1
|
Hoffmann M, Jang JH, Tallent SM, Gonzalez-Escalona N. Single Laboratory Evaluation of the Q20+ Nanopore Sequencing Kit for Bacterial Outbreak Investigations. Int J Mol Sci 2024; 25:11877. [PMID: 39595947 PMCID: PMC11594029 DOI: 10.3390/ijms252211877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Leafy greens are a significant source of produce-related Shiga toxin-producing Escherichia coli (STEC) outbreaks in the United States, with agricultural water often implicated as a potential source. Current FDA outbreak detection protocols are time-consuming and rely on sequencing methods performed in costly equipment. This study evaluated the potential of Oxford Nanopore Technologies (ONT) with Q20+ chemistry as a cost-effective, rapid, and accurate method for identifying and clustering foodborne pathogens. The study focuses on assessing whether ONT Q20+ technology could facilitate near real-time pathogen identification, including SNP differences, serotypes, and antimicrobial resistance genes. This pilot study evaluated different combinations of two DNA extraction methods (Maxwell RSC Cultured Cell DNA kit and Monarch high molecular weight extraction kits) and two ONT library preparation protocols (ligation and the rapid barcoding sequencing kit) using five well-characterized strains representing diverse foodborne pathogens. High-quality, closed bacterial genomes were obtained from all combinations of extraction and sequencing kits. However, variations in assembly length and genome completeness were observed, indicating the need for further optimization. In silico analyses demonstrated that Q20+ nanopore sequencing chemistry accurately identified species, genotype, and virulence factors, with comparable results to Illumina sequencing. Phylogenomic clustering showed that ONT assemblies clustered with reference genomes, though some indels and SNP differences were observed, likely due to sequencing and analysis methodologies rather than inherent genetic variation. Additionally, the study evaluated the impact of a change in the sampling rates from 4 kHz (260 bases pair second) to 5 kHz (400 bases pair second), finding no significant difference in sequencing accuracy. This evaluation workflow offers a framework for evaluating novel technologies for use in surveillance and foodborne outbreak investigations. Overall, the evaluation demonstrated the potential of ONT Q20+ nanopore sequencing chemistry to assist in identifying the correct strain during outbreak investigations. However, further research, validation studies, and optimization efforts are needed to address the observed limitations and fully realize the technology's potential for improving public health outcomes and enabling more efficient responses to foodborne disease threats.
Collapse
Affiliation(s)
| | | | | | - Narjol Gonzalez-Escalona
- Genomics Development and Applications Branch, Division of Food Safety Genomics, Office of Applied Microbiology and Technology, Office of Laboratory Operations and Applied Science, Human Foods Program, Food & Drug Administration, College Park, MD 20740, USA; (M.H.); (S.M.T.)
| |
Collapse
|
2
|
Parzygnat JL, Crespo R, Koci MD, Dunn RR, Harden L, Fosnaught M, Thakur S. Widespread prevalence of plasmid-mediated blaCTX-M type extended-spectrum beta-lactamase Escherichia coli in backyard broiler production systems in the United States. PLoS One 2024; 19:e0304599. [PMID: 38829840 PMCID: PMC11146730 DOI: 10.1371/journal.pone.0304599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Extended-spectrum beta-lactamase (ESBL) Escherichia coli (E. coli) is an emerging pathogen of high concern given its resistance to extended-spectrum cephalosporins. Broiler chicken, which is the number one consumed meat in the United States and worldwide, can be a reservoir of ESBL E. coli. Backyard poultry ownership is on the rise in the United States, yet there is little research investigating prevalence of ESBL E. coli in this setting. This study aims to identify the prevalence and antimicrobial resistance profiles (phenotypically and genotypically) of ESBL E. coli in some backyard and commercial broiler farms in the U.S. For this study ten backyard and ten commercial farms were visited at three time-points across flock production. Fecal (n = 10), litter/compost (n = 5), soil (n = 5), and swabs of feeders and waterers (n = 6) were collected at each visit and processed for E. coli. Assessment of ESBL phenotype was determined through using disk diffusion with 3rd generation cephalosporins, cefotaxime and ceftazidime, and that with clavulanic acid. Broth microdilution and whole genome sequencing were used to investigate both phenotypic and genotypic resistance profiles, respectively. ESBL E. coli was more prevalent in backyard farms with 12.95% of samples testing positive whereas 0.77% of commercial farm samples were positive. All isolates contained a blaCTX-M gene, the dominant variant being blaCTX-M-1, and its presence was entirely due to plasmids. Our study confirms concerns of growing resistance to fourth generation cephalosporin, cefepime, as roughly half (51.4%) of all isolates were found to be susceptible dose-dependent and few were resistant. Resistance to non-beta lactams, gentamicin and ciprofloxacin, was also detected in our samples. Our study identifies prevalence of blaCTX-M type ESBL E. coli in U.S. backyard broiler farms, emphasizing the need for interventions for food and production safety.
Collapse
Affiliation(s)
- Jessica L. Parzygnat
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States of America
| | - Rocio Crespo
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States of America
| | - Matthew D. Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States of America
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| | - Lyndy Harden
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States of America
| | - Mary Fosnaught
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States of America
| |
Collapse
|
3
|
Lou EG, Fu Y, Wang Q, Treangen TJ, Stadler LB. Sensitivity and consistency of long- and short-read metagenomics and epicPCR for the detection of antibiotic resistance genes and their bacterial hosts in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133939. [PMID: 38490149 DOI: 10.1016/j.jhazmat.2024.133939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Wastewater surveillance is a powerful tool to assess the risks associated with antibiotic resistance in communities. One challenge is selecting which analytical tool to deploy to measure risk indicators, such as antibiotic resistance genes (ARGs) and their respective bacterial hosts. Although metagenomics is frequently used for analyzing ARGs, few studies have compared the performance of long-read and short-read metagenomics in identifying which bacteria harbor ARGs in wastewater. Furthermore, for ARG host detection, untargeted metagenomics has not been compared to targeted methods such as epicPCR. Here, we 1) evaluated long-read and short-read metagenomics as well as epicPCR for detecting ARG hosts in wastewater, and 2) investigated the host range of ARGs across the wastewater treatment plant (WWTP) to evaluate host proliferation. Results highlighted long-read revealed a wider range of ARG hosts compared to short-read metagenomics. Nonetheless, the ARG host range detected by long-read metagenomics only represented a subset of the hosts detected by epicPCR. The ARG-host linkages across the influent and effluent of the WWTP were characterized. Results showed the ARG-host phylum linkages were relatively consistent across the WWTP, whereas new ARG-host species linkages appeared in the WWTP effluent. The ARG-host linkages of several clinically relevant species found in the effluent were identified.
Collapse
Affiliation(s)
- Esther G Lou
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yilei Fu
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Qi Wang
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
4
|
Lerminiaux N, Fakharuddin K, Mulvey MR, Mataseje L. Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies. Can J Microbiol 2024; 70:178-189. [PMID: 38354391 DOI: 10.1139/cjm-2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The best whole genome assemblies are currently built from a combination of highly accurate short-read sequencing data and long-read sequencing data that can bridge repetitive and problematic regions. Oxford Nanopore Technologies (ONT) produce long-read sequencing platforms and they are continually improving their technology to obtain higher quality read data that is approaching the quality obtained from short-read platforms such as Illumina. As these innovations continue, we evaluated how much ONT read coverage produced by the Rapid Barcoding Kit v14 (SQK-RBK114) is necessary to generate high-quality hybrid and long-read-only genome assemblies for a panel of carbapenemase-producing Enterobacterales bacterial isolates. We found that 30× long-read coverage is sufficient if Illumina data are available, and that more (at least 100× long-read coverage is recommended for long-read-only assemblies. Illumina polishing is still improving single nucleotide variants (SNVs) and INDELs in long-read-only assemblies. We also examined if antimicrobial resistance genes could be accurately identified in long-read-only data, and found that Flye assemblies regardless of ONT coverage detected >96% of resistance genes at 100% identity and length. Overall, the Rapid Barcoding Kit v14 and long-read-only assemblies can be an optimal sequencing strategy (i.e., plasmid characterization and AMR detection) but finer-scale analyses (i.e., SNV) still benefit from short-read data.
Collapse
Affiliation(s)
- Nicole Lerminiaux
- National Microbiology Lab, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Ken Fakharuddin
- National Microbiology Lab, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michael R Mulvey
- National Microbiology Lab, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Laura Mataseje
- National Microbiology Lab, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Chakrawarti A, Eckstrom K, Laaguiby P, Barlow JW. Hybrid Illumina-Nanopore assembly improves identification of multilocus sequence types and antimicrobial resistance genes of Staphylococcus aureus isolated from Vermont dairy farms: comparison to Illumina-only and R9.4.1 nanopore-only assemblies. Access Microbiol 2024; 6:000766.v3. [PMID: 38725589 PMCID: PMC11077346 DOI: 10.1099/acmi.0.000766.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 05/12/2024] Open
Abstract
Antimicrobial resistance (AMR) in Staphylococcus aureus is a pressing public health challenge with significant implications for the dairy industry, encompassing bovine mastitis concerns and potential zoonotic threats. To delve deeper into the resistance mechanisms of S. aureus, this study employed a hybrid whole genome assembly approach that synergized the precision of Illumina with the continuity of Oxford Nanopore. A total of 62 isolates, collected from multiple sources from Vermont dairy farms, were sequenced using the GridION Oxford Nanopore R9.4.1 platform and the Illumina platform, and subsequently processed through our long-read first bioinformatics pipeline. Our analyses showcased the hybrid-assembled genome's superior completeness compared to Oxford Nanopore (R9.4.1)-only or Illumina-only assembled genomes. Furthermore, the hybrid assembly accurately determined multilocus sequence typing (MLST) strain types across all isolates. The comprehensive probe for antibiotic resistance genes (ARGs) using databases like CARD, Resfinder, and MEGARES 2.0 characterized AMR in S. aureus isolates from Vermont dairy farms, and revealed the presence of notable resistance genes, including beta-lactam genes blaZ, blaI, and blaR. In conclusion, the hybrid assembly approach emerged as a tool for uncovering the genomic nuances of S. aureus isolates collected from multiple sources on dairy farms. Our findings offer a pathway for detecting AMR gene prevalence and shaping AMR management strategies crucial for safeguarding human and animal health.
Collapse
Affiliation(s)
- Ashma Chakrawarti
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Pheobe Laaguiby
- Advanced Genome Technologies Core, Vermont Integrative Genomics Resource, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - John W. Barlow
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
6
|
Walas N, Müller NF, Parker E, Henderson A, Capone D, Brown J, Barker T, Graham JP. Application of phylodynamics to identify spread of antimicrobial-resistant Escherichia coli between humans and canines in an urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170139. [PMID: 38242459 DOI: 10.1016/j.scitotenv.2024.170139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The transmission of antimicrobial resistant bacteria in the urban environment is poorly understood. We utilized genomic sequencing and phylogenetics to characterize the transmission dynamics of antimicrobial resistant Escherichia coli (AMR-Ec) cultured from putative canine (caninep) and human feces present on urban sidewalks in San Francisco, California. We isolated a total of fifty-six AMR-Ec isolates from human (n = 20) and caninep (n = 36) fecal samples from the Tenderloin and South of Market (SoMa) neighborhoods of San Francisco. We then analyzed phenotypic and genotypic antimicrobial resistance (AMR) of the isolates, as well as clonal relationships based on cgMLST and single nucleotide polymorphisms (SNPs) of the core genomes. Using Bayesian inference, we reconstructed the transmission dynamics between humans and caninesp from multiple local outbreak clusters using the marginal structured coalescent approximation (MASCOT). Our results provide evidence for multiple sharing events of AMR-Ec between humans and caninesp. In particular, we found one instance of likely transmission from caninesp to humans as well as an additional local outbreak cluster consisting of one caninep and one human sample. Based on this analysis, it appears that non-human feces act as an important reservoir of clinically relevant AMR-Ec within the urban environment for this study population. This work showcases the utility of genomic epidemiology to reconstruct potential pathways by which antimicrobial resistance spreads.
Collapse
Affiliation(s)
| | | | | | | | - Drew Capone
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joe Brown
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Troy Barker
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
7
|
Sobkowiak A, Scherff N, Schuler F, Bletz S, Mellmann A, Schwierzeck V, van Almsick V. Plasmid-encoded gene duplications of extended-spectrum β-lactamases in clinical bacterial isolates. Front Cell Infect Microbiol 2024; 14:1343858. [PMID: 38469349 PMCID: PMC10925753 DOI: 10.3389/fcimb.2024.1343858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction The emergence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is an urgent and alarming One Health problem. This study aimed to investigate duplications of plasmid-encoded ESBL genes and their impact on antimicrobial resistance (AMR) phenotypes in clinical and screening isolates. Methods Multi-drug-resistant bacteria from hospitalized patients were collected during routine clinical surveillance from January 2022 to June 2023, and their antimicrobial susceptibility patterns were determined. Genotypes were extracted from long-read whole-genome sequencing data. Furthermore, plasmids and other mobile genetic elements associated with ESBL genes were characterized, and the ESBL genes were correlated to ceftazidime minimal inhibitory concentration (MIC). Results In total, we identified four cases of plasmid-encoded ESBL gene duplications that match four genetically similar plasmids during the 18-month surveillance period: five Escherichia coli and three Klebsiella pneumoniae isolates. As the ESBL genes were part of transposable elements, the surrounding sequence regions were duplicated as well. In-depth analysis revealed insertion sequence (IS)-mediated transposition mechanisms. Isolates with duplicated ESBL genes exhibited a higher MIC for ceftazidime in comparison to isolates with a single gene copy (3-256 vs. 1.5-32 mg/L, respectively). Conclusion ESBL gene duplications led to an increased phenotypic resistance against ceftazidime. Our data suggest that ESBL gene duplications by an IS-mediated transposition are a relevant mechanism for how AMR develops in the clinical setting and is part of the microevolution of plasmids.
Collapse
Affiliation(s)
- Annika Sobkowiak
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Natalie Scherff
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | - Franziska Schuler
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Stefan Bletz
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | | | - Vera Schwierzeck
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | - Vincent van Almsick
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| |
Collapse
|
8
|
Zarske M, Luu HQ, Deneke C, Knüver MT, Thieck M, Hoang HTT, Bretschneider N, Pham NT, Huber I, Stingl K. Identification of knowledge gaps in whole-genome sequence analysis of multi-resistant thermotolerant Campylobacter spp. BMC Genomics 2024; 25:156. [PMID: 38331708 PMCID: PMC10851486 DOI: 10.1186/s12864-024-10014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Campylobacter spp. is the most frequent cause of bacterial food-borne gastroenteritis and a high priority antibiotic resistant bacterium according to the World Health Organization (WHO). European monitoring of thermotolerant Campylobacter spp. does not reflect the global burden of resistances already circulating within the bacterial population worldwide. METHODS We systematically compared whole genome sequencing with comprehensive phenotypic antimicrobial susceptibility, analyzing 494 thermotolerant Campylobacter poultry isolates from Vietnam and Germany. Any discrepancy was checked by repeating the wet lab and improving the dry lab part. Selected isolates were additionally analyzed via long-read Oxford Nanopore technology, leading to closed chromosomes and plasmids. RESULTS Overall, 22 different resistance genes and gene variants (e. g. erm(B), aph(3')-IIIa, aph(2'')-If, catA, lnu(C), blaOXA, sat4) and point mutations in three distinct genes (gyrA, 23S rRNA, rpsL) associated with AMR were present in the Campylobacter isolates. Two AMR genes were missing in the database and one falsely associated with resistance. Bioinformatic analysis based on short-read data partly failed to identify tet(O) and aadE, when the genes were present as duplicate or homologous gene variants. Intriguingly, isolates also contained different determinants, redundantly conferring resistance to chloramphenicol, gentamicin, kanamycin, lincomycin and streptomycin. We found a novel tet(W) in tetracycline sensitive strains, harboring point mutations. Furthermore, analysis based on assemblies from short-read data was impaired to identify full length phase variable aad9, due to variations of the poly-C tract within the gene. The genetic determinant responsible for gentamicin resistance of one isolate from Germany could not be identified. GyrT86I, presenting the main determinant for (fluoro-)quinolone resistance led to a rare atypical phenotype of ciprofloxacin resistance but nalidixic acid sensitivity. Long-read sequencing predicted AMR genes were mainly located on the chromosome, and rarely on plasmids. Predictions from long- and short-read sequencing, respectively, often differed. AMR genes were often organized in multidrug resistance islands (MDRI) and partially located in proximity to transposase genes, suggesting main mobilization of resistance determinants is via natural transformation and transposition in Campylobacter. CONCLUSIONS The results of this study suggest that there is frequent resistance gene duplication, mosaicism, and mutation leading to gene variation and truncation in Campylobacter strains that have not been reported in previous studies and are missing from databases. Furthermore, there is a need for deciphering yet unknown resistance mechanisms and resistance spread in thermotolerant Campylobacter spp. that may pose a challenge to global food safety.
Collapse
Affiliation(s)
- Michael Zarske
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany
| | - Huong Quynh Luu
- National Institute of Veterinary Research (NIVR), 86 Truong Chinh Street, Hanoi, Dong Da District, Vietnam
| | - Carlus Deneke
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany
| | - Marie-Theres Knüver
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany
| | - Maja Thieck
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany
| | - Ha Thi Thu Hoang
- Department of Bacteriology, National Institute of Hygiene and Epidemiology (NIHE), 1 Yersin Street, Hanoi, Trung District, Vietnam
| | - Nancy Bretschneider
- Department of Molecular Biology and Gene Technology, Bavarian Health and Food Safety Authority, Oberschleissheim, D-85764, Germany
| | - Ngoc Thi Pham
- National Institute of Veterinary Research (NIVR), 86 Truong Chinh Street, Hanoi, Dong Da District, Vietnam
| | - Ingrid Huber
- Department of Molecular Biology and Gene Technology, Bavarian Health and Food Safety Authority, Oberschleissheim, D-85764, Germany
| | - Kerstin Stingl
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, Berlin, D-12277, Germany.
| |
Collapse
|
9
|
Nathar S, Rajmichael R, Jeyaraj Pandian C, Nagarajan H, Mathimaran A, Kingsley JD, Jeyaraman J. Exploring Nocardia's ecological spectrum and novel therapeutic frontiers through whole-genome sequencing: unraveling drug resistance and virulence factors. Arch Microbiol 2024; 206:76. [PMID: 38267747 DOI: 10.1007/s00203-023-03799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Nocardia farcinica is the leading pathogen responsible for nocardiosis, a life-threatening infection primarily affecting immunocompromised patients. In this study, the genomic sequence of a clinically isolated N. farcinica sample was sequenced. Subsequently, the assembled genome was annotated to identify antimicrobial resistance and virulence genes, as well as plasmid and prophages. The analysis of the entire genome size was 6,021,225 bp, with a GC content of 70.78% and consists of 103 contigs and N50 values of 292,531 bp. The genome analysis revealed the presence of several antimicrobial resistance genes, including RbpA, mtrA, FAR-1, blaFAR-1, blaFAR-1_1, and rox. In addition, virulence genes such as relA, icl, and mbtH were also detected. The present study signifies that N. farcinica genome is pivotal for the understanding of antimicrobial resistance and virulence genes is crucial for comprehending resistance mechanism, and developing effective strategies to combat bacterial infections effectively, especially adhesins and toxins. This study aids in identifying crucial drug targets for combating multidrug-resistant N. farcinica in the future.
Collapse
Affiliation(s)
- Shaslinah Nathar
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, 630 003, Tamil Nadu, India
| | - Raji Rajmichael
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, 630 003, Tamil Nadu, India
| | - Chitra Jeyaraj Pandian
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Karaikudi, 630 003, Tamil Nadu, India
| | - Hemavathy Nagarajan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, 630 003, Tamil Nadu, India
| | - Ahila Mathimaran
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, 630 003, Tamil Nadu, India
| | - Jemima D Kingsley
- Orbito Asia Diagnostics Private Limited Coimbatore, Coimbatore, 641 045, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Science Block, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
10
|
Safar HA, Alatar F, Mustafa AS. Three Rounds of Read Correction Significantly Improve Eukaryotic Protein Detection in ONT Reads. Microorganisms 2024; 12:247. [PMID: 38399651 PMCID: PMC10893331 DOI: 10.3390/microorganisms12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Eukaryotes' whole-genome sequencing is crucial for species identification, gene detection, and protein annotation. Oxford Nanopore Technology (ONT) is an affordable and rapid platform for sequencing eukaryotes; however, the relatively higher error rates require computational and bioinformatic efforts to produce more accurate genome assemblies. Here, we evaluated the effect of read correction tools on eukaryote genome completeness, gene detection and protein annotation. METHODS Reads generated by ONT of four eukaryotes, C. albicans, C. gattii, S. cerevisiae, and P. falciparum, were assembled using minimap2 and underwent three rounds of read correction using flye, medaka and racon. The generates consensus FASTA files were compared for total length (bp), genome completeness, gene detection, and protein-annotation by QUAST, BUSCO, BRAKER1 and InterProScan, respectively. RESULTS Genome completeness was dependent on the assembly method rather than on the read correction tool; however, medaka performed better than flye and racon. Racon significantly performed better than flye and medaka in gene detection, while both racon and medaka significantly performed better than flye in protein-annotation. CONCLUSION We show that three rounds of read correction significantly affect gene detection and protein annotation, which are dependent on assembly quality in preference to assembly completeness.
Collapse
Affiliation(s)
- Hussain A. Safar
- OMICS Research Unit, Health Science Centre, Kuwait University, Kuwait City 13110, Kuwait;
| | - Fatemah Alatar
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait City 13110, Kuwait;
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| |
Collapse
|
11
|
Nies F, Wein T, Hanke DM, Springstein BL, Alcorta J, Taubenheim C, Dagan T. Role of natural transformation in the evolution of small cryptic plasmids in Synechocystis sp. PCC 6803. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:656-668. [PMID: 37794696 PMCID: PMC10667661 DOI: 10.1111/1758-2229.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Small cryptic plasmids have no clear effect on the host fitness and their functional repertoire remains obscure. The naturally competent cyanobacterium Synechocystis sp. PCC 6803 harbours several small cryptic plasmids; whether their evolution with this species is supported by horizontal transfer remains understudied. Here, we show that the small cryptic plasmid DNA is transferred in the population exclusively by natural transformation, where the transfer frequency of plasmid-encoded genes is similar to that of chromosome-encoded genes. Establishing a system to follow gene transfer, we compared the transfer frequency of genes encoded in cryptic plasmids pCA2.4 (2378 bp) and pCB2.4 (2345 bp) within and between populations of two Synechocystis sp. PCC 6803 labtypes (termed Kiel and Sevilla). Our results reveal that plasmid gene transfer frequency depends on the recipient labtype. Furthermore, gene transfer via whole plasmid uptake in the Sevilla labtype ranged among the lowest detected transfer rates in our experiments. Our study indicates that horizontal DNA transfer via natural transformation is frequent in the evolution of small cryptic plasmids that reside in naturally competent organisms. Furthermore, we suggest that the contribution of natural transformation to cryptic plasmid persistence in Synechocystis is limited.
Collapse
Affiliation(s)
- Fabian Nies
- Institute of General MicrobiologyKiel UniversityKielGermany
| | - Tanita Wein
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | | | - Benjamin L. Springstein
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences FacultyPontifical Catholic University of ChileSantiagoChile
| | - Claudia Taubenheim
- Institute of General MicrobiologyKiel UniversityKielGermany
- Present address:
Department of Internal Medicine IIUniversity Medical Center Schleswig‐HolsteinKielGermany
| | - Tal Dagan
- Institute of General MicrobiologyKiel UniversityKielGermany
| |
Collapse
|
12
|
Bartsch LJ, Borowiak M, Deneke C, Gruetzke J, Hammerl JA, Malorny B, Szabo I, Alter T, Nguyen KK, Fischer J. Genetic characterization of a multidrug-resistant Salmonella enterica serovar Agona isolated from a dietary supplement in Germany. Front Microbiol 2023; 14:1284929. [PMID: 38033583 PMCID: PMC10686068 DOI: 10.3389/fmicb.2023.1284929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Agona has a history of causing food-borne outbreaks and any emergence of multidrug-resistant (MDR) isolates in novel food products is of concern. Particularly, in food products frequently consumed without sufficient heating prior to consumption. Here, we report about the MDR isolate, 18-SA00377, which had been isolated from a dietary supplement in Germany in 2018 and submitted to the German National Reference Laboratory for Salmonella. WGS-based comparative genetic analyses were conducted to find a potential reservoir of the isolate itself or mobile genetic elements associated with MDR. As a phylogenetic analysis did not yield any closely related S. Agona isolates, either globally or from Germany, a detailed analysis of the largest plasmid (295,499 bp) was performed as it is the main carrier of resistances. A combined approach of long-read and short-read sequencing enabled the assembly of the isolate's chromosome and its four plasmids. Their characterization revealed the presence of 23 different antibiotic resistance genes (ARGs), conferring resistance to 12 different antibiotic drug classes, as well as genes conferring resistance to six different heavy metals. The largest plasmid, pSE18-SA00377-1, belongs to the IncHI2 plasmid family and carries 16 ARGs, that are organized as two distinct clusters, with each ARG associated with putative composite transposons. Through a two-pronged approach, highly similar plasmids to pSE18-SA00377-1 were identified in the NCBI database and a search for Salmonella isolates with a highly similar ARG resistance profile was conducted. Mapping and structural comparisons between pSE18-SA00377-1 and these plasmids and Salmonella isolates showed that both the plasmid backbone and identical or similar ARG clusters can be found not only in Salmonella isolates, originating mostly from a wide variety of livestock, but also in a diverse range of bacterial genera of varying geographical origins and isolation sources. Thus, it can be speculated that the host range of pSE18-SA00377-1 is not restricted to Salmonella and its spread already occurred in different bacterial populations. Overall, this hints at a complex history for pSE18-SA00377-1 and highlights the importance of surveilling multidrug-resistant S. enterica isolates, especially in novel food items that are not yet heavily regulated.
Collapse
Affiliation(s)
- Lee Julia Bartsch
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Maria Borowiak
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Carlus Deneke
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Josephine Gruetzke
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jens-Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Burkhard Malorny
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Istvan Szabo
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Jennie Fischer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
13
|
Lee C, Polo RO, Zaheer R, Van Domselaar G, Zovoilis A, McAllister TA. Evaluation of metagenomic assembly methods for the detection and characterization of antimicrobial resistance determinants and associated mobilizable elements. J Microbiol Methods 2023; 213:106815. [PMID: 37699502 DOI: 10.1016/j.mimet.2023.106815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Antimicrobial resistance genes (ARGs) can be transferred between members of a bacterial population by mobile genetic elements (MGE). Understanding the risk of these transfer events is important in monitoring and predicting antimicrobial resistance (AMR), especially in the context of a One Health Continuum. However, there is no universally accepted method for detection of ARGs and MGEs, and especially for determining their linkages. This study used publicly available shotgun metagenomic DNA short-read (Illumina, 100 bp paired-end) sequence data from samples across the One Health Continuum (including beef cattle composite feces from feedlots, catch basin water at feedlots, agricultural soil from feedlot manured surrounding fields, and urban/municipal sewage influent from two municipal wastewater treatment plants) to develop a workflow to identify and associate ARGs and MGEs. ARG- and MGE-based targeted-assemblies with available short-read data were unable to meet this analysis goal. In contrast, de novo assembly of contigs provided enough sequence context to associate ARGs and MGEs, without compromising discovery rate. However, to estimate the relative abundance of these elements, unassembled sequence data must still be used.
Collapse
Affiliation(s)
- Catrione Lee
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T3M 2L7, Canada
| | - Rodrigo Ortega Polo
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Government of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T3M 2L7, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada.
| |
Collapse
|
14
|
Safar HA, Alatar F, Nasser K, Al-Ajmi R, Alfouzan W, Mustafa AS. The impact of applying various de novo assembly and correction tools on the identification of genome characterization, drug resistance, and virulence factors of clinical isolates using ONT sequencing. BMC Biotechnol 2023; 23:26. [PMID: 37525145 PMCID: PMC10391896 DOI: 10.1186/s12896-023-00797-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Oxford Nanopore sequencing technology (ONT) is currently widely used due to its affordability, simplicity, and reliability. Despite the advantage ONT has over next-generation sequencing in detecting resistance genes in mobile genetic elements, its relatively high error rate (10-15%) is still a deterrent. Several bioinformatic tools are freely available for raw data processing and obtaining complete and more accurate genome assemblies. In this study, we evaluated the impact of using mix-and-matched read assembly (Flye, Canu, Wtdbg2, and NECAT) and read correction (Medaka, NextPolish, and Racon) tools in generating complete and accurate genome assemblies, and downstream genomic analysis of nine clinical Escherichia coli isolates. Flye and Canu assemblers were the most robust in genome assembly, and Medaka and Racon correction tools significantly improved assembly parameters. Flye functioned well in pan-genome analysis, while Medaka increased the number of core genes detected. Flye, Canu, and NECAT assembler functioned well in detecting antimicrobial resistance genes (AMR), while Wtdbg2 required correction tools for better detection. Flye was the best assembler for detecting and locating both virulence and AMR genes (i.e., chromosomal vs. plasmid). This study provides insight into the performance of several read assembly and read correction tools for analyzing ONT sequencing reads for clinical isolates.
Collapse
Affiliation(s)
- Hussain A Safar
- OMICS Research Unit, Health Science Centre, Kuwait University, Hawalli Governorate, Kuwait
| | - Fatemah Alatar
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Hawalli Governorate, Kuwait
| | - Kother Nasser
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Hawalli Governorate, Kuwait
| | - Rehab Al-Ajmi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Hawalli Governorate, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Hawalli Governorate, Kuwait
- Microbiology Unit, Farwaniya Hospital, Ministry of Health, Al Farwaniyah Governorate, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Hawalli Governorate, Kuwait.
| |
Collapse
|
15
|
Wan C, Tang R, Deng L, Fu L, Wang P, Liu X, Wu C. Illustration on phenotypic and genotypic characteristics of typical multi-antibiotic resistant bacteria in aquatic environments through complete genomes and comparative genomics. CHEMOSPHERE 2023:139386. [PMID: 37394187 DOI: 10.1016/j.chemosphere.2023.139386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Antibiotic-resistant bacteria, especially multi-antibiotic-resistant bacteria (MARBs), greatly threaten environmental safety and human health. However, studies on the phenotypic resistance and complete genotypic characterization of MARB in aquatic environments are lacking. In this study, a multi-resistant superbug (TR3) was screened by the selective pressure of multi-antibiotics from the activated sludge of the aeration tanks of urban wastewater treatment plants (WWTPs) in 5 different regions of China. Based on the 16 S rDNA sequence alignment it was found that the sequence similarity between strain TR3 and Aeromonas was as high as 99.50%. The genome-wide sequence showed that the base content of the chromosome of strain TR3 is 4,521,851 bp. It contains a plasmid with a length of 9182 bp. All antibiotic resistance genes (ARGs) of strain TR3 are located on the chromosome, which means that it has passage stability. There are multiple types of resistance genes in the genome and plasmid of strain TR3, enduing it with resistance to 5 antibiotics (ciprofloxacin, tetracycline, ampicillin, clarithromycin, and kanamycin), accompanied by the strongest resistance to kanamycin (aminoglycosides) and the worst resistance to clarithromycin (quinolones). From the perspective of gene expression, we show the resistance mechanism of strain TR3 to different types of antibiotics. In addition, the potential pathogenicity of strain TR3 is also discussed. Chlorine and ultraviolet (UV) sterilization on strain TR3 showed that UV is ineffective at low intensity, and it is easy to be revived by light. A low concentration of hypochlorous acid is effective for sterilization, but it can cause the release of DNA, becoming a potential source of ARGs discharged from WWTPs to environmental water bodies.
Collapse
Affiliation(s)
- Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Rui Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Liyan Deng
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liya Fu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Panxin Wang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
16
|
Walas N, Müller NF, Parker E, Henderson A, Capone D, Brown J, Barker T, Graham JP. Phylodynamics Uncovers the Transmission of Antibiotic-Resistant Escherichia coli between Canines and Humans in an Urban Environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543064. [PMID: 37398411 PMCID: PMC10312604 DOI: 10.1101/2023.06.01.543064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The role of canines in transmitting antibiotic resistant bacteria to humans in the urban environment is poorly understood. To elucidate this role, we utilized genomic sequencing and phylogenetics to characterize the burden and transmission dynamics of antibiotic resistant Escherichia coli (ABR-Ec) cultured from canine and human feces present on urban sidewalks in San Francisco, California. We collected a total of fifty-nine ABR-Ec from human (n=12) and canine (n=47) fecal samples from the Tenderloin and South of Market (SoMa) neighborhoods of San Francisco. We then analyzed phenotypic and genotypic antibiotic resistance (ABR) of the isolates, as well as clonal relationships based on cgMLST and single nucleotide polymorphisms (SNPs) of the core genomes. Using Bayesian inference, we reconstructed the transmission dynamics between humans and canines from multiple local outbreak clusters using the marginal structured coalescent approximation (MASCOT). Overall, we found human and canine samples to carry similar amounts and profiles of ABR genes. Our results provide evidence for multiple transmission events of ABR-Ec between humans and canines. In particular, we found one instance of likely transmission from canines to humans as well as an additional local outbreak cluster consisting of one canine and one human sample. Based on this analysis, it appears that canine feces act as an important reservoir of clinically relevant ABR-Ec within the urban environment. Our findings support that public health measures should continue to emphasize proper canine feces disposal practices, access to public toilets and sidewalk and street cleaning. Importance: Antibiotic resistance in E. coli is a growing public health concern with global attributable deaths projected to reach millions annually. Current research has focused heavily on clinical routes of antibiotic resistance transmission to design interventions while the role of alternative reservoirs such as domesticated animals remain less well understood. Our results suggest canines are part of the transmission network that disseminates high-risk multidrug resistance in E. coli within the urban San Francisco community. As such, this study highlights the need to consider canines, and potentially domesticated animals more broadly, when designing interventions to reduce the prevalence of antibiotic resistance in the community. Additionally, it showcases the utility of genomic epidemiology to reconstruct the pathways by which antimicrobial resistance spreads.
Collapse
Affiliation(s)
| | - Nicola F. Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Emily Parker
- University of California, Berkeley, California, USA
| | | | - Drew Capone
- Indiana University, Bloomington, Indiana, USA
| | - Joe Brown
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Troy Barker
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
17
|
Thomas C, Methner U, Marz M, Linde J. Oxford nanopore technologies-a valuable tool to generate whole-genome sequencing data for in silico serotyping and the detection of genetic markers in Salmonella. Front Vet Sci 2023; 10:1178922. [PMID: 37323838 PMCID: PMC10267320 DOI: 10.3389/fvets.2023.1178922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
Bacteria of the genus Salmonella pose a major risk to livestock, the food economy, and public health. Salmonella infections are one of the leading causes of food poisoning. The identification of serovars of Salmonella achieved by their diverse surface antigens is essential to gain information on their epidemiological context. Traditionally, slide agglutination has been used for serotyping. In recent years, whole-genome sequencing (WGS) followed by in silico serotyping has been established as an alternative method for serotyping and the detection of genetic markers for Salmonella. Until now, WGS data generated with Illumina sequencing are used to validate in silico serotyping methods. Oxford Nanopore Technologies (ONT) opens the possibility to sequence ultra-long reads and has frequently been used for bacterial sequencing. In this study, ONT sequencing data of 28 Salmonella strains of different serovars with epidemiological relevance in humans, food, and animals were taken to investigate the performance of the in silico serotyping tools SISTR and SeqSero2 compared to traditional slide agglutination tests. Moreover, the detection of genetic markers for resistance against antimicrobial agents, virulence, and plasmids was studied by comparing WGS data based on ONT with WGS data based on Illumina. Based on the ONT data from flow cell version R9.4.1, in silico serotyping achieved an accuracy of 96.4 and 92% for the tools SISTR and SeqSero2, respectively. Highly similar sets of genetic markers comparing both sequencing technologies were identified. Taking the ongoing improvement of basecalling and flow cells into account, ONT data can be used for Salmonella in silico serotyping and genetic marker detection.
Collapse
Affiliation(s)
- Christine Thomas
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
18
|
Messele YE, Trott DJ, Hasoon MF, Veltman T, McMeniman JP, Kidd SP, Djordjevic SP, Petrovski KR, Low WY. Phylogenetic Analysis of Escherichia coli Isolated from Australian Feedlot Cattle in Comparison to Pig Faecal and Poultry/Human Extraintestinal Isolates. Antibiotics (Basel) 2023; 12:antibiotics12050895. [PMID: 37237797 DOI: 10.3390/antibiotics12050895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The similarity of commensal Escherichia coli isolated from healthy cattle to antimicrobial-resistant bacteria causing extraintestinal infections in humans is not fully understood. In this study, we used a bioinformatics approach based on whole genome sequencing data to determine the genetic characteristics and phylogenetic relationships among faecal Escherichia coli isolates from beef cattle (n = 37) from a single feedlot in comparison to previously analysed pig faecal (n = 45), poultry extraintestinal (n = 19), and human extraintestinal E. coli isolates (n = 40) from three previous Australian studies. Most beef cattle and pig isolates belonged to E. coli phylogroups A and B1, whereas most avian and human isolates belonged to B2 and D, although a single human extraintestinal isolate belonged to phylogenetic group A and sequence type (ST) 10. The most common E. coli sequence types (STs) included ST10 for beef cattle, ST361 for pig, ST117 for poultry, and ST73 for human isolates. Extended-spectrum and AmpC β-lactamase genes were identified in seven out of thirty-seven (18.9%) beef cattle isolates. The most common plasmid replicons identified were IncFIB (AP001918), followed by IncFII, Col156, and IncX1. The results confirm that feedlot cattle isolates examined in this study represent a reduced risk to human and environmental health with regard to being a source of antimicrobial-resistant E. coli of clinical importance.
Collapse
Affiliation(s)
- Yohannes E Messele
- The Davies Livestock Research Centre, The University of Adelaide, Adelaide, SA 5371, Australia
- The Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Darren J Trott
- The Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Mauida F Hasoon
- The Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Tania Veltman
- The Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Joe P McMeniman
- Meat & Livestock Australia, Level 1, 40 Mount Street, North Sydney, NSW 2060, Australia
| | - Stephen P Kidd
- The Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Disease, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kiro R Petrovski
- The Davies Livestock Research Centre, The University of Adelaide, Adelaide, SA 5371, Australia
- The Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wai Y Low
- The Davies Livestock Research Centre, The University of Adelaide, Adelaide, SA 5371, Australia
| |
Collapse
|
19
|
Ju Y, Pu M, Sun K, Song G, Geng J. Nanopore Electrochemistry for Pathogen Detection. Chem Asian J 2022; 17:e202200774. [PMID: 36069587 DOI: 10.1002/asia.202200774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Pathogen infections have seriously threatened human health, and there is an urgent demand for rapid and efficient pathogen identification to provide instructions in clinical diagnosis and therapeutic intervention. Recently, nanopore technology, a rapidly maturing technology which delivers ultrasensitive sensing and high throughput in real-time and at low cost, has achieved success in pathogen detection. Furthermore, the remarkable development of nanopore sequencing, for example, the MinION sequencer from Oxford Nanopore Technologies (ONT) as a competitive sequencing technology, has facilitated the rapid analysis of disease-related microbiomes at the whole-genome level and on a large scale. Here, we highlighted recent advances in nanopore approaches for pathogen detection at the single-molecule level. We also overviewed the applications of nanopore sequencing in pathogenic bacteria identification and diagnosis. In the end, we discussed the challenges and future developments of nanopore technology as promising tools for the management of infections, which may be helpful to aid understanding as well as decision-making.
Collapse
Affiliation(s)
- Yuan Ju
- Sichuan University, Sichuan University Library, CHINA
| | - Mengjun Pu
- Sichuan University, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, CHINA
| | - Ke Sun
- Sichuan University, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, CHINA
| | - Guiqin Song
- North Sichuan Medical College [Search North Sichuan Medical College]: North Sichuan Medical University, Shool of Basic Medical Sciences and Forensic Medicine, CHINA
| | - Jia Geng
- Sichuan University, State Key Laboratory of Biotherapy, No 17 Section 3 of South Renmin Rd, 610040, Chengdu, CHINA
| |
Collapse
|
20
|
Purushothaman S, Meola M, Egli A. Combination of Whole Genome Sequencing and Metagenomics for Microbiological Diagnostics. Int J Mol Sci 2022; 23:9834. [PMID: 36077231 PMCID: PMC9456280 DOI: 10.3390/ijms23179834] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole genome sequencing (WGS) provides the highest resolution for genome-based species identification and can provide insight into the antimicrobial resistance and virulence potential of a single microbiological isolate during the diagnostic process. In contrast, metagenomic sequencing allows the analysis of DNA segments from multiple microorganisms within a community, either using an amplicon- or shotgun-based approach. However, WGS and shotgun metagenomic data are rarely combined, although such an approach may generate additive or synergistic information, critical for, e.g., patient management, infection control, and pathogen surveillance. To produce a combined workflow with actionable outputs, we need to understand the pre-to-post analytical process of both technologies. This will require specific databases storing interlinked sequencing and metadata, and also involves customized bioinformatic analytical pipelines. This review article will provide an overview of the critical steps and potential clinical application of combining WGS and metagenomics together for microbiological diagnosis.
Collapse
Affiliation(s)
- Srinithi Purushothaman
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Marco Meola
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
- Swiss Institute of Bioinformatics, University of Basel, 4031 Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
21
|
Genomic analysis reveals the role of integrative and conjugative elements in plant pathogenic bacteria. Mob DNA 2022; 13:19. [PMID: 35962419 PMCID: PMC9373382 DOI: 10.1186/s13100-022-00275-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background ICEs are mobile genetic elements found integrated into bacterial chromosomes that can excise and be transferred to a new cell. They play an important role in horizontal gene transmission and carry accessory genes that may provide interesting phenotypes for the bacteria. Here, we seek to research the presence and the role of ICEs in 300 genomes of phytopathogenic bacteria with the greatest scientific and economic impact. Results Seventy-eight ICEs (45 distinct elements) were identified and characterized in chromosomes of Agrobacterium tumefaciens, Dickeya dadantii, and D. solani, Pectobacterium carotovorum and P. atrosepticum, Pseudomonas syringae, Ralstonia solanacearum Species Complex, and Xanthomonas campestris. Intriguingly, the co-occurrence of four ICEs was observed in some P. syringae strains. Moreover, we identified 31 novel elements, carrying 396 accessory genes with potential influence on virulence and fitness, such as genes coding for functions related to T3SS, cell wall degradation and resistance to heavy metals. We also present the analysis of previously reported data on the expression of cargo genes related to the virulence of P. atrosepticum ICEs, which evidences the role of these genes in the infection process of tobacco plants. Conclusions Altogether, this paper has highlighted the potential of ICEs to affect the pathogenicity and lifestyle of these phytopathogens and direct the spread of significant putative virulence genes in phytopathogenic bacteria. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00275-1.
Collapse
|
22
|
Juraschek K, Malekzadah J, Malorny B, Käsbohrer A, Schwarz S, Meemken D, Hammerl JA. Characterization of qnrB-carrying plasmids from ESBL- and non-ESBL-producing Escherichia coli. BMC Genomics 2022; 23:365. [PMID: 35549890 PMCID: PMC9101827 DOI: 10.1186/s12864-022-08564-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Escherichia coli carrying clinically important antimicrobial resistances [i.e., against extended-spectrum-beta-lactamases (ESBL)] are of high concern for human health and are increasingly detected worldwide. Worryingly, they are often identified as multidrug-resistant (MDR) isolates, frequently including resistances against quinolones/fluoroquinolones. RESULTS Here, the occurrence and genetic basis of the fluoroquinolone resistance enhancing determinant qnrB in ESBL-/non-ESBL-producing E. coli was investigated. Overall, 33 qnrB-carrying isolates out of the annual German antimicrobial resistance (AMR) monitoring on commensal E. coli (incl. ESBL-/AmpC-producing E. coli) recovered from food and livestock between 2013 and 2018 were analysed in detail. Whole-genome sequencing, bioinformatics analyses and transferability evaluation was conducted to characterise the prevailing qnrB-associated plasmids. Furthermore, predominant qnrB-carrying plasmid-types were subjected to in silico genome reconstruction analysis. In general, the qnrB-carrying E. coli were found to be highly heterogenic in their multilocus sequence types (STs) and their phenotypic resistance profiles. Most of them appeared to be MDR and exhibited resistances against up to ten antimicrobials of different classes. With respect to qnrB-carrying plasmids, we found qnrB19 located on small Col440I plasmids to be most widespread among ESBL-producing E. coli from German livestock and food. This Col440I plasmid-type was found to be highly conserved by exhibiting qnrB19, a pspF operon and different genes of unassigned function. Furthermore, we detected plasmids of the incompatibility groups IncN and IncH as carriers of qnrB. All qnrB-carrying plasmids also exhibited virulence factors and various insertion sequences (IS). The majority of the qnrB-carrying plasmids were determined to be self-transmissible, indicating their possible contribution to the spread of resistances against (fluoro)quinolones and other antimicrobials. CONCLUSION In this study, a diversity of different plasmid types carrying qnrB alone or in combination with other resistance determinants (i.e., beta-lactamase genes) were found. The spread of these plasmids, especially those carrying antimicrobial resistance genes against highest priority critically important antimicrobial agents, is highly unfavourable and can pose a threat for public health. Therefore, the dissemination pathways and evolution of these plasmids need to be further monitored.
Collapse
Affiliation(s)
- Katharina Juraschek
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589, Berlin, Germany.
| | - Janina Malekzadah
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589, Berlin, Germany
| | - Burkhard Malorny
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589, Berlin, Germany
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Robert-von-Ostertag-Str. 8, 14163 Berlin, Germany
| | - Diana Meemken
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Robert-von-Ostertag-Str. 8, 14163 Berlin, Germany
- Institute of Food Safety and Food Hygiene, Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
23
|
Waddington C, Carey ME, Boinett CJ, Higginson E, Veeraraghavan B, Baker S. Exploiting genomics to mitigate the public health impact of antimicrobial resistance. Genome Med 2022; 14:15. [PMID: 35172877 PMCID: PMC8849018 DOI: 10.1186/s13073-022-01020-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major global public health threat, which has been largely driven by the excessive use of antimicrobials. Control measures are urgently needed to slow the trajectory of AMR but are hampered by an incomplete understanding of the interplay between pathogens, AMR encoding genes, and mobile genetic elements at a microbial level. These factors, combined with the human, animal, and environmental interactions that underlie AMR dissemination at a population level, make for a highly complex landscape. Whole-genome sequencing (WGS) and, more recently, metagenomic analyses have greatly enhanced our understanding of these processes, and these approaches are informing mitigation strategies for how we better understand and control AMR. This review explores how WGS techniques have advanced global, national, and local AMR surveillance, and how this improved understanding is being applied to inform solutions, such as novel diagnostic methods that allow antimicrobial use to be optimised and vaccination strategies for better controlling AMR. We highlight some future opportunities for AMR control informed by genomic sequencing, along with the remaining challenges that must be overcome to fully realise the potential of WGS approaches for international AMR control.
Collapse
Affiliation(s)
- Claire Waddington
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Megan E Carey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Ellen Higginson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Balaji Veeraraghavan
- Department of Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK. .,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
24
|
Hammerl JA. Editorial for the Special Issue: “Antimicrobial Resistance and Molecular Tracing of Foodborne Pathogens”. Microorganisms 2022; 10:microorganisms10020390. [PMID: 35208845 PMCID: PMC8879549 DOI: 10.3390/microorganisms10020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Jens André Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
25
|
Schuster CF, Weber RE, Weig M, Werner G, Pfeifer Y. Ultra-deep long-read sequencing detects IS-mediated gene duplications as a potential trigger to generate arrays of resistance genes and a mechanism to induce novel gene variants such as blaCTX-M-243. J Antimicrob Chemother 2022; 77:381-390. [PMID: 34865035 DOI: 10.1093/jac/dkab407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Extended-spectrum β-lactamases (ESBLs) are enzymes that can render their hosts resistant to various β-lactam antibiotics. CTX-M-type enzymes are the most prevalent ESBLs and the main cause of resistance to third-generation cephalosporins in Enterobacteriaceae. The number of described CTX-M types is continuously rising, currently comprising over 240 variants. During routine screening we identified a novel blaCTX-M gene. OBJECTIVES To characterize a novel blaCTX-M variant harboured by a multidrug-resistant Escherichia coli isolate of sequence type ST354. METHODS Antibiotic susceptibilities were determined using broth microdilution. Genome and plasmid sequences were reconstructed using short- and long-read sequencing. The novel blaCTX-M locus was analysed using long-read and Sanger sequencing. Plasmid polymorphisms were determined in silico on a single plasmid molecule level. RESULTS The novel blaCTX-M-243 allele was discovered alongside a nearly identical blaCTX-M-104-containing gene array on a 219 kbp IncHI2A plasmid. CTX-M-243 differed from CTX-M-104 by only one amino acid substitution (N109S). Ultra-deep (2300-fold coverage) long-read sequencing revealed dynamic scaling of the blaCTX-M genetic contexts from one to five copies. Further antibiotic resistance genes such as blaTEM-1 also exhibited sequence heterogeneity but were stable in copy number. CONCLUSIONS We identified the novel ESBL gene blaCTX-M-243 and illustrate a dynamic system of varying blaCTX-M copy numbers. Our results highlight the constant emergence of new CTX-M family enzymes and demonstrate a potential evolutionary platform to generate novel ESBL variants and possibly other antibiotic resistance genes.
Collapse
Affiliation(s)
- Christopher F Schuster
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Robert E Weber
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Michael Weig
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Yvonne Pfeifer
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
26
|
Ben Khedher M, Ghedira K, Rolain JM, Ruimy R, Croce O. Application and Challenge of 3rd Generation Sequencing for Clinical Bacterial Studies. Int J Mol Sci 2022; 23:1395. [PMID: 35163319 PMCID: PMC8835973 DOI: 10.3390/ijms23031395] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past 25 years, the powerful combination of genome sequencing and bioinformatics analysis has played a crucial role in interpreting information encoded in bacterial genomes. High-throughput sequencing technologies have paved the way towards understanding an increasingly wide range of biological questions. This revolution has enabled advances in areas ranging from genome composition to how proteins interact with nucleic acids. This has created unprecedented opportunities through the integration of genomic data into clinics for the diagnosis of genetic traits associated with disease. Since then, these technologies have continued to evolve, and recently, long-read sequencing has overcome previous limitations in terms of accuracy, thus expanding its applications in genomics, transcriptomics and metagenomics. In this review, we describe a brief history of the bacterial genome sequencing revolution and its application in public health and molecular epidemiology. We present a chronology that encompasses the various technological developments: whole-genome shotgun sequencing, high-throughput sequencing, long-read sequencing. We mainly discuss the application of next-generation sequencing to decipher bacterial genomes. Secondly, we highlight how long-read sequencing technologies go beyond the limitations of traditional short-read sequencing. We intend to provide a description of the guiding principles of the 3rd generation sequencing applications and ongoing improvements in the field of microbial medical research.
Collapse
Affiliation(s)
- Mariem Ben Khedher
- Bacteriology Laboratory, Archet 2 Hospital, CHU Nice, 06000 Nice, France
- Institute for Research on Cancer and Aging Nice (IRCAN), CNRS, INSERM, Université Côte d’Azur, 06108 Nice, France
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institute Pasteur of Tunis, Tunis 1002, Tunisia;
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, 13005 Marseille, France;
| | - Raymond Ruimy
- Bacteriology Laboratory, Archet 2 Hospital, CHU Nice, 06000 Nice, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, Université Côte D’Azur, 06108 Nice, France
| | - Olivier Croce
- Institute for Research on Cancer and Aging Nice (IRCAN), CNRS, INSERM, Université Côte d’Azur, 06108 Nice, France
| |
Collapse
|
27
|
Li IC, Yu GY, Huang JF, Chen ZW, Chou CH. Comparison of Reference-Based Assembly and De Novo Assembly for Bacterial Plasmid Reconstruction and AMR Gene Localization in Salmonella enterica Serovar Schwarzengrund Isolates. Microorganisms 2022; 10:227. [PMID: 35208682 PMCID: PMC8874696 DOI: 10.3390/microorganisms10020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
It is well established that plasmids carrying multiple antimicrobial resistance (AMR) genes can be easily transferred among bacterial isolates by horizontal gene transfer. Previous studies have shown that a combination of short- and long-read approaches is effective in reconstructing accurate plasmids. However, high-quality Illumina short reads mapped onto the long reads in the context of an AMR hybrid monitoring strategy have not yet been explored. Hence, this study aimed to improve the reconstruction of plasmids, including the localization of AMR genes, using the above-described parameters on whole-genome sequencing (WGS) results. To the best of our knowledge, this study is the first to use S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) to confirm the number and sizes of plasmids detected by in silico-based predictions in Salmonella strains. Our results showed that de novo assembly did not detect the number of bacterial plasmids more accurately than reference-based assembly did. As this new hybrid mapping strategy surpassed de novo assembly in bacterial reconstruction, it was further used to identify the presence and genomic location of AMR genes among three Salmonella enterica serovar Schwarzengrund isolates. The AMR genes identified in the bacterial chromosome among the three Salmonella enterica serovar Schwarzengrund isolates included: AAC(3)-IV, AAC(6')-Iy, aadA2, APH(4)-Ia, cmlA1, golS, mdsA, mdsB, mdsC, mdtK, qacH, sdiA, sul2, sul3, and TEM-1 genes. Moreover, the presence of TEM-1, AAC(3)-IV, aadA2, APH(4)-Ia, cmlA1, dfrA12, floR, sul1, sul3, and tet(A) genes found within three IncFIB plasmids and one IncX1 plasmid highlight their possible transmission into the environment, which is a public health risk. In conclusion, the generated data using this new hybrid mapping strategy will contribute to the improvement of AMR monitoring and support the risk assessment of AMR dissemination.
Collapse
Affiliation(s)
- I-Chen Li
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan;
| | - Gine-Ye Yu
- Animal Technology Research Center, Agricultural Technology Research Institute, No. 52, Kedong 2nd Rd., Zhunan Township, Miaoli County 350, Taiwan; (G.-Y.Y.); (J.-F.H.)
| | - Jing-Fang Huang
- Animal Technology Research Center, Agricultural Technology Research Institute, No. 52, Kedong 2nd Rd., Zhunan Township, Miaoli County 350, Taiwan; (G.-Y.Y.); (J.-F.H.)
| | - Zeng-Weng Chen
- Animal Technology Research Center, Agricultural Technology Research Institute, No. 52, Kedong 2nd Rd., Zhunan Township, Miaoli County 350, Taiwan; (G.-Y.Y.); (J.-F.H.)
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan;
| |
Collapse
|
28
|
da Silva GC, Gonçalves OS, Rosa JN, França KC, Bossé JT, Santana MF, Langford PR, Bazzolli DMS. Mobile Genetic Elements Drive Antimicrobial Resistance Gene Spread in Pasteurellaceae Species. Front Microbiol 2022; 12:773284. [PMID: 35069478 PMCID: PMC8777487 DOI: 10.3389/fmicb.2021.773284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
Mobile genetic elements (MGEs) and antimicrobial resistance (AMR) drive important ecological relationships in microbial communities and pathogen-host interaction. In this study, we investigated the resistome-associated mobilome in 345 publicly available Pasteurellaceae genomes, a large family of Gram-negative bacteria including major human and animal pathogens. We generated a comprehensive dataset of the mobilome integrated into genomes, including 10,820 insertion sequences, 2,939 prophages, and 43 integrative and conjugative elements. Also, we assessed plasmid sequences of Pasteurellaceae. Our findings greatly expand the diversity of MGEs for the family, including a description of novel elements. We discovered that MGEs are comparable and dispersed across species and that they also co-occur in genomes, contributing to the family's ecology via gene transfer. In addition, we investigated the impact of these elements in the dissemination and shaping of AMR genes. A total of 55 different AMR genes were mapped to 721 locations in the dataset. MGEs are linked with 77.6% of AMR genes discovered, indicating their important involvement in the acquisition and transmission of such genes. This study provides an uncharted view of the Pasteurellaceae by demonstrating the global distribution of resistance genes linked with MGEs.
Collapse
Affiliation(s)
- Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Osiel Silva Gonçalves
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jéssica Nogueira Rosa
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Kiara Campos França
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Janine Thérèse Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mateus Ferreira Santana
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Paul Richard Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
29
|
Khezri A, Avershina E, Ahmad R. Hybrid Assembly Provides Improved Resolution of Plasmids, Antimicrobial Resistance Genes, and Virulence Factors in Escherichia coli and Klebsiella pneumoniae Clinical Isolates. Microorganisms 2021; 9:microorganisms9122560. [PMID: 34946161 PMCID: PMC8704702 DOI: 10.3390/microorganisms9122560] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022] Open
Abstract
Emerging new sequencing technologies have provided researchers with a unique opportunity to study factors related to microbial pathogenicity, such as antimicrobial resistance (AMR) genes and virulence factors. However, the use of whole-genome sequence (WGS) data requires good knowledge of the bioinformatics involved, as well as the necessary techniques. In this study, a total of nine Escherichia coli and Klebsiella pneumoniae isolates from Norwegian clinical samples were sequenced using both MinION and Illumina platforms. Three out of nine samples were sequenced directly from blood culture, and one sample was sequenced from a mixed-blood culture. For genome assembly, several long-read, (Canu, Flye, Unicycler, and Miniasm), short-read (ABySS, Unicycler and SPAdes) and hybrid assemblers (Unicycler, hybridSPAdes, and MaSurCa) were tested. Assembled genomes from the best-performing assemblers (according to quality checks using QUAST and BUSCO) were subjected to downstream analyses. Flye and Unicycler assemblers performed best for the assembly of long and short reads, respectively. For hybrid assembly, Unicycler was the top-performing assembler and produced more circularized and complete genome assemblies. Hybrid assembled genomes performed substantially better in downstream analyses to predict putative plasmids, AMR genes and β-lactamase gene variants, compared to MinION and Illumina assemblies. Thus, hybrid assembly has the potential to reveal factors related to microbial pathogenicity in clinical and mixed samples.
Collapse
Affiliation(s)
- Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (A.K.); (E.A.)
| | - Ekaterina Avershina
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (A.K.); (E.A.)
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (A.K.); (E.A.)
- Faculty of Health Sciences, Institute of Clinical Medicine, UiT-The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
- Correspondence:
| |
Collapse
|
30
|
Bossé JT, Li Y, Cohen LM, Stegger M, Angen Ø, Lacouture S, Gottschalk M, Lei L, Koene M, Kuhnert P, Bandara AB, Inzana TJ, Holden MTG, Harris D, Oshota O, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR, On Behalf Of The BRaDP T Consortium. Complete genome for Actinobacillus pleuropneumoniae serovar 8 reference strain 405: comparative analysis with draft genomes for different laboratory stock cultures indicates little genetic variation. Microb Genom 2021; 7. [PMID: 34818145 PMCID: PMC8743550 DOI: 10.1099/mgen.0.000687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report here the complete genome sequence of the widely studied Actinobacillus pleuropneumoniae serovar 8 reference strain 405, generated using the Pacific Biosciences (PacBio) RS II platform. Furthermore, we compared draft sequences generated by Illumina sequencing of six stocks of this strain, including the same original stock used to generate the PacBio sequence, held in different countries and found little genetic variation, with only three SNPs identified, all within the degS gene. However, sequences of two small plasmids, pARD3079 and p405tetH, detected by Illumina sequencing of the draft genomes were not identified in the PacBio sequence of the reference strain.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Yanwen Li
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Liza Miriam Cohen
- Department of Production Animal Clinical Sciences Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Øystein Angen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sonia Lacouture
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, P.R China
| | - Miriam Koene
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, Universität Bern, Bern, Switzerland
| | - Aloka B Bandara
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, USA
| | - Thomas J Inzana
- Present address: College of Veterinary Medicine, Long Island University, Brookville, USA.,Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, USA
| | - Matthew T G Holden
- Present address: School of Medicine, University of St Andrews, St Andrews, UK.,The Wellcome Trust Sanger Institute, Cambridge, UK
| | - David Harris
- The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Olusegun Oshota
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, UK
| | - Paul R Langford
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | | |
Collapse
|
31
|
Interplay between Phenotypic Resistance to Relevant Antibiotics in Gram-Negative Urinary Pathogens: A Data-Driven Analysis of 10 Years' Worth of Antibiogram Data. Life (Basel) 2021; 11:life11101059. [PMID: 34685429 PMCID: PMC8537761 DOI: 10.3390/life11101059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022] Open
Abstract
The global emergence of antimicrobial resistance (AMR) has become a critical issue for clinicians, as it puts the decades of developments in the medical field in jeopardy, by severely limiting the useful therapeutic arsenal of drugs, both in nosocomial and community-acquired infections. In the present study, a secondary analysis of taxonomic and resistance data was performed, corresponding to urinary tract infections (UTIs) caused by Gram-negative bacteria, detected between 1 January 2008 to 31 December 2017 at the Albert Szent-Györgyi Health Center, University of Szeged. The following were identifiable from the data collected: year of isolation; outpatient (OP)/inpatient (IP) origin of the isolate; taxonomy; and susceptibility/resistance to selected indicator antibiotics. Principal component analysis (PCA) and a correlation matrix were used to determine the association between the presences of resistance against indicator antibiotics in each taxonomic group. Overall, data from n = 16,240 outpatient and n = 13,964 inpatient Gram-negative UTI isolates were included in the data analyses. In E. coli, strong positive correlations were seen between resistance to ciprofloxacin (CIP) and gentamicin (GEN) resistance (OP: r = 0.6342, p = 0.049; IP: r = 0.9602, p < 0.001), whereas strong negative correlations were shown for fosfomycin (FOS) and nitrofurantoin (NIT) resistance (OP: r = -0.7183, p = 0.019; IP: r = -0.7437; p = 0.014). For Klebsiella spp. isolates, CIP resistance showed strong positive correlation with resistance to third-generation cephalosporins (3GC) and GEN (r = 0.7976, p = 0.006 and r = 0.7428, p = 0.014, respectively) in OP isolates, and with resistance to trimethoprim-sulfamethoxazole (SXT) and FOS (r = 0.8144, p = 0.004 and r = 0.7758, p < 0.001, respectively) in IP isolates. For members of the Citrobacter-Enterobacter-Serratia group, the resistance among indicator antibiotics showed a strong positive correlation, with the exception of FOS resistance. In the Proteus-Providencia-Morganella group, the strongest association was noted between CIP and SXT resistance (OP: r = 0.9251, p < 0.001; IP: r = 0.8007; p = 0.005). In the case of OP Acinetobacter spp., CIP showed strong and significant positive correlations with most indicator antibiotics, whereas for IP isolates, strong negative correlations arose among imipenem (IMI) resistance and resistance to other drugs. For Pseudomonas spp., strong and positive correlations were noted among resistance to β-lactam antibiotics and aminoglycosides, with the exception of ceftazidime (CEFT), showing strong, but negative correlations. Though molecular tests and sequencing-based platforms are now considered as the gold-standard for AMR surveillance, standardized collection of phenotypic resistance data and the introduction of Big Data analytic methods may be a viable alternative for molecular surveillance, especially in low-resource settings.
Collapse
|
32
|
Antibiotic-resistant bacteria, antibiotic resistance genes, and antibiotic residues in wastewater from a poultry slaughterhouse after conventional and advanced treatments. Sci Rep 2021; 11:16622. [PMID: 34404868 PMCID: PMC8371126 DOI: 10.1038/s41598-021-96169-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Slaughterhouse wastewater is considered a reservoir for antibiotic-resistant bacteria and antibiotic residues, which are not sufficiently removed by conventional treatment processes. This study focuses on the occurrence of ESKAPE bacteria (Enterococcus spp., S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp.), ESBL (extended-spectrum β-lactamase)-producing E. coli, antibiotic resistance genes (ARGs) and antibiotic residues in wastewater from a poultry slaughterhouse. The efficacy of conventional and advanced treatments (i.e., ozonation) of the in-house wastewater treatment plant regarding their removal was also evaluated. Target culturable bacteria were detected only in the influent and effluent after conventional treatment. High abundances of genes (e.g., blaTEM, blaCTX-M-15, blaCTX-M-32, blaOXA-48, blaCMY and mcr-1) of up to 1.48 × 106 copies/100 mL were detected in raw influent. All of them were already significantly reduced by 1–4.2 log units after conventional treatment. Following ozonation, mcr-1 and blaCTX-M-32 were further reduced below the limit of detection. Antibiotic residues were detected in 55.6% (n = 10/18) of the wastewater samples. Despite the significant reduction through conventional and advanced treatments, effluents still exhibited high concentrations of some ARGs (e.g., sul1, ermB and blaOXA-48), ranging from 1.75 × 102 to 3.44 × 103 copies/100 mL. Thus, a combination of oxidative, adsorptive and membrane-based technologies should be considered.
Collapse
|
33
|
Phenotypic and Genotypic Properties of Fluoroquinolone-Resistant, qnr-Carrying Escherichia coli Isolated from the German Food Chain in 2017. Microorganisms 2021; 9:microorganisms9061308. [PMID: 34208509 PMCID: PMC8233838 DOI: 10.3390/microorganisms9061308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022] Open
Abstract
Fluoroquinolones are the highest priority, critically important antimicrobial agents. Resistance development can occur via different mechanisms, with plasmid-mediated quinolone resistance (PMQR) being prevalent in the livestock and food area. Especially, qnr genes, commonly located on mobile genetic elements, are major drivers for the spread of resistance determinants against fluoroquinolones. We investigated the prevalence and characteristics of qnr-positive Escherichia (E.) coli obtained from different monitoring programs in Germany in 2017. Furthermore, we aimed to evaluate commonalities of qnr-carrying plasmids in E. coli. We found qnr to be broadly spread over different livestock and food matrices, and to be present in various sequence types. The qnr-positive isolates were predominantly detected within selectively isolated ESBL (extended spectrum beta-lactamase)-producing E. coli, leading to a frequent association with other resistance genes, especially cephalosporin determinants. Furthermore, we found that qnr correlates with the presence of genes involved in resistance development against quaternary ammonium compounds (qac). The detection of additional point mutations in many isolates within the chromosomal QRDR region led to even higher MIC values against fluoroquinolones for the investigated E. coli. All of these attributes should be carefully taken into account in the risk assessment of qnr-carrying E. coli from livestock and food.
Collapse
|