remain ineffective to treat scalp lesions. In this study, we present a whole-metagenome characterization of the scalp microbiome in psoriasis capitis. We investigated how changes in the homeostatic cutaneous microbiome correlate with the condition and identified metagenomic biomarkers (taxonomic, functional, virulence factors, antimicrobial resistance genes) that could partly explain its emergence. Within this study, 83 top and back scalp samples from healthy individuals and 64 lesional and nonlesional scalp samples from subjects with untreated psoriasis capitis were analyzed. Using qPCR targeting the 16S and 18S ribosomal RNA genes, we found a significant decrease in microbial load within scalp regions affected by psoriasis compared with that in their nonlesional counterparts. Metagenomic analysis revealed that psoriatic lesions displayed significant lower Cutibacterium species (including C. modestum, C. namnetense, C. granulosum, C. porci), along with an elevation in Staphylococcus aureus. A heightened relative presence of efflux pump protein-encoding genes was detected, suggesting potential antimicrobial resistance mechanisms. These mechanisms are known to specifically target human antimicrobial peptides (including cathelicidin LL-37), which are frequently encountered within psoriasis lesions. These shifts in microbial community dynamics may contribute to psoriasis disease pathogenesis.
Collapse
Affiliation(s)
- Britta De Pessemier
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Celia Díez López
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Steff Taelman
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium; BIOLIZARD, Ghent, Belgium
| | - Merel Verdonck
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Yang Chen
- Department of Dermatology, School of Medicine, University of California San Diego, California, USA; Department of Pediatrics, School of Medicine, University of California San Diego, California, USA; Biomedical Sciences Graduate Program, University of California San Diego, California, USA
| | | | - Jo Lambert
- Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Chris Callewaert
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.
| |
Collapse
|
24
|
Iglesias A, Martínez L, Torrent D, Porcar M. The microwave bacteriome: biodiversity of domestic and laboratory microwave ovens. Front Microbiol 2024; 15:1395751. [PMID: 39176272 PMCID: PMC11338789 DOI: 10.3389/fmicb.2024.1395751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Abstract
Microwaves have become an essential part of the modern kitchen, but their potential as a reservoir for bacterial colonization and the microbial composition within them remain largely unexplored. In this study, we investigated the bacterial communities in microwave ovens and compared the microbial composition of domestic microwaves, microwaves used in shared large spaces, and laboratory microwaves, using next-generation sequencing and culturing techniques. The microwave oven bacterial population was dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, similar to the bacterial composition of human skin. Comparison with other environments revealed that the bacterial composition of domestic microwaves was similar to that of kitchen surfaces, whereas laboratory microwaves had a higher abundance of taxa known for their ability to withstand microwave radiation, high temperatures and desiccation. These results suggest that different selective pressures, such as human contact, nutrient availability and radiation levels, may explain the differences observed between domestic and laboratory microwaves. Overall, this study provides valuable insights into microwave ovens bacterial communities and their potential biotechnological applications.
Collapse
Affiliation(s)
- Alba Iglesias
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Lorena Martínez
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | | | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
- Darwin Bioprospecting Excellence S.L., Valencia, Spain
| |
Collapse
|
25
|
Zhu Y, Liu W, Wang M, Wang X, Wang S. Causal roles of skin microbiota in skin cancers suggested by genetic study. Front Microbiol 2024; 15:1426807. [PMID: 39161599 PMCID: PMC11330880 DOI: 10.3389/fmicb.2024.1426807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Background There is evidence from observational studies that skin microbiota is linked to skin cancers. Nevertheless, the causal association between skin microbiota and skin cancers is yet to be fully clarified. Methods A bidirectional two-sample Mendelian randomization (MR) was performed to determine the causal relationship between skin microbiota and skin cancers. A total of 294 skin microbial taxa were identified from the first genome-wide association study across three skin microenvironments of two German population cohorts. Summary data of three skin cancers (malignant melanoma, squamous cell carcinoma, and basal cell carcinoma) were obtained from the FinnGen consortium. Moreover, sensitivity analysis examined horizontal pleiotropy and heterogeneity, and microenvironment-based meta-analysis confirmed the reliability of the results. Results We identified 65 nominal causalities and 5 strong causal associations between skin microbiota and skin cancers. Among them, the class Bacilli revealed a bidirectional positive relationship with malignant melanoma. The class Betaproteobacteria and class Gammaproteobacteria demonstrated a causal association with an elevated risk of malignant melanoma and basal cell carcinoma, respectively. In the reverse MR analysis, malignant melanoma was associated with a lower abundance of phylum Bacteroidetes. There were no indications of significant heterogeneity in instrumental variables or evidence of horizontal pleiotropy. Conclusion Our MR analysis indicated bidirectional causal associations between skin microbiota and skin cancers, and had the potential to offer novel perspectives on the mechanistic of microbiota-facilitated carcinogenesis.
Collapse
Affiliation(s)
- Yuhang Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wanguo Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mei Wang
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Sibo Wang
- Department of Neurology, Center for Neuroscience, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Locker J, Serrage HJ, Ledder RG, Deshmukh S, O'Neill CA, McBain AJ. Microbiological insights and dermatological applications of live biotherapeutic products. J Appl Microbiol 2024; 135:lxae181. [PMID: 39090975 DOI: 10.1093/jambio/lxae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
As our understanding of dermatological conditions advances, it becomes increasingly evident that traditional pharmaceutical interventions are not universally effective. The intricate balance of the skin microbiota plays a pivotal role in the development of various skin conditions, prompting a growing interest in probiotics, or live biotherapeutic products (LBPs), as potential remedies. Specifically, the topical application of LBPs to modulate bacterial populations on the skin has emerged as a promising approach to alleviate symptoms associated with common skin conditions. This review considers LBPs and their application in addressing a wide spectrum of dermatological conditions with particular emphasis on three key areas: acne, atopic dermatitis, and wound healing. Within this context, the critical role of strain selection is presented as a pivotal factor in effectively managing these dermatological concerns. Additionally, the review considers formulation challenges associated with probiotic viability and proposes a personalised approach to facilitate compatibility with the skin's unique microenvironment. This analysis offers valuable insights into the potential of LBPs in dermatological applications, underlining their promise in reshaping the landscape of dermatological treatments while acknowledging the hurdles that must be overcome to unlock their full potential.
Collapse
Affiliation(s)
- Jessica Locker
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Hannah J Serrage
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, M13 9PT, UK
| | - Ruth G Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | | | - Catherine A O'Neill
- Division of Musculoskeletal and Dermatological Science, Faculty of Biology, Medicine and Health, School of Biological Science, The University of Manchester, Manchester, M13 9PT, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
27
|
D’Arcangelo S, Di Fermo P, Diban F, Ferrone V, D’Ercole S, Di Giulio M, Di Lodovico S. Staphylococcus aureus/Staphylococcus epidermidis from skin microbiota are balanced by Pomegranate peel extract: An eco-sustainable approach. PLoS One 2024; 19:e0308211. [PMID: 39088519 PMCID: PMC11293756 DOI: 10.1371/journal.pone.0308211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
The imbalance in skin microbiota is characterized by an increased number of pathogens in respect to commensal microorganisms. Starting from a skin microbiota collection, the aim of this work was to evaluate the possible role of Pomegranate (Punica granatum L.) Peel Extract (PPE) in restoring the skin microbiota balance acting on Staphylococcus spp. PPE was extracted following green methodology by using n-butane and the Dimethyl Ether (DME) solvents and analyzed for phytochemical composition and antimicrobial activity. The PPE antimicrobial action was evaluated against Gram +, Gram - bacteria and yeast reference strains and the most effective extract was tested against the main skin microbiota isolated strains. PPE extracted with DME showed the best antimicrobial action with MICs ranging from 1 to 128 mg/mL; the main active compounds were Catechin, Quercetin, Vanillic acid and Gallic acid. The PPE in DME anti-adhesive effect was examined against S. epidermidis and S. aureus mono and dual-species biofilm formation by biomass quantification and CFU/mL determination. The extract toxicity was evaluated by using Galleria mellonella larvae in vivo model. The extract displayed a significant anti-adhesive activity with a remarkable species-specific action at 4 and 8 mg/mL against S. epidermidis and S. aureus mono and dual-species biofilms. PPE in DME could represent an eco-sustainable non-toxic strategy to affect the Staphylococcal skin colonization in a species-specific way. The innovation of this work is represented by the reuse of food waste to balance skin microbiota.
Collapse
Affiliation(s)
- Sara D’Arcangelo
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Paola Di Fermo
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy
| | - Firas Diban
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Vincenzo Ferrone
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| |
Collapse
|
28
|
Bălașoiu (Jigău) RAC, Obistioiu D, Hulea A, Suleiman MA, Popescu I, Floares (Oarga) D, Imbrea IM, Neacșu AG, Șmuleac L, Pașcalău R, Crista L, Popescu CA, Samfira I, Imbrea F. Analysing the Antibacterial Synergistic Interactions of Romanian Lavender Essential Oils via Gas Chromatography-Mass Spectrometry: In Vitro and In Silico Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:2136. [PMID: 39124254 PMCID: PMC11313841 DOI: 10.3390/plants13152136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
This study investigated the phytochemical characteristics, antibacterial activity, and synergistic potential of essential oils derived from Romanian lavender. Gas Chromatography-Mass Spectrometry (GC/MS) analysis revealed that linalool is the main compound in all lavender essential oils, with concentrations ranging from 29.410% to 35.769%. Linalyl acetate was found in similar concentrations to linalool. Other significant compounds included 1,8-cineole (8.50%), lavandulyl acetate (5.38%), trans-β-ocimene (6.90%), and camphor (7.7%). A 1,1-Diphenyl-2-Picrylhydrazyl (DPPH) test was used to assess antioxidant capacity, with substantial free-radical-scavenging activity shown in the IC50 values determined. The antibacterial efficacy of the oils was higher against Gram-positive bacteria than Gram-negative bacteria, with variations in minimum inhibitory concentrations (MICs), the extent of inhibition, and evolution patterns. The study also explored the oils' ability to enhance the efficacy of ampicillin, revealing synergistic interactions expressed as fractional inhibitory concentration indices. In silico protein-ligand docking studies used twenty-one compounds identified by GC-MS with bacterial protein targets, showing notable binding interactions with SasG (-6.3 kcal/mol to -4.6 kcal/mol) and KAS III (-6.2 kcal/mol to -4.9 kcal/mol). Overall, the results indicate that Romanian lavender essential oils possess potent antioxidant and antibacterial properties, and their synergistic interaction with ampicillin has potential for enhancing antibiotic therapies.
Collapse
Affiliation(s)
- Roxana Aurelia C. Bălașoiu (Jigău)
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Diana Obistioiu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Anca Hulea
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Mukhtar Adeiza Suleiman
- Faculty of Life Science, Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Nigeria;
| | - Iuliana Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Doris Floares (Oarga)
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Ilinca Merima Imbrea
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Alina-Georgeta Neacșu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Laura Șmuleac
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Raul Pașcalău
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Laura Crista
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Cosmin Alin Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Ionel Samfira
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| | - Florin Imbrea
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (R.A.C.B.); (A.H.); (I.P.); (D.F.); (A.-G.N.); (L.Ș.); (R.P.); (L.C.); (C.A.P.); (I.S.); (F.I.)
| |
Collapse
|
29
|
Imam MW, Luqman S. Unveiling the mechanism of essential oil action against skin pathogens: from ancient wisdom to modern science. Arch Microbiol 2024; 206:347. [PMID: 38985339 DOI: 10.1007/s00203-024-03986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 07/11/2024]
Abstract
Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.
Collapse
Affiliation(s)
- Md Waquar Imam
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India.
| |
Collapse
|
30
|
Sekino Y, Yamamoto I, Watanabe M, Kuramochi K, Furuyama Y. Cyclo(l-Pro-l-Tyr) Isolated from the Human Skin Commensal Corynebacterium tuberculostearicum Inhibits Tyrosinase. Int J Mol Sci 2024; 25:7365. [PMID: 39000472 PMCID: PMC11242031 DOI: 10.3390/ijms25137365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Melanin is produced by melanocytes to protect human skin from harmful ultraviolet radiation. During skin cell renewal, melanin and dead skin cells are disposed of. However, prolonged exposure to ultraviolet rays or aging can disturb this cycle, leading to skin hyperpigmentation due to melanin accumulation. Tyrosinase is a crucial enzyme involved in melanin biosynthesis. Although various compounds, including tyrosine inhibitors, that counteract melanin accumulation have been reported, some, such as hydroquinone, are toxic and can cause vitiligo. Meanwhile, the skin is the largest organ and the outermost layer of the immune system, containing a diverse range of bacteria that produce low-toxicity compounds. In the current study, we aim to identify metabolites produced by skin microbiota that inhibit tyrosinase. Specifically, mushroom tyrosinase served as the study model. Following commensal skin bacteria screening, Corynebacterium tuberculostearicum was found to inhibit tyrosinase activity. The active compound was cyclo(l-Pro-l-Tyr); commercially available cyclo(l-Pro-l-Tyr) also exhibited inhibitory activity. Docking simulations suggested that cyclo(l-Pro-l-Tyr) binds to the substrate-binding site of mushroom tyrosinase, obstructing the substrate pocket and preventing its activity. Hence, cyclo(l-Pro-l-Tyr) might have potential applications as a cosmetic agent and food additive.
Collapse
Affiliation(s)
| | | | | | | | - Yuuki Furuyama
- Department of Applied Bioscience, Tokyo University of Science, 2641 Yamazaki, Noda 278-8519, Chiba, Japan (K.K.)
| |
Collapse
|
31
|
Liu Y, Fachrul M, Inouye M, Méric G. Harnessing human microbiomes for disease prediction. Trends Microbiol 2024; 32:707-719. [PMID: 38246848 DOI: 10.1016/j.tim.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The human microbiome has been increasingly recognized as having potential use for disease prediction. Predicting the risk, progression, and severity of diseases holds promise to transform clinical practice, empower patient decisions, and reduce the burden of various common diseases, as has been demonstrated for cardiovascular disease or breast cancer. Combining multiple modifiable and non-modifiable risk factors, including high-dimensional genomic data, has been traditionally favored, but few studies have incorporated the human microbiome into models for predicting the prospective risk of disease. Here, we review research into the use of the human microbiome for disease prediction with a particular focus on prospective studies as well as the modulation and engineering of the microbiome as a therapeutic strategy.
Collapse
Affiliation(s)
- Yang Liu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muhamad Fachrul
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Human Genomics and Evolution Unit, St Vincent's Institute of Medical Research, Victoria, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK; British Heart Foundation Cambridge Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Medical Science, Molecular Epidemiology, Uppsala University, Uppsala, Sweden; Department of Cardiovascular Research, Translation, and Implementation, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
32
|
Shah D, Rathod M, Tiwari A, Kini A, Bhagunde P, Bagaria V. A Histological and Biomechanical Analysis of Human Acellular Dermis (HAD) Created Using a Novel Processing and Preservation Technique. Indian J Orthop 2024; 58:922-931. [PMID: 38948369 PMCID: PMC11208345 DOI: 10.1007/s43465-024-01181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/04/2024] [Indexed: 07/02/2024]
Abstract
Background Large and complex defects requiring reconstruction are challenging for orthopaedic surgeons. The use of human acellular dermal (HAD) matrices to augment large soft tissue defects such as those seen in massive rotator cuff tears, knee extensor mechanism failures and neglected Tendo-Achilles tears has proven to be a valuable tool in surgeons reconstructive armamentarium. Different methods for allograft decellularization and preservation alter the native properties of the scaffold. Traditional processing and preservation methods have shown to have drawbacks that preclude its widespread use. Some of the common issues include inferior biomechanical properties, the risk of rejection, limited customization, difficulty in storing and transporting, the requirement of pre-operative preparation, and last but not the least increased cost. Methods We describe a novel processing and preservation method utilizing a two-step non-denaturing decellularization method coupled with preservation using a water-sequestering agent (glycerol) to remove immunogenic components while retaining biomechanical properties. The efficiency of this novel process was compared with the traditional freeze-drying method and verified by histological evaluation and biomechanical strength analysis. Results The absence of cellular components and matrix integrity in hematoxylin and eosin-stained glycerol-preserved HAD (gly-HAD) samples compared to freeze-dried HAD (FD-HAD) demonstrated effective yet gentle decellularization. Biomechanical strength analysis revealed that gly-HADs are stronger with an ultimate tensile load to the failure strength of 210 N compared to FD-HAD (124N). The gly-HADs were found to have an optimal suture-retention strength of 126 N. Finally, sterility testing of the resultant grafts was checked to ensure a sterility assurance level of 10-6 to establish implantability. Conclusion The novel processing and preservation technique is described in this paper to create a Human Acellular Dermis with higher biomechanical strength and superior histological characteristics. The processing and preservation technique ensured high sterility assurance levels to establish implantability.
Collapse
Affiliation(s)
- Damini Shah
- Novo Tissue Bank and Research Centre, Mumbai, India
| | - Madhu Rathod
- Novo Tissue Bank and Research Centre, Mumbai, India
| | | | - Abhishek Kini
- Sir H N Reliance Foundation Hospital, Girgaum, Mumbai, Maharashtra 400004 India
| | - Prasad Bhagunde
- Sona Medical Centre & Consultant Orthopaedic Surgeon Saifee Hospital, Jaslok Hospital and Research Centre, Breach Candy Hospital Trust, Mumbai, India
| | - Vaibhav Bagaria
- Department of Orthopaedic Surgery, Sir H N Reliance Foundation Hospital, Girgaum, Mumbai, Maharashtra 400004 India
| |
Collapse
|
33
|
Hülpüsch C, Rohayem R, Reiger M, Traidl-Hoffmann C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J Allergy Clin Immunol 2024; 154:31-41. [PMID: 38761999 DOI: 10.1016/j.jaci.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Inflammatory skin diseases such as atopic eczema (atopic dermatitis [AD]) affect children and adults globally. In AD, the skin barrier is impaired on multiple levels. Underlying factors include genetic, chemical, immunologic, and microbial components. Increased skin pH in AD is part of the altered microbial microenvironment that promotes overgrowth of the skin microbiome with Staphylococcus aureus. The secretion of virulence factors, such as toxins and proteases, by S aureus further aggravates the skin barrier deficiency and additionally disrupts the balance of an already skewed immune response. Skin commensal bacteria, however, can inhibit the growth and pathogenicity of S aureus through quorum sensing. Therefore, restoring a healthy skin microbiome could contribute to remission induction in AD. This review discusses direct and indirect approaches to targeting the skin microbiome through modulation of the skin pH; UV treatment; and use of prebiotics, probiotics, and postbiotics. Furthermore, exploratory techniques such as skin microbiome transplantation, ozone therapy, and phage therapy are discussed. Finally, we summarize the latest findings on disease and microbiome modification through targeted immunomodulatory systemic treatments and biologics. We believe that targeting the skin microbiome should be considered a crucial component of successful AD treatment in the future.
Collapse
Affiliation(s)
- Claudia Hülpüsch
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Robin Rohayem
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland; Dermatology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Matthias Reiger
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Chair of Environmental Medicine, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland; ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
34
|
Liu F, Coutinho-Abreu IV, Raban R, Nguyen TTD, Dimas AR, Merriman JA, Akbari OS. Engineered skin microbiome reduces mosquito attraction to mice. PNAS NEXUS 2024; 3:pgae267. [PMID: 39081786 PMCID: PMC11287867 DOI: 10.1093/pnasnexus/pgae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024]
Abstract
The skin microbiome plays a pivotal role in the production of attractive cues detected by mosquitoes. Here, we leveraged recent advances in genetic engineering to significantly reduce the production of L-(+)-lactic acid as a strategy to reduce mosquito attraction to the highly prominent skin commensals Staphylococcus epidermidis and Corynebacterium amycolatum. Engraftment of these engineered bacteria onto the skin of mice reduced mosquito attraction and feeding for up to 11 uninterrupted days, which is considerably longer than the several hours of protection conferred by the leading chemical repellent N,N-diethyl-meta-toluamide. Taken together, our findings demonstrate engineering the skin microbiome to reduce attractive volatiles represents an innovative untapped strategy to reduce vector attraction, preventing bites, and pathogen transmission. These findings set the stage for new classes of long-lasting microbiome-based repellent products.
Collapse
Affiliation(s)
- Feng Liu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Iliano V Coutinho-Abreu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Tam Thuy Dan Nguyen
- Sarafan ChEM-H, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, USA
- Microbiome Therapies Initiative (MITI), Stanford University, 3165 Porter Drive, Palo Alto, CA 94305, USA
| | - Alejandra R Dimas
- Sarafan ChEM-H, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, USA
- Microbiome Therapies Initiative (MITI), Stanford University, 3165 Porter Drive, Palo Alto, CA 94305, USA
| | - Joseph A Merriman
- Sarafan ChEM-H, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305, USA
- Microbiome Therapies Initiative (MITI), Stanford University, 3165 Porter Drive, Palo Alto, CA 94305, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Naik B, Sasikumar J, Das SP. From Skin and Gut to the Brain: The Infectious Journey of the Human Commensal Fungus Malassezia and Its Neurological Consequences. Mol Neurobiol 2024:10.1007/s12035-024-04270-w. [PMID: 38871941 DOI: 10.1007/s12035-024-04270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The human mycobiome encompasses diverse communities of fungal organisms residing within the body and has emerged as a critical player in shaping health and disease. While extensive research has focused on the skin and gut mycobiome, recent investigations have pointed toward the potential role of fungal organisms in neurological disorders. Among those fungal organisms, the presence of the commensal fungus Malassezia in the brain has created curiosity because of its commensal nature and primary association with the human skin and gut. This budding yeast is responsible for several diseases, such as Seborrheic dermatitis, Atopic dermatitis, Pityriasis versicolor, Malassezia folliculitis, dandruff, and others. However recent findings surprisingly show the presence of Malassezia DNA in the brain and have been linked to diseases like Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Amyotrophic lateral sclerosis. The exact role of Malassezia in these disorders is unknown, but its ability to infect human cells, travel through the bloodstream, cross the blood-brain barrier, and reside along with the lipid-rich neuronal cells are potential mechanisms responsible for pathogenesis. This also includes the induction of pro-inflammatory cytokines, disruption of the blood-brain barrier, gut-microbe interaction, and accumulation of metabolic changes in the brain environment. In this review, we discuss these key findings from studies linking Malassezia to neurological disorders, emphasizing the complex and multifaceted nature of these cases. Furthermore, we discuss potential mechanisms through which Malassezia might contribute to the development of neurological conditions. Future investigations will open up new avenues for our understanding of the fungal gut-brain axis and how it influences human behavior. Collaborative research efforts among microbiologists, neuroscientists, immunologists, and clinicians hold promise for unraveling the enigmatic connections between human commensal Malassezia and neurological disorders.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
36
|
Wrześniewska M, Wołoszczak J, Świrkosz G, Szyller H, Gomułka K. The Role of the Microbiota in the Pathogenesis and Treatment of Atopic Dermatitis-A Literature Review. Int J Mol Sci 2024; 25:6539. [PMID: 38928245 PMCID: PMC11203945 DOI: 10.3390/ijms25126539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with a high prevalence worldwide. AD pathogenesis is complex and consists of immune system dysregulation and impaired skin barrier, influenced by genetic and environmental factors. The purpose of the review is to show the complex interplay between atopic dermatitis and the microbiota. Human microbiota plays an important role in AD pathogenesis and the course of the disease. Dysbiosis is an important factor contributing to the development of atopic diseases, including atopic dermatitis. The gut microbiota can influence the composition of the skin microbiota, strengthening the skin barrier and regulating the immune response via the involvement of bacterial metabolites, particularly short-chain fatty acids, in signaling pathways of the gut-skin axis. AD can be modulated by antibiotic intake, dietary adjustments, hygiene, and living conditions. One of the promising strategies for modulating the course of AD is probiotics. This review offers a summary of how the microbiota influences the development and treatment of AD, highlighting aspects that warrant additional investigation.
Collapse
Affiliation(s)
- Martyna Wrześniewska
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Julia Wołoszczak
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Gabriela Świrkosz
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Hubert Szyller
- Student Scientific Group of Internal Medicine and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (J.W.); (G.Ś.); (H.S.)
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
37
|
Bomark D, Fabrin J, Sørensen MS. P. aeruginosa infection of the ulna, a rare complication after arterial puncture. Ugeskr Laeger 2024; 186:V01240062. [PMID: 38903032 DOI: 10.61409/v01240062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium known to induce severe infections, is seldomly reported in scientific literature as a contributor of osteomyelitis. In this case report, a 71-year-old woman exhibited recurring infections and enduring forearm pain. A subsequent MRI revealed osteomyelitis in the distal ulna, linked to an arterial blood gas sample taken months earlier. Despite undergoing multiple extended courses of antibiotic treatment, the patient eventually underwent surgery on her left forearm. Biopsy cultures conclusively confirmed the presence of P. aeruginosa.
Collapse
Affiliation(s)
- Daniel Bomark
- Sår-, infektions- og amputationssektionen, Ortopædkirurgisk Afdeling, Sjællands Universitetshospital, Køge
| | - Jesper Fabrin
- Sår-, infektions- og amputationssektionen, Ortopædkirurgisk Afdeling, Sjællands Universitetshospital, Køge
| | - Michala Skovlund Sørensen
- Sår-, infektions- og amputationssektionen, Ortopædkirurgisk Afdeling, Sjællands Universitetshospital, Køge
- Institut for Klinisk Medicin, Københavns universitet
| |
Collapse
|
38
|
Jost SM, Cardona L, Rohrbach E, Mathis A, Holliger C, Verhulst NO. Environment rather than breed or body site shapes the skin bacterial community of healthy sheep as revealed by metabarcoding. Vet Dermatol 2024; 35:273-283. [PMID: 38082464 DOI: 10.1111/vde.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/11/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The skin is inhabited by a variety of micro-organisms, with bacteria representing the predominant taxon of the skin microbiome. In sheep, the skin bacterial community of healthy animals has been addressed in few studies, only with culture-based methods or sequencing of cloned amplicons. OBJECTIVES The objectives of this study were to determine the sheep skin bacterial community composition by using metabarcoding for a detailed characterisation and to determine the effect of body part, breed and environment. MATERIALS AND METHODS Overall, 267 samples were taken from 89 adult female sheep, belonging to three different breeds and kept on nine different farms in Switzerland. From every individual, one sample each was taken from belly, left ear and left leg and metabarcoding of the 16S rRNA V3-V4 hypervariable region was performed. RESULTS The main phyla identified were Actinobacteriota, Firmicutes, Proteobacteria and Bacteriodota. The alpha diversity as determined by Shannon's diversity index was significantly different between sheep from different farms. Beta diversity analysis by principal coordinate analysis (PCoA) showed clustering of the samples by farm and body site, while breed had only a marginal influence. A sparse partial least squares discriminant analysis (sPLS-DA) revealed seven main groups of operational taxonomic units (OTUs) of which groups of OTUs were specific for some farms. CONCLUSIONS AND CLINICAL RELEVANCE These findings indicate that environment has a larger influence on skin microbial variability than breed, although the sampled breeds, the most abundant ones in Switzerland, are phenotypically similar. Future studies on the sheep skin microbiome may lead to novel insights in skin diseases and prevention.
Collapse
Affiliation(s)
- Stéphanie M Jost
- Vetsuisse and Medical Faculty, Vector Entomology unit, National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | - Laëtitia Cardona
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Emmanuelle Rohrbach
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexander Mathis
- Vetsuisse and Medical Faculty, Vector Entomology unit, National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Niels O Verhulst
- Vetsuisse and Medical Faculty, Vector Entomology unit, National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
39
|
Bhatt S, Patel A, Kesselman MM, Demory ML. Hand Sanitizer: Stopping the Spread of Infection at a Cost. Cureus 2024; 16:e61846. [PMID: 38975405 PMCID: PMC11227450 DOI: 10.7759/cureus.61846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
The recent rise in hand sanitizer use due to the COVID-19 pandemic has had a beneficial impact on stopping the spread of disease, but the potential negative implications of its overuse on the body and the microbiome have yet to be thoroughly reviewed. Epidermal layers absorb hand sanitizer from direct application to the skin, making them some of the most susceptible cells to the adverse effects of overuse. The increased usage of hand sanitizer can affect the variation, quantity, and diversity of the skin microflora, leading to conditions such as eczema, atopic dermatitis, and even systemic toxicity due to colonization of the skin with pathogenic bacteria. Due to the close-knit relationship between the skin and gut, the gastrointestinal system can also incur disruptions due to the negative effects on the skin as a result of excessive hand sanitizer use, leading to gut dysbiosis. Additionally, the accidental ingestion of hand sanitizer, and its abuse or misuse, can be toxic and lead to alcohol poisoning, which is an issue most commonly seen not only in the pediatric population but also in adolescents and adults due to aberrant recreational exposure. As a vulnerable body system, the eyes can also be negatively impacted by hand sanitizer misuse leading to chemical injury, visual impairment, and even blindness. In this review, we aim to highlight the variations in hand sanitizer formulation, the benefits, and how misuse or overuse may lead to adverse effects on the skin, gut, and eyes. In particular, we review the advantages and disadvantages of alcohol-based hand sanitizers (ABHSs) and non-alcohol-based hand sanitizers (NABHSs) and how the components and chemicals used in each can contribute to organ dysbiosis and systemic damage.
Collapse
Affiliation(s)
- Shreya Bhatt
- Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, USA
| | - Aasha Patel
- Dentistry, Roseman University College of Dental Medicine, South Jordan, USA
| | - Marc M Kesselman
- Rheumatology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, USA
| | - Michelle L Demory
- Microbiology and Immunology, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| |
Collapse
|
40
|
Zampolli J, De Giani A, Rossi M, Finazzi M, Di Gennaro P. Who inhabits the built environment? A microbiological point of view on the principal bacteria colonizing our urban areas. Front Microbiol 2024; 15:1380953. [PMID: 38863750 PMCID: PMC11165352 DOI: 10.3389/fmicb.2024.1380953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Modern lifestyle greatly influences human well-being. Indeed, nowadays people are centered in the cities and this trend is growing with the ever-increasing population. The main habitat for modern humans is defined as the built environment (BE). The modulation of life quality in the BE is primarily mediated by a biodiversity of microbes. They derive from different sources, such as soil, water, air, pets, and humans. Humans are the main source and vector of bacterial diversity in the BE leaving a characteristic microbial fingerprint on the surfaces and spaces. This review, focusing on articles published from the early 2000s, delves into bacterial populations present in indoor and outdoor urban environments, exploring the characteristics of primary bacterial niches in the BE and their native habitats. It elucidates bacterial interconnections within this context and among themselves, shedding light on pathways for adaptation and survival across diverse environmental conditions. Given the limitations of culture-based methods, emphasis is placed on culture-independent approaches, particularly high-throughput techniques to elucidate the genetic and -omic features of BE bacteria. By elucidating these microbiota profiles, the review aims to contribute to understanding the implications for human health and the assessment of urban environmental quality in modern cities.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
41
|
Radaschin DS, Iancu AV, Ionescu AM, Gurau G, Niculet E, Bujoreanu FC, Nastase F, Radaschin T, Popa LG, Axente RE, Tatu AL. An Eastern County from an European Eastern Country-The Characteristics of Cutaneous Microbiome in Psoriasis Patients-Preliminary Results. Life (Basel) 2024; 14:678. [PMID: 38929663 PMCID: PMC11205136 DOI: 10.3390/life14060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The cutaneous microbiome represents a topic of high interest nowadays. Multiple studies have suggested the importance of the skin microbiome in different dermatological pathologies, highlighting the possible implications of cutaneous microorganisms in either the pathogenesis or prognosis of skin maladies. Psoriasis represents a common inflammatory skin disease, with a high prevalence in the worldwide population. The role of the cutaneous microbiome in psoriasis could explain a number of pathogenic theories and treatment objectives of this incurable skin disease. Our interest in the characteristics of the cutaneous microbiome, especially in psoriatic patients who attended a tertiary dermatological centre in Galati, Romania, is reflected in our current study, of which the preliminary results are discussed in this article. Using three types of skin sampling techniques (swabs, adhesive tape, and punch biopsies), we tried to characterise the microorganisms harboured in the skin of psoriatic patients and healthy individuals. This study was performed using culture-based probes, which were analysed using MALDI-TOF mass spectrometer equipment. Our preliminary results suggested that the greatest diversity was observed in the perilesional areas of psoriatic patients. The lowest cutaneous diversity was obtained from sampling psoriatic plaques. These results are similar to other studies of the cutaneous microbiome in psoriasis. The most frequent microorganisms found in all groups studied were of the Staphylococcus species: Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus aureus. Analysing the living environment of each individual from this study, our preliminary results suggested different results from other studies, as higher diversity and heterogenicity was observed in urban environments than in rural living areas. Regarding the differences between sexes, our preliminary results showed higher quantitative and qualitative changes in the skin microbiome of male participants than female participants, opposite to the results found in other studies of the cutaneous microbiome in psoriasis. Given these preliminary results, we can conclude that we have found important differences by studying the cutaneous microbiome of psoriatic patients and healthy control individuals from a population that, to our knowledge, has not been yet studied from this point of view. Our results showed important characteristics of the skin microbiome in an Eastern European population, where cultural and environmental living habits could influence the cutaneous microbiome.
Collapse
Affiliation(s)
- Diana Sabina Radaschin
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (A.L.T.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800385 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research (MICDIR), “Dunarea de Jos” University of Galati, 800385 Galati, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800385 Galati, Romania; (A.V.I.)
| | | | - Gabriela Gurau
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800385 Galati, Romania; (A.V.I.)
| | - Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800385 Galati, Romania; (A.V.I.)
| | - Florin Ciprian Bujoreanu
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (A.L.T.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800385 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research (MICDIR), “Dunarea de Jos” University of Galati, 800385 Galati, Romania
| | - Florentina Nastase
- Department of Neuropsychomotor Rehabilitation, “Sf. Ioan” Clinical Hospital for Children, 800487 Galati, Romania
| | - Teodora Radaschin
- Radiology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Liliana Gabriela Popa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Roxana Elena Axente
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800385 Galati, Romania;
| | - Alin Laurentiu Tatu
- Department of Dermatology, “Saint Parascheva” Infectious Disease Clinical Hospital, 800179 Galati, Romania; (D.S.R.); (A.L.T.)
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800385 Galati, Romania
- Multidisciplinary Integrated Centre of Dermatological Interface Research (MICDIR), “Dunarea de Jos” University of Galati, 800385 Galati, Romania
| |
Collapse
|
42
|
Traoré SG, Fokou G, Wognin AS, Dié SAG, Amanzou NAA, Heitz-Tokpa K, Tetchi SM, Seko MO, Sanhoun AR, Traoré A, Anoh EA, Tiembre I, Koussemon-Camara M, Akoua-Koffi C, Bonfoh B. Assessment of handwashing impact on detection of SARS-CoV-2, Staphylococcus aureus, Escherichia coli on hands in rural and urban settings of Côte d'Ivoire during COVID-19 pandemic. BMC Public Health 2024; 24:1380. [PMID: 38778328 PMCID: PMC11112913 DOI: 10.1186/s12889-024-18838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Handwashing is the first line of hygiene measures and one of the oldest methods of preventing the spread of infectious diseases. Despite its efficacy in the health system, handwashing is often inadequately practiced by populations. This study aimed to assess the presence of SARS-CoV-2, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) on hands as indicators of lack of hand hygiene during COVID 19 pandemic. METHODS A cross-sectional study was conducted in rural Taabo and urban Abidjan (Côte d'Ivoire) from January to September 2021. A total of 384 participants from 384 households were included in the study. The total households were distributed proportionally within various municipalities in the two study areas according to the number of households in each municipality, based on data of the National Institute of Statistics from the 2014 general population census. Hand swabbing of the 384 participants within households (320 in Abidjan and 64 in Taabo) was performed for the enumeration of E. coli and S aureus, using laboratory standard method and for the detection of SARS-CoV-2 by RT-qPCR. A binary logistic regression model was built with the outcome variable presence of Staphylococcus spp. on hands of respondents that was categorized into binary variables, Staphylococcus spp. (1 = presence, 0 = absence) for the Risk Ratio estimation. Place of living, sex, handwashing, education and age group were used to adjust the model to observe the effects of these explanatory variables. RESULTS No presence of SARS-CoV-2 virus was detected on the hands of respondents in both sites. However, in urban Abidjan, only Staphylococcus spp. (Coagulase Negative Staphylococci) was found on the hands of 233 (72.8%, 95%CI: 67.7-77.4) respondents with the average load of 0.56 CFU/ Cm2 (95% CI, 0.52-0.60). Meanwhile, in rural Taabo, Staphylococcus spp. (Coagulase Negative Staphylococci) and E. coli were found on the hands of 40 (62.5%, 95%CI: 50.3-73.3) and 7 (10.9%, 95%CI: 5.4-20.9) respondents with the respective average load of 0.49 CFU/ Cm2 (95% CI, 0.39-0.59) and 0.08 CFU/ Cm2 (95% CI, 0.03-0.18). Participants living in rural Taabo were less likely to have Staphylococcus spp. on their hands (RR = 0.811; 95%IC: 0.661-0.995) compared to those living in urban Abidjan. CONCLUSIONS No SARS-CoV-2 was detected on the hands of participants in both sites, suggesting that our study did not show direct transmission through hands. No E. coli was found in urban Abidjan while E. coli was found on the hands of participants in rural Taabo indicating poor hand washing and disinfection practices in rural Taabo. Living in urban Abidjan is statistically associated to having Staphylococcus spp. on hands. Further studies are necessary especially to understand to what extent the presence of Staphylococcus spp. on hands indicates a higher infection or fecal colonization rates in the case of E. coli.
Collapse
Affiliation(s)
- Sylvain Gnamien Traoré
- Université Peleforo Gon Coulibaly, Korhogo, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Gilbert Fokou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | | | - Nogbou Andetchi Aubin Amanzou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Université Virtuelle de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Kathrin Heitz-Tokpa
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | - Malik Orou Seko
- Ecole Inter-Etats des Sciences et Médecine Vétérinaires, Dakar, Sénégal.
| | - Aimé Roland Sanhoun
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Adjaratou Traoré
- Centre Hospitalier Universitaire de Bouaké, Bouaké, Côte d'Ivoire
| | | | - Issaka Tiembre
- Institut National d'Hygiène Publique, Abidjan, Côte d'Ivoire
| | | | - Chantal Akoua-Koffi
- Centre Hospitalier Universitaire de Bouaké, Bouaké, Côte d'Ivoire
- UFR Sciences Médicales de l'Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| |
Collapse
|
43
|
Chaudhary PP, Kaur M, Myles IA. Does "all disease begin in the gut"? The gut-organ cross talk in the microbiome. Appl Microbiol Biotechnol 2024; 108:339. [PMID: 38771520 PMCID: PMC11108886 DOI: 10.1007/s00253-024-13180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
The human microbiome, a diverse ecosystem of microorganisms within the body, plays pivotal roles in health and disease. This review explores site-specific microbiomes, their role in maintaining health, and strategies for their upkeep, focusing on oral, lung, vaginal, skin, and gut microbiota, and their systemic connections. Understanding the intricate relationships between these microbial communities is crucial for unraveling mechanisms underlying human health. Recent research highlights bidirectional communication between the gut and distant microbiome sites, influencing immune function, metabolism, and disease susceptibility. Alterations in one microbiome can impact others, emphasizing their interconnectedness and collective influence on human physiology. The therapeutic potential of gut microbiota in modulating distant microbiomes offers promising avenues for interventions targeting various disorders. Through interdisciplinary collaboration and technological advancements, we can harness the power of the microbiome to revolutionize healthcare, emphasizing microbiome-centric approaches to promote holistic well-being while identifying areas for future research.
Collapse
Affiliation(s)
- Prem Prashant Chaudhary
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mahaldeep Kaur
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
44
|
Yan Y, Huang S, Zeng Y, Yue S, Wang T, Yuan L, Nie J. Long-Term Disinfection in Operating Rooms Affects Skin Microbiota and Metabolites of Medical Personnel. Skin Pharmacol Physiol 2024; 37:19-31. [PMID: 38710161 DOI: 10.1159/000539100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Disinfectants play a critical role in reducing healthcare-associated infections by eliminating microorganisms on surfaces. However, prolonged use of disinfectants may adversely affect the skin microflora, essential for skin health and infection prevention. This study investigates the impact of disinfection on the skin microbiota and metabolites of medical personnel in operating rooms, aiming to provide a scientific foundation for safeguarding their skin health. METHODS We conducted 16S sequencing and metabolomic analysis to assess the effects of disinfection on the skin microbiota and metabolites of medical personnel. Samples were collected from operating room personnel after disinfectant exposure to identify changes in microbial communities and metabolite profiles. RESULTS Our analysis revealed that prolonged use of disinfectants led to alterations in skin microbial communities and microbial metabolites. These alterations included the production of harmful metabolites that could potentially promote skin infections and other health issues among medical personnel. CONCLUSION The findings underscore the importance of minimizing disruptions to skin microbiota and metabolites caused by long-term disinfectant use to preserve the overall health of medical personnel. This study provides valuable insights into the relationship between disinfectant use, skin microbiota, and metabolites, highlighting the necessity for further research in this area.
Collapse
Affiliation(s)
- Yu Yan
- Anesthesia Operation Department, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuzheng Huang
- Anesthesia Operation Department, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Zeng
- Anesthesia Operation Department, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siyuan Yue
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, China
| | - Tong Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, China
| | - Lin Yuan
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, China
| | - Junhui Nie
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, China
| |
Collapse
|
45
|
Alsaadi SE, Lu H, Zhang M, Dykes GF, Allison HE, Horsburgh MJ. Bacteriophages from human skin infecting coagulase-negative Staphylococcus: diversity, novelty and host resistance. Sci Rep 2024; 14:8245. [PMID: 38589670 PMCID: PMC11001980 DOI: 10.1038/s41598-024-59065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/06/2024] [Indexed: 04/10/2024] Open
Abstract
The human skin microbiome comprises diverse populations that differ temporally between body sites and individuals. The virome is a less studied component of the skin microbiome and the study of bacteriophages is required to increase knowledge of the modulation and stability of bacterial communities. Staphylococcus species are among the most abundant colonisers of skin and are associated with both health and disease yet the bacteriophages infecting the most abundant species on skin are less well studied. Here, we report the isolation and genome sequencing of 40 bacteriophages from human skin swabs that infect coagulase-negative Staphylococcus (CoNS) species, which extends our knowledge of phage diversity. Six genetic clusters of phages were identified with two clusters representing novel phages, one of which we characterise and name Alsa phage. We identified that Alsa phages have a greater ability to infect the species S. hominis that was otherwise infected less than other CoNS species by the isolated phages, indicating an undescribed barrier to phage infection that could be in part due to numerous restriction-modification systems. The extended diversity of Staphylococcus phages here enables further research to define their contribution to skin microbiome research and the mechanisms that limit phage infection.
Collapse
Affiliation(s)
- Samah E Alsaadi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Hanshuo Lu
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Minxing Zhang
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Gregory F Dykes
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Heather E Allison
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Malcolm J Horsburgh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
46
|
Pedretti N, Iseppi R, Condò C, Spaggiari L, Messi P, Pericolini E, Di Cerbo A, Ardizzoni A, Sabia C. Cell-Free Supernatant from a Strain of Bacillus siamensis Isolated from the Skin Showed a Broad Spectrum of Antimicrobial Activity. Microorganisms 2024; 12:718. [PMID: 38674662 PMCID: PMC11052359 DOI: 10.3390/microorganisms12040718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the search for new compounds with antibacterial activity has drastically increased due to the spread of antibiotic-resistant microorganisms. In this study, we analyzed Cell-Free Supernatant (CFS) from Bacillus siamensis, assessing its potential antimicrobial activity against some of the main pathogenic microorganisms of human interest. To achieve this goal, we exploited the natural antagonism of skin-colonizing bacteria and their ability to produce compounds with antimicrobial activity. Biochemical and molecular methods were used to identify 247 strains isolated from the skin. Among these, we found that CFS from a strain of Bacillus siamensis (that we named CPAY1) showed significant antimicrobial activity against Staphylococcus aureus, Enterococcus faecalis, Streptococcus agalactiae, and Candida spp. In this study, we gathered information on CFS's antimicrobial activity and on its sensitivity to chemical-physical parameters. Time-kill studies were performed; anti-biofilm activity, antibiotic resistance, and plasmid presence were also investigated. The antimicrobial compounds included in the CFS showed resistance to the proteolytic enzymes and were heat stable. The production of antimicrobial compounds started after 4 h of culture (20 AU/mL). CPAY1 CFS showed antimicrobial activity after 7 h of bacteria co-culture. The anti-biofilm activity of the CPAY1 CFS against all the tested strains was also remarkable. B. siamensis CPAY1 did not reveal the presence of a plasmid and showed susceptibility to all the antibiotics tested.
Collapse
Affiliation(s)
- Natalia Pedretti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (N.P.); (E.P.); (A.A.)
| | - Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.I.); (C.C.); (P.M.)
| | - Carla Condò
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.I.); (C.C.); (P.M.)
| | - Luca Spaggiari
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.I.); (C.C.); (P.M.)
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (N.P.); (E.P.); (A.A.)
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (N.P.); (E.P.); (A.A.)
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.I.); (C.C.); (P.M.)
| |
Collapse
|
47
|
Crous C, Pretorius J, Petzer A. Overview of popular cosmeceuticals in dermatology. SKIN HEALTH AND DISEASE 2024; 4:e340. [PMID: 38577050 PMCID: PMC10988741 DOI: 10.1002/ski2.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 04/06/2024]
Abstract
The eternal pursuit to prevent ageing and maintain a youthful appearance has resulted in a rapidly expanding cosmeceutical industry. Cosmeceutical products, particularly of natural origin, are in high demand due to claims of efficacy for signs of ageing and other skin conditions. Consumers often include cosmeceutical products in their skin care regime as they are readily available, and a more affordable option compared to prescription products. However, many cosmeceutical ingredients lack clinical evidence regarding their efficacy and safety as these products are not regulated by the U.S. Food and Drug Administration. This review provides a brief overview of several popular cosmeceutical ingredients with regards to their potential indications, targets and mechanisms of action.
Collapse
Affiliation(s)
- Chantalle Crous
- Pharmaceutical ChemistrySchool of Pharmacy and Centre of Excellence for Pharmaceutical SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | | | - Anél Petzer
- Pharmaceutical ChemistrySchool of Pharmacy and Centre of Excellence for Pharmaceutical SciencesNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
48
|
Procopio N, Sguazzi G, Eriksson EV, Ogbanga N, McKell FC, Newton EP, Magni PA, Bonicelli A, Gino S. Transferability of Human and Environmental Microbiome on Clothes as a Tool for Forensic Investigations. Genes (Basel) 2024; 15:375. [PMID: 38540435 PMCID: PMC10970523 DOI: 10.3390/genes15030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Considering the growing importance of microbiome analyses in forensics for identifying individuals, this study explores the transfer of the skin microbiome onto clothing, its persistence on fabrics over time, and its transferability from the environment and between different garments. Furthermore, this project compares three specific QIAGEN microbiome extraction kits to test their extraction efficiency on fabric samples. Additionally, this study aims to check if these extracts contain human DNA, providing a chance to obtain more information from the same evidence for personal identification. The results obtained show: (1) variations in the skin microbiome between the volunteers, potentially due to their different sex; (2) differences in microbial composition between worn and unworn clothing; (3) the influence of the environment on the microbial signature of unworn clothing; (4) the potential use of certain phyla as biomarkers to differentiate between worn and unworn garments, even over extended periods; (5) a tendency towards extraction biases in the QIAampMP® DNA microbiome kit among the three tested ones; and (6) none of the extraction kits allow for the typing of human genetic profiles suitable for comparison. In conclusion, our study offers supplementary insights into the potential utility of time-transferred microbiome analysis on garments for forensic applications.
Collapse
Affiliation(s)
- Noemi Procopio
- School of Law and Policing, Research Centre for Field Archaeology and Forensic Taphonomy, University of Central Lancashire, Preston PR1 2HE, UK; (N.P.); (A.B.)
| | - Giulia Sguazzi
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, Via Lanino 1, 28100 Novara, Italy;
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Emma V. Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds Väg 20, 75185 Uppsala, Sweden;
| | - Nengi Ogbanga
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
| | - Frazer C. McKell
- School of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (F.C.M.); (E.P.N.); (P.A.M.)
| | - Eleanor P. Newton
- School of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (F.C.M.); (E.P.N.); (P.A.M.)
| | - Paola A. Magni
- School of Medical, Molecular & Forensic Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (F.C.M.); (E.P.N.); (P.A.M.)
| | - Andrea Bonicelli
- School of Law and Policing, Research Centre for Field Archaeology and Forensic Taphonomy, University of Central Lancashire, Preston PR1 2HE, UK; (N.P.); (A.B.)
| | - Sarah Gino
- Department of Health Science, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
49
|
Leem S, Keum HL, Song HJ, Gu KN, Kim Y, Seo JY, Shin JG, Lee SG, Lee SM, Sul WJ, Kang NG. Skin aging-related microbial types separated by Cutibacterium and α-diversity. J Cosmet Dermatol 2024; 23:1066-1074. [PMID: 37990779 DOI: 10.1111/jocd.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/27/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Studies on the skin microbiome have been conducted to uncover the relationship between skin microbes and the host. However, most of these studies have primarily focused on analyzing individual microbial compositions, which has resulted in a limited understanding of the overall relationship. METHODS We analyzed the facial skin characteristics and microbial profiles of 100 healthy Korean female volunteers using the V1-V2 region of the 16S ribosomal RNA gene. RESULTS The two most prominent features of the facial skin microbiome, the proportion of Cutibacterium and α-diversity, were associated with most of the skin characteristics. Based on clustering results, we proposed four types of facial skin microbiome: type C for Cutibacterium, type B for balanced, type CB for those between types C and B, and type O for others. Type C, which has a high proportion of Cutibacterium, showed high levels of pigmentation, wrinkles, pores, and sagging pores, indicating a tendency for severe skin aging. Type B, which has no dominant species and high microbial diversity, had lower values for pigmentation and wrinkles indicating less severe skin aging. Type CB was an intermediate type between type C and type B in terms of microbial composition and the level of skin aging. Type O dominated by microorganisms other than Cutibacterium, had high levels of sebum and pores but low levels of wrinkles. CONCLUSION We proposed a criterion for classifying facial skin microbial types, each of which showed distinct facial skin aging features. Our simplified microbial types will contribute to a better understanding of facial skin microbial studies.
Collapse
Affiliation(s)
- Sangseob Leem
- Research & Innovation Center, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Hye Lim Keum
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Hae Jung Song
- Research & Innovation Center, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Ki-Nam Gu
- Research & Innovation Center, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Yunkwan Kim
- Research & Innovation Center, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Jung Yeon Seo
- Research & Innovation Center, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Joong-Gon Shin
- Research & Innovation Center, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Seo-Gyeong Lee
- Research & Innovation Center, LG Household & Health Care (LG H&H), Seoul, South Korea
| | - Seon Mi Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Nae Gyu Kang
- Research & Innovation Center, LG Household & Health Care (LG H&H), Seoul, South Korea
| |
Collapse
|
50
|
Han JH, Kim HS. Skin Deep: The Potential of Microbiome Cosmetics. J Microbiol 2024; 62:181-199. [PMID: 38625646 DOI: 10.1007/s12275-024-00128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 04/17/2024]
Abstract
The interplay between the skin microbiome and its host is a complex facet of dermatological health and has become a critical focus in the development of microbiome cosmetics. The skin microbiome, comprising various microorganisms, is essential from birth, develops over the lifespan, and performs vital roles in protecting our body against pathogens, training the immune system, and facilitating the breakdown of organic matter. Dysbiosis, an imbalance of these microorganisms, has been implicated in a number of skin conditions such as acne, atopic dermatitis, and skin cancer. Recent scientific findings have spurred cosmetic companies to develop products that preserve and enhance the skin's microbial diversity balance. These products may incorporate elements like prebiotics, probiotics, and postbiotics, which are beneficial for the skin microbiome. Beyond topical products, there's increasing interest in ingestible beauty supplements (i.e. oral probiotics), highlighting the connection between the gut and skin. This review examines the influence of the microbiome on skin health and the emerging trends of microbiome skincare products.
Collapse
Affiliation(s)
- Ju Hee Han
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|