1
|
Isago H. The Association between Dyslipidemia and Pulmonary Diseases. J Atheroscler Thromb 2024; 31:1249-1259. [PMID: 39010219 PMCID: PMC11374539 DOI: 10.5551/jat.rv22021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Dyslipidemia is one of the most common diseases worldwide. As a component of metabolic syndrome, the prevalence and mechanism by which dyslipidemia promotes cardiovascular diseases has been well studied, although the relationship between pulmonary diseases is not well understood. Because the lung is a respiratory organ with a large surface area and is exposed to the environment outside the body, it continuously inhales various substances. As a result, pulmonary diseases have a vast diversity, including chronic inflammatory diseases, allergic diseases, cancers, and infectious diseases. Recently, growing evidence has suggested that dyslipidemia plays a role in the pathogenesis and prognosis of various pulmonary diseases. We herein review the current understanding of the relationship between dyslipidemia and pulmonary diseases, including chronic obstructive pulmonary diseases, asthma, and lung cancer, and infectious pulmonary diseases, including community-acquired pneumonia, tuberculosis, nontuberculous mycobacterial pulmonary disease, and COVID-19. In addition, we focus on recent evidence of the utility of statins, specifically 3-hydroxy-3-methylglutaryl-coA reductase inhibitors, in the prevention and treatment of the various pulmonary diseases described above.
Collapse
Affiliation(s)
- Hideaki Isago
- Department of Clinical Laboratory, The University of Tokyo Hospital
| |
Collapse
|
2
|
Bohórquez JA, Jagannath C, Xu H, Wang X, Yi G. T Cell Responses during Human Immunodeficiency Virus/ Mycobacterium tuberculosis Coinfection. Vaccines (Basel) 2024; 12:901. [PMID: 39204027 PMCID: PMC11358969 DOI: 10.3390/vaccines12080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Coinfection with Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) is a significant public health concern. Individuals infected with Mtb who acquire HIV are approximately 16 times more likely to develop active tuberculosis. T cells play an important role as both targets for HIV infection and mediators of the immune response against both pathogens. This review aims to synthesize the current literature and provide insights into the effects of HIV/Mtb coinfection on T cell populations and their contributions to immunity. Evidence from multiple in vitro and in vivo studies demonstrates that T helper responses are severely compromised during coinfection, leading to impaired cytotoxic responses. Moreover, HIV's targeting of Mtb-specific cells, including those within granulomas, offers an explanation for the severe progression of the disease. Herein, we discuss the patterns of differentiation, exhaustion, and transcriptomic changes in T cells during coinfection, as well as the metabolic adaptations that are necessary for T cell maintenance and functionality. This review highlights the interconnectedness of the immune response and the pathogenesis of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|
3
|
Pretorius C, Luies L. Characterising the urinary acylcarnitine and amino acid profiles of HIV/TB co-infection, using LC-MS metabolomics. Metabolomics 2024; 20:92. [PMID: 39096437 PMCID: PMC11297823 DOI: 10.1007/s11306-024-02161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION The human immunodeficiency virus (HIV) and tuberculosis (TB) co-infection presents significant challenges due to the complex interplay between these diseases, leading to exacerbated metabolic disturbances. Understanding these metabolic profiles is crucial for improving diagnostic and therapeutic approaches. OBJECTIVE This study aimed to characterise the urinary acylcarnitine and amino acid profiles, including 5-hydroxyindoleacetic acid (5-HIAA), in patients co-infected with HIV and TB using targeted liquid chromatography mass spectrometry (LC-MS) metabolomics. METHODS Urine samples, categorised into HIV, TB, HIV/TB co-infected, and healthy controls, were analysed using HPLC-MS/MS. Statistical analyses included one-way ANOVA and a Kruskal-Wallis test to determine significant differences in the acylcarnitine and amino acid profiles between groups. RESULTS The study revealed significant metabolic alterations, especially in TB and co-infected groups. Elevated levels of medium-chain acylcarnitines indicated increased fatty acid oxidation, commonly associated with cachexia in TB. Altered amino acid profiles suggested disruptions in protein and glucose metabolism, indicating a shift towards diabetes-like metabolic states. Notably, TB was identified as a primary driver of these changes, affecting protein turnover, and impacting energy metabolism in co-infected patients. CONCLUSION The metabolic profiling of HIV/TB co-infection highlights the profound impact of TB on metabolic pathways, which may exacerbate the clinical complexities of co-infection. Understanding these metabolic disruptions can guide the development of targeted treatments and improve management strategies, ultimately enhancing the clinical outcomes for these patients. Further research is required to validate these findings and explore their implications in larger, diverse populations.
Collapse
Affiliation(s)
- Charles Pretorius
- Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Box 269, Potchefstroom, 2520, South Africa
| | - Laneke Luies
- Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Box 269, Potchefstroom, 2520, South Africa.
| |
Collapse
|
4
|
Zhao L, Gao F, Zheng C, Sun X. The Impact of Optimal Glycemic Control on Tuberculosis Treatment Outcomes in Patients With Diabetes Mellitus: Systematic Review and Meta-Analysis. JMIR Public Health Surveill 2024; 10:e53948. [PMID: 38564244 PMCID: PMC11022131 DOI: 10.2196/53948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) increases the risk of developing tuberculosis (TB), and optimal glycemic control has been shown to reduce the risk of complications and improve the TB treatment outcomes in patients with DM. OBJECTIVE This study aims to investigate the role of glycemic control in improving TB treatment outcomes among patients with DM. METHODS MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials databases were searched for randomized controlled trials (RCTs) assessing the impact of oral glycemic control in patients with TB who have DM. Outcomes of interest were radiological findings, treatment success, sputum positivity, and mortality. Evaluations were reported as risk ratios (RRs) with 95% CIs using weighted random-effects models. RESULTS The analysis included 6919 patients from 7 observational studies. Our meta-analysis showed significant differences between patients with optimal glycemic control and those with poor glycemic control with regard to improved treatment outcomes (RR 1.13, 95% CI 1.02-1.25; P=.02; I²=65%), reduced sputum positivity (RR 0.23, 95% CI 0.09-0.61; P=.003; I²=66%), and fewer cavitary lesions (RR 0.59, 95% CI 0.51-0.68; P<.001; I²=0%) in radiological findings. There was no significant difference between the 2 groups in terms of mortality (RR 0.57, 95% CI 0.22-1.49; P=.25; I²=0%), multilobar involvement (RR 0.57, 95% CI 0.22-1.49; P=.25; I²=0%) on radiologic examination, and upper lobe (RR 0.94, 95% CI 0.76-1.17; P=.58; I²=0%) and lower lobe (RR 1.05, 95% CI 0.48-2.30; P=.91; I²=75%) involvement on radiologic examination. CONCLUSIONS We concluded that optimal glycemic control is crucial for reducing susceptibility, minimizing complications, and improving treatment outcomes in patients with TB with DM. Emphasizing effective health management and health care strategies are essential in achieving this control. Integrating comprehensive care among patients with TB with DM will enhance patient outcomes and alleviate the burden of disease in this population. TRIAL REGISTRATION PROSPERO CRD42023427362; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=427362.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, China
| |
Collapse
|
5
|
López-González JA, Martínez-Soto JM, Avila-Cervantes C, Mata-Pineda AL, Álvarez-Hernández G, Álvarez-Meza JB, Bolado-Martínez E, Candia-Plata MDC. Evaluation of Systemic Inflammation Before and After Standard Anti-tuberculosis Treatment in Patients With Active Pulmonary Tuberculosis and Diabetes Mellitus. Cureus 2024; 16:e55391. [PMID: 38562330 PMCID: PMC10984244 DOI: 10.7759/cureus.55391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Background Diabetes mellitus (DM) is a common comorbidity of active pulmonary tuberculosis (APTB) that increases the risk of treatment failure during anti-tuberculosis chemotherapy. Evaluating systemic inflammatory response could help determine differences in response to treatment between APTB patients and those with APTB and DM. Methodology To explore changes in systemic inflammation, measured by a set of inflammatory mediators in subjects with APTB and TBDM before and after six months of anti-tuberculosis chemotherapy, 30 APTB and nine TBDM subjects underwent cytokine testing, including interleukin (IL)-6, IL-8, IL-10, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta 1 (TGF-β1) by enzyme-linked immunosorbent assay, C-reactive protein by nephelometry, and sialic acid by colorimetric assay at baseline and following six months of standard anti-tuberculosis treatment. Sputum smear microscopy or molecular biology (Xpert MTB/RIF) was used for diagnosis, and sputum smear microscopy was performed monthly during the treatment of the patient with pulmonary tuberculosis to evaluate his evolution. Principal component analysis examined changes in the inflammatory status. Results Both groups showed negative sputum smear microscopy in the sixth month after starting anti-tuberculosis chemotherapy. TGF-β1 was found to be significantly higher in subjects with TBDM before treatment compared to APTB patients (p<0.001), and systemic inflammation continued only in TBDM subjects after treatment (accumulation and persistence of inflammatory mediators like IL-6, IL-8, IL-10, IFN-γ, TNF-α, TGF-β1, C-reactive protein, and sialic acid in blood). On the other hand, the mediators IFN-γ, C-reactive protein, and total sialic acid were found to be most influential in distinguishing pre- and post-treatment inflammatory response in subjects with APTB without DM. Conclusions Inflammatory mediators analyzed in combination, including IFN-γ, CRP, and total sialic acid, may be useful in evaluating the systemic inflammatory response in subjects with APTB and TBDM before and after anti-tuberculosis treatment. Determining these mediators revealed persistent systemic inflammation in TBDM subjects after six months of standard tuberculosis treatment, despite negative sputum smear microscopy results and good glycemic control. This suggests a need for inflammation-modulating therapies during tuberculosis control. Finally, monitoring sputum smear microscopy results alongside the determination of proposed inflammatory mediators (IFN-γ, CRP, and total sialic acid) are effective in evaluating the response to anti-tuberculosis treatment in APTB subjects without DM, warranting further investigation.
Collapse
|
6
|
Hulme KD, Tong ZWM, Rowntree LC, van de Sandt CE, Ronacher K, Grant EJ, Dorey ES, Gallo LA, Gras S, Kedzierska K, Barrett HL, Short KR. Increasing HbA1c is associated with reduced CD8 + T cell functionality in response to influenza virus in a TCR-dependent manner in individuals with diabetes mellitus. Cell Mol Life Sci 2024; 81:35. [PMID: 38214784 PMCID: PMC10786977 DOI: 10.1007/s00018-023-05010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is on the rise globally and is a known susceptibility factor for severe influenza virus infections. However, the mechanisms by which diabetes increases the severity of an influenza virus infection are yet to be fully defined. Diabetes mellitus is hallmarked by high glucose concentrations in the blood. We hypothesized that these high glucose concentrations affect the functionality of CD8+ T cells, which play a key role eliminating virus-infected cells and have been shown to decrease influenza disease severity. To study the effect of hyperglycemia on CD8+ T cell function, we stimulated peripheral blood mononuclear cells (PBMCs) from donors with and without diabetes with influenza A virus, anti-CD3/anti-CD28-coated beads, PMA and ionomycin (PMA/I), or an influenza viral peptide pool. After stimulation, cells were assessed for functionality [as defined by expression of IFN-γ, TNF-α, macrophage inflammatory protein (MIP)-1β, and lysosomal-associated membrane protein-1 (CD107a)] using flow cytometry. Our results showed that increasing HbA1c correlated with a reduction in TNF-α production by CD8+ T cells in response to influenza stimulation in a TCR-specific manner. This was not associated with any changes to CD8+ T cell subsets. We conclude that hyperglycemia impairs CD8+ T cell function to influenza virus infection, which may be linked with the increased risk of severe influenza in patients with diabetes.
Collapse
Affiliation(s)
- Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zhen Wei Marcus Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katharina Ronacher
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Emma J Grant
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Emily S Dorey
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Linda A Gallo
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Moreton Bay, QLD, Australia
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Helen L Barrett
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Obstetric Medicine, The Royal Hospital for Women, Randwick, NSW, Australia
- School of Medicine, UNSW, Randwick, NSW, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
7
|
He X, Wang Y, Yang Y, He Q, Sun L, Jin J. Quantitative proteomics reveals plasma protein profile and potential pathways in pulmonary tuberculosis patients with and without diabetes. Tuberculosis (Edinb) 2023; 143:102424. [PMID: 37871493 DOI: 10.1016/j.tube.2023.102424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND The coexistence of pulmonary tuberculosis (PTB) and diabetes mellitus (DM) has emerged as a significant global public health concern. Patients with DM are at higher risk of developing PTB, and PTB is one of the important factors that exacerbate the development of DM. However, the impact of DM on the protein profile and underlying pathways in PTB patients is unclear. METHODS We systematically used data-independent acquisition (DIA)-based liquid chromatography - tandem mass spectrometry (LC-MS/MS) to identify differentially expressed proteins (DEPs) in plasma samples from PTB patients, DM combined with PTB patients, and healthy controls. Then these DEPs were analyzed by bioinformatics. RESULTS Our analysis identified 268 proteins, the results indicated that DEPs in the PTB group as well as in the DM-PTB group were mainly involved in immune responses, complement and coagulation cascade and cholesterol metabolic pathways compared to healthy controls. CONCLUSIONS We analyzed the plasma protein profiles of PTB, DM-PTB, and HC groups using proteomics techniques and identified potential pathways for PTB patients with and without DM. This provides valuable clues to explore the impact of DM on PTB.
Collapse
Affiliation(s)
- Xinxin He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China; School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, PR China.
| | - Yunguang Wang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China.
| | - Yue Yang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, PR China.
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China.
| | - Lifang Sun
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, PR China; Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, 310003, PR China.
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China.
| |
Collapse
|
8
|
Chen Y, Liu J, Zhang Q, Wang Q, Chai L, Chen H, Li D, Qiu Y, Wang Y, Shen N, Wang J, Xie X, Li S, Li M. Epidemiological features and temporal trends of HIV-negative tuberculosis burden from 1990 to 2019: a retrospective analysis based on the Global Burden of Disease Study 2019. BMJ Open 2023; 13:e074134. [PMID: 37770275 PMCID: PMC10546119 DOI: 10.1136/bmjopen-2023-074134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVE This study aimed to analyse the burden and temporal trends of tuberculosis (TB) incidence and mortality globally, as well as the association between mortality-to-incidence ratio (MIR) and Socio-Demographic Index (SDI). DESIGN A retrospective analysis of TB data from 1990 to 2019 was conducted using the Global Burden of Disease Study database. RESULTS Between 1990 and 2019, there was a declining trend in the global incidence and mortality of TB. High SDI regions experienced a higher declining rate than in low SDI regions during the same period. Nearly half of the new patients occurred in South Asia. In addition, there is a sex-age imbalance in the overall burden of TB, with young males having higher incidence and mortality than females. In terms of the three subtypes of TB, drug-sensitive (DS)-TB accounted for more than 90% of the incidents and deaths and experienced a decline over the past 30 years. However, drug-resistant TB (multidrug-resistant (MDR)-TB and extensively drug-resistant (XDR)-TB) showed an overall increasing trend in age-standardised incidence rates and age-standardised mortality rates, with an inflection point after the year 2000. At the regional level, South Asia and Eastern Europe remained a high burden of drug-resistant TB incidence and mortality. Interestingly, a negative correlation was found between the MIR and SDI for TB, including DS-TB, MDR-TB and XDR-TB. Notably, central sub-Saharan Africa had the highest MIR, which indicated a higher-than-expected burden given its level of sociodemographic development. CONCLUSION This study provides comprehensive insights into the global burden and temporal trends of TB incidence and mortality, as well as the relationship between MIR and SDI. These findings contribute to our understanding of TB epidemiology and can inform public health strategies for prevention and management.
Collapse
Affiliation(s)
- Yuqian Chen
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Allué-Guardia A, Torrelles JB, Sigal A. Tuberculosis and COVID-19 in the elderly: factors driving a higher burden of disease. Front Immunol 2023; 14:1250198. [PMID: 37841265 PMCID: PMC10569613 DOI: 10.3389/fimmu.2023.1250198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) and SARS-CoV-2 are both infections that can lead to severe disease in the lower lung. However, these two infections are caused by very different pathogens (Mycobacterium vs. virus), they have different mechanisms of pathogenesis and immune response, and differ in how long the infection lasts. Despite the differences, SARS-CoV-2 and M.tb share a common feature, which is also frequently observed in other respiratory infections: the burden of disease in the elderly is greater. Here, we discuss possible reasons for the higher burden in older adults, including the effect of co-morbidities, deterioration of the lung environment, auto-immunity, and a reduced antibody response. While the answer is likely to be multifactorial, understanding the main drivers across different infections may allow us to design broader interventions that increase the health-span of older people.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- International Center for the Advancement of Research and Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Wang Y, He X, Zheng D, He Q, Sun L, Jin J. Integration of Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarkers Involved in Pulmonary Tuberculosis and Pulmonary Tuberculosis-Complicated Diabetes. Microbiol Spectr 2023; 11:e0057723. [PMID: 37522815 PMCID: PMC10434036 DOI: 10.1128/spectrum.00577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/07/2023] [Indexed: 08/01/2023] Open
Abstract
Pulmonary tuberculosis (PTB) and diabetes mellitus (DM) are common chronic diseases that threaten human health. Patients with DM are susceptible to PTB, an important factor that aggravates the complications of diabetes. However, the molecular regulatory mechanism underlying the susceptibility of patients with DM to PTB infection remains unknown. In this study, healthy subjects, patients with primary PTB, and patients with primary PTB complicated by DM were recruited according to inclusion and exclusion criteria. Peripheral whole blood was collected, and alteration profiles and potential molecular mechanisms were further analyzed using integrated bioinformatics analysis of metabolomics and transcriptomics. Transcriptional data revealed that lipocalin 2 (LCN2), defensin alpha 1 (DEFA1), peptidoglycan recognition protein 1 (PGLYRP1), and integrin subunit alpha 2b (ITGA2B) were significantly upregulated, while chloride intracellular channel 3 (CLIC3) was significantly downregulated in the group with PTB and DM (PTB_DM) in contrast to the healthy control (HC) group. Additionally, the interleukin 17 (IL-17), phosphatidylinositol 3-kinase (PI3K)-AKT, and peroxisome proliferator-activated receptor (PPAR) signaling pathways are important for PTB infection and regulation of PTB-complicated diabetes. Metabolomic data showed that glycerophospholipid metabolism, carbon metabolism, and fat digestion and absorption processes were enriched in the differential metabolic analysis. Finally, integrated analysis of both metabolomic and transcriptomic data indicated that the NOTCH1/JAK/STAT signaling pathway is important in PTB complicated by DM. In conclusion, PTB infection altered the transcriptional and metabolic profiles of patients with DM. Metabolomic and transcriptomic changes were highly correlated in PTB patients with DM. Peripheral metabolite levels may be used as biomarkers for PTB management in patients with DM. IMPORTANCE The comorbidity of diabetes mellitus (DM) significantly increases the risk of tuberculosis infection and adverse tuberculosis treatment outcomes. Most previous studies have focused on the relationship between the effect of blood glucose control and the outcome of antituberculosis treatment in pulmonary tuberculosis (PTB) with DM (PTB_DM); however, early prediction and the underlying molecular mechanism of susceptibility to PTB infection in patients with DM remain unclear. In this study, transcriptome sequencing and untargeted metabolomics were performed to elucidate the key molecules and signaling pathways involved in PTB infection and the susceptibility of patients with diabetes to PTB. Our findings contribute to the development of vital diagnostic biomarkers for PTB or PTB_DM and provide a comprehensive understanding of molecular regulation during disease progression.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xinxin He
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Danna Zheng
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, People’s Republic of China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
| | - Lifang Sun
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Juan Jin
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
11
|
Wang C, Yang X, Zhang H, Zhang Y, Tao J, Jiang X, Wu C. Temporal trends in mortality of tuberculosis attributable to high fasting plasma glucose in China from 1990 to 2019: a joinpoint regression and age-period-cohort analysis. Front Public Health 2023; 11:1225931. [PMID: 37575123 PMCID: PMC10413982 DOI: 10.3389/fpubh.2023.1225931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Background Nowadays, high fasting plasma glucose (HFPG) has been identified as the important risk factor contributing to the increased burden of diseases. But there remains a lack of research on tuberculosis (TB) mortality specifically attributable to HFPG. Thus, this study aims to explore the long-term trends in HFPG-related TB mortality in China from 1990 to 2019. Methods Data on HFPG-related TB mortality were obtained from the Global Burden of Disease (GBD) Study 2019. Analyzing the data using joinpoint regression and age-period-cohort methods adjusting for age, period, and cohort allowed us to assess the trends in TB mortality due to HFPG. Results The age-standardized mortality rates (ASMRs) of TB attributable to HFPG exhibited a downward trend in China from 1990 to 2019, with an average annual percentage change (AAPC) of -7.0 (95% CI, -7.5 to -6.6). Similar trends were found for male (AAPC of -6.5 [95% CI, -7.0 to -6.0]) and female (AAPC of -8.2 [95% CI, -8.5 to -7.9]), respectively. Local drifts curve with a U-shaped pattern reflected the AAPC of TB mortality due to HFPG across age groups. The greatest decline was observed in the age group of 60-64 years. The mortality rates related to HFPG first increased and then decreased with increasing age, peaking in the 55-59 age group. Our analysis of the period and cohort effects found that the rate ratios of TB mortality due to HFPG have decreased over the past three decades, more prominently in women. It is noteworthy that while both genders have seen a decline in HFPG-attributable TB mortality and risk, men have a higher risk and slightly less significant decline than women. Conclusion The present study shows that HFPG-related ASMRs and risk of TB in China decreased over the last 30 years, with similar trends observed in both men and women. In order to attain the recommended level set by the WHO, the effective strategies for glycemic control and management still needed to be implemented strictly to further decrease the burden of TB.
Collapse
Affiliation(s)
- Chao Wang
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Honglu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yanzhuo Zhang
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jianfeng Tao
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xu Jiang
- Department of Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Chengai Wu
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Yadav S. Pulmonary Tuberculosis with Concomitant Aspergillus Fungal Ball in a Diabetic Indian Male: A Rare Case Report. Cureus 2023; 15:e41443. [PMID: 37546067 PMCID: PMC10404112 DOI: 10.7759/cureus.41443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Pulmonary tuberculosis is rampant in some countries. The disease is an outcome of infection by Mycobacterium tuberculosis and is more common in immunocompromised individuals. Furthermore, mycetoma or a fungal ball can develop in cavitary lesions of tuberculosis. The present case is a rare presentation of pulmonary tuberculosis with concomitant Aspergillus fungal ball in a diabetic Indian male. A clinical examination with a strong laboratory and radiological workup helped establish the final diagnosis. The patient was initiated on anti-tubercular chemotherapy and advised lobectomy.
Collapse
Affiliation(s)
- Sankalp Yadav
- Medicine, Shri Madan Lal Khurana Chest Clinic, Moti Nagar, New Delhi, IND
| |
Collapse
|
13
|
Association of underweight status with the risk of tuberculosis: a nationwide population-based cohort study. Sci Rep 2022; 12:16207. [PMID: 36171396 PMCID: PMC9519877 DOI: 10.1038/s41598-022-20550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
In studies evaluating the association between body mass index (BMI) and risk of tuberculosis (TB), the data for the underweight population has been limited and results were conflicting. Our study aimed to evaluate whether being underweight increases the risk of TB using a nationwide representative sample from the Republic of Korea. A large population-based cohort study of over ten million subjects who participated in the health screening in 2010 was performed using the Korean National Health Insurance database 2010–2017. We evaluated the incidence and risk of TB by BMI category (kg/m2) for Asians using a multivariable Cox regression model, adjusting for age, sex, smoking, alcohol consumption, regular exercise, low-income state, and underlying hypertension, diabetes mellitus, and dyslipidemia. To evaluate the association between BMI and TB risk, the underweight population was further subdivided according to the degree of thinness. During 70,063,154.3 person-years of follow-up, 52,615 of 11,135,332 individuals developed active TB with an incidence of 0.75 per 1000 person-years. Overall, there was a log-linear inverse relationship between TB incidence and BMI, within the BMI range of 15–30 kg/m2 (R2 = 0.95). The estimated adjusted hazard ratio (HR) for incident TB in the underweight population (BMI < 18.5) was 2.08 (95% confidence intervals, CI 2.02–2.15), overweight (23 ≤ BMI < 25) was 0.56 (0.55–0.58) and obese (BMI ≥ 25) was 0.40 (0.39–0.41) relative to the normal weight population. Among the underweight population, TB risk increased as the degree of thinness increased (adjusted HR = 1.98, 1.91–2.05; 2.50, 2.33–2.68; and 2.83, 2.55–3.15, for mild, moderate and severe thinness, respectively) (p for trend < 0.001). We found a significant inverse relationship between BMI and TB incidence, which was especially profound in the underweight population. Public health strategies to screen TB more actively in the underweight population and improve their weight status may help reduce the burden of TB.
Collapse
|