1
|
Miller EM. Maternal characteristics are associated with human milk anti-inflammatory proteins in two populations. Sci Rep 2024; 14:30941. [PMID: 39730549 DOI: 10.1038/s41598-024-81806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Milk anti-inflammatory compounds are ubiquitous in milk but vary greatly within and between populations. The causes of this variation and how this variation impacts infant phenotype is not well-characterized. The goal of this study was to explain how maternal characteristics across two disparate populations impact the levels of TGF-β2 and IL-1ra in human milk. Two populations of mothers, one from rural Kenya and the other from urban U.S., were queried about months since birth, age, sex of infant, height, BMI, triceps skinfold, parity, post-birth resumption of menstrual period, and exclusive breastfeeding. Mothers' foremilk was assayed for TGF-β2 and IL-1ra as well as % milk fat. Mixed models were used to measure the relationships between maternal characteristics and milk biomarkers, adjusting for population. Statistically significant maternal characteristics were then used to develop path models incorporating infant phenotype. Path results indicated that maternal height and months postpartum significantly predicted milk TGF-β2, which then significantly predicted infant height-for-age. Exclusive breastfeeding and milk fat percent predicted IL-1ra, which was not related to infant weight-for-age. These results have implications for understanding the intergenerational effect of maternal context on infant phenotype via biomarkers in human milk.
Collapse
Affiliation(s)
- Elizabeth M Miller
- Department of Anthropology, University of South Florida, 4202 E. Fowler Ave. SOC107, Tampa, FL, 33620, USA.
| |
Collapse
|
2
|
Fu J, Wang Y, Qiao W, Di S, Huang Y, Zhao J, Jing M, Chen L. Research progress on factors affecting the human milk metabolome. Food Res Int 2024; 197:115236. [PMID: 39593319 DOI: 10.1016/j.foodres.2024.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Human milk is the gold standard for infant nutrition and contains macronutrients, micronutrients, and various bioactive substances. The human milk composition and metabolite profiles are complex and dynamic, complicating its specific analysis. Metabolomics, a recently emerging technology, has been used to identify human milk metabolites classes. Applying metabolomics to study the factors affecting human milk metabolites can provide significant insights into the relationship between infant nutrition, health, and development and better meet the nutritional needs of infants during growth. Here, we systematically review the current status of human milk metabolomic research, and related methods, offering an in-depth analysis of the influencing factors and results of human milk metabolomics from a metabolic perspective to provide novel ideas to further advance human milk metabolomics.
Collapse
Affiliation(s)
- Jieyu Fu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Shujuan Di
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yibo Huang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Mengna Jing
- National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Bejing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
3
|
Johnson KE, Heisel T, Allert M, Fürst A, Yerabandi N, Knights D, Jacobs KM, Lock EF, Bode L, Fields DA, Rudolph MC, Gale CA, Albert FW, Demerath EW, Blekhman R. Human milk variation is shaped by maternal genetics and impacts the infant gut microbiome. CELL GENOMICS 2024; 4:100638. [PMID: 39265573 PMCID: PMC11602576 DOI: 10.1016/j.xgen.2024.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
Human milk is a complex mix of nutritional and bioactive components that provide complete nourishment for the infant. However, we lack a systematic knowledge of the factors shaping milk composition and how milk variation influences infant health. Here, we characterize relationships between maternal genetics, milk gene expression, milk composition, and the infant fecal microbiome in up to 310 exclusively breastfeeding mother-infant pairs. We identified 482 genetic loci associated with milk gene expression unique to the lactating mammary gland and link these loci to breast cancer risk and human milk oligosaccharide concentration. Integrative analyses uncovered connections between milk gene expression and infant gut microbiome, including an association between the expression of inflammation-related genes with milk interleukin-6 (IL-6) concentration and the abundance of Bifidobacterium and Escherichia in the infant gut. Our results show how an improved understanding of the genetics and genomics of human milk connects lactation biology with maternal and infant health.
Collapse
Affiliation(s)
- Kelsey E Johnson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.
| | - Timothy Heisel
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mattea Allert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Annalee Fürst
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nikhila Yerabandi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA; Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Katherine M Jacobs
- Department of Obstetrics, Gynecology and Women's Health, Division of Maternal-Fetal Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics & Health Data Science, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Human Milk Institute (HMI) and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA
| | - David A Fields
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, Department of Physiology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cheryl A Gale
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Masi AC, Beck LC, Perry JD, Granger CL, Hiorns A, Young GR, Bode L, Embleton ND, Berrington JE, Stewart CJ. Human milk microbiota, oligosaccharide profiles, and infant gut microbiome in preterm infants diagnosed with necrotizing enterocolitis. Cell Rep Med 2024; 5:101708. [PMID: 39216480 PMCID: PMC11524953 DOI: 10.1016/j.xcrm.2024.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Necrotizing enterocolitis (NEC) is a severe intestinal disease of very preterm infants with mother's own milk (MOM) providing protection, but the contribution of the MOM microbiota to NEC risk has not been explored. Here, we analyze MOM of 110 preterm infants (48 NEC, 62 control) in a cross-sectional study. Breast milk contains viable bacteria, but there is no significant difference in MOM microbiota between NEC and controls. Integrative analysis between MOM microbiota, human milk oligosaccharides (HMOs), and the infant gut microbiota shows positive correlations only between Acinetobacter in the infant gut and Acinetobacter and Staphylococcus in MOM. This study suggests that NEC protection from MOM is not modulated through the MOM microbiota. Thus, "'restoring" the MOM microbiota in donor human milk is unlikely to reduce NEC, and emphasis should instead focus on increasing fresh maternal human milk intake and researching different therapies for NEC prevention.
Collapse
Affiliation(s)
- Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - John D Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK
| | - Claire L Granger
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Alice Hiorns
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gregory R Young
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA 92093, USA; The Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle upon Tyne NE1 4LP, UK; Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle upon Tyne NE1 4LP, UK.
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
5
|
Johnson KE, Hernandez-Alvarado N, Blackstad M, Heisel T, Allert M, Fields DA, Isganaitis E, Jacobs KM, Knights D, Lock EF, Rudolph MC, Gale CA, Schleiss MR, Albert FW, Demerath EW, Blekhman R. Human cytomegalovirus in breast milk is associated with milk composition and the infant gut microbiome and growth. Nat Commun 2024; 15:6216. [PMID: 39043677 PMCID: PMC11266569 DOI: 10.1038/s41467-024-50282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/03/2024] [Indexed: 07/25/2024] Open
Abstract
Human cytomegalovirus (CMV) is a highly prevalent herpesvirus that is often transmitted to the neonate via breast milk. Postnatal CMV transmission can have negative health consequences for preterm and immunocompromised infants, but any effects on healthy term infants are thought to be benign. Furthermore, the impact of CMV on the composition of the hundreds of bioactive factors in human milk has not been tested. Here, we utilize a cohort of exclusively breastfeeding full-term mother-infant pairs to test for differences in the milk transcriptome and metabolome associated with CMV, and the impact of CMV in breast milk on the infant gut microbiome and infant growth. We find upregulation of the indoleamine 2,3-dioxygenase (IDO) tryptophan-to-kynurenine metabolic pathway in CMV+ milk samples, and that CMV+ milk is associated with decreased Bifidobacterium in the infant gut. Our data indicate two opposing CMV-associated effects on infant growth; with kynurenine positively correlated, and CMV viral load negatively correlated, with infant weight-for-length at 1 month of age. These results suggest CMV transmission, CMV-related changes in milk composition, or both may be modulators of full-term infant development.
Collapse
Affiliation(s)
- Kelsey E Johnson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.
| | | | - Mark Blackstad
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Timothy Heisel
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mattea Allert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - David A Fields
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Katherine M Jacobs
- Department of Obstetrics, Gynecology and Women's Health, Division of Maternal-Fetal Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics and Health Data Science, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Cheryl A Gale
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mark R Schleiss
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Mulinge MM, Abisi HK, Kabahweza HM, Okutoyi L, Wamalwa DC, Nduati RW. The Role of Maternal Secretor Status and Human Milk Oligosaccharides on Early Childhood Development: A Systematic Review and Meta-Analysis. Breastfeed Med 2024; 19:409-424. [PMID: 38577928 DOI: 10.1089/bfm.2023.0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Background: Breast milk is the gold standard of infant nutrition, delivering nutrients and bioactive molecules as needed to support optimal infant growth and cognitive development. Increasing evidence links human milk oligosaccharides (HMOs) to these early childhood development milestones. Aims: To summarize and synthesize the evidence relating to HMOs and infant brain development, physical growth, and cognitive development. In addition, HMO concentrations in secretor and nonsecretor mothers were compared via a meta-analysis. Study Design: A systematic review and meta-analysis were carried out in accordance with the PRISMA statement. This review used three databases (PubMed, Scopus, and Web of Science) and was limited to English-language articles published between 2000 and June 30, 2023. Results: The initial searches yielded 245 articles, 27 of which were included in the systematic review and 12 in the meta-analysis. The meta-analysis revealed a substantial between-study heterogeneity, I2 = 97.3%. The pooled effect was 0.21 (95% CI: -0.41 to 0.83; p = 0.484), indicating that secretors had higher HMO concentrations, although this difference was not statistically significant. At one month of age, 2'FL, 3FL, and 3'SL play an important role in brain maturation and thus play a critical role in cognitive development. Secretors produce higher concentrations of 2'FL and 3'SL, explaining the benefits to infants of secretor mothers. Growth velocity was correlated to fucosylated and sialylated HMO concentrations, with lower concentrations linked to stunting. Conclusions: According to evidence from the systematically reviewed articles, HMOs are essential for a child's early development, but the extent to which they have an impact depends on maternal secretor status.
Collapse
Affiliation(s)
- Martin M Mulinge
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Hellen K Abisi
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Hellen M Kabahweza
- Department of Pediatric Hematology & Oncology, Joint Clinical Research Centre, Kampala, Uganda
| | - Lydia Okutoyi
- Department of Health Care Quality, Kenyatta National Hospital, Nairobi, Kenya
| | - Dalton C Wamalwa
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Ruth W Nduati
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
7
|
Kebbe M, Shankar K, Redman LM, Andres A. Human Milk Components and the Infant Gut Microbiome at 6 Months: Understanding the Interconnected Relationship. J Nutr 2024; 154:1200-1208. [PMID: 38442855 DOI: 10.1016/j.tjnut.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Human milk oligosaccharides have been shown to relate to the infant gut microbiome. However, the impact of other human milk components on infant gut bacterial colonization remains unexplored. OBJECTIVES Our cross-sectional analysis aimed to investigate associations between human milk components (energy, macronutrients, free amino acids, inflammatory markers, and hormones) and infant gut microbiome diversity and composition (phylum, family, and genus) at 6 mo of age. METHODS Human milk and infant stool samples were collected at 6 mo postpartum. The infant gut microbiome was profiled using 16S rRNA sequencing. Linear regression models were performed to examine associations, adjusting for pregravid BMI (kg/m2), delivery mode, duration of human milk feeding, and infant sex, with q < 0.2 considered significant. RESULTS This analysis included a total of 54 mothers (100% exclusively feeding human milk) and infants (n = 28 male; 51.9%). Total energy in human milk showed a negative association with α-diversity measures (Chao1 and Shannon). Interleukin (IL)-8 in human milk was positively associated with Chao1 and observed operational taxonomic units. At the family level, human milk glutamine and serine levels showed a negative association with the abundance of Veillonellaceae, whereas isoleucine showed a positive association with Bacteroidaceae. Human milk IL-8 and IL-6 concentrations were positively associated with Bacteroidaceae abundance. IL-8 also had a positive relationship with Bifidobacteriaceae, whereas it had a negative relationship with Streptococcacea and Clostridiaceae. Human milk IL-8 was positively associated with the phylum Bacteroidetes, and negatively associated with Proteobacteria. At the genus level, human milk IL-8 exhibited a positive relationship with Bacteroides, whereas human milk isoleucine had a negative relationship with Bacteroides and Ruminococcus. Pregravid BMI and sex effects were observed. CONCLUSIONS IL-8 in human milk could potentially prepare the infant's immune system to respond effectively to various microorganisms, potentially promoting the growth of beneficial gut bacteria and protecting against pathogens.
Collapse
Affiliation(s)
- Maryam Kebbe
- Faculty of Kinesiology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Kartik Shankar
- Department of Pediatrics, University of Colorado, Denver, CO, United States
| | - Leanne M Redman
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Aline Andres
- Arkansas Children's Nutrition Center, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
8
|
Ennis D, Shmorak S, Jantscher-Krenn E, Yassour M. Longitudinal quantification of Bifidobacterium longum subsp. infantis reveals late colonization in the infant gut independent of maternal milk HMO composition. Nat Commun 2024; 15:894. [PMID: 38291346 PMCID: PMC10827747 DOI: 10.1038/s41467-024-45209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
Breast milk contains human milk oligosaccharides (HMOs) that cannot be digested by infants, yet nourish their developing gut microbiome. While Bifidobacterium are the best-known utilizers of individual HMOs, a longitudinal study examining the evolving microbial community at high-resolution coupled with mothers' milk HMO composition is lacking. Here, we developed a high-throughput method to quantify Bifidobacterium longum subsp. infantis (BL. infantis), a proficient HMO-utilizer, and applied it to a longitudinal cohort consisting of 21 mother-infant dyads. We observed substantial changes in the infant gut microbiome over the course of several months, while the HMO composition in mothers' milk remained relatively stable. Although Bifidobacterium species significantly influenced sample variation, no specific HMOs correlated with Bifidobacterium species abundance. Surprisingly, we found that BL. infantis colonization began late in the breastfeeding period both in our cohort and in other geographic locations, highlighting the importance of focusing on BL. infantis dynamics in the infant gut.
Collapse
Affiliation(s)
- Dena Ennis
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimrit Shmorak
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Moran Yassour
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
9
|
Moholdt T, Stanford KI. Exercised breastmilk: a kick-start to prevent childhood obesity? Trends Endocrinol Metab 2024; 35:23-30. [PMID: 37735048 PMCID: PMC11005327 DOI: 10.1016/j.tem.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023]
Abstract
Exercise has systemic health benefits through effects on multiple tissues, with intertissue communication. Recent studies indicate that exercise may improve breastmilk composition and thereby reduce the intergenerational transmission of obesity. Even if breastmilk is considered optimal infant nutrition, there is evidence for variations in its composition between mothers who are normal weight, those with obesity, and those who are physically active. Nutrition early in life is important for later-life susceptibility to obesity and other metabolic diseases, and maternal exercise may provide protection against the development of metabolic disease. Here we summarize recent research on the influence of maternal obesity on breastmilk composition and discuss the potential role of exercise-induced adaptations to breastmilk as a kick-start to prevent childhood obesity.
Collapse
Affiliation(s)
- Trine Moholdt
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Gynaecology and Obstetrics, St. Olav's Hospital, Trondheim, Norway.
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
10
|
Caffé B, Blackwell A, Fehrenkamp BD, Williams JE, Pace RM, Lackey KA, Ruiz L, Rodríguez JM, McGuire MA, Foster JA, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Kvist LJ, Otoo GE, Pareja RG, Bode L, Gebeyehu D, Gindola DK, Boothman S, Flores K, McGuire MK, Meehan CL. Human milk immune factors, maternal nutritional status, and infant sex: The INSPIRE study. Am J Hum Biol 2023; 35:e23943. [PMID: 37358306 PMCID: PMC10749986 DOI: 10.1002/ajhb.23943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023] Open
Abstract
OBJECTIVES Breastfeeding is an energetically costly and intense form of human parental investment, providing sole-source nutrition in early infancy and bioactive components, including immune factors. Given the energetic cost of lactation, milk factors may be subject to tradeoffs, and variation in concentrations have been explored utilizing the Trivers-Willard hypothesis. As human milk immune factors are critical to developing immune system and protect infants against pathogens, we tested whether concentrations of milk immune factors (IgA, IgM, IgG, EGF, TGFβ2, and IL-10) vary in response to infant sex and maternal condition (proxied by maternal diet diversity [DD] and body mass index [BMI]) as posited in the Trivers-Willard hypothesis and consider the application of the hypothesis to milk composition. METHODS We analyzed concentrations of immune factors in 358 milk samples collected from women residing in 10 international sites using linear mixed-effects models to test for an interaction between maternal condition, including population as a random effect and infant age and maternal age as fixed effects. RESULTS IgG concentrations were significantly lower in milk produced by women consuming diets with low diversity with male infants than those with female infants. No other significant associations were identified. CONCLUSIONS IgG concentrations were related to infant sex and maternal diet diversity, providing minimal support for the hypothesis. Given the lack of associations across other select immune factors, results suggest that the Trivers-Willard hypothesis may not be broadly applied to human milk immune factors as a measure of maternal investment, which are likely buffered against perturbations in maternal condition.
Collapse
Affiliation(s)
- Beatrice Caffé
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Bethaney D Fehrenkamp
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, USA
- Washington, Wyoming, Alaska, Montana, Idaho (WWAMI) Medical Education Program, University of Idaho, Moscow, Idaho, USA
| | - Janet E Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Ryan M Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, USA
| | - Kimberly A Lackey
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, USA
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Microhealth Group, Oviedo, Spain
| | - Juan M Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Mark A McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Daniel W Sellen
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, UK
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | - Andrew M Prentice
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | | | - Gloria E Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | | | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Dubale Gebeyehu
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - Debela K Gindola
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - Sarah Boothman
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Katherine Flores
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, USA
| | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
11
|
Murakami R, Yoshida K, Sakanaka M, Urashima T, Xiao JZ, Katayama T, Odamaki T. Preferential sugar utilization by bifidobacterial species. MICROBIOME RESEARCH REPORTS 2023; 2:31. [PMID: 38045925 PMCID: PMC10688810 DOI: 10.20517/mrr.2023.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 12/05/2023]
Abstract
Aim: Bifidobacteria benefit host health and homeostasis by breaking down diet- and host-derived carbohydrates to produce organic acids in the intestine. However, the sugar utilization preference of bifidobacterial species is poorly understood. Thus, this study aimed to investigate the sugar utilization preference (i.e., glucose or lactose) of various bifidobacterial species. Methods: Strains belonging to 40 bifidobacterial species/subspecies were cultured on a modified MRS medium supplemented with glucose and/or lactose, and their preferential sugar utilization was assessed using high-performance thin-layer chromatography. Comparative genomic analysis was conducted with a focus on genes involved in lactose and glucose uptake and genes encoding for carbohydrate-active enzymes. Results: Strains that preferentially utilized glucose or lactose were identified. Almost all the lactose-preferring strains harbored the lactose symporter lacS gene. However, the comparative genomic analysis could not explain all their differences in sugar utilization preference. Analysis based on isolate source revealed that all 10 strains isolated from humans preferentially utilized lactose, whereas all four strains isolated from insects preferentially utilized glucose. In addition, bifidobacterial species isolated from hosts whose milk contained higher lactose amounts preferentially utilized lactose. Lactose was also detected in the feces of human infants, suggesting that lactose serves as a carbon source not only for infants but also for gut microbes in vivo. Conclusion: The different sugar preference phenotypes of Bifidobacterium species may be ascribed to the residential environment affected by the dietary habits of their host. This study is the first to systematically evaluate the sugar uptake preference of various bifidobacterial species.
Collapse
Affiliation(s)
- Ryuta Murakami
- Next Generation Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Kanagawa 252-8583, Japan
| | - Keisuke Yoshida
- Next Generation Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Kanagawa 252-8583, Japan
| | - Mikiyasu Sakanaka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tadasu Urashima
- Department of Food and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Kanagawa 252-8583, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Kanagawa 252-8583, Japan
| |
Collapse
|
12
|
Holdsworth EA, Williams JE, Pace RM, Lane AA, Gartstein M, McGuire MA, McGuire MK, Meehan CL. Breastfeeding patterns are associated with human milk microbiome composition: The Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES). PLoS One 2023; 18:e0287839. [PMID: 37556398 PMCID: PMC10411759 DOI: 10.1371/journal.pone.0287839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/14/2023] [Indexed: 08/11/2023] Open
Abstract
The human milk microbiome (HMM) is hypothesized to be seeded by multiple factors, including the infant oral microbiome during breastfeeding. However, it is not known whether breastfeeding patterns (e.g., frequency or total time) impact the composition of the HMM. As part of the Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES), we analyzed data from naturalistic observations of 46 mother-infant dyads living in the US Pacific Northwest and analyzed milk produced by the mothers for its bacterial diversity and composition. DNA was extracted from milk and the V1-V3 region of the 16S rRNA gene was amplified and sequenced. We hypothesized that number of breastfeeding bouts (breastfeeding sessions separated by >30 seconds) and total time breastfeeding would be associated with HMM α-diversity (richness, diversity, or evenness) and differential abundance of HMM bacterial genera. Multiple linear regression was used to examine associations between HMM α-diversity and the number of breastfeeding bouts or total time breastfeeding and selected covariates (infant age, maternal work outside the home, frequency of allomother physical contact with the infant, non-household caregiving network). HMM richness was inversely associated with number of breastfeeding bouts and frequency of allomother physical contact, but not total time breastfeeding. Infants' non-household caregiving network was positively associated with HMM evenness. In two ANCOM-BC analyses, abundances of 5 of the 35 most abundant genera were differentially associated with frequency of breastfeeding bouts (Bifidobacterium, Micrococcus, Pedobacter, Acidocella, Achromobacter); 5 genera (Bifidobacterium, Agreia, Pedobacter, Rugamonas, Stenotrophomonas) were associated with total time breastfeeding. These results indicate that breastfeeding patterns and infant caregiving ecology may play a role in influencing HMM composition. Future research is needed to identify whether these relationships are consistent in other populations and if they are associated with variation in the infant's gastrointestinal (including oral) microbiome.
Collapse
Affiliation(s)
- Elizabeth A. Holdsworth
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| | - Janet E. Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Avery A. Lane
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| | - Maria Gartstein
- Department of Psychology, Washington State University, Pullman, Washington, United States of America
| | - Mark A. McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
13
|
Johnson KE, Heisel T, Fields DA, Isganaitis E, Jacobs KM, Knights D, Lock EF, Rudolph MC, Gale CA, Schleiss MR, Albert FW, Demerath EW, Blekhman R. Human Cytomegalovirus in breast milk is associated with milk composition, the infant gut microbiome, and infant growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549370. [PMID: 37503212 PMCID: PMC10370112 DOI: 10.1101/2023.07.19.549370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Human cytomegalovirus (CMV) is a highly prevalent herpesvirus that is often transmitted to the neonate via breast milk. Postnatal CMV transmission can have negative health consequences for preterm and immunocompromised infants, but any effects on healthy term infants are thought to be benign. Furthermore, the impact of CMV on the composition of the hundreds of bioactive factors in human milk has not been tested. Here, we utilize a cohort of exclusively breastfeeding full term mother-infant pairs to test for differences in the milk transcriptome and metabolome associated with CMV, and the impact of CMV in breast milk on the infant gut microbiome and infant growth. We find upregulation of the indoleamine 2,3- dioxygenase (IDO) tryptophan-to-kynurenine metabolic pathway in CMV+ milk samples, and that CMV+ milk is associated with decreased Bifidobacterium in the infant gut. Our data indicate a complex relationship between milk CMV, milk kynurenine, and infant growth; with kynurenine positively correlated, and CMV viral load negatively correlated, with infant weight-for-length at 1 month of age. These results suggest CMV transmission, CMV-related changes in milk composition, or both may be modulators of full term infant development.
Collapse
Affiliation(s)
- Kelsey E Johnson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Timothy Heisel
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - David A Fields
- Department of Pediatrics, Diabetes-Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elvira Isganaitis
- Pediatric, Adolescent and Young Adult Unit, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Katherine M Jacobs
- Department of Obstetrics, Gynecology and Women's Health, Division of Maternal-Fetal Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, Department of Physiology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Cheryl A Gale
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mark R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Smilowitz JT, Allen LH, Dallas DC, McManaman J, Raiten DJ, Rozga M, Sela DA, Seppo A, Williams JE, Young BE, McGuire MK. Ecologies, synergies, and biological systems shaping human milk composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 2. Am J Clin Nutr 2023; 117 Suppl 1:S28-S42. [PMID: 37173059 DOI: 10.1016/j.ajcnut.2022.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact. In addition, milk composition can vary greatly within an individual as well as within and among populations. The objective of this working group within the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to provide an overview of human milk composition, factors impacting its variation, and how its components may function to coordinately nourish, protect, and communicate complex information to the recipient infant. Moreover, we discuss the ways whereby milk components might interact such that the benefits of an intact milk matrix are greater than the sum of its parts. We then apply several examples to illustrate how milk is better thought of as a biological system rather than a more simplistic "mixture" of independent components to synergistically support optimal infant health.
Collapse
Affiliation(s)
- Jennifer T Smilowitz
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA.
| | - Lindsay H Allen
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, University of California Davis, Davis, CA, USA
| | - David C Dallas
- Nutrition Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - James McManaman
- Division of Reproductive Sciences, University of Colorado, Aurora, CO, USA
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mary Rozga
- Evidence Analysis Center, Academy of Nutrition and Dietetics, Chicago, IL, USA
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Antti Seppo
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janet E Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Bridget E Young
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
15
|
Donovan SM, Aghaeepour N, Andres A, Azad MB, Becker M, Carlson SE, Järvinen KM, Lin W, Lönnerdal B, Slupsky CM, Steiber AL, Raiten DJ. Evidence for human milk as a biological system and recommendations for study design-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 4. Am J Clin Nutr 2023; 117 Suppl 1:S61-S86. [PMID: 37173061 PMCID: PMC10356565 DOI: 10.1016/j.ajcnut.2022.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk contains all of the essential nutrients required by the infant within a complex matrix that enhances the bioavailability of many of those nutrients. In addition, human milk is a source of bioactive components, living cells and microbes that facilitate the transition to life outside the womb. Our ability to fully appreciate the importance of this matrix relies on the recognition of short- and long-term health benefits and, as highlighted in previous sections of this supplement, its ecology (i.e., interactions among the lactating parent and breastfed infant as well as within the context of the human milk matrix itself). Designing and interpreting studies to address this complexity depends on the availability of new tools and technologies that account for such complexity. Past efforts have often compared human milk to infant formula, which has provided some insight into the bioactivity of human milk, as a whole, or of individual milk components supplemented with formula. However, this experimental approach cannot capture the contributions of the individual components to the human milk ecology, the interaction between these components within the human milk matrix, or the significance of the matrix itself to enhance human milk bioactivity on outcomes of interest. This paper presents approaches to explore human milk as a biological system and the functional implications of that system and its components. Specifically, we discuss study design and data collection considerations and how emerging analytical technologies, bioinformatics, and systems biology approaches could be applied to advance our understanding of this critical aspect of human biology.
Collapse
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA.
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health and Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Martin Becker
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Allergy and Immunology and Center for Food Allergy, University of Rochester Medical Center, New York, NY, USA
| | - Weili Lin
- Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, USA; Department of Food Science and Technology, University of California, Davis, CA, USA
| | | | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Chichlowski M, van Diepen JA, Prodan A, Olga L, Ong KK, Kortman GAM, Dunger DB, Gross G. Early development of infant gut microbiota in relation to breastfeeding and human milk oligosaccharides. Front Nutr 2023; 10:1003032. [PMID: 36969811 PMCID: PMC10034312 DOI: 10.3389/fnut.2023.1003032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/09/2023] [Indexed: 03/11/2023] Open
Abstract
Background Infant gut microbiota composition is influenced by various factors early in life. Here, we investigate associations between infant gut microbiome development, infant age, breastfeeding duration, and human milk oligosaccharides (HMO) composition in breastmilk. Methods A total of 94 mother-infant pairs were recruited as part of the Cambridge Baby Growth and Breastfeeding Study (CBGS-BF) (Cambridge, UK). Infant stool samples (n = 337) were collected at 2 week, 6 week, 3 month, and 6 month of age. The 16S rRNA V3-V4 rRNA region was sequenced using MiSeq Illumina to determine microbiota composition and diversity. Mother's hindmilk samples were collected at birth, 2 week, 6 week, 3 month, and 6 month postpartum. Concentrations of five neutral [2'FL, 3'FL, lacto-N-fucopentaose 1 (LNFP1), LNnT, LNT] and two acidic (3'SL, and 6'SL) HMOs were measured in all milk samples using High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). We explored the associations between infant gut microbiome parameters and age, duration of exclusive breastfeeding (EBF), and levels of individual HMOs. Results Bifidobacterium was the most abundant genus in infant stool at all-time points, irrespective of breastfeeding duration, with an overall mean relative abundance of 70%. The relative abundance of B. bifidum in stool from infants who were breastfed for longer than 6 months was significantly higher compared to the infant breastfed up to 3 months (p = 0.0285). Alpha-diversity (both Shannon and ASV-level Richness) of infant gut microbiota showed a biphasic change with infant age, decreasing from 2 weeks until 3 months and then increasing until 6 months of age. Bifidobacterium relative abundance was associated with higher concentrations of 2'FL and LNFP1 in breastmilk across all time-points (p = 0.049 and 0.017, respectively), with trends toward a higher abundance of B. longum species. No significant association with Bifidobacterium was found for breastmilk LNnT, 3'SL, and 6'SL levels. Conclusion Our study is in line with previous data demonstrating that EBF duration in the first months of life impacts infant gut microbiota composition. The observed links between specific HMOs in breastmilk and bacteria in infant stool provide evidence of how mother's milk affects infant microbiome development.
Collapse
Affiliation(s)
- Maciej Chichlowski
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Janna A. van Diepen
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Nijmegen, Netherlands
| | | | - Laurentya Olga
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Ken K. Ong
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | | | - David B. Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt/Mead Johnson Nutrition Institute, Nijmegen, Netherlands
| |
Collapse
|
17
|
Zhou Z, Liu Y, Yan T, Tu S, Guo H, Zhou J, Ye Z, Zhang Z, Li K, Zhao P, Zuo G, Han B. Multi-point analysis of absorbance for detection of lactose in breast milk using back-propagation neural network. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
Couvillion SP, Mostoller KE, Williams JE, Pace RM, Stohel IL, Peterson HK, Nicora CD, Nakayasu ES, Webb-Robertson BJM, McGuire MA, McGuire MK, Metz TO. Interrogating the role of the milk microbiome in mastitis in the multi-omics era. Front Microbiol 2023; 14:1105675. [PMID: 36819069 PMCID: PMC9932517 DOI: 10.3389/fmicb.2023.1105675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
There is growing interest in a functional understanding of milk-associated microbiota as there is ample evidence that host-associated microbial communities play an active role in host health and phenotype. Mastitis, characterized by painful inflammation of the mammary gland, is prevalent among lactating humans and agricultural animals and is associated with significant clinical and economic consequences. The etiology of mastitis is complex and polymicrobial and correlative studies have indicated alterations in milk microbial community composition. Recent evidence is beginning to suggest that a causal relationship may exist between the milk microbiota and host phenotype in mastitis. Multi-omic approaches can be leveraged to gain a mechanistic, molecular level understanding of how the milk microbiome might modulate host physiology, thereby informing strategies to prevent and ameliorate mastitis. In this paper, we review existing studies that have utilized omics approaches to investigate the role of the milk microbiome in mastitis. We also summarize the strengths and challenges associated with the different omics techniques including metagenomics, metatranscriptomics, metaproteomics, metabolomics and lipidomics and provide perspective on the integration of multiple omics technologies for a better functional understanding of the milk microbiome.
Collapse
Affiliation(s)
- Sneha P. Couvillion
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States,*Correspondence: Sneha P. Couvillion, ✉
| | - Katie E. Mostoller
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Janet E. Williams
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Izabel L. Stohel
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Haley K. Peterson
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Ernesto S. Nakayasu
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Bobbie-Jo M. Webb-Robertson
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Mark A. McGuire
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Thomas O. Metz
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States,Thomas O. Metz, ✉
| |
Collapse
|
19
|
Early life gut microbiota profiles linked to synbiotic formula effects: a randomized clinical trial in European infants. Am J Clin Nutr 2023; 117:326-339. [PMID: 36811568 DOI: 10.1016/j.ajcnut.2022.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microbial colonization of the gastrointestinal tract after birth is an essential event that influences infant health with life-long consequences. Therefore, it is important to investigate strategies to positively modulate colonization in early life. OBJECTIVES This randomized, controlled intervention study included 540 infants to investigate the effects of a synbiotic intervention formula (IF) containing Limosilactobacillus fermentum CECT5716 and galacto-oligosaccharides on the fecal microbiome. METHODS The fecal microbiota from infants was analyzed by 16S rRNA amplicon sequencing at 4, 12, and 24 months of age. Metabolites (e.g., short-chain fatty acids) and other milieu parameters (e.g., pH, humidity, and IgA) were also measured in stool samples. RESULTS Microbiota profiles changed with age, with major differences in diversity and composition. Significant effects of the synbiotic IF compared with control formula (CF) were visible at month 4, including higher occurrence of Bifidobacterium spp. and Lactobacillaceae and lower occurrence of Blautia spp., as well as Ruminoccocus gnavus and relatives. This was accompanied by lower fecal pH and concentrations of butyrate. After de novo clustering at 4 months of age, overall phylogenetic profiles of the infants receiving IF were closer to reference profiles of those fed with human milk than infants fed CF. The changes owing to IF were associated with fecal microbiota states characterized by lower occurrence of Bacteroides compared with higher levels of Firmicutes (valid name Bacillota), Proteobacteria (valid name Pseudomonadota), and Bifidobacterium at 4 months of age. These microbiota states were linked to higher prevalence of infants born by Cesarean section. CONCLUSIONS The synbiotic intervention influenced fecal microbiota and milieu parameters at an early age depending on the overall microbiota profiles of the infants, sharing a few similarities with breastfed infants. This trial was registered at clinicaltrials.gov as NCT02221687.
Collapse
|
20
|
Johnson KE, Heisel T, Allert M, Fürst A, Yerabandi N, Knights D, Jacobs KM, Lock EF, Bode L, Fields DA, Rudolph MC, Gale CA, Albert FW, Demerath EW, Blekhman R. Human milk variation is shaped by maternal genetics and impacts the infant gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525211. [PMID: 36747843 PMCID: PMC9900818 DOI: 10.1101/2023.01.24.525211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human milk is a complex mix of nutritional and bioactive components that provide complete nutrition for the infant. However, we lack a systematic knowledge of the factors shaping milk composition and how milk variation influences infant health. Here, we used multi-omic profiling to characterize interactions between maternal genetics, milk gene expression, milk composition, and the infant fecal microbiome in 242 exclusively breastfeeding mother-infant pairs. We identified 487 genetic loci associated with milk gene expression unique to the lactating mammary gland, including loci that impacted breast cancer risk and human milk oligosaccharide concentration. Integrative analyses uncovered connections between milk gene expression and infant gut microbiome, including an association between the expression of inflammation-related genes with IL-6 concentration in milk and the abundance of Bifidobacteria in the infant gut. Our results show how an improved understanding of the genetics and genomics of human milk connects lactation biology with maternal and infant health.
Collapse
Affiliation(s)
- Kelsey E Johnson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Timothy Heisel
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mattea Allert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Annalee Fürst
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nikhila Yerabandi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Katherine M Jacobs
- Department of Obstetrics, Gynecology and Women's Health, Division of Maternal-Fetal Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Human Milk Institute (HMI) and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA
| | - David A Fields
- Department of Pediatrics, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, Department of Physiology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cheryl A Gale
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Vemuri R, Herath MP. Beyond the Gut, Emerging Microbiome Areas of Research: A Focus on Early-Life Microbial Colonization. Microorganisms 2023; 11:microorganisms11020239. [PMID: 36838204 PMCID: PMC9962807 DOI: 10.3390/microorganisms11020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Undoubtedly, the human body harbors trillions of microbes of different kinds performing various physiological activities, such as priming the immune system, influencing host metabolism, and improving health by providing important metabolites such as short-chain fatty acids. Although the gut is considered the "microbial organ" of our body as it hosts the most microbes, there are microbes present in various other important anatomical locations differing in numbers and type. Research has shown the presence of microbes in utero, sparking a debate on the "sterile womb" concept, and there is much scope for more work in this area. It is important to understand the early-life microbiome colonization, which has a role in the developmental origins of health and disease in later life. Moreover, seminal studies have indicated the presence of microbes beyond the gut, for example, in the adipose tissue and the liver. However, it is still unclear what is the exact source of these microbes and their exact roles in health and disease. In this review, we appraise and discuss emerging microbiome areas of research and their roles in metabolic health. Further, we review the importance of the genital microbiome in early-life microbial interactions.
Collapse
Affiliation(s)
- Ravichandra Vemuri
- Department of Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
- Correspondence: (R.V.); (M.P.H.)
| | - Manoja P. Herath
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia
- Correspondence: (R.V.); (M.P.H.)
| |
Collapse
|
22
|
Lahdenperä M, Galante L, Gonzales-Inca C, Vahtera J, Pentti J, Rautava S, Käyhkö N, Yonemitsu C, Gupta J, Bode L, Lagström H. Residential green environments are associated with human milk oligosaccharide diversity and composition. Sci Rep 2023; 13:216. [PMID: 36604578 PMCID: PMC9816313 DOI: 10.1038/s41598-022-27317-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Increased exposure to greener environments has been suggested to lead to health benefits in children, but the associated mechanisms in early life, particularly via biological mediators such as altered maternal milk composition, remain largely unexplored. We investigated the associations between properties of the mother's residential green environment, measured as (1) greenness (Normalized Difference Vegetation index, NDVI), (2) Vegetation Cover Diversity (VCDI) and (3) Naturalness Index (NI), and human milk oligosaccharides (HMOs), known for their immune- and microbiota-related health effects on the infant (N = 795 mothers). We show that HMO diversity increases and concentrations of several individual HMOs and HMO groups change with increased VCDI and NI in residential green environments. This suggests that variation in residential green environments may influence the infant via maternal milk through modified HMO composition. The results emphasize the mediating role of breastfeeding between the residential green environments and health in early life.
Collapse
Affiliation(s)
- Mirkka Lahdenperä
- Department of Biology, University of Turku, Turku, Finland. .,Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland. .,Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Laura Galante
- grid.1374.10000 0001 2097 1371Department of Biology, University of Turku, Turku, Finland ,grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland ,grid.4827.90000 0001 0658 8800School of Health and Social Care, Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP UK
| | - Carlos Gonzales-Inca
- grid.1374.10000 0001 2097 1371Department of Geography and Geology, University of Turku, Turku, Finland
| | - Jussi Vahtera
- grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaana Pentti
- grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland ,grid.7737.40000 0004 0410 2071Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Samuli Rautava
- grid.1374.10000 0001 2097 1371Department of Pediatrics, University of Turku, Turku, Finland ,grid.7737.40000 0004 0410 2071Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Niina Käyhkö
- grid.1374.10000 0001 2097 1371Department of Geography and Geology, University of Turku, Turku, Finland
| | - Chloe Yonemitsu
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA USA
| | - Julia Gupta
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA USA
| | - Lars Bode
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA USA
| | - Hanna Lagström
- grid.1374.10000 0001 2097 1371Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland ,grid.1374.10000 0001 2097 1371Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
23
|
Donovan SM, Abrams SA, Azad MB, Belfort MB, Bode L, Carlson SE, Dallas DC, Hettinga K, Järvinen K, Kim JH, Lebrilla CB, McGuire MK, Sela DA, Neu J. Summary of the joint National Institutes of Health and the Food and Drug Administration workshop titled "exploring the science surrounding the safe use of bioactive ingredients in infant formula: Considerations for an assessment framework". J Pediatr 2022; 255:30-41.e1. [PMID: 36463938 PMCID: PMC10121942 DOI: 10.1016/j.jpeds.2022.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL
| | - Steven A Abrams
- Department of Pediatrics Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Mandy B Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, Kansas University Medical Center and The University of Kansas, Kansas City, KS
| | - David C Dallas
- Department of Nutrition, Oregon State University, Corvallis, OR
| | - Kasper Hettinga
- Department of Food Sciences and Agrotechnology, Wageningen University, Wageningen, Netherlands
| | - Kirsi Järvinen
- Department of Pediatrics, Golisano Children's Hospital and University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Jae H Kim
- Perinatal Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH
| | | | | | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, Amherst, MA
| | - Josef Neu
- Department of Pediatrics, University of Florida, Gainesville, FL.
| |
Collapse
|
24
|
Edwards CA, Van Loo-Bouwman CA, Van Diepen JA, Schoemaker MH, Ozanne SE, Venema K, Stanton C, Marinello V, Rueda R, Flourakis M, Gil A, Van der Beek EM. A systematic review of breast milk microbiota composition and the evidence for transfer to and colonisation of the infant gut. Benef Microbes 2022; 13:365-382. [PMID: 36377578 DOI: 10.3920/bm2021.0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal microbiota plays a major role in infant health and development. However, the role of the breastmilk microbiota in infant gut colonisation remains unclear. A systematic review was performed to evaluate the composition of the breastmilk microbiota and evidence for transfer to/colonisation of the infant gut. Searches were performed using PUBMED, OVID, LILACS and PROQUEST from inception until 18th March 2020 with a PUBMED update to December 2021. 88 full texts were evaluated before final critique based on study power, sample contamination avoidance, storage, purification process, DNA extraction/analysis, and consideration of maternal health and other potential confounders. Risk of skin contamination was reduced mainly by breast cleaning and rejecting the first milk drops. Sample storage, DNA extraction and bioinformatics varied. Several studies stored samples under conditions that may selectively impact bacterial DNA preservation, others used preculture reducing reliability. Only 15 studies, with acceptable sample size, handling, extraction, and bacterial analysis, considered transfer of bacteria to the infant. Three reported bacterial transfer from infant to breastmilk. Despite consistent evidence for the breastmilk microbiota, and recent studies using improved methods to investigate factors affecting its composition, few studies adequately considered transfer to the infant gut providing very little evidence for effective impact on gut colonisation.
Collapse
Affiliation(s)
- C A Edwards
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, 84 Castle St, Glasgow G4 0SF, United Kingdom
| | - C A Van Loo-Bouwman
- Yili Innovation Center Europe, Bronland 12 E-1, 6708 WH Wageningen, the Netherlands
| | - J A Van Diepen
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | - M H Schoemaker
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | - S E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, P.O. Box 289, Cambridge CB2 0QQ, United Kingdom
| | - K Venema
- Department of Human Biology, Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, P.O. Box 8, 5900 AA Venlo, the Netherlands
| | - C Stanton
- Teagasc Moorepark Food Research Centre, and APC Microbiome Ireland, Cork, Ireland
| | - V Marinello
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, 84 Castle St, Glasgow G4 0SF, United Kingdom
| | - R Rueda
- R&D Department, Abbott Nutrition, Cam. de Purchil, 68, 18004 Granada, Spain
| | - M Flourakis
- ILSI Europe a.i.s.b.l., E. Mounierlaan 83, 1200 Brussels, Belgium; correspondence has been taken over by C.-Y. Chang of ILSI Europe
| | - A Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Institute of Nutrition and Food Technology 'José Mataix,' Biomedical Research Centre, University of Granada, and Instituto de Investigación Biosanitaria ibs Granada, Avda. del Conocimiento s/n, 18100, Armilla, Grenada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - E M Van der Beek
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Postbus 30.001, 9700 RB Groningen, the Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
25
|
Sodium and Potassium Concentrations and Somatic Cell Count of Human Milk Produced in the First Six Weeks Postpartum and Their Suitability as Biomarkers of Clinical and Subclinical Mastitis. Nutrients 2022; 14:nu14224708. [PMID: 36432395 PMCID: PMC9694808 DOI: 10.3390/nu14224708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The sodium (Na) concentration and the ratio of Na to potassium (K; Na/K) in human milk are used commonly as biomarkers of subclinical mastitis, but limited data exist on their relationship to and ability to predict clinical mastitis. Here, we assessed concentrations of Na, K, Na/K, and somatic cell count (SCC), a mammary health biomarker used in the dairy industry, in milk prospectively collected from both breasts of 41 women over the first 6 weeks postpartum. Although values differed over time postpartum, there were no differences in mean values between breasts. Nearly one-quarter (24%) of participants experienced clinical mastitis. Somatic cell counts >4.76 × 105 cells/mL were most strongly related to development of clinical mastitis in the following week (odds ratio, 7.81; 95% CI, 2.15−28.30; p = 0.002), although relationships were also observed for SCC > 4.00 × 105 cells/mL and Na concentration >12 mmol/L. Estimates of the prevalence of subclinical mastitis in women who never progressed to clinical mastitis differed by biomarker but ranged from 20 to 75%. Despite these findings, positive predictive values (PPV) of the biomarkers for identifying clinical mastitis were low (≤0.34), indicating additional research is needed to identify single biomarkers or composite measures that are highly specific, sensitive, and predictive of clinical mastitis in women.
Collapse
|
26
|
Maternal weight status and the composition of the human milk microbiome: A scoping review. PLoS One 2022; 17:e0274950. [PMID: 36191014 PMCID: PMC9529148 DOI: 10.1371/journal.pone.0274950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
The human milk microbiome is thought to partly contribute to the assembly of the infant gut microbiome, a microbial community with important implications for infant health and development. While obesity has well-established links with the adult gut microbiome, less is known about how it affects the human milk microbiome. In this scoping review, we synthesize the current literature on the microbial composition of human milk by maternal weight status, defined broadly as BMI (prepregnancy and postpartum) and gestational weight gain (GWG). This study followed the a priori protocol published in Prospero (registration #: CRD42020165633). We searched the following databases for studies reporting maternal weight status and a characterization of milk microbiota through culture-dependent and culture-independent methods: MEDLINE, Embase, Web of Science, CINAHL, and Scopus. After screening 6,365 studies, we found 20 longitudinal and cross-sectional studies investigating associations between maternal weight status and the composition of the milk microbiome. While some studies reported no associations, many others reported that women with a pre-pregnancy or postpartum BMI characterized as overweight or obese, or with excessive GWG, had higher abundances of the genus Staphylococcus, lower Bifidobacterium abundance, and lower alpha diversity (within-sample diversity). This review suggests that maternal weight status is minorly associated with the composition of the milk microbiome in various ways. We offer potential explanations for these findings, as well as suggestions for future research.
Collapse
|
27
|
Structural and functional neuroimaging of the effects of the gut microbiome. Eur Radiol 2022; 32:3683-3692. [PMID: 35029734 PMCID: PMC9124675 DOI: 10.1007/s00330-021-08486-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/20/2021] [Accepted: 11/28/2021] [Indexed: 11/04/2022]
Abstract
Interactions between intestinal microbiota and the central nervous system profoundly influence brain structure and function. Over the past 15 years, intense research efforts have uncovered the significant association between gut microbial dysbiosis and neurologic, neurodegenerative, and psychiatric disorders; however, our understanding of the effect of gut microbiota on quantitative neuroimaging measures of brain microstructure and function remains limited. Many current gut microbiome studies specifically focus on discovering correlations between specific microbes and neurologic disease states that, while important, leave critical mechanistic questions unanswered. To address this significant gap in knowledge, quantitative structural and functional brain imaging has emerged as a vital bridge and as the next step in understanding how the gut microbiome influences the brain. In this review, we examine the current state-of-the-art, raise awareness of this important topic, and aim to highlight immense new opportunities-in both research and clinical imaging-for the imaging community in this emerging field of study. Our review also highlights the potential for preclinical imaging of germ-free and gnotobiotic models to significantly advance our understanding of the causal mechanisms by which the gut microbiome alters neural microstructure and function. KEY POINTS: • Alterations to the gut microbiome can significantly influence brain structure and function in health and disease. • Quantitative neuroimaging can help elucidate the effect of gut microbiota on the brain and with future translational advances, neuroimaging will be critical for both diagnostic assessment and therapeutic monitoring.
Collapse
|
28
|
Gridneva Z, George AD, Suwaydi MA, Sindi AS, Jie M, Stinson LF, Geddes DT. Environmental determinants of human milk composition in relation to health outcomes. Acta Paediatr 2022; 111:1121-1126. [PMID: 35067980 DOI: 10.1111/apa.16263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Humans are exposed to environmental factors at every stage of life including infancy. The aim of this mini-review was to present a narrative of environmental factors influencing human milk composition. Current literature shows lactation is a dynamic process and is responsive to multiple environmental challenges including geographical location, lifestyle, persistent pollutants and maternal factors (ethnicity, diet, stress, allergy and adiposity) that may influence human milk composition in a synergistic manner and should be considered in order to improve infant and maternal outcomes on a populations scale. Further interventional studies on larger international cohorts are needed to elucidate these complex relationships. Lactating women should aim for a healthy lifestyle and maintain a healthy body composition prior to and throughout the reproductive period, including during lactation.
Collapse
Affiliation(s)
- Zoya Gridneva
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
| | - Alexandra D. George
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
- Metabolomics Laboratory Baker Heart and Diabetes Institute Melbourne Victoria Australia
| | - Majed A. Suwaydi
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- Department of Medical Laboratory Technology College of Applied Medical Sciences Jazan University Jazan Saudi Arabia
| | - Azhar S. Sindi
- Division of Obstetrics and Gynaecology School of Medicine The University of Western Australia Crawley Western Australia Australia
- College of Applied Medical Sciences Umm Al‐Qura University Makkah Saudi Arabia
| | - Ma Jie
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
| | - Lisa F. Stinson
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
| | - Donna T. Geddes
- School of Molecular Sciences The University of Western Australia Crawley Western Australia Australia
- International Society for Research in Human Milk and Lactation Minneapolis MN USA
| |
Collapse
|
29
|
de Weerth C, Aatsinki AK, Azad MB, Bartol FF, Bode L, Collado MC, Dettmer AM, Field CJ, Guilfoyle M, Hinde K, Korosi A, Lustermans H, Mohd Shukri NH, Moore SE, Pundir S, Rodriguez JM, Slupsky CM, Turner S, van Goudoever JB, Ziomkiewicz A, Beijers R. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit Rev Food Sci Nutr 2022; 63:7945-7982. [PMID: 35352583 DOI: 10.1080/10408398.2022.2053058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk is a highly complex liquid food tailor-made to match an infant's needs. Beyond documented positive effects of breastfeeding on infant and maternal health, there is increasing evidence that milk constituents also impact child neurodevelopment. Non-nutrient milk bioactives would contribute to the (long-term) development of child cognition and behavior, a process termed 'Lactocrine Programming'. In this review we discuss the current state of the field on human milk composition and its links with child cognitive and behavioral development. To promote state-of-the-art methodologies and designs that facilitate data pooling and meta-analytic endeavors, we present detailed recommendations and best practices for future studies. Finally, we determine important scientific gaps that need to be filled to advance the field, and discuss innovative directions for future research. Unveiling the mechanisms underlying the links between human milk and child cognition and behavior will deepen our understanding of the broad functions of this complex liquid food, as well as provide necessary information for designing future interventions.
Collapse
Affiliation(s)
- Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, California, USA
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Amanda M Dettmer
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, College of Basic and Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Meagan Guilfoyle
- Department of Anthropology, Indiana University, Bloomington, Indiana, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity group, University of Amsterdam, Amsterdam, The Netherlands
| | - Hellen Lustermans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
| | - Nurul Husna Mohd Shukri
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sophie E Moore
- Department of Women & Children's Health, King's College London, St Thomas' Hospital, London, UK
- School of Hygiene and Tropical Medicine, Nutrition Theme, MRC Unit The Gambia and the London, Fajara, The GambiaBanjul
| | - Shikha Pundir
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Juan Miguel Rodriguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Carolyn M Slupsky
- Department of Nutrition and Department of Food Science and Technology, University of California, Davis, California, USA
| | - Sarah Turner
- Department of Community Health Sciences, Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Anna Ziomkiewicz
- Department of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Roseriet Beijers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, EN Nijmegen, The Netherlands
- Department of Social Development, Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Gómez-Torres N, Sánchez-García L, Castro I, Arroyo R, Cabañas F, González-Sánchez R, López-Azorín M, Moral-Pumarega MT, Escuder-Vieco D, Cabañes-Alonso E, Rodríguez JM, Alba C, Pellicer A. Metataxonomic Analysis of Milk Samples From SARS-CoV-2-Positive and SARS-CoV-2-Negative Women. Front Nutr 2022; 9:853576. [PMID: 35369105 PMCID: PMC8971750 DOI: 10.3389/fnut.2022.853576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Objective To assess the impact of SARS-CoV-2 viral infection on the metataxonomic profile and its evolution during the first month of lactation. Methods Milk samples from 37 women with full-term pregnancies and mild SARS-CoV-2 infection and from 63 controls, collected in the first and fifth postpartum weeks, have been analyzed. SARS-CoV-2 RNA was assessed by reverse transcription polymerase chain reaction (RT-PCR) both in cases and controls. After DNA extraction, the V3-V4 hypervariable region of the gene 16S rRNA was amplified and sequenced using the MiSeq system of Illumina. Data were submitted for statistical and bioinformatics analyses after quality control. Results All the 1st week and 5th week postpartum milk samples were negative for SARS-CoV-2 RNA. Alpha diversity showed no differences between milk samples from the study and control group, and this condition was maintained along the observation time. Analysis of the beta-diversity also indicated that the study and control groups did not show distinct bacterial profiles. Staphyloccus and Streptococcus were the most abundant genera and the only ones that were detected in all the milk samples provided. Disease state (symptomatic or asymptomatic infection) did not affect the metataxonomic profile in breast milk. Conclusion These results support that in the non-severe SARS-CoV-2 pregnant woman infection the structure of the bacterial population is preserved and does not negatively impact on the human milk microbiota.
Collapse
Affiliation(s)
- Natalia Gómez-Torres
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Laura Sánchez-García
- Department of Neonatology, Biomedical Research Foundation-IDIPAZ, La Paz University Hospital, Madrid, Spain
- *Correspondence: Laura Sánchez-García,
| | - Irma Castro
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Fernando Cabañas
- Department of Neonatology, Quirónsalud Madrid University Hospital and Quirónsalud San José Hospital, Biomedical Research Foundation-IDIPAZ, La Paz University Hospital, Madrid, Spain
| | - Raquel González-Sánchez
- Department of Neonatology, Quirónsalud Madrid University Hospital and Quiroónsalud San José Hospital, Madrid, Spain
| | - Manuela López-Azorín
- Department of Neonatology, Quirónsalud Madrid University Hospital and Quiroónsalud San José Hospital, Madrid, Spain
| | | | | | - Esther Cabañes-Alonso
- Department of Neonatology, Regional Human Milk Bank, 12 de Octubre University Hospital, Madrid, Spain
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
- Claudio Alba,
| | - Adelina Pellicer
- Department of Neonatology, Biomedical Research Foundation-IDIPAZ, La Paz University Hospital, Madrid, Spain
- *Correspondence: Laura Sánchez-García,
| |
Collapse
|
31
|
Human Milk Oligosaccharides and Bacterial Profile Modulate Infant Body Composition during Exclusive Breastfeeding. Int J Mol Sci 2022; 23:ijms23052865. [PMID: 35270006 PMCID: PMC8911220 DOI: 10.3390/ijms23052865] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Human milk is a complex and variable ecosystem fundamental to the development of newborns. This study aimed to investigate relationships between human milk oligosaccharides (HMO) and human milk bacterial profiles and infant body composition. Human milk samples (n = 60) were collected at two months postpartum. Infant and maternal body composition was measured with bioimpedance spectroscopy. Human milk bacterial profiles were assessed using full-length 16S rRNA gene sequencing and 19 HMOs were quantitated using high-performance liquid chromatography. Relative abundance of human milk bacterial taxa were significantly associated with concentrations of several fucosylated and sialylated HMOs. Individual human milk bacteria and HMO intakes and concentrations were also significantly associated with infant anthropometry, fat-free mass, and adiposity. Furthermore, when data were stratified based on maternal secretor status, some of these relationships differed significantly among infants born to secretor vs non-secretor mothers. In conclusion, in this pilot study the human milk bacterial profile and HMO intakes and concentrations were significantly associated with infant body composition, with associations modified by secretor status. Future research designed to increase the understanding of the mechanisms by which HMO and human milk bacteria modulate infant body composition should include intakes in addition to concentrations.
Collapse
|
32
|
Cheema AS, Trevenen ML, Turlach BA, Furst AJ, Roman AS, Bode L, Gridneva Z, Lai CT, Stinson LF, Payne MS, Geddes DT. Exclusively Breastfed Infant Microbiota Develops over Time and Is Associated with Human Milk Oligosaccharide Intakes. Int J Mol Sci 2022; 23:2804. [PMID: 35269946 PMCID: PMC8910998 DOI: 10.3390/ijms23052804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Temporal development of maternal and infant microbiomes during early life impacts short- and long-term infant health. This study aimed to characterize bacterial dynamics within maternal faecal, human milk (HM), infant oral, and infant faecal samples during the exclusive breastfeeding period and to document associations between human milk oligosaccharide (HMO) intakes and infant oral and faecal bacterial profiles. Maternal and infant samples (n = 10) were collected at 2−5, 30, 60, 90 and 120 days postpartum and the full-length 16S ribosomal RNA (rRNA) gene was sequenced. Nineteen HMOs were quantitated using high-performance liquid chromatography. Bacterial profiles were unique to each sample type and changed significantly over time, with a large degree of intra- and inter-individual variation in all sample types. Beta diversity was stable over time within infant faecal, maternal faecal and HM samples, however, the infant oral microbiota at day 2−5 significantly differed from all other time points (all p < 0.02). HMO concentrations and intakes significantly differed over time, and HMO intakes showed differential associations with taxa observed in infant oral and faecal samples. The direct clinical relevance of this, however, is unknown. Regardless, future studies should account for intakes of HMOs when modelling the impact of HM on infant growth, as it may have implications for infant microbiota development.
Collapse
Affiliation(s)
- Ali Sadiq Cheema
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Michelle Louise Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Berwin Ashoka Turlach
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia; (M.L.T.); (B.A.T.)
| | - Annalee June Furst
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Sophia Roman
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA; (A.J.F.); (A.S.R.); (L.B.)
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Lisa Faye Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| | - Matthew Scott Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia;
- Women and Infants Research Foundation, Subiaco, WA 6008, Australia
| | - Donna Tracy Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (A.S.C.); (Z.G.); (C.T.L.); (L.F.S.)
| |
Collapse
|
33
|
Gut microbiome dysbiosis in malnutrition. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:205-229. [DOI: 10.1016/bs.pmbts.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
McGuire MK, McGuire MA. Microbiomes and Childhood Malnutrition: What Is the Evidence? ANNALS OF NUTRITION & METABOLISM 2021; 77:1-13. [PMID: 34515050 DOI: 10.1159/000519001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022]
Abstract
Both undernutrition and overnutrition continue to represent enduring global health crises, and with the growing implications of both forms of malnutrition occurring simultaneously in individuals and populations (referred to as the double burden of malnutrition), understanding their biological and environmental causes is a primary research and humanitarian necessity. There is growing evidence of a bidirectional association between variation in the gastrointestinal (GI) microbiome and risk of/resilience to malnutrition during early life. For example, studies of siblings who discordantly do or do not develop severe malnutrition show clear differences in the diversity and composition of fecal microbiomes. These differences are transiently lessened during refeeding but re-emerge thereafter. These findings have been somewhat recapitulated using animal models, but small sample sizes and limited range complicate interpretation of results and applicability to humans. Mechanisms driving these differences are currently unknown but likely involve a combination of inflammatory pathways (and perhaps antioxidant status of the host) and effects on nutrient availability, requirements, and utilization by both host and microbe. A less robust literature also suggests that variation in GI microbiome is associated with risk for obesity during childhood. The putative impact of GI microbiomes on malnutrition is likely modified by a variety of important variables such as genetics (likely driven, in part, by evolution), environmental pathogen exposure and its timing, dietary factors, and cultural/societal pattern (e.g., use of antibiotics). Given the growing double burden of malnutrition, this topic demands a focused interdisciplinary approach that expands from merely characterizing differences and longitudinal changes in fecal microbes to examining their functionality during early life. Understanding the complex composition of human milk and how its components impact establishment and maintenance of the recipient infant's GI microbiome will also undoubtedly shed important light on this topic.
Collapse
Affiliation(s)
- Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, USA
| | - Mark A McGuire
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
35
|
Olshan KL, Zomorrodi AR, Pujolassos M, Troisi J, Khan N, Fanelli B, Kenyon V, Fasano A, Leonard MM. Microbiota and Metabolomic Patterns in the Breast Milk of Subjects with Celiac Disease on a Gluten-Free Diet. Nutrients 2021; 13:nu13072243. [PMID: 34210038 PMCID: PMC8308312 DOI: 10.3390/nu13072243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
The intestinal microbiome may trigger celiac disease (CD) in individuals with a genetic disposition when exposed to dietary gluten. Research demonstrates that nutrition during infancy is crucial to the intestinal microbiome engraftment. Very few studies to date have focused on the breast milk composition of subjects with a history of CD on a gluten-free diet. Here, we utilize a multi-omics approach with shotgun metagenomics to analyze the breast milk microbiome integrated with metabolome profiling of 36 subjects, 20 with CD on a gluten-free diet and 16 healthy controls. These analyses identified significant differences in bacterial and viral species/strains and functional pathways but no difference in metabolite abundance. Specifically, three bacterial strains with increased abundance were identified in subjects with CD on a gluten-free diet of which one (Rothia mucilaginosa) has been previously linked to autoimmune conditions. We also identified five pathways with increased abundance in subjects with CD on a gluten-free diet. We additionally found four bacterial and two viral species/strains with increased abundance in healthy controls. Overall, the differences observed in bacterial and viral species/strains and in functional pathways observed in our analysis may influence microbiome engraftment in neonates, which may impact their future clinical outcomes.
Collapse
Affiliation(s)
- Katherine L. Olshan
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114, USA; (K.L.O.); (A.R.Z.); (A.F.)
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Boston, MA 02129, USA;
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Celiac Research Program, Harvard Medical School, Boston, MA 02115, USA
| | - Ali R. Zomorrodi
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114, USA; (K.L.O.); (A.R.Z.); (A.F.)
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Boston, MA 02129, USA;
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Celiac Research Program, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jacopo Troisi
- Theoreo srl, University of Salerno, 84084 Salerno, Italy; (M.P.); (J.T.)
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Salerno, Italy
- European Biomedical Research Institute of Salerno (EBRIS), Via S. De Renzi, 50, 84125 Salerno, Italy
| | - Nayeim Khan
- CosmosID Inc., Rockville, MD 20850, USA; (N.K.); (B.F.)
| | - Brian Fanelli
- CosmosID Inc., Rockville, MD 20850, USA; (N.K.); (B.F.)
| | - Victoria Kenyon
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Boston, MA 02129, USA;
- Celiac Research Program, Harvard Medical School, Boston, MA 02115, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114, USA; (K.L.O.); (A.R.Z.); (A.F.)
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Boston, MA 02129, USA;
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Celiac Research Program, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Salerno, Italy
| | - Maureen M. Leonard
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA 02114, USA; (K.L.O.); (A.R.Z.); (A.F.)
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Boston, MA 02129, USA;
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Celiac Research Program, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|