1
|
Taesuwan S, Jirarattanarangsri W, Wangtueai S, Hussain MA, Ranadheera S, Ajlouni S, Zubairu IK, Naumovski N, Phimolsiripol Y. Unexplored Opportunities of Utilizing Food Waste in Food Product Development for Cardiovascular Health. Curr Nutr Rep 2024; 13:896-913. [PMID: 39276290 DOI: 10.1007/s13668-024-00571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
PURPOSE OF REVIEW Global food production leads to substantial amounts of agricultural and food waste that contribute to climate change and hinder international efforts to end food insecurity and poverty. Food waste is a rich source of vitamins, minerals, fibers, phenolic compounds, lipids, and bioactive peptides. These compounds can be used to create food products that help reduce heart disease risk and promote sustainability. This review examines the potential cardiovascular benefits of nutrients found in different food waste categories (such as fruits and vegetables, cereal, dairy, meat and poultry, and seafood), focusing on animal and clinical evidence, and giving examples of functional food products in each category. RECENT FINDINGS Current evidence suggests that consuming fruit and vegetable pomace, cereal bran, and whey protein may lower the risk of cardiovascular disease, particularly in individuals who are at risk. This is due to improved lipid profile, reduced blood pressure and increased flow-mediated dilation, enhanced glucose and insulin regulation, decreased inflammation, as well as reduced platelet aggregation and improved endothelial function. However, the intervention studies are limited, including a low number of participants and of short duration. Food waste has great potential to be utilized as cardioprotective products. Longer-term intervention studies are necessary to substantiate the health claims of food by-products. Technological advances are needed to improve the stability and bioavailability of bioactive compounds. Implementing safety assessments and regulatory frameworks for functional food derived from food waste is crucial. This is essential for maximizing the potential of food waste, reducing carbon footprint, and improving human health.
Collapse
Affiliation(s)
- Siraphat Taesuwan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia.
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
| | | | - Sutee Wangtueai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Malik A Hussain
- School of Science, Western Sydney University, Richmond, NSW, 2758, Australia
| | - Senaka Ranadheera
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Said Ajlouni
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Idris Kaida Zubairu
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nenad Naumovski
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, 2601, Australia
- Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | | |
Collapse
|
2
|
Ahmad T, Kadam P, Bhiyani G, Ali H, Akbar M, Siddique MUM, Shahid M. Artemisia pallens W. Attenuates Inflammation and Oxidative Stress in Freund's Complete Adjuvant-Induced Rheumatoid Arthritis in Wistar Rats. Diseases 2024; 12:230. [PMID: 39452473 PMCID: PMC11508142 DOI: 10.3390/diseases12100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes distinctive inflammatory symptoms and affects over 21 million people worldwide. RA is characterized by severe discomfort, swelling, and degradation of the bone and cartilage, further impairing joint function. The current study investigates the antiarthritic effect of a methanolic extract of Artemisia pallens (methanolic extract of A. pallens, MEAP), an aromatic herb. Artemisinin content (% per dry weight of the plant) was estimated using a UV Vis spectrophotometer. In the present study, animals were divided into six groups (n = 6). The control group (group I) was injected with 0.25% of carboxymethyl cellulose. The arthritic control group (group II) was treated with Freund's complete adjuvant (by injecting 0.1 mL). Prednisolone (10 mg/kg), a lower dose of MEAP (100 mg/kg), a medium dose of MEAP (200 mg/kg), and a higher dose of MEAP (400 mg/kg) were orally delivered to groups III, IV, V, and VI, respectively. Freund's complete adjuvant was administered into the sub-plantar portion of the left-hind paw in all the groups except vehicle control to induce rheumatoid arthritis. Weight variation; joint diameter; paw volume; thermal and mechanical hyperalgesia; hematological, biochemical, and oxidative stress parameters; radiology; and a histopathological assessment of the synovial joint were observed in order to evaluate the antiarthritic effect of the methanolic extract of A. pallens. In this study, the estimated content of artemisinin was found to be 0.28% (per dry weight of the plant), which was in good agreement with the reported value. MEAP (200 and 400 mg/kg) caused a significant reduction in increased paw volume and joint diameter in arthritic rats while significantly increasing body weight and the mechanical threshold of thermal algesia. Moreover, complete blood counts and serum enzyme levels improved significantly. Radiological analysis showed a reduction in soft tissue swelling and small erosions. A histopathological examination of the cells revealed reduced cell infiltration and the erosion of joint cartilage in MEAP-administered arthritic rats. The present research suggests that the antiarthritic activity of the methanolic extract of A. pallens wall is promising, as evidenced by the findings explored in our rat model.
Collapse
Affiliation(s)
- Tasneem Ahmad
- School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India;
| | - Parag Kadam
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandawane, Pune 411038, Maharashtra, India;
| | - Gopal Bhiyani
- Department of Pharmacy, Meerut Institute of Technology, Dr. A. P. J. Abdul Kalam Technical University (AKTU), Meerut 250103, Uttar Pradesh, India; (G.B.); (H.A.)
| | - Hasan Ali
- Department of Pharmacy, Meerut Institute of Technology, Dr. A. P. J. Abdul Kalam Technical University (AKTU), Meerut 250103, Uttar Pradesh, India; (G.B.); (H.A.)
| | - Md. Akbar
- School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India;
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy Dhule (MH), Dhule 424001, Maharashtra, India
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
3
|
El Rabey HA, Almutairi FM. The antioxidant, antidiabetic, antimicrobial and anticancer constituents of Artemisia species. Nat Prod Res 2024:1-11. [PMID: 39056203 DOI: 10.1080/14786419.2024.2384082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Artemisia species are characterised by their antioxidant, anticancer, antibacterial, and anti-diabetic activities thanks to their phenolic and flavonoid content. These phenolic and flavonoid chemicals scavenge free radicals and reduce oxidative stress, which helps to guard against many diseases brought on by the buildup of free radicals and increased oxidative stress. In addition to acting as an antibacterial agent, it assisted in preventing cancer, hyperglycaemia, and diabetes. Antioxidant research has generally drawn attention due to its major contribution to the fight against numerous chronic illnesses, such as cancer and cardiovascular disorders. Several techniques were used to measure the enzymatic antioxidants (glutathione reductase, catalase, peroxidase, ascorbate oxidase, guaiacol peroxidase, superoxide dismutase and ascorbate peroxidase) in addition to the nonenzymatic antioxidants such as total phenolic acids, total polyphenol, ascorbic acid, total flavonoids and anthocyanin. Artemisinin (endoperoxide 1,2,4-trioxane ring.) is the main therapeutic constituent of Artemisia species.
Collapse
Affiliation(s)
- Haddad A El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Fahad M Almutairi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
4
|
Biswas P, Kaium MA, Islam Tareq MM, Tauhida SJ, Hossain MR, Siam LS, Parvez A, Bibi S, Hasan MH, Rahman MM, Hosen D, Islam Siddiquee MA, Ahmed N, Sohel M, Azad SA, Alhadrami AH, Kamel M, Alamoudi MK, Hasan MN, Abdel-Daim MM. The experimental significance of isorhamnetin as an effective therapeutic option for cancer: A comprehensive analysis. Biomed Pharmacother 2024; 176:116860. [PMID: 38861855 DOI: 10.1016/j.biopha.2024.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Isorhamnetin (C16H12O7), a 3'-O-methylated derivative of quercetin from the class of flavonoids, is predominantly present in the leaves and fruits of several plants, many of which have traditionally been employed as remedies due to its diverse therapeutic activities. The objective of this in-depth analysis is to concentrate on Isorhamnetin by addressing its molecular insights as an effective anticancer compound and its synergistic activity with other anticancer drugs. The main contributors to Isorhamnetin's anti-malignant activities at the molecular level have been identified as alterations of a variety of signal transduction processes and transcriptional agents. These include ROS-mediated cell cycle arrest and apoptosis, inhibition of mTOR and P13K pathway, suppression of MEK1, PI3K, NF-κB, and Akt/ERK pathways, and inhibition of Hypoxia Inducible Factor (HIF)-1α expression. A significant number of in vitro and in vivo research studies have confirmed that it destroys cancerous cells by arresting cell cycle at the G2/M phase and S-phase, down-regulating COX-2 protein expression, PI3K, Akt, mTOR, MEK1, ERKs, and PI3K signaling pathways, and up-regulating apoptosis-induced genes (Casp3, Casp9, and Apaf1), Bax, Caspase-3, P53 gene expression and mitochondrial-dependent apoptosis pathway. Its ability to suppress malignant cells, evidence of synergistic effects, and design of drugs based on nanomedicine are also well supported to treat cancer patients effectively. Together, our findings establish a crucial foundation for understanding Isorhamnetin's underlying anti-cancer mechanism in cancer cells and reinforce the case for the requirement to assess more exact molecular signaling pathways relating to specific cancer and in vivo anti-cancer activities.
Collapse
Affiliation(s)
- Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Md Abu Kaium
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sadia Jannat Tauhida
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Ridoy Hossain
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Labib Shahriar Siam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1216, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
| | - Md Hasibul Hasan
- Department of Food Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md Moshiur Rahman
- Department of Information Systems Security, Faculty of Science & Technology, Bangladesh University of Professionals, Mirpur 1216, Bangladesh
| | - Delwar Hosen
- Department of Electrical and Computer Engineering, North South University, Dhaka 1229, Bangladesh
| | | | - Nasim Ahmed
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Salauddin Al Azad
- Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore 7400, Bangladesh
| | - Albaraa H Alhadrami
- Faculty of Medicine, King Abdulaziz University, P.O.Box 80402, Jeddah 21589, Saudi Arabia
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mariam K Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
5
|
Mkolo NM, Naidoo CM, Kadye R, Obi CL, Iweriebor BC, Olaokun OO, Prinsloo E, Zubair MS. Identification of South African Plant-Based Bioactive Compounds as Potential Inhibitors against the SARS-CoV-2 Receptor. Pharmaceuticals (Basel) 2024; 17:821. [PMID: 39065672 PMCID: PMC11279959 DOI: 10.3390/ph17070821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
The expected progress in SARS-CoV-2 vaccinations, as anticipated in 2020 and 2021, has fallen short, exacerbating global disparities due to a lack of universally recognized "safe and effective" vaccines. This study focuses on extracts of South African medicinal plants, Artemisia annua and Artemisia afra, to identify metabolomic bioactive compounds inhibiting the binding of the SARS-CoV-2 spike protein to ACE2 receptors. The extracts were monitored for cytotoxicity using a resazurin cell viability assay and xCELLigence real-time cell analyzer. Chemical profiling was performed using UPLC-MS/MS, orthogonal projection to latent structures (OPLS), and evaluated using principle component analysis (PCA) models. Identified bioactive compounds were subjected to in vitro SARS-CoV-2 enzyme inhibition assay using standard methods and docked into the spike (S) glycoprotein of SARS-CoV-2 using Schrodinger® suite followed by molecular dynamics simulation studies. Cell viability assays revealed non-toxic effects of extracts on HEK293T cells at lower concentrations. Chemical profiling identified 81 bioactive compounds, with compounds like 6″-O-acetylglycitin, 25-hydroxyvitamin D3-26,23-lactone, and sesaminol glucoside showing promising binding affinity. Molecular dynamics simulations suggested less stable binding, but in vitro studies demonstrated the ability of these compounds to interfere with SARS-CoV-2 spike protein's binding to the human ACE2 receptor. Sesaminol glucoside emerged as the most effective inhibitor against this interaction. This study emphasizes the importance of multiplatform metabolite profiling and chemometrics to understand plant extract composition. This finding is of immense significance in terms of unravelling metabolomics bioactive compounds inhibiting the binding of the SARS-CoV-2 spike protein to ACE2 receptors and holds promise for phytotherapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Nqobile Monate Mkolo
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.M.M.); (C.L.O.); (B.C.I.); (O.O.O.)
| | - Clarissa Marcelle Naidoo
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.M.M.); (C.L.O.); (B.C.I.); (O.O.O.)
| | - Rose Kadye
- Department of Biotechnology, Rhodes University, Makhanda 6140, South Africa; (R.K.); (E.P.)
| | - Chikwelu Lawrence Obi
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.M.M.); (C.L.O.); (B.C.I.); (O.O.O.)
| | - Benson Chucks Iweriebor
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.M.M.); (C.L.O.); (B.C.I.); (O.O.O.)
| | - Oyinlola Oluwunmi Olaokun
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (N.M.M.); (C.L.O.); (B.C.I.); (O.O.O.)
| | - Earl Prinsloo
- Department of Biotechnology, Rhodes University, Makhanda 6140, South Africa; (R.K.); (E.P.)
| | | |
Collapse
|
6
|
Noruzi H, Aziz-Aliabadi F, Imari ZK. Effects of different levels of pistachio (Pistachia vera) green hull aqueous extract on performance, intestinal morphology and antioxidant capacity in Eimeria challenged broilers. Poult Sci 2024; 103:103667. [PMID: 38574462 PMCID: PMC11004999 DOI: 10.1016/j.psj.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
A total of 576-day-old Ross 308 broilers chicks (male) were used to evaluate the effect of various levels of pistachio green hull aqueous extract (PHE) and Eimeria challenge on the growth performance, intestinal health and antioxidant capacity. During infection period (25-42 d), treatments included: 1) control + unchallenged (negative control, NC), 2) 200 ppm PHE + unchallenged, 3) 300 ppm PHE + unchallenged, 4) 400 ppm PHE + unchallenged, 5) control + challenged (positive control, PC), 6) 200 ppm PHE + challenged, 7) 300 ppm PHE + challenged and 8) 400 ppm PHE + challenged (with 6 replications for each treatment). The outcomes revealed that in the challenged birds, average body weight gain (ABW), daily weight gain (DWG), and feed conversion ratio (FCR) linearly improved with increasing the PHE levels (P < 0.05). Infected broilers had lower daily feed intake (DFI) compared to unchallenged birds (P < 0.05). Villus height (VH), villus height to crypt depth (VH: CD) ratio and villus surface area (VSA) reduced linearly (P < 0.05), while muscle layer thickness (MT) increased linearly in challenged birds (P < 0.05). The consumption of the PHE significantly reduced the excreta oocytes and duodenum and jejunum lesion scores in Eimeria-challenged broilers (P < 0.05). By increasing the PHE levels, total antioxidant capacity (TAC) and superoxide dismutase (SOD) levels increased (P < 0.05), while the Eimeria challenge reduced TAC, SOD, and glutathione peroxidase (GPx) levels (P <0.05). In general, the use of PHE in the broilers diet improved the antioxidant capacity, birds performance, but diminished the excreta oocytes and lesion scores with no negative effect on the intestinal morphology.
Collapse
Affiliation(s)
- Hadi Noruzi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Aziz-Aliabadi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Zeyad Kamal Imari
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Reza Seyedi Moqadam SM, Lamuki MS, Sadeghimahalli F, Ghanbari M. The effect of Artemisia annua L. aqueous and methanolic extracts on insulin signaling in liver of HFD/STZ diabetic mice. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:215-221. [PMID: 38485514 DOI: 10.1515/jcim-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVES Many studies have shown the anti-diabetic effects of medicinal plants. But their molecular mechanism has been less studied. Understanding of these mechanisms can help to better manage the treatment of diabetes by using these plants. So, this research examined the effect of Artemisia annua extract on PI3K (phosphatidylinositol 3-kinase)/AKt (serine/threonine kinase protein B) signaling pathway in liver of high-fat diet (HFD)/Streptozotocin (STZ)-induced type 2 diabetic mice. METHODS Groups of mice were control, untreated diabetic mice, diabetic mice treated with various doses (400, 200, 100 mg/kg) of methanolic and aqueous extract of A. annua and metformin for four weeks. Type 2 diabetes was produced by feeding high-fat diet following injection of low dose of STZ. After experiment duration all mice were sacrificed and blood glucose, insulin, homeostasis model assessment of insulin resistance index (HOMA-IR), index of insulin sensitivity index (ISI) were detected and liver tissues were isolated for to detect m-RNA expression of PI3K and Akt. RESULTS Extracts of aqueous and methanolic this plant markedly reduced hyperglycemia, hyperinsulinemia, HOMA-IR and elevated ISI in diabetic group in comparison with un-treated diabetic mice. In addition, they could enhance the expression of AKt and PI3K m-RNA in liver tissues in diabetic mice. CONCLUSIONS Artemisia annua extract ameliorated insulin resistance and improved insulin action in liver via the high activity of PI3K/AKt signaling pathway. So, it can be a suitable alternative treatment to synthetic antidiabetic drugs to improve insulin action in condition of type 2 diabetes.
Collapse
Affiliation(s)
- S Mohammad Reza Seyedi Moqadam
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 92948 Mazandaran University of Medical Sciences , Sari, Iran
| | - Mohammad Shokrzadeh Lamuki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 92948 Mazandaran University of Medical Sciences , Sari, Iran
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, 92948 Mazandaran University of Medical Sciences , Sari, Iran
| | - Forouzan Sadeghimahalli
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, 92948 Mazandaran University of Medical Sciences , Sari, Iran
- Department of Physiology, School of Medicine, 92948 Mazandaran University of Medical Sciences , Sari, Iran
| | - Mahshid Ghanbari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, 92948 Mazandaran University of Medical Sciences , Sari, Iran
| |
Collapse
|
8
|
Wang J, Shi T, Wang H, Li M, Zhang X, Huang L. Estimating the Amount of the Wild Artemisia annua in China Based on the MaxEnt Model and Spatio-Temporal Kriging Interpolation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1050. [PMID: 38611578 PMCID: PMC11013724 DOI: 10.3390/plants13071050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
In order to determine the distribution area and amount of Artemisia annua Linn. (A. annua) in China, this study estimated the current amount of A. annua specimens based on the field survey sample data obtained from the Fourth National Census of Chinese Medicinal Resources. The amount was calculated using the maximum entropy model (MaxEnt model) and spatio-temporal kriging interpolation. The influencing factors affecting spatial variations in the amount were studied using geographic probes. The results indicated that the amount of A. annua in China was about 700 billion in 2019. A. annua was mainly distributed in the circular coastal belt of Shandong Peninsula, central Hebei, Tianjin, western Liaoning, and along the Yangtze River and in the middle and lower reaches of Jiangsu, Anhui, and the northern Chongqing provinces. The main factors affecting the amount are the precipitation in the wettest and the warmest seasons, the average annual precipitation, and the average temperature in the coldest and the driest seasons. The results show that the amount of A. annua is strongly influenced by precipitation and temperature.
Collapse
Affiliation(s)
- Juan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tingting Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Meng Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaobo Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
9
|
Ayaz A, Zaman W, Radák Z, Gu Y. Harmony in Motion: Unraveling the Nexus of Sports, Plant-Based Nutrition, and Antioxidants for Peak Performance. Antioxidants (Basel) 2024; 13:437. [PMID: 38671884 PMCID: PMC11047508 DOI: 10.3390/antiox13040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The intricate interplay between plant-based nutrition, antioxidants, and their impact on athletic performance forms the cornerstone of this comprehensive review. Emphasizing the pivotal importance of dietary choices in the realm of sports, this paper sets the stage for an in-depth exploration of how stress and physical performance are interconnected through the lens of nutrition. The increasing interest among athletes in plant-based diets presents an opportunity with benefits for health, performance, and recovery. It is essential to investigate the connection between sports, plants, and antioxidants. Highlighting the impact of nutrition on recovery and well-being, this review emphasizes how antioxidants can help mitigate oxidative stress. Furthermore, it discusses the growing popularity of plant-based diets among athletes. It elaborates on the importance of antioxidants in combating radicals addressing stress levels while promoting cellular health. By identifying rich foods, it emphasizes the role of a balanced diet in ensuring sufficient intake of these beneficial compounds. Examining stress within the context of sports activities, this review provides insights into its mechanisms and its impact on athletic performance as well as recovery processes. This study explores the impact of plant-based diets on athletes including their types, potential advantages and challenges. It also addresses the drawbacks of relying on plant-based diets, concerns related to antioxidant supplementation and identifies areas where further research is needed. Furthermore, the review suggests directions for research and potential innovations in sports nutrition. Ultimately it brings together the aspects of sports, plant-based nutrition, and antioxidants to provide a perspective for athletes, researchers and practitioners. By consolidating existing knowledge, it offers insights that can pave the way for advancements in the ever-evolving field of sports nutrition.
Collapse
Affiliation(s)
- Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, 1123 Budapest, Hungary;
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
10
|
Chen T, Xiao Z, Liu X, Wang T, Wang Y, Ye F, Su J, Yao X, Xiong L, Yang DH. Natural products for combating multidrug resistance in cancer. Pharmacol Res 2024; 202:107099. [PMID: 38342327 DOI: 10.1016/j.phrs.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Cancer cells frequently develop resistance to chemotherapeutic therapies and targeted drugs, which has been a significant challenge in cancer management. With the growing advances in technologies in isolation and identification of natural products, the potential of natural products in combating cancer multidrug resistance has received substantial attention. Importantly, natural products can impact multiple targets, which can be valuable in overcoming drug resistance from different perspectives. In the current review, we will describe the well-established mechanisms underlying multidrug resistance, and introduce natural products that could target these multidrug resistant mechanisms. Specifically, we will discuss natural compounds such as curcumin, resveratrol, baicalein, chrysin and more, and their potential roles in combating multidrug resistance. This review article aims to provide a systematic summary of recent advances of natural products in combating cancer drug resistance, and will provide rationales for novel drug discovery.
Collapse
Affiliation(s)
- Ting Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhicheng Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaoyan Liu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Fei Ye
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xuan Yao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, NY 11501, USA.
| |
Collapse
|
11
|
Cai TY, Ji JB, Wang X, Xing J. Targeted screening of the synergistic components in Artemisia annua L. leading to enhanced antiplasmodial potency of artemisinin based on a "top down" PD-PK approach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117612. [PMID: 38135228 DOI: 10.1016/j.jep.2023.117612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisinin (ART) showed enhanced antimalarial potency in the herb Artemisia annua L. (A. annua), from which ART is isolated. Increased absorption of ART with inhibited metabolism in the plant matrix is an underlying mechanism. Several synergistic components have been reported based on a "bottom-up" approach, i.e., traditional isolation followed by pharmacokinetic and/or pharmacodynamic evaluation. AIM OF THE STUDY In this study, we employed a "top-down" approach based on in vivo antimalarial and pharmacokinetic studies to identify synergistic components in A. annua. MATERIALS AND METHODS Two A. annua extracts in different chemical composition were obtained by extraction using ethyl acetate (EA) and petroleum ether (PE). The synergistic antimalarial activity of ART in two extracts was compared both in vitro (Plasmodium falciparum) and in vivo (murine Plasmodium yoelii). For the PD-PK correlation analysis, the pharmacokinetic profiles of ART and its major metabolite (ART-M) were investigated in healthy rats after a single oral administration of pure ART (20 mg/kg) or equivalent ART in each A. annua extract. A liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS)-based analytical strategy was then applied for efficient component classification and structural characterization of the differential components in the targeted extract with a higher antimalarial potency. Major components isolated from the targeted extract were then evaluated for their synergistic effect in the same proportion. RESULTS Compared with pure ART (ED50, 5.6 mg/kg), ART showed enhanced antimalarial potency in two extracts in vivo (ED50 of EA, 2.9 mg/kg; ED50 of PE, 1.6 mg/kg), but not in vitro (IC50, 15.0-20.0 nM). A significant increase (1.7-fold) in ART absorption (AUC0-t) was found in rats after a single oral dose of equivalent ART in PE but not in EA; however, no significant change in the metabolic capability (AUCART-M/AUCART) was found for ART in either extract. The differential component analysis of the two extracts showed a higher composition of sesquiterpene compounds, especially component AB (3.0% in PE vs. 0.9% in EA) and component AA (14.1% in PE vs. 5.1% in EA). Two target sesquiterpenes were isolated and identified as arteannuin B (AB) and artemisinic acid (AA). The synergism between ART and AB/AA in the same proportion with PE extract (20:1.6:7.6, mg/kg) was verified by a pharmacokinetic study in rats. CONCLUSIONS A "top-down" strategy based on PD-PK studies was successfully employed to identify synergistic components for ART in A. annua. Two sesquiterpene compounds (arteannuin B and artemisinic acid) could enhance the antimalarial potency of ART by increasing its absorption.
Collapse
Affiliation(s)
- Tian-Yu Cai
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian-Bo Ji
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
12
|
Deng Y, Yang P, Zhang Q, Wu Q, Feng L, Shi W, Peng Q, Ding L, Tan X, Zhan R, Ma D. Genomic insights into the evolution of flavonoid biosynthesis and O-methyltransferase and glucosyltransferase in Chrysanthemum indicum. Cell Rep 2024; 43:113725. [PMID: 38300800 DOI: 10.1016/j.celrep.2024.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Flavonoids are a class of secondary metabolites widely distributed in plants. Regiospecific modification by methylation and glycosylation determines flavonoid diversity. A rare flavone glycoside, diosmin (luteolin-4'-methoxyl-7-O-glucosyl-rhamnoside), occurs in Chrysanthemum indicum. How Chrysanthemum plants evolve new biosynthetic capacities remains elusive. Here, we assemble a 3.11-Gb high-quality C. indicum genome with a contig N50 value of 4.39 Mb and annotate 50,606 protein-coding genes. One (CiCOMT10) of the tandemly repeated O-methyltransferase genes undergoes neofunctionalization, preferentially transferring the methyl group to the 4'-hydroxyl group of luteolin with ortho-substituents to form diosmetin. In addition, CiUGT11 (UGT88B3) specifically glucosylates 7-OH group of diosmetin. Next, we construct a one-pot cascade biocatalyst system by combining CiCOMT10, CiUGT11, and our previously identified rhamnosyltransferase, effectively producing diosmin with over 80% conversion from luteolin. This study clarifies the role of transferases in flavonoid diversity and provides important gene elements essential for producing rare flavone.
Collapse
Affiliation(s)
- Yinai Deng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peng Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qianle Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qingwen Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lingfang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenjing Shi
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qian Peng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Li Ding
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xukai Tan
- Grandomics Biosciences, Beijing 102200, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Dongming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
13
|
Anibogwu R, Jesus KD, Pradhan S, Leuven SV, Sharma K. Sesquiterpene Lactones and Flavonoid from the Leaves of Basin Big Sagebrush ( Artemisia tridentata subsp. tridentata): Isolation, Characterization and Biological Activities. Molecules 2024; 29:802. [PMID: 38398555 PMCID: PMC10892904 DOI: 10.3390/molecules29040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
This research is an exploratory study on the sesquiterpenes and flavonoid present in the leaves of Artemisia tridentata subsp. tridentata. The leaf foliage was extracted with 100% chloroform. Thin-layer chromatography (TLC) analysis of the crude extract showed four bands. Each band was purified by column chromatography followed by recrystallization. Three sesquiterpene lactones (SLs) were isolated-leucodin, matricarin and desacetylmatricarin. Of these, desacetylmatricarin was the major component. In addition, a highly bio-active flavonoid, quercetagetin 3,6,4'-trimethyl ether (QTE), was also isolated. This is the first report on the isolation of this component from the leaves of Artemisia tridentata subsp. tridentata. All the components were identified and isolated by TLC, high-performance liquid chromatography (HPLC) and mass spectrometry (MS) techniques. Likewise, the structure and stereochemistry of the purified components were characterized by extensive spectroscopic analysis, including 1D and 2D nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) studies. The antioxidant activities of crude extract were analyzed, and their radical-scavenging ability was determined by Ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The crude extract showed antioxidant activity of 18.99 ± 0.51 and 11.59 ± 0.38 µmol TEg-1 FW for FRAP and DPPH assay, respectively, whereas the activities of matricarin, leucodin, desacetylmatricarin and QTE were 13.22, 13.03, 14.90 and 15.02 µmol TEg-1 FW, respectively, for the FRAP assay. The antitumor properties were probed by submitting the four isolated compounds to the National Cancer Institute (NCI) for NCI-60 cancer cell line screening. Overall, the results of the one-dose assay for each SL were unremarkable. However, the flavonoid's one-dose mean graph demonstrated significant growth inhibition and lethality, which prompted an evaluation of this compound against the 60-cell panel at a five-dose assay. Tests from two separate dates indicate a lethality of approximately 75% and 98% at the log-4 concentration when tested against the melanoma cancer line SK-Mel 5. This warrants further testing and derivatization of the bioactive components from sagebrush as a potential source for anticancer properties.
Collapse
Affiliation(s)
- Rosemary Anibogwu
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA; (R.A.); (K.D.J.); (S.P.); (S.V.L.)
| | - Karl De Jesus
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA; (R.A.); (K.D.J.); (S.P.); (S.V.L.)
| | - Samjhana Pradhan
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA; (R.A.); (K.D.J.); (S.P.); (S.V.L.)
| | - Shanae Van Leuven
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA; (R.A.); (K.D.J.); (S.P.); (S.V.L.)
| | - Kavita Sharma
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA; (R.A.); (K.D.J.); (S.P.); (S.V.L.)
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Pocatello, ID 83209, USA
| |
Collapse
|
14
|
Semenescu I, Similie D, Diaconeasa Z, Danciu C. Recent Advances in the Management of Rosacea through Natural Compounds. Pharmaceuticals (Basel) 2024; 17:212. [PMID: 38399428 PMCID: PMC10892689 DOI: 10.3390/ph17020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Rosacea is a chronic skin disorder that affects more than 5% of the world's population, with the number increasing every year. Moreover, studies show that one-third of those suffering from rosacea report a degree of depression and are less compliant with treatment. Despite being the subject of prolonged studies, the pathogenesis of rosacea remains controversial and elusive. Since most medications used for the management of this pathology have side effects or simply do not yield the necessary results, many patients lose trust in the treatment and drop it altogether. Thus, dermato-cosmetic products with natural ingredients are gaining more and more notoriety in front of synthetic ones, due to the multiple benefits and the reduced number and intensity of side effects. This review is a comprehensive up-to-date report of studies that managed to prove the beneficial effects of different botanicals that may be useful in the short and long-term management of rosacea-affected skin. Based on recent preclinical and clinical studies, this review describes the mechanisms of action of a large array of phytochemicals responsible for alleviating the clinical symptomatology of the disease. This is useful in further aiding and better comprehending the way plant-based products may help in managing this complex condition, paving the way for research in this area of study.
Collapse
Affiliation(s)
- Iulia Semenescu
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.S.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Diana Similie
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.S.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.S.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
15
|
Kudamba A, Kasolo JN, Bbosa GS, Lugaajju A, Wabinga H, Kafeero HM, Ssenku JE, Alemu SO, Walusansa A, Niyonzima N, Muwonge H. Review of Herbal Medicinal Plants Used in the Management of Cancers in the East Africa Region from 2019 to 2023. Integr Cancer Ther 2024; 23:15347354241235583. [PMID: 38445504 PMCID: PMC10916491 DOI: 10.1177/15347354241235583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/06/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND In the East African region, herbal plants are essential in the treatment and control of cancer. Given the diverse ecological and cultural makeup of the regional states, it is likely that different ethnic groups will use the same or different plants for the same or different diseases. However, since 2019, this has not been compiled into a single study. PURPOSE The study aimed to compile and record the medicinal plants utilized in East Africa from April 2019 to June 2023 to treat various cancer types. MATERIALS AND METHODS The study examined 13 original studies that included ethnobotanical research conducted in East Africa. They were retrieved from several internet databases, including Google Scholar, Scopus, PubMed/Medline, Science Direct, and Research for Life. The study retrieved databases on plant families and species, plant parts used, preparation methods and routes of administration, and the country where the ethnobotanical field surveys were conducted. Graphs were produced using the GraphPad Prism 8.125 program (GraphPad Software, Inc., San Diego, CA). Tables and figures were used to present the data, which had been condensed into percentages and frequencies. RESULTS A total of 105 different plant species from 45 different plant families were identified, including Asteraceae (14), Euphorbiaceae (12), Musaceae (8), and Apocynaceae (7). Uganda registered the highest proportion (46% of the medicinal plants used). The most commonly mentioned medicinal plant species in cancer management was Prunus africana. Herbs (32%), trees and shrubs (28%), and leaves (45%) constituted the majority of herbal remedies. Most herbal remedies were prepared by boiling (decoction) and taken orally (57%). CONCLUSION East Africa is home to a wide variety of medicinal plant species that local populations and herbalists, or TMP, frequently use in the treatment of various types of cancer. The most frequently used families are Asteraceae and Euphorbiaceae, with the majority of species being found in Uganda. The most frequently utilized plant species is Prunus africana. Studies on the effectiveness of Prunus africana against other malignancies besides prostate cancer are required.
Collapse
Affiliation(s)
- Ali Kudamba
- Makerere University, Kampala, Uganda
- Islamic University in Uganda, Kampala, Uganda
- Islamic University in Uganda, Mbale, Uganda
| | | | | | | | | | | | | | | | - Abdul Walusansa
- Islamic University in Uganda, Kampala, Uganda
- Islamic University in Uganda, Mbale, Uganda
| | | | | |
Collapse
|
16
|
Neagu E, Paun G, Albu C, Apreutesei OT, Radu GL. In Vitro Assessment of the Antidiabetic and Anti-Inflammatory Potential of Artemisia absinthium, Artemisia vulgaris and Trigonella foenum-graecum Extracts Processed Using Membrane Technologies. Molecules 2023; 28:7156. [PMID: 37894635 PMCID: PMC10609499 DOI: 10.3390/molecules28207156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, there has been increased interest in the discovery of new natural herbal remedies for treating diabetes and inflammatory diseases. In this context, this work analyzed the antidiabetic and anti-inflammatory potential of Artemisia absinthium, Artemisia vulgaris and Trigonella foenum-graecum herbs, which have been studied less from this point of view. Therefore, extracts were prepared and processed using membrane technologies, micro- and ultrafiltration, to concentrate the biologically active principles. The polyphenol and flavone contents in the extracts were analyzed. The qualitative analysis of the polyphenolic compounds was performed via HPLC, identifying chlorogenic acid, rosmarinic acid and rutin in A. absinthium; chlorogenic acid, luteolin and rutin in A. vulgaris; and genistin in T. foenum-graecum. The antidiabetic activity of the extracts was analyzed by testing their ability to inhibit α-amylase and α-glucosidase, and the anti-inflammatory activity was analyzed by testing their ability to inhibit hyaluronidase and lipoxygenase. Thus, the concentrated extracts of T. foenum-graecum showed high inhibitory activity on a-amylase-IC50 = 3.22 ± 0.3 μg/mL-(compared with acarbose-IC50 = 3.5 ± 0.18 μg/mL) and high inhibitory activity on LOX-IC50 = 19.69 ± 0.52 μg/mL (compared with all standards used). The concentrated extract of A. vulgaris showed increased α-amylase inhibition activity-IC50 = 8.57 ± 2.31 μg/mL-compared to acarbose IC50 = 3.5 ± 0.18 μg/mL. The concentrated extract of A. absinthium showed pronounced LOX inhibition activity-IC50 = 19.71 ± 0.79 μg/mL-compared to ibuprofen-IC50 = 20.19 ± 1.25 μg/mL.
Collapse
Affiliation(s)
- Elena Neagu
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania; (E.N.); (G.P.); (C.A.)
| | - Gabriela Paun
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania; (E.N.); (G.P.); (C.A.)
| | - Camelia Albu
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania; (E.N.); (G.P.); (C.A.)
| | - Oana Teodora Apreutesei
- Commercial Society for Medicinal Plant Research and Processing Plantavorel, 46 Cuza Voda Street, 610019 Piatra Neamt, Romania;
| | - Gabriel Lucian Radu
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania; (E.N.); (G.P.); (C.A.)
| |
Collapse
|
17
|
Wang Y, Yang ZN, Luo SQ. An assembled bacterial community associated with Artemisia annua L. causes plant protection against a pathogenic fungus. Front Microbiol 2023; 14:1218474. [PMID: 37876787 PMCID: PMC10591200 DOI: 10.3389/fmicb.2023.1218474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/12/2023] [Indexed: 10/26/2023] Open
Abstract
The microorganisms associated with a plant influence its growth and fitness. These microorganisms accumulate on the aerial and root surfaces of plants, as well as within the plants, as endophytes, although how the interaction between microorganisms protects the plant from pathogens is still little understood. In the current study, the impact of assembled the bacterial communities against the pathogenic fungus to promote Artemisia annua L. growths was investigated. We established a model of bacterium-fungus-plant system. Eight bacterial strains and a fungal pathogen Globisporangium ultimum (Glo) were isolated from wild A. annua roots and leaves, respectively. We assembled the six-bacteria community (C6: Rhizobium pusense, Paracoccus sp., Flavobacterium sp., Brevundimonas sp., Stenotrophomonas sp., and Bacillus sp.) with inhibition, and eight-bacteria community (C8) composing of C6 plus another two bacteria (Brevibacillus nitrificans and Cupriavidus sp.) without inhibition against Glo in individually dual culture assays. Inoculation of seedlings with C8 significantly reduced impact of Glo. The growth and disease suppression of A. annua seedlings inoculated with C8 + Glo were significantly better than those of seedlings inoculated with only Glo. C8 had more inhibitory effects on Glo, and also enhanced the contents of four metabolites in seedling roots compared to Glo treatment only. Additionally, the inhibitory effects of root extracts from A. annua seedlings showed that Glo was most sensitive, the degree of eight bacteria sensitivity were various with different concentrations. Our findings suggested that the non-inhibitory bacteria played a vital role in the bacterial community composition and that some bacterial taxa were associated with disease suppression. The construction of a defined assembled bacterial community could be used as a biological fungicide, promoting biological disease control of plants.
Collapse
Affiliation(s)
- Yu Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Zhan-nan Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
| | - Shi-qiong Luo
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
18
|
Guo S, Ma J, Xing Y, Xu Y, Jin X, Yan S, Shi L, Zhang L, Shi B. Effects of Artemisia annua L. Water Extract on Growth Performance and Intestinal Related Indicators in Broilers. J Poult Sci 2023; 60:2023024. [PMID: 37711228 PMCID: PMC10495255 DOI: 10.2141/jpsa.2023024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
Artemisia annua L. is a natural herb with a variety of bioactive substances, which can play a variety of biological functions such as anti-inflammatory, antioxidant, antibacterial and antiviral, and can be used as a potential feed additive. The purpose of this study was to investigate the effects of different doses of Artemisia annua L. water extract (AAWE) on growth performance and intestinal related indicators in broilers. A total of 200 one-day-old Arbor Acre broilers were selected and randomly divided into five treatment groups, with five replicates in each group and eight birds per replicate. The control group was fed a basal diet, whereas the other groups were fed a basal diet supplemented with 0.5, 1.0, 1.5, or 2.0 g/kg AAWE. On d 21, with the increase in AAWE dose, final body weight and feed efficiency showed a quadratic increase effect, whereas feed intake showed a linear reduction effect; however, the apparent metabolic rate of dry matter, crude protein, and ether extract increased quadratically on d 42. In addition, the activity of duodenal chymotrypsin and trypsin, and of jejunal lipase quadratically increased, whereas the intestine crypt depth linearly decreased on d 42. The number of total anaerobic bacteria increased quadratically, whereas the number of Escherichia coli decreased quadratically. The number of Lactobacillus increased linearly, whereas H2S emission linearly decreased on d 21; moreover, NH3 emission (24 h) quadratically decreased on d 42. In conclusion, AAWE promoted the growth performance and intestinal related indicators of broilers.
Collapse
Affiliation(s)
- Shiwei Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Jiaxin Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Yuanyuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Yuanqing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Lulu Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Linghui Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| |
Collapse
|
19
|
Acquaviva A, Nilofar, Bouyahya A, Zengin G, Di Simone SC, Recinella L, Leone S, Brunetti L, Uba AI, Cakilcioğlu U, Polat R, Darendelioglu E, Menghini L, Ferrante C, Libero ML, Orlando G, Chiavaroli A. Chemical Characterization of Different Extracts from Artemisia annua and Their Antioxidant, Enzyme Inhibitory and Anti-Inflammatory Properties. Chem Biodivers 2023; 20:e202300547. [PMID: 37306942 DOI: 10.1002/cbdv.202300547] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
Artemisia annua L. (Asteraceae Family) is an important plant in Asia that has been used for treating different diseases, including fever due to malaria, wounds, tubercolisis, scabues, pain, convulsions, diabetes, and inflammation. In this study we aimed to evaluate the effects of different polarity extracts (hexane, dichloromethane, ethyl acetate, ethanol, ethanol/water (70 %) and water) from A. annua against the burden of inflammation and oxidative stress occurring in colon tissue exposed to LPS. In parallel, chemical composition, antiradical, and enzyme inhibition effects against α-amylase, α-glucosidase, tyrosinase, and cholinesterases were evaluated. The water extract contained the highest content of the total phenolic with 34.59 mg gallic acid equivalent (GAE)/g extract, while the hexane had the highest content of the total flavonoid (20.06 mg rutin equivalent (RE)/g extract). In antioxidant assays, the polar extracts (ethanol, ethanol/water and water) exhibited stronger radical scavenging and reducing power abilities when compared to non-polar extracts. The hexane extract showed the best AChE, tyrosinase and glucosidase inhibitory effects. All extracts revealed effective anti-inflammatory agents, as demonstrated by the blunting effects on COX-2 and TNFα gene expression. These effects seemed to be not related to the only phenolic content. However, it is worthy of interest to highlight how the higher potency against LPS-induced gene expression was shown by the water extract ; thus suggesting a potential phytotherapy application in the management of clinical symptoms related to inflammatory colon diseases, although future in vivo studies are needed to confirm such in vitro and ex vivo observations.
Collapse
Affiliation(s)
- Alessandra Acquaviva
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Nilofar
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Department of Biology, Mohammed V University in Rabat, 1014, Rabat, Morocco
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | | | - Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537, Istanbul, Türkiye
| | - Ugur Cakilcioğlu
- Munzur University, Pertek Sakine Genç Vocational School, Tunceli, Pertek, 62500, Turkey
| | - Rıdvan Polat
- Department of Landscape Architecture, Faculty of Agriculture, Bingol University, Bingöl, 12000, Turkey
| | - Ekrem Darendelioglu
- Department of Molecular Biology and Genetic, Science and Art Faculty, Bingol University, Bingöl, 12000, Turkey
| | - Luigi Menghini
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
20
|
Poorgholam P, Yaghmaei P, Noureddini M, Hajebrahimi Z. Artemisin and human endometrial-derived stem cells improve cognitive function and synaptic plasticity in a rat model of Alzheimer disease and diabetes. Metab Brain Dis 2023; 38:1925-1936. [PMID: 37043150 DOI: 10.1007/s11011-023-01200-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/10/2023] [Indexed: 04/13/2023]
Abstract
Alzheimer disease (AD) is a common form of dementia associated with loss of memory and disruption of synaptic plasticity. There is a strong correlation between the pathophysiological features of AD and diabetes, including induction of oxidative stress, inflammation, and abnormality in blood vessels. Considering the brain's limited capacity to repair damage and the potential of stem cell-derived neural cells in the repair of neurodegenerative disease, we investigated the effects of artemisinin and TSP‑1‑human endometrial-derived-derived stem cells (TSP‑1‑hEDSCs) on the cognitive function and synaptic plasticity in AD-diabetes rats. The authors previously showed that artemisinin and TSP‑1‑hEDSCs suppressed oxidative stress and inflammation in AD-diabetes rats. Thrombospondins-1 (TSPs-1) is a glycoprotein that inhibits angiogenesis. AD and diabetes were induced using streptozotocin. Synaptic plasticity and learning and memory function were studied using the Morris water maze and electrophysiological test, respectively. Streptozotocin increased traveled swimming distance and escape latency in the morris water maze test, decreased the percent time spent in the target quadrant, inhibited the long-term potentiation (LTP), and increased the blood glucose levels. Simultaneous or separate administration of artemisinin and TSP‑1‑hEDSCs decreased the blood levels of glucose and improved cognitive tasks and synaptic plasticity by considerably reducing traveled swimming distance and escape latency, increasing the percent time spent in the target quadrant, and retrieval of the LTP; therefore, they could be utilized as an adjunct treatment for AD treatment. These results may be due to a decrease in oxidative stress and inflammation.
Collapse
Affiliation(s)
- Parvin Poorgholam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mehdi Noureddini
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Hajebrahimi
- A&S Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| |
Collapse
|
21
|
Osmanlıoğlu Ş, Arslan M, Dağ RO, Yığman Z, Ceyhan MŞ, Er F, Kavutçu M. Artemisinin reduces acute ovarian ischemia-reperfusion injury in rats. Reprod Toxicol 2023; 119:108417. [PMID: 37263547 DOI: 10.1016/j.reprotox.2023.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
Artemisinin (ARS) is well known as an effective agent in the treatment of malaria through the rapid elimination of Plasmodium falciparum parasites. This study aims to investigate the effect of ARS in treating adnexal torsion, one of the most common gynecological surgical emergencies. ARS was administered intraperitoneally once 30 min before unilateral ovarian torsion in two different doses (10 mg/kg vs. 50 mg/kg). Torsion was maintained for 3 h and then held in the detorted state for 3 h. Bilateral adnexectomy was performed to measure antioxidant enzyme activities and oxidant levels on the ipsilateral ovary and to make histopathological and immunohistochemical analyses on the contralateral ovary. Ischemia-reperfusion (I/R) injury dramatically upregulated the activities of CAT, GST, and MDA levels in the ipsilateral ovary, which were all downregulated by ARS treatment. A significant increase in follicular cell degeneration, congestion, and edema in the contralateral ovary was seen in the I/R group, which was significantly reduced with ARS treatment. Furthermore, I/R injury resulted in a significant increase in apoptosis as shown by the increased levels of BAX and CASP-3, and decreased levels of BCL-2 whereas ARS significantly reduced the impact of the injury. Our data, based on a rat I/R injury model, show that both ipsilateral and contralateral ovaries are protected with ARS pretreatment, and 50 mg/kg ARS treatment demonstrates to be more effective than the 10 mg/kg ARS.
Collapse
Affiliation(s)
- Şeyma Osmanlıoğlu
- Ankara Medipol University Faculty of Medicine, Department of Gynaecology and Obstetrics, Ankara, Turkey.
| | - Mustafa Arslan
- Gazi University Faculty of Medicine, Department of Anesthesiology and Reanimation, Ankara, Turkey
| | | | - Zeynep Yığman
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey; Gazi University Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| | - Müşerref Şeyma Ceyhan
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Fatma Er
- Gazi University Faculty of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| | - Mustafa Kavutçu
- Gazi University Faculty of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| |
Collapse
|
22
|
Ahmed SA, Eltamany EE, Nafie MS, Elhady SS, Karanis P, Mokhtar AB. Anti- Cryptosporidium parvum activity of Artemisia judaica L. and its fractions: in vitro and in vivo assays. Front Microbiol 2023; 14:1193810. [PMID: 37476671 PMCID: PMC10354666 DOI: 10.3389/fmicb.2023.1193810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
Background This study investigates the toxic activity of Artemisia judaica ethanolic extract (ArEx) as well as its phenolic fraction (ArPh), and terpenoid fraction (ArT) against Cryptosporidium parvum (C. parvum) oocysts. Methods Over a 4 months period, estimation of the total phenolic (TPC), total flavonoids (TFC), and total terpenoids contents (TTC) in ArEx; investigation of the in vitro antioxidant activity of ArEx, ArPh, and ArT; evaluation of ArEx, ArPh, and ArT toxic activity against C. parvum oocysts using MTT assay; parasitological analysis on ArPh-treated C. parvum oocysts and comet assay were performed both in vitro and in vivo (infectivity). Results The ArEx TPC, TFC, and TTC was 52.6 ± 3.1 mgGAE/g, 64.5 ± 3.1 mg QE/g, and 9.5 ± 1.1 mg Linol/g, respectively. Regarding the phytochemical in vitro antioxidant activity, the ArPh exhibited the highest antioxidant activity compared to the ArEx and ArT. The ArPh showed promising free radical scavenging activity of DPPH and ABTS•+ with IC50 values of 47.27 ± 1.86 μg/mL and 66.89 ± 1.94 μg/mL, respectively. Moreover, the FRAP of ArPh was 2.97 ± 0.65 mMol Fe+2/g while its TAC was 46.23 ± 3.15 mg GAE/g. The ArPh demonstrated toxic activity against C. parvum oocysts with a potent IC50 value of 31.6 μg/mL compared to ArT (promising) and ArEx (non-effective). ArPh parasitological analysis demonstrated MIC90 at 1000 μg/ml and effective oocysts destruction on count and morphology. ArPh fragmented oocysts nuclear DNA in comet assay. Beginning at 200 μg/mL, ArPh-treated oocysts did not infect mice. Conclusion To combat C. parvum infection, the phenolic fraction of A. judaica L. shows promise as an adjuvant therapy or as a source of potentially useful lead structures for drug discovery.
Collapse
Affiliation(s)
- Shahira A. Ahmed
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed S. Nafie
- Department of Chemistry (Biochemistry Program), Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, Cologne, Germany
- Department of Basic and Clinical SciencesUniversity of Nicosia Medical School, Nicosia, Cyprus
| | - Amira B. Mokhtar
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
23
|
Maciuk A, Mazier D, Duval R. Future antimalarials from Artemisia? A rationale for natural product mining against drug-refractory Plasmodium stages. Nat Prod Rep 2023; 40:1130-1144. [PMID: 37021639 DOI: 10.1039/d3np00001j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Covering: up to 2023Infusions of the plants Artemisia annua and A. afra are gaining broad popularity to prevent or treat malaria. There is an urgent need to address this controversial public health question by providing solid scientific evidence in relation to these uses. Infusions of either species were shown to inhibit the asexual blood stages, the liver stages including the hypnozoites, but also the sexual stages, the gametocytes, of Plasmodium parasites. Elimination of hypnozoites and sterilization of mature gametocytes remain pivotal elements of the radical cure of P. vivax, and the blockage of P. vivax and P. falciparum transmission, respectively. Drugs active against these stages are restricted to the 8-aminoquinolines primaquine and tafenoquine, a paucity worsened by their double dependence on the host genetic to elicit clinical activity without severe toxicity. Besides artemisinin, these Artemisia spp. contain many natural products effective against Plasmodium asexual blood stages, but their activity against hypnozoites and gametocytes was never investigated. In the context of important therapeutic issues, we provide a review addressing (i) the role of artemisinin in the bioactivity of these Artemisia infusions against specific parasite stages, i.e., alone or in association with other phytochemicals; (ii) the mechanisms of action and biological targets in Plasmodium of ca. 60 infusion-specific Artemisia phytochemicals, with an emphasis on drug-refractory parasite stages (i.e., hypnozoites and gametocytes). Our objective is to guide the strategic prospecting of antiplasmodial natural products from these Artemisia spp., paving the way toward novel antimalarial "hit" compounds either naturally occurring or Artemisia-inspired.
Collapse
Affiliation(s)
| | - Dominique Mazier
- CIMI, CNRS, Inserm, Faculté de Médecine Sorbonne Université, 75013 Paris, France
| | - Romain Duval
- MERIT, IRD, Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
24
|
Lantzouraki DZ, Amerikanou C, Karavoltsos S, Kafourou V, Sakellari A, Tagkouli D, Zoumpoulakis P, Makris DP, Kalogeropoulos N, Kaliora AC. Artemisia arborescens and Artemisia inculta from Crete; Secondary Metabolites, Trace Metals and In Vitro Antioxidant Activities. Life (Basel) 2023; 13:1416. [PMID: 37374198 DOI: 10.3390/life13061416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Currently, the use of medicinal plants has increased. Artemisia species have been used in several applications, including medicinal use and uses in cosmetics, foods and beverages. Artemisia arborescens L. and Artemisia inculta are part of the Mediterranean diet in the form of aqueous infusions. Herein, we aimed to compare the secondary metabolites of the decoctions and two different extracts (methanolic and aqueous-glycerolic) of these two species, as well as their antioxidant capacity and trace metal levels. METHODS Total phenolic, total flavonoid, total terpenes, total hydroxycinnamate, total flavonol, total anthocyanin contents and antioxidant/antiradical activity were determined, and GC/MS analysis was applied to identify and quantify phenolics and terpenoids. Trace metals were quantified with ICP-MS. RESULTS Aqueous-glycerolic extracts demonstrated higher levels of total secondary metabolites, greater antioxidant potential and higher terpenoid levels than decoctions and methanolic extracts. Subsequently, the aqueous-glycerolic extract of a particularly high phenolic content was further analyzed applying targeted LC-MS/MS as the most appropriate analytic tool for the determination of the phenolic profile. Overall, twenty-two metabolites were identified. The potential contribution of infusions consumption to metal intake was additionally evaluated, and did not exceed the recommended daily intake. CONCLUSIONS Our results support the use of these two species in several food, cosmetic or pharmaceutical applications.
Collapse
Affiliation(s)
- Dimitra Z Lantzouraki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave., 17676 Athens, Greece
| | - Sotirios Karavoltsos
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Vasiliki Kafourou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave., 17676 Athens, Greece
| | - Aikaterini Sakellari
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dimitra Tagkouli
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave., 17676 Athens, Greece
| | - Panagiotis Zoumpoulakis
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Dimitris P Makris
- Department of Food Science & Nutrition, School of Agricultural Sciences, University of Thessaly, N. Temponera Street, 43100 Karditsa, Greece
| | - Nick Kalogeropoulos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave., 17676 Athens, Greece
| | - Andriana C Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave., 17676 Athens, Greece
| |
Collapse
|
25
|
El-Demerdash AS, Mohamady SN, Megahed HM, Ali NM. Evaluation of gene expression related to immunity, apoptosis, and gut integrity that underlies Artemisia's therapeutic effects in necrotic enteritis-challenged broilers. 3 Biotech 2023; 13:181. [PMID: 37193331 PMCID: PMC10182211 DOI: 10.1007/s13205-023-03560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/15/2023] [Indexed: 05/18/2023] Open
Abstract
The experiment was designed to validate the effect of Artemisia annua and its novel commercial product (Navy Cox) on the control of necrotic enteritis (NE). A total of one hundred forty broiler chicks were randomly distributed into seven equal groups: G1, control negative; G2, infected with Eimeria (day 15) and C. perfringens (day 19); G3, treated with Navy Cox before challenge; G4, treated with Artemisia before challenge; G5, infected and then treated with Navy Cox; G6, infected and then treated with Artemisia; and G7, infected and treated with amoxicillin. Chicken response and immune organ indicants were recorded during the observation period (4 weeks). Whole blood and serum samples were collected for immunological evaluation, and tissue samples were collected for bacterial counts and estimation of mRNA expression of genes encoding apoptosis, tight junctions, and immunity. Chickens in the infected group revealed a significant decrease in RBCS, HB, PCV% total protein, Lysozyme, and nitric oxide activity in addition to leukocytosis, heterophilia, monocytosis, increase in cortisol, interleukins, and malondialdehyde. Treated groups displayed lower lesions, colony-forming units, and no mortality. Concurrently, a complete blood profile, antioxidants, and immune markers showed significant improvements. The mRNA expression levels of CASP, CLDN-1, OCLN, TJPI, MUC2, and cell-mediated immune response genes (p < 0.0001) were significantly alleviated in the treated groups compared with the challenged counterpart. This is the first-ever report on the efficacy valuation of Navy Cox compared to standard antibiotic treatment of clostridial NE. Navy Cox proved remarkable capability to minimize C. perfringens colonization in broiler intestines, modulation of mucus production, gut health integrity, immune organs, and immune response when used as a prophylactic agent in this form or naturally as Artemisia.
Collapse
Affiliation(s)
- Azza S. El-Demerdash
- Microbiology Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Sahar N. Mohamady
- Clinical Pathology Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Hend M. Megahed
- Biochemistry Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Naglaa M. Ali
- Poultry Disease Department, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Assuit, Egypt
| |
Collapse
|
26
|
Djeungoue Petga MA, Kouam AF, Chougouo Kengne RD, Galani Tietcheu BR, Louokdom JS, Ngantchouko Ngalemo CB, Chuisseu Djamen PD, Moundipa PF. Comparative assessment of hepatoprotective properties of Artesunate and flavonoids from Artemisia annua on acetaminophen and carbon tetrachloride-induced cytotoxicity in primary mice hepatocytes. Metabol Open 2023; 18:100241. [PMID: 37089824 PMCID: PMC10114220 DOI: 10.1016/j.metop.2023.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Background Artesunate (ART) is a semi-synthetized molecule from Artemisinin, an active compound isolated from the medicinal plant Artemisia annua, widely used for the treatment of malaria. Previous studies reported that ART may exert a dual effect on the liver. Accordingly, this study investigated the potential protective action of ART against Acetaminophen (APAP) and Carbon tetrachloride (CCl4)-induced hepatotoxicity in primary mice hepatocytes, in comparison to that of flavonoid extracted from A. annua (FAA). In addition, the antioxidant properties of FAA were also assessed. Methods The antioxidant activities of FAA and Ascorbic acid (ASC) (0.01-100 μg/mL) were assessed through inhibition of lipid peroxidation, reduction of ferric and phosphomolydenum, and hydroxyl and DPPH radicals scavenging assays. The hepatoprotective effects of FAA and ART (0.1-100 μg/mL) were evaluated against APAP (11 mM) or CCl4 (4 mM) induced oxidative damage in primary mouse hepatocytes. Biochemical parameters associated with hepatotoxicity assessed include cell viability, cell membrane integrity, cellular glutathione, and antioxidant enzyme activities. Results The obtained finding revealed FAA displayed a remarkable antioxidant activities as evidenced by the low IC50/EC50 values (3.85-19.32 μg/mL), comparable to that of ASC (3.26-18.04 μg/mL). When tested at 10 μg/mL, both FAA and ART significantly (p˂0.05) preserved cell viability, inhibited alanine aminotransferase leakage and lipid membrane peroxidation, and restored superoxide dismutase and catalase activities and glutathione content induced by APAP or CCl4 in a similar way as Silymarin. However, ART showed a significant (p˂0.05) cytotoxic effect on hepatocytes at 100 and 1000 μg/mL and did not confer obvious protection at 100 μg/mL. Conclusion Overall, our data demonstrated that ART harms mice hepatocytes at high concentration while conferring relative protection against APAP and CCl4-hepatotoxicity at low concentration. In contrast, FAA effectively protects liver cells without cytotoxicity effect, event at 100 μg/mL. Accordingly, ART should be given to the patient only under a medical prescription.
Collapse
Affiliation(s)
| | - Arnaud Fondjo Kouam
- Medical Research and Applied Biochemistry Laboratory, Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, PO Box 63, Buea, Cameroon
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde 1, Cameroon
- Corresponding author. Medical Research and Applied Biochemistry Laboratory, Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, PO Box 63, Buea, Cameroon.
| | | | - Boris Rosnay Galani Tietcheu
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde 1, Cameroon
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
| | - Josué Simo Louokdom
- Higher Institute of Health Sciences, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon
| | | | - Pascal Dieudonné Chuisseu Djamen
- Higher Institute of Health Sciences, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde 1, Cameroon
- Corresponding author. Higher Institute of Health Sciences, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon.
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde 1, Cameroon
| |
Collapse
|
27
|
Iordache AM, Nechita C, Podea P, Șuvar NS, Mesaroṣ C, Voica C, Bleiziffer R, Culea M. Comparative Amino Acid Profile and Antioxidant Activity in Sixteen Plant Extracts from Transylvania, Romania. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112183. [PMID: 37299164 DOI: 10.3390/plants12112183] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of supporting this market. This study aimed to evaluate the in vitro amino acid contents and antioxidant activities of ethanolic extracts from sixteen plants. Our results show high accumulated amino acid contents, mainly of proline, glutamic, and aspartic acid. The most consistent values of essential amino acids were isolated from T. officinale, U. dioica, C. majus, A. annua, and M. spicata. The results of the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging assay indicate that R. officinalis was the most potent antioxidant, followed by four other extracts (in decreasing order): T. serpyllum, C. monogyna, S. officinalis, and M. koenigii. The network and principal component analyses found four natural groupings between samples based on DPPH free radical scavenging activity content. Each plant extracts' antioxidant action was discussed based on similar results found in the literature, and a lower capacity was observed for most species. An overall ranking of the analyzed plant species can be accomplished due to the range of experimental methods. The literature review revealed that these natural antioxidants represent the best side-effect-free alternatives to synthetic additives, especially in the food processing industry.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Dracea" Calea Bucovinei, 73 Bis, 725100 Campulung Moldovenesc, Romania
| | - Paula Podea
- Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Niculina Sonia Șuvar
- National Institute for Research and Development in Mine Safety and Protection to Explosion, 32-34 General Vasile Milea Str., 332047 Petroșani, Romania
| | - Cornelia Mesaroṣ
- Department of Biophysics, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 38 Gh. Marinescu Str., 540139 Târgu Mureş, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ramona Bleiziffer
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Monica Culea
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
28
|
Artemleucolides A-L, eudesmane-type sesquiterpenoids from Artemisia leucophylla and their antihepatoma cytotoxicity. Fitoterapia 2023; 165:105399. [PMID: 36572116 DOI: 10.1016/j.fitote.2022.105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Twelve undescribed and 13 known eudesmane-type sesquiterpenoids were obtained from Artemisia leucophylla, and structurally elucidated based on comprehensive analyses of spectral data, including HRESIMS, IR, 1D and 2D NMR, and ECD calculation. The absolute configuration of compound 1 was determined by a single X-ray single crystal diffraction. Chemically, compounds 1-5 featured unprecedented 1,2-seco-1-nor-eudesmane-type skeleton with a cis-fused 6/5 bicyclic system. Antihepatoma evaluation against three human hepatoma cell lines (HepG2, Huh7, and SK-Hep-1) for all compounds demonstrated that compound 7 displayed the most active cytotoxicity with IC50 values of 35.1, 35.0, and 32.7 μΜ.
Collapse
|
29
|
Akbari M, Morad R, Maaza M. Effect of silver nanoparticle size on interaction with artemisinin: First principle study. RESULTS IN SURFACES AND INTERFACES 2023. [DOI: 10.1016/j.rsurfi.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
30
|
Hamza A, Ijaz MU, Anwar H. Rhamnetin alleviates polystyrene microplastics-induced testicular damage by restoring biochemical, steroidogenic, hormonal, apoptotic, inflammatory, spermatogenic and histological profile in male albino rats. Hum Exp Toxicol 2023; 42:9603271231173378. [PMID: 37122069 DOI: 10.1177/09603271231173378] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The current research was performed to evaluate the ameliorative effects of Rhamnetin (RHM) on polystyrene microplastics (PS-MPs)-instigated testicular dysfunction in male albino rats. 48 albino rats were distributed in four groups, i.e., control, PS-MPs treated, PS-MPs + RHM co-treated and RHM only supplemented group. PS-MPs exposure considerably reduced anti-oxidant enzymes i.e., catalase (CAT), glutathione peroxidase (GSR), superoxide dismutase (SOD) and glutathione reductase (GPx) activities. Whereas, reactive oxygen species (ROS) level along with malondialdehyde (MDA) was considerably escalated in PS-MPs treated rats as well as a potential decline was observed in sperm progressive motility. Additionally, a substantial upsurge was noticed in the count of dead sperms, deformity in the tail, mid-piece and head of sperms in PS-MPs treated rats. PS-MPs exposure also decreased steroidogenic enzymes, 17β-hydroxysteroid dehydrogenase (17β-HSD), steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) expressions. Moreover, the levels of inflammatory indices i.e., Interleukin-6 (IL-6), Nuclear factor kappa-B (NF-κB), Interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) activity were also increased in PS-MPs administrated group. Besides it increased the expression of apoptotic markers (Bax and caspase-3) expression. Whereas, anti-apoptotic marker i.e., Bcl-2 expression was reduced. Moreover, luteinizing hormone (LH), follicle-stimulating hormone (FSH) as well as plasma testosterone levels were also decreased. PS-MPs exposure also led to a substantial histopathological damage in testicular tissues. However, RHM supplementation potentially reduced the damaging effects of PS-MPs in the reproductive tissues of male albino rats. Thus, the current study revealed, RHM possesses potential to prevent PS-MPs-induced testicular damage due to its anti-oxidant anti-apoptotic, anti-inflammatory as well as androgenic properties.
Collapse
Affiliation(s)
- Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
31
|
Varela ELP, Gomes ARQ, da Silva Barbosa dos Santos A, de Carvalho EP, Vale VV, Percário S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022; 14:5303. [PMID: 36558462 PMCID: PMC9787606 DOI: 10.3390/nu14245303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Malaria is a disease that affects thousands of people around the world every year. Its pathogenesis is associated with the production of reactive oxygen and nitrogen species (RONS) and lower levels of micronutrients and antioxidants. Patients under drug treatment have high levels of oxidative stress biomarkers in the body tissues, which limits the use of these drugs. Therefore, several studies have suggested that RONS inhibition may represent an adjuvant therapeutic strategy in the treatment of these patients by increasing the antioxidant capacity of the host. In this sense, supplementation with antioxidant compounds such as zinc, selenium, and vitamins A, C, and E has been suggested as part of the treatment. Among dietary antioxidants, lycopene is the most powerful antioxidant among the main carotenoids. This review aimed to describe the main mechanisms inducing oxidative stress during malaria, highlighting the production of RONS as a defense mechanism against the infection induced by the ischemia-reperfusion syndrome, the metabolism of the parasite, and the metabolism of antimalarial drugs. Furthermore, the effects of lycopene on several diseases in which oxidative stress is implicated as a cause are outlined, providing information about its mechanism of action, and providing an evidence-based justification for its supplementation in malaria.
Collapse
Affiliation(s)
- Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Antônio Rafael Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Aline da Silva Barbosa dos Santos
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
32
|
Effect of Foliar Sodium Selenate and Nano Selenium Supply on Biochemical Characteristics, Essential Oil Accumulation and Mineral Composition of Artemisia annua L. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238246. [PMID: 36500339 PMCID: PMC9737290 DOI: 10.3390/molecules27238246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Selenium (Se) biofortification of aromatic plants is a promising strategy to produce valuable functional food with high biological activity and enhanced essential oil yield. The experiment carried out in 2021 and 2022 on A. annua treated with sodium selenate or nano-Se sprayed on foliar apparatus demonstrated a significant increase in photosynthetic pigments, pectin, waxes, macro- and microelements and a decrease in malonic dialdehyde (MDA) accumulation. Contrary to literature reports, neither selenate nor nano-Se showed a beneficial effect on essential oil accumulation; the oil yield did not differ between the selenate treated and control plants but was halved by the nano-Se application. Extremely high variations in the number of essential oil components, as well as in the eucalyptol, artemisia ketone, camphor and germacrene D ratio in the 2021 and 2022 experiments were recorded. The analysis of the 2016-2022 data for oil yield and composition in the control plants revealed a direct correlation between the number of components and of solar flares, and a negative correlation between oil yield and the percentage of spotless days. Both control plants and plants fortified with selenium showed higher levels of germacrene D and lower levels of artemisia ketone in 2022, characterized by more remarkable solar activity compared to 2021. Nano-Se supply resulted in the highest percentage of germacrene D accumulation. The results of the present research highlight the importance of the solar activity effect on the essential oil yield and quality of aromatic plants.
Collapse
|
33
|
Coroian M, Pop LM, Popa V, Friss Z, Oprea O, Kalmár Z, Pintea A, Borșan SD, Mircean V, Lobonțiu I, Militaru D, Vârban R, Györke A. Efficacy of Artemisia annua against Coccidiosis in Broiler Chickens: A Field Trial. Microorganisms 2022; 10:microorganisms10112277. [PMID: 36422347 PMCID: PMC9697319 DOI: 10.3390/microorganisms10112277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
(1) Background: Various studies on artemisinin and its derivatives have shown that Artemisia annua may be of therapeutic interest for different diseases, including chicken coccidiosis. This study aimed to evaluate the effects of Artemisia annua on farm-reared broiler chickens by analyzing both the anticoccidial efficacy and its effect on the intestinal microbiota of poultry. (2) Methods: The experiment was performed within three houses on a broiler chicken farm located in Romania. House 1 was the experimental group and received a diet with an addition of A. annua. Houses 2 and 4 were the control groups and received anticoccidials. The prophylactic efficacy of A. annua against coccidiosis was evaluated by recording the weight gain, feed conversion rate, number of oocysts per gram of feces, lesion score, and mortality rate. (3) Results: The chickens fed with A. annua showed a decreasing trend in the number of oocysts per gram of faeces, and their lesion score was 80% lower than in the control group. The weight gains of the chickens treated with A. annua was lower, whilst the feed conversion rate was better than in controls. (4) Conclusions: Artemisia annua showed promising results in the prophylaxis of coccidiosis. Overall, the broiler chickens that received A. annua presented promising zootechnical performances and medical data related to coccidiosis and gut microbiota.
Collapse
Affiliation(s)
- Mircea Coroian
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (M.C.); (A.G.)
| | - Loredana Maria Pop
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Virgilia Popa
- Pasteur Institute, Giulesti, 060269 Bucharest, Romania
| | - Zsuzsa Friss
- The Research and Development Station for Cattle Breeding Târgu Mures, 547530 Sîngeorgiu de Mures, Romania
| | | | - Zsuzsa Kalmár
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Department of Microbiology, Immunology and Epidemiology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, 1078 Budapest, Hungary
| | - Adela Pintea
- Department of Chemistry, Biochemistry and Molecular Biology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Silvia-Diana Borșan
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Viorica Mircean
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Iustina Lobonțiu
- The Research and Development Station for Cattle Breeding Târgu Mures, 547530 Sîngeorgiu de Mures, Romania
| | - Dumitru Militaru
- Pasteur Institute, Giulesti, 060269 Bucharest, Romania
- Department of Parasitology, Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- Academy of Agricultural and Forestry Sciences Gheorghe Ionescu-Sisești, 011464 Bucharest, Romania
| | - Rodica Vârban
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Adriana Györke
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (M.C.); (A.G.)
| |
Collapse
|
34
|
Ibraheem O, Oyewole TA, Adedara A, Abolaji AO, Ogundipe OM, Akinyelu J, Eze CT, Albogami S, Alotaibi SS, Adeyemi OS, Batiha GES, Alorabi M, De Waard M. Ackee ( Blighia sapida K.D. Koenig) Leaves and Arils Methanolic Extracts Ameliorate CdCl 2-Induced Oxidative Stress Biomarkers in Drosophila melanogaster. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3235031. [PMID: 36425055 PMCID: PMC9679428 DOI: 10.1155/2022/3235031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/19/2022] [Accepted: 10/15/2022] [Indexed: 10/31/2024]
Abstract
Different ethnomedical benefits have been documented on different parts of Ackee (Blighia sapida); however, their roles in ameliorating oxidative damages are not well established. CdCl2 inhibitory effects on some oxidative-stress biomarkers and ameliorative potentials of Ackee leaves (AL) and arils (AS) methanolic extracts were studied using Drosophila melanogaster as a model. One to 3-day-old D. melanogaster flies were orally exposed to different concentrations of CdCl2 in their diet for 7 days. The fly's survival profile and negative geotaxis assays were subsequently analysed. Methanolic extracts of AL and AS treatments showed negative geotaxis behaviour, and extracts were able to ameliorate the effect of Cd2+ on catalase and GST activities and increase total thiol and GSH levels, while it reduced the H2O2 generation (p ≤ 0.05) when compared to the control. Furthermore, Cd2+ exhibited noncompetitive and uncompetitive enzyme inhibition on catalase and GST activities, respectively, which may have resulted in the formation of Enzyme-substrate-Cd2+ transition complexes, thus inhibiting the conversion of substrate to product. This study, thus, suggests that the Cd2+ mechanism of toxicity was associated with oxidative damage, as evidenced by the alteration in the oxidative stress-antioxidant imbalance, and that the AL and AS extracts possess essential phytochemicals that could alleviate possibly deleterious oxidative damage effects of environmental pollutants such as CdCl2. Thus, Ackee plant parts possess essential phytonutrients which could serve as valuable resources in heavy metal toxicity management.
Collapse
Affiliation(s)
- Omodele Ibraheem
- Plants for Biotechnological Resources Research Group, Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye, Ekiti, Nigeria
| | - Tosin A. Oyewole
- Plants for Biotechnological Resources Research Group, Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye, Ekiti, Nigeria
| | - Adeola Adedara
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Oyo, Nigeria
| | - Amos O. Abolaji
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Oyo, Nigeria
| | - Oluwatobiloba M. Ogundipe
- Plants for Biotechnological Resources Research Group, Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye, Ekiti, Nigeria
| | - Jude Akinyelu
- Nanobiochemistry Research Group, Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye, Ekiti, Nigeria
| | - Chukwuebuka T. Eze
- Environmental Toxicology Research Group, Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye, Ekiti, Nigeria
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Oluyomi S. Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB, Omu-Aran, 1001, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, El Beheira, Egypt
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egreve, France
- L'Institute du thorax, Inserm, Cnrs, Univ Nantes, F-44007 Nantes, France
- Universite de Nice Sophia-Antipolis, LabEx Ion Channels, Science and Therapeutics, F-06560, Valbonne, France
| |
Collapse
|
35
|
Singh AK, Kim JY, Lee YS. Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules 2022; 27:7513. [PMID: 36364340 PMCID: PMC9655785 DOI: 10.3390/molecules27217513] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/01/2023] Open
Abstract
In recent years, changing lifestyles and food consumption patterns have driven demands for high-quality, ready-to-eat food products that are fresh, clean, minimally processed, and have extended shelf lives. This demand sparked research into the creation of novel tools and ingredients for modern packaging systems. The use of phenolic-compound-based active-packaging and edible films/coatings with antimicrobial and antioxidant activities is an innovative approach that has gained widespread attention worldwide. As phenolic compounds are natural bioactive molecules that are present in a wide range of foods, such as fruits, vegetables, herbs, oils, spices, tea, chocolate, and wine, as well as agricultural waste and industrial byproducts, their utilization in the development of packaging materials can lead to improvements in the oxidative status and antimicrobial properties of food products. This paper reviews recent trends in the use of phenolic compounds as potential ingredients in food packaging, particularly for the development of phenolic compounds-based active packaging and edible films. Moreover, the applications and modes-of-action of phenolic compounds as well as their advantages, limitations, and challenges are discussed to highlight their novelty and efficacy in enhancing the quality and shelf life of food products.
Collapse
|
36
|
Kemal T, Feyisa K, Bisrat D, Asres K. In Vivo Antimalarial Activity of the Leaf Extract of Osyris quadripartita Salzm. ex Decne and Its Major Compound (-) Catechin. J Trop Med 2022; 2022:3391216. [PMID: 36249737 PMCID: PMC9568338 DOI: 10.1155/2022/3391216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Background The leaves of Osyris quadripartita Salzm. ex Decne, endemic to Ethiopia, are traditionally used for the treatment of malaria. Previous phytochemical investigations of Osyris species showed the presence of flavonoids, anthracene derivatives, and sesquiterpene lactones as the main constituents. The aim of the present study was to investigate the antimalarial activity of the leaf extract of O. quadripartita and its isolated constituent against mice infected with Plasmodium berghei. Methods Isolation of a compound was carried out on silica gel column chromatography of the extract eluting with gradient mixtures of CHCl3/MeOH. Structural elucidation of the isolated compound was achieved by ESI-MS and 1D-and 2D-NMR spectral data. Peter's 4-day suppressive test method was used to determine the antimalarial activity of the test substances. Level of parasitemia, survival time, and body weight change were used to determine the antimalarial activity of the test substances. Results (-) Catechin was isolated and characterized from the hydroalcoholic extract of O. quadripartita. At a concentration of 400 mg/kg, both the extract and (-) catechin exhibited antimalarial activity with the highest chemosuppression values of 70.61% and 64.26%, respectively. Conclusion These findings indicate that O. quadripartita is endowed with genuine antimalarial activity attributed in part, to its (-) catechin content. Hence, the present study may validate the traditional use of the plant for the treatment of malaria.
Collapse
Affiliation(s)
- Teyiba Kemal
- Department of Pharmacy, College of Health and Medical Science, Haramaya University, Harar, Ethiopia
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kebede Feyisa
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Daniel Bisrat
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kaleab Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
37
|
The Development and Application of a HPTLC-Derived Database for the Identification of Phenolics in Honey. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196651. [PMID: 36235188 PMCID: PMC9572973 DOI: 10.3390/molecules27196651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
This study reports on the development and validation of a HPTLC-derived database to identify phenolic compounds in honey. Two database sets are developed to contain the profiles of 107 standard compounds. Rich data in the form of Rf values, colour hues (H°) at 254 nm and 366 nm, at 366 nm after derivatising with natural product PEG reagent, and at 366 nm and white light after derivatising with vanillin–sulfuric acid reagent, λ max and λ min values in their fluorescence and λ max values in their UV-Vis spectra as well as λ max values in their fluorescence and UV-Vis spectra after derivatisation are used as filtering parameters to identify potential matches in a honey sample. A spectral overlay system is also developed to confirm these matches. The adopted filtering approach is used to validate the database application using positive and negative controls and also by comparing matches with those identified via HPLC-DAD. Manuka honey is used as the test honey and leptosperine, mandelic acid, kojic acid, lepteridine, gallic acid, epigallocatechin gallate, 2,3,4-trihydroxybenzoic acid, o-anisic acid and methyl syringate are identified in the honey using the HPTLC-derived database.
Collapse
|
38
|
Ekiert H, Klimek-Szczykutowicz M, Rzepiela A, Klin P, Szopa A. Artemisia Species with High Biological Values as a Potential Source of Medicinal and Cosmetic Raw Materials. Molecules 2022; 27:6427. [PMID: 36234965 PMCID: PMC9571683 DOI: 10.3390/molecules27196427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 01/19/2023] Open
Abstract
Artemisia species play a vital role in traditional and contemporary medicine. Among them, Artemisia abrotanum, Artemisia absinthium, Artemisia annua, Artemisia dracunculus, and Artemisia vulgaris are the most popular. The chemical composition and bioactivity of these species have been extensively studied. Studies on these species have confirmed their traditional applications and documented new pharmacological directions and their valuable and potential applications in cosmetology. Artemisia ssp. primarily contain sesquiterpenoid lactones, coumarins, flavonoids, and phenolic acids. Essential oils obtained from these species are of great biological importance. Extracts from Artemisia ssp. have been scientifically proven to exhibit, among others, hepatoprotective, neuroprotective, antidepressant, cytotoxic, and digestion-stimulating activities. In addition, their application in cosmetic products is currently the subject of several studies. Essential oils or extracts from different parts of Artemisia ssp. have been characterized by antibacterial, antifungal, and antioxidant activities. Products with Artemisia extracts, essential oils, or individual compounds can be used on skin, hair, and nails. Artemisia products are also used as ingredients in skincare cosmetics, such as creams, shampoos, essences, serums, masks, lotions, and tonics. This review focuses especially on elucidating the importance of the most popular/important species of the Artemisia genus in the cosmetic industry.
Collapse
Affiliation(s)
- Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marta Klimek-Szczykutowicz
- Department of Dermatology, Cosmetology and Aesthetic Surgery, The Institute of Medical Sciences, Medical College, Jan Kochanowski University, IX Wieków Kielc 19a, 25-516 Kielce, Poland
| | - Agnieszka Rzepiela
- Museum of Pharmacy, Medical College, Jagiellonian University, Floriańska 25, 31-019 Kraków, Poland
| | - Paweł Klin
- US Army Health Clinic, Urlas Kaserne, Building 8156, 91522 Ansbach, Germany
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
39
|
Salaroli R, Andreani G, Bernardini C, Zannoni A, La Mantia D, Protti M, Forni M, Mercolini L, Isani G. Anticancer activity of an Artemisia annua L. hydroalcoholic extract on canine osteosarcoma cell lines. Res Vet Sci 2022; 152:476-484. [PMID: 36156377 DOI: 10.1016/j.rvsc.2022.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Since ancient times, Artemisia annua (A. annua) has been used as a medicinal plant in Traditional Chinese Medicine. In addition, recent studies have investigated the cytotoxic effects of A. annua extracts towards cancer cells. The leading aim of the present research is to evaluate the cytotoxic effects of an hydroalcoholic extract of A. annua on two canine osteosarcoma (OSA) cell lines, OSCA-8 and OSCA-40, focusing on the possible involvement of ferroptosis. The quantitative determination of artemisinin concentration in the extract, culture medium and OSA cells was carried out through the use of an instrumental analytical method based on liquid chromatography coupled with spectrophotometric detection and tandem mass spectrometry (LC-DAD-MS/MS). OSCA-8 and OSCA-40 were exposed to different dilutions of the extract for the EC50 calculation then the uptake of artemisinin by the cells, the effects on the cell cycle, the intracellular iron level, the cellular morphology and the lipid oxidation state were evaluated. A concentration of artemisinin of 63.8 ± 3.4 μg/mL was detected in the extract. A dose-dependent cytotoxic effect was evidenced. In OSCA-40 alterations of the cell cycle and a significantly higher intracellular iron content were observed. In both cell lines the treatment with the extract was associated with lipid peroxidation and with the appearance of a "ballooning" phenotype suggesting the activation of ferroptosis. In conclusion the A. annua idroalcoholic extract utilized in this study showed anticancer activity on canine OSA cell lines that could be useful in treating drug resistant canine OSAs.
Collapse
Affiliation(s)
- Roberta Salaroli
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Giulia Andreani
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Debora La Mantia
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy.
| | - Monica Forni
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy.
| | - Gloria Isani
- Department of Veterinary Medical Sciences (DIMEVET), Alma Mater Studiorum - University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
40
|
Tong J, Sun Y, Wang Z, Cui D, Jiang L. Evaluation of biological mechanisms of artemisinin on bovine mammary epithelial cells by integration of network pharmacology and TMT-based quantitative proteomics. Front Pharmacol 2022; 13:968149. [PMID: 36160439 PMCID: PMC9500429 DOI: 10.3389/fphar.2022.968149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
The sesquiterpene lactone, artemisinin, is a primary component of the medicinal plant Artemisia annua L., which has anti-inflammatory, antibacterial and antioxidant activities. However, the potential effects of artemisinin on the mammary gland of dairy cows and the underlying molecular mechanisms remain unclear. Here, we utilized systematic network pharmacology and proteomics to elucidate the mechanism by which artemisinin affects milk production and the proliferation of bovine mammary epithelial cells (BMECs). Nineteen bioactive compounds and 56 key targets were identified through database mining. To delineate the mechanism of artemisia’s activity, a protein-protein interaction network and integrated visual display were generated from bioinformatics assays to explore the relationships and interactions among the bioactive molecules and their targets. The gene ontology (GO) terms and kyoto encyclopedia of genes and genomes annotation suggested that the apoptotic process, cell division, p53 pathway, prolactin and PI3K-Akt pathways played vital roles in mammary gland development. Using proteomics analysis, we identified 122 up-regulated and 96 down-regulated differentially significant expressed proteins (DSEPs). The differentially significant expressed proteins had multiple biological functions associated with cell division, apoptosis, differentiation, and migration. Gene ontology enrichment analysis suggested that differentially significant expressed proteins may promote cell proliferation and regulate apoptosis in bovine mammary epithelial cells. Kyoto encyclopedia of genes and genomes pathway analysis indicated that several biological pathways, such as those involved in antigen processing and presentation, cell adhesion molecules and ribosomes, played significant roles in the effects of artemisinin on bovine mammary epithelial cells. These findings contribute to a comprehensive understanding of the mechanism by which artemisinin affects bovine mammary epithelial cells to improve mammary gland turnover by inducing cell proliferation and mammary gland development.
Collapse
Affiliation(s)
| | | | | | - Defeng Cui
- *Correspondence: Defeng Cui, ; Linshu Jiang,
| | | |
Collapse
|
41
|
Qin W, Li Y, Peng B, Liu H, Chen T, Yan X, Zhang Y, Wang C, Yao X, Fu X, Li L, Tang K. A high-efficiency trichome collection system by laser capture microdissection. FRONTIERS IN PLANT SCIENCE 2022; 13:985969. [PMID: 36072328 PMCID: PMC9441851 DOI: 10.3389/fpls.2022.985969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Trichomes, which are classified as glandular or non-glandular, are hair-like epidermal structures that are present on aerial parts of most plant species. Glandular secretory trichomes (GSTs) have the capacity to secrete and store specialized metabolites, which are widely used as natural pesticides, food additives, fragrance ingredients or pharmaceuticals. Isolating individual trichomes is an essential way for identifying trichome-specific gene functions and discovering novel metabolites. However, the isolation of trichomes is difficult and time-consuming. Here, we report a method to isolate the GSTs from leaf epidermis dispense with fixation using laser capture microdissection (LCM). In this study, 150 GSTs were captured efficiently from Artemisia annua leaves and enriched for artemisinin measurement. UPLC analysis of microdissected samples indicated specific accumulation of secondary metabolites could be detected from a small number of GSTs. In addition, qRT-PCR revealed that the GST-specific structural genes involved in artemisinin biosynthesis pathway were highly expressed in GSTs. Taken together, we developed an efficient method to collect comparatively pure GSTs from unfixed leaved, so that the metabolites were relatively obtained intact. This method can be implemented in metabolomics research of purely specific plant cell populations and has the potential to discover novel secondary metabolites.
Collapse
|
42
|
salah E, El esh H, Abdel-Reheim ES, Abdul-Hamid M. Ameliorative effects of Artemisia and Echinacea extracts against hepato and cardiotoxicity induced by DMBA on albino rats: experimental and molecular docking analyses. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Herbal therapy for healing disease has many advantages than drugs. This study investigates the protective efficacy of Artemisia annua (Art) and Echinacea pupurea (Ech) extracts against 7, 12-dimethylbenz (α) anthracene (DMBA) toxicity.
Results
DMBA-treated rats showed a significant increase in the level of serum ALT, AST, LDH and CKMB, also reduction in body weight gain (BWG) ℅, HB, WBCs, RBCs and platelet counts, in addition to histopathological and ultrastructural alterations. Rats treated with Art or Ech after DMBA showed little improvements in the biochemical, hematological, histopathological, ultrastructural and molecular docking results than before DMBA.
Conclusions
This study suggested the ameliorative effect of Ech and Art due to their antioxidant properties, but Ech and Art were more effective if they are given before than after DMBA administration and the marked effect against DMBA toxicity with Ech before DMBA exposure. Also, the molecular docking, molecular properties descriptors, and pharmacoinformatic studies of constituents of extract from Artemisia annua L. and Echinacea purpurea L. exhibited that all studied compounds have better ADMET and physicochemical properties, especially compounds extract from Echinacea purpurea L.
Graphical Abstract
Collapse
|
43
|
Nurlybekova A, Kudaibergen A, Kazymbetova A, Amangeldi M, Baiseitova A, Ospanov M, Aisa HA, Ye Y, Ibrahim MA, Jenis J. Traditional Use, Phytochemical Profiles and Pharmacological Properties of Artemisia Genus from Central Asia. Molecules 2022; 27:molecules27165128. [PMID: 36014364 PMCID: PMC9415318 DOI: 10.3390/molecules27165128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
The flora of Kazakhstan is characterized by its wide variety of different types of medicinal plants, many of which can be used on an industrial scale. The Traditional Kazakh Medicine (TKM) was developed during centuries based on the six elements of ancient Kazakh theory, associating different fields such as pharmacology, anatomy, pathology, immunology and food nursing as well as disease prevention. The endemic Artemisia L. species are potential sources of unique and new natural products and new chemical structures, displaying diverse bioactivities and leading to the development of safe and effective phytomedicines against prevailing diseases in Kazakhstan and the Central Asia region. This review provides an overview of Artemisia species from Central Asia, particularly traditional uses in folk medicine and the recent numerous phytochemical and pharmacological studies. The review is done by the methods of literature searches in well-known scientific websites (Scifinder and Pubmed) and data collection in university libraries. Furthermore, our aim is to search for promising and potentially active Artemisia species candidates, encouraging us to analyze Protein Tyrosine Phosphatase 1B (PTP1B), α-glucosidase and bacterial neuraminidase (BNA) inhibition as well as the antioxidant potentials of Artemisia plant extracts, in which endemic species have not been explored for their secondary metabolites and biological activities so far. The main result of the study was that, for the first time, the species Artemisia scopiformis Ledeb. Artemisia albicerata Krasch., Artemisia transiliensis Poljakov, Artemisia schrenkiana Ledeb., Artemisia nitrosa Weber and Artemisia albida Willd. ex Ledeb. due to their special metabolites, showed a high potential for α-glucosidase, PTP1B and BNA inhibition, which is associated with diabetes, obesity and bacterial infections. In addition, we revealed that the methanol extracts of Artemisia were a potent source of polyphenolic compounds. The total polyphenolic contents of Artemisia extracts were correlated with antioxidant potential and varied according to plant origin, the solvent of extraction and the analytical method used. Consequently, oxidative stress caused by reactive oxygen species (ROS) may be managed by the dietary intake of current Artemisia species. The antioxidant potentials of the species A. schrenkiana, A. scopaeformis, A. transiliensis and Artemisia scoparia Waldst. & Kitam. were also promising. In conclusion, the examination of details between different Artemisia species in our research has shown that plant materials are good as an antioxidant and eznyme inhibitory functional natural source.
Collapse
Affiliation(s)
- Aliya Nurlybekova
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Research Institute for Natural Products & Technology, Almaty 050046, Kazakhstan
| | - Aidana Kudaibergen
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Research Institute for Natural Products & Technology, Almaty 050046, Kazakhstan
| | - Aizhan Kazymbetova
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Magzhan Amangeldi
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aizhamal Baiseitova
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Research Institute for Natural Products & Technology, Almaty 050046, Kazakhstan
| | - Meirambek Ospanov
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Haji Akber Aisa
- Xinjiang Technical Institutes of Physics and Chemistry, Central Asian of Drug Discovery and Development, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mohamed Ali Ibrahim
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: (M.A.I.); (J.J.)
| | - Janar Jenis
- The Research Center for Medicinal Plants, Al-Farabi Kazakh National University, al-Farabi Ave. 71, Almaty 050040, Kazakhstan
- Research Institute for Natural Products & Technology, Almaty 050046, Kazakhstan
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Xinjiang Technical Institutes of Physics and Chemistry, Central Asian of Drug Discovery and Development, Chinese Academy of Sciences, Urumqi 830011, China
- Correspondence: (M.A.I.); (J.J.)
| |
Collapse
|
44
|
Okokon JE, Mobley R, Edem UA, Bassey AI, Fadayomi I, Drijfhout F, Horrocks P, Li WW. In vitro and in vivo antimalarial activity and chemical profiling of sugarcane leaves. Sci Rep 2022; 12:10250. [PMID: 35715548 PMCID: PMC9205285 DOI: 10.1038/s41598-022-14391-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Saccharum officinarum Linn. (sugarcane, Family-Poaceae) is employed in Ibibio traditional medicine for the treatment of various infections and diseases such as malaria. We This study aims to assess the antiplasmodial effect of the leaf extract and fractions on human malaria parasite (Plasmodium falciparum) in vitro, and rodent malaria parasite (P. berghei) in vivo, and analyse the bioactive components of the active fraction(s). The leaf extract and fractions of S. officinarum were prepared and their growth inhibitory effects tested against the chloroquine resistant P. falciparum strain (Dd2) and P. berghei infection in mice. An acute toxicity of the extract was determined. A combination of gas chromatography and liquid chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy was applied for metabolites profiling of crude extract and active fractions. The leaf extract and fractions demonstrated moderate activity against P. falciparum with the dichloromethane fraction producing the most potent activity (EC50 = 15.4 µg/mL). The leaf extract (170-510 mg/kg, p.o., LD50 = 1732 mg/kg) and fractions demonstrated significant (p < 0.05-0.001) effect on P. berghei infection in prophylactic tests as well as in established infection with n-butanol fractions producing the highest effect. An unusual sulphur-containing compound, dilaurylthiodipropionate, fatty acids, phenolic acids, flavonoid and flavonoid glycoside were identified in the active fractions. These results give credence to the use of sugarcane leaves as malarial remedy locally by confirming the in vitro and in vivo antiplasmodial potential of leaf extract/fractions of S. officinarum.
Collapse
Affiliation(s)
- Jude E Okokon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Nigeria.
| | - Rebecca Mobley
- School of Medicine, Keele University, Staffordshire, ST5 5BG, UK
| | - Utibe A Edem
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Uyo, Uyo, Nigeria
| | - Augustine I Bassey
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Uyo, Uyo, Nigeria
| | - Idowu Fadayomi
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Falko Drijfhout
- School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Paul Horrocks
- School of Medicine, Keele University, Staffordshire, ST5 5BG, UK
| | - Wen-Wu Li
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, ST4 7QB, UK.
| |
Collapse
|
45
|
Agrawal PK, Agrawal C, Blunden G. Artemisia Extracts and Artemisinin-Based Antimalarials for COVID-19 Management: Could These Be Effective Antivirals for COVID-19 Treatment? Molecules 2022; 27:3828. [PMID: 35744958 PMCID: PMC9231170 DOI: 10.3390/molecules27123828] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/23/2022] Open
Abstract
As the world desperately searches for ways to treat the coronavirus disease 2019 (COVID-19) pandemic, a growing number of people are turning to herbal remedies. The Artemisia species, such as A. annua and A. afra, in particular, exhibit positive effects against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and COVID-19 related symptoms. A. annua is a source of artemisinin, which is active against malaria, and also exhibits potential for other diseases. This has increased interest in artemisinin's potential for drug repurposing. Artemisinin-based combination therapies, so-called ACTs, have already been recognized as first-line treatments against malaria. Artemisia extract, as well as ACTs, have demonstrated inhibition of SARS-CoV-2. Artemisinin and its derivatives have also shown anti-inflammatory effects, including inhibition of interleukin-6 (IL-6) that plays a key role in the development of severe COVID-19. There is now sufficient evidence in the literature to suggest the effectiveness of Artemisia, its constituents and/or artemisinin derivatives, to fight against the SARS-CoV-2 infection by inhibiting its invasion, and replication, as well as reducing oxidative stress and inflammation, and mitigating lung damage.
Collapse
Affiliation(s)
- Pawan K. Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA;
| | - Chandan Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA;
| | - Gerald Blunden
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK;
| |
Collapse
|
46
|
Li Q, Yang S, Chen F, Guan W, Zhang S. Nutritional strategies to alleviate oxidative stress in sows. ANIMAL NUTRITION 2022; 9:60-73. [PMID: 35949982 PMCID: PMC9344312 DOI: 10.1016/j.aninu.2021.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022]
Abstract
The performance of high-yielding sows is directly related to the productivity of pig farming. Fetal development mainly occurs during the last month of pregnancy, and the aggressive metabolic burden of sows during this stage eventually leads to systemic oxidative stress. When affected by oxidative stress, sows exhibit adverse symptoms such as reduced feed intake, hindered fetal development, and even abortion. In addition, milk synthesis during the lactation period causes a severe metabolic burden. The biological response to oxidative stress during this period is associated with a decrease in milk production, which further affects the growth of piglets. Understanding the nutritional strategies to alleviate oxidative stress in sows is crucial to maintain their reproduction and lactation performance. Recently, advances have been made in the field of nutrition to relieve oxidative stress in sows during late pregnancy and lactation. This review highlights the nutritional strategies to relieve oxidative stress in sows reported within the last 20 years.
Collapse
|
47
|
Abdul-Qader ZM, Rabie KM, Husni HS. Efficacy of Bio-fertilizer and Chemical Fertilization on Flavonoids Distribution in Different Plant Parts of Stevia rebaudiana (Bertoni.). BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study aims to investigate the effect of the biological and chemical fertilizers on the content of the flavonoid compounds distributed within the different plant parts (leaves, stems, branches, and roots) of Stevia rebaudiana (Bertoni.) grown in Iraq. The results showed that the treatments of the biological fertilizers, including Mycorrhiza (C2) achieved the highest content of the most flavonoids in different parts of the plant. The treatment C2 recorded a rise of the flavonoid compounds Naringin, Naringenin and Luteolin 7-glucose in the leaves, Naringin, Rutin, and Acacetin7-neorutinoside in the stems and branches, and Apiening6-rhamnose8- glucose, Apigenin7-o neohespiroside, Kampferol3-7dirmmoside, Quercetrin, Narengenin, Acacetin7-neorutinoside, Kampferol, and Luteolin 7-glucose in the roots. On the other hand, treatment C1 recorded the highest content of Quercetin in the leaves, Quercetrin3-O glucose in the stems and branches, and Quercetrin3-O glucose, Naringenin, and Acacetin7-neorutinoside in the leaves .
Keywords. Flavonoid, Stevia, Mycorrhiza and chemical Fertilization
Collapse
Affiliation(s)
- Ziena M. Abdul-Qader
- Medicinal and Aromatic Plants Research Unit, ,College of Agricultural Engineering Sciences, University of Baghdad. Iraq
| | - Kareem M. Rabie
- Department of Horticulture and land scape design, College of Agricultural Engineering Sciences,University of Baghdad
| | - Huda S. Husni
- Department of Pharmacognosy, Baghdad college of Medicinal sciences
| |
Collapse
|
48
|
Nataraj N, Hussain M, Ibrahim M, Hausmann AE, Rao S, Kaur S, Khazir J, Mir BA, Olsson SB. Effect of Altitude on Volatile Organic and Phenolic Compounds of Artemisia brevifolia Wall ex Dc. From the Western Himalayas. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.864728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adaptation to changing environmental conditions is a driver of plant diversification. Elevational gradients offer a unique opportunity for investigating adaptation to a range of climatic conditions. The use of specialized metabolites as volatile and phenolic compounds is a major adaptation in plants, affecting their reproductive success and survival by attracting pollinators and protecting themselves from herbivores and other stressors. The wormseed Artemisia brevifolia can be found across multiple elevations in the Western Himalayas, a region that is considered a biodiversity hotspot and is highly impacted by climate change. This study aims at understanding the volatile and phenolic compounds produced by A. brevifolia in the high elevation cold deserts of the Western Himalayas with the view to understanding the survival strategies employed by plants under harsh conditions. Across four sampling sites with different elevations, polydimethylsiloxane (PDMS) sampling and subsequent GCMS analyses showed that the total number of volatile compounds in the plant headspace increased with elevation and that this trend was largely driven by an increase in compounds with low volatility, which might improve the plant’s resilience to abiotic stress. HPLC analyses showed no effect of elevation on the total number of phenolic compounds detected in both young and mature leaves. However, the concentration of the majority of phenolic compounds decreased with elevation. As the production of phenolic defense compounds is a costly trait, plants at higher elevations might face a trade-off between energy expenditure and protecting themselves from herbivores. This study can therefore help us understand how plants adjust secondary metabolite production to cope with harsh environments and reveal the climate adaptability of such species in highly threatened regions of our planet such as the Himalayas.
Collapse
|
49
|
Lawag IL, Lim LY, Joshi R, Hammer KA, Locher C. A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe. Foods 2022; 11:foods11081152. [PMID: 35454742 PMCID: PMC9025093 DOI: 10.3390/foods11081152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/11/2023] Open
Abstract
The aim of this review is to provide a comprehensive overview of the large variety of phenolic compounds that have to date been identified in a wide range of monofloral honeys found globally. The collated information is structured along several themes, including the botanical family and genus of the monofloral honeys for which phenolic constituents have been reported, the chemical classes the phenolic compounds can be attributed to, and the analytical method employed in compound determination as well as countries with a particular research focus on phenolic honey constituents. This review covers 130 research papers that detail the phenolic constituents of a total of 556 monofloral honeys. Based on the findings of this review, it can be concluded that most of these honeys belong to the Myrtaceae and Fabaceae families and that Robinia (Robinia pseudoacacia, Fabaceae), Manuka (Leptospermum scoparium, Myrtaceae), and Chestnut (Castanea sp., Fagaceae) honeys are to date the most studied honeys for phenolic compound determination. China, Italy, and Turkey are the major honey phenolic research hubs. To date, 161 individual phenolic compounds belonging to five major compound groups have been reported, with caffeic acid, gallic acid, ferulic acid and quercetin being the most widely reported among them. HPLC with photodiode array detection appears to be the most popular method for chemical structure identification.
Collapse
Affiliation(s)
- Ivan Lozada Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
| | - Lee-Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
| | - Ranee Joshi
- Centre for Exploration Targeting, School of Earth Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Katherine A. Hammer
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
- Correspondence:
| |
Collapse
|
50
|
Ahmad I, Ali R, dos Santos Lopes MJ, Steinmetz CHD, Haq FU. Artemisia annua L. and Its Derivatives: Their Antiviral Effects on COVID-19 and Possible Mechanisms. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2022; 7:54-58. [DOI: 10.14218/jerp.2021.00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|