1
|
Ghosh S, Ghosh K. Copillar[5]arene Appended Pyrene Schiff Base: Photophysics, Aggregation Induced Emission and Picric Acid Recognition. Chem Asian J 2025:e202401586. [PMID: 39814607 DOI: 10.1002/asia.202401586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Herein, we report the synthesis of copillar[5]arene-based pyrene Schiff base 1 and its characterization by using 1H, 13C NMR, FT-IR and mass spectrometry. UV-vis absorption, steady-state fluorescence and time-resolved fluorescence are done to elucidate the photophysical behaviors of 1. To understand the electronic structure of 1, density functional theory (DFT) calculations are performed. Owing to the presence of pyrene via a Schiff base linkage, compound 1 exhibits aggregation-induced emission (AIE) characteristics. It shows aggregation in aqueous THF and DMF. The aggregation behavior is successfully demonstrated by steady-state fluorescence, dynamic light scattering (DLS) and time-correlated single-photon counting (TCSPC) experiments. Experimental findings reveal that hydrophobic effect is the driving force in the formation of aggregates. As application, the aggregated state of 1 in aqueous THF fluorimetrically recognizes picric acid (PA) selectively over a series of nitro- and nonnitroaromatics with a detection limit of 1.62×10-7 M. The emission of the aggregated state is fully quenched upon interaction with PA.
Collapse
Affiliation(s)
- Subhasis Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Kumaresh Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
2
|
Wu RW, Lin YH, Lu CH, Su CH, Chen YS, Wang FS, Lian WS. Gold nanomaterials capped with bovine serum albumin for cell and extracellular vesicle imaging. NANOTECHNOLOGY 2025; 36:105101. [PMID: 39780321 DOI: 10.1088/1361-6528/ada3da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Bovine serum albumin-capped gold nanoclusters (AuNC@BSA) are ionic, ultra-small, and eco-friendly nanomaterials that exhibit red fluorescence emission. Upon modification, these nanomaterials can serve as imaging probes with multimodal functionality. Owing to their nanoscale properties, AuNC@BSA-based nanomaterials can be readily endocytosed by cells for imaging. With the increasing interest in cell therapy, extracellular vesicles (EVs) have attracted considerable attention from researchers; however, effective methods for imaging EVs remain limited. Although several studies have explored imaging strategies for cells and EVs using compounds, nuclear pharmaceuticals, nanoparticles, or genetic constructs, the use of AuNC@BSA-based nanomaterials for labeling EVs and their parental cells has rarely been discussed, with even less attention paid to their multimodal potential. To address this gap, we utilized three types of AuNC@BSA-based derivatives: AuNC@BSA, AuNC@BSA-Gd, and AuNC@BSA-Gd-I. Our findings demonstrate that these derivatives can effectively label both cells and EVs using a simple direct labeling approach, which is particularly notable for EVs, as they typically require more complex labeling procedures. Furthermore, the multimodal potential of labeled cells and EVs was evaluated, revealing their capabilities for multimodal imaging. In summary, this study presents an effective strategy for labeling EVs and their parental cells using multimodal nanomaterials. These findings will contribute to accelerating the development of drug delivery systems, cell- and EV-based therapies, and advanced imaging strategies.
Collapse
Affiliation(s)
- Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Han Lin
- Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Cheng-Hsiu Lu
- Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Core Laboratory for Phenomics and Diagnostic, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chia-Hao Su
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Center for General Education, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Radiological Research, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Core Laboratory for Phenomics and Diagnostic, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Core Laboratory for Phenomics and Diagnostic, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Wei-Shiung Lian
- Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Core Laboratory for Phenomics and Diagnostic, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
3
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
4
|
Gerasimova EN, Fatkhutdinova LI, Vazhenin II, Uvarov EI, Vysotina E, Mikhailova L, Lazareva PA, Kostyushev D, Abakumov M, Parodi A, Yaroshenko VV, Zuev DA, Zyuzin MV. Hybrid plasmonic nanodiamonds for thermometry and local photothermal therapy of melanoma: a comparative study. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:4111-4125. [PMID: 39635454 PMCID: PMC11501064 DOI: 10.1515/nanoph-2024-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/02/2024] [Indexed: 12/07/2024]
Abstract
Hyperthermia plays a significant role in cancer treatment by inducing cell damage through temperature elevation, often used alongside other treatment modalities. During hyperthermia therapy, temperature control is crucial. Here, we report on a simple synthesis route of hybrid plasmonic nanodiamonds either completely wrapped with an Au shell (NV@Au) or densely covered with Au NPs (NV@SiO 2 @Au). Such integration of nanodiamonds with Au NPs is advantageous both for heating and precise thermometry at nanoscale. After structural and optical investigations, heating abilities of the obtained plasmonic nanodiamonds were thoroughly inspected on glass, in association with living cells, and in tissue slices ex vivo, revealing their effective heat generation under excitation with light using a single excitation source. The developed hybrid plasmonic nanodiamonds were finally applied for local photothermal therapy of melanoma in vivo, demonstrating their efficacy in eradicating cancer cells and monitoring temperature during the process.
Collapse
Affiliation(s)
- Elena N. Gerasimova
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | | | - Ivan I. Vazhenin
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | - Egor I. Uvarov
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | - Elizaveta Vysotina
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | - Lidia Mikhailova
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | - Polina A. Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, Ostrovityanova 1 bldg. 6, 117997Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Abakumov
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, Ostrovityanova 1 bldg. 6, 117997Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), Leninskiy Prospekt 4, 119049Moscow, Russia
| | - Alessandro Parodi
- Sirius University of Science and Technology, Olympic Ave, 1, 354340 Nizhneimeretinskaya Bukhta, Krasnodarskiy Kray, Sochi, Russia
| | - Vitaly V. Yaroshenko
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | - Dmitry A. Zuev
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| | - Mikhail V. Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002St. Petersburg, Russia
| |
Collapse
|
5
|
Li S, Li Y, Zhang S, Fang H, Huang Z, Zhang D, Ding A, Uvdal K, Hu Z, Huang K, Li L. Response strategies and biological applications of organic fluorescent thermometry: cell- and mitochondrion-level detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1968-1984. [PMID: 38511286 DOI: 10.1039/d4ay00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Temperature homeostasis is critical for cells to perform their physiological functions. Among the diverse methods for temperature detection, fluorescent temperature probes stand out as a proven and effective tool, especially for monitoring temperature in cells and suborganelles, with a specific emphasis on mitochondria. The utilization of these probes provides a new opportunity to enhance our understanding of the mechanisms and interconnections underlying various physiological activities related to temperature homeostasis. However, the complexity and variability of cells and suborganelles necessitate fluorescent temperature probes with high resolution and sensitivity. To meet the demanding requirements for intracellular/subcellular temperature detection, several strategies have been developed, offering a range of options to address this challenge. This review examines four fundamental temperature-response strategies employed by small molecule and polymer probes, including intramolecular rotation, polarity sensitivity, Förster resonance energy transfer, and structural changes. The primary emphasis was placed on elucidating molecular design and biological applications specific to each type of probe. Furthermore, this review provides an insightful discussion on factors that may affect fluorescent thermometry, providing valuable perspectives for future development in the field. Finally, the review concludes by presenting cutting-edge response strategies and research insights for mitigating biases in temperature sensing.
Collapse
Affiliation(s)
- Shuai Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaoxuan Li
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shiji Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Haixiao Fang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Future Display Institute in Xiamen, Xiamen 361005, China.
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Duoteng Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Kajsa Uvdal
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden.
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden.
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen 361005, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Future Display Institute in Xiamen, Xiamen 361005, China.
| |
Collapse
|
6
|
Chen J, Meng H, Fang Z, Lukman I, Gao J, Liao J, Deng Q, Sun L, Gooneratne R. An "off-on" fluorescent nanosensor for the detection of cadmium ions based on APDC-etched CdTe/CdS/SiO 2 quantum dots. Heliyon 2024; 10:e26980. [PMID: 38463779 PMCID: PMC10920365 DOI: 10.1016/j.heliyon.2024.e26980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
In this study, we have developed a novel fluorescent "OFF-ON" quantum dots (QDs) sensor based on CdTe/CdS/SiO2 cores. Ammonium pyrrolidine dithiocarbamate (APDC), ethylenediamine tetraacetic acid (EDTA), and 1,10-phenanthroline (Phen) served as potential chemical etchants. Among these three etchants, APDC exhibited the most pronounced quenching effect (94.06%). The APDC-etched CdTe/CdS/SiO2 QDs demonstrated excellent optical properties: the fluorescence of the APDC-etched CdTe/CdS/SiO2 QDs system (excitation wavelength: 365 nm and emission wavelength: 622 nm) was significantly and selectively restored upon the addition of cadmium ions (Cd2+) (89.22%), compared to 15 other metal ions. The linear response of the APDC-etched CdTe/CdS/SiO2 QDs was observed within the cadmium ion (Cd2+) concentration ranges of 0-20 μmol L-1 and 20-160 μmol L-1 under optimized conditions (APDC: 300 μmol L-1, pH: 7.0, reaction time: 10 min). The detection limit (LOD) of the APDC-etched CdTe/CdS/SiO2 QDs for Cd2+ was 0.3451 μmol L-1 in the range of 0-20 μmol L-1. The LOD achieved by the QDs in this study surpasses that of the majority of previously reported nanomaterials. The feasibility of using APDC-etched CdTe/CdS/SiO2 QDs for Cd2+ detection in seawater, freshwater, and milk samples was verified, with average recoveries of 95.27%-110.68%, 92%-106.47%, and 90.73%-111.60%, respectively, demonstrating satisfactory analytical precision (RSD ≤ 8.26).
Collapse
Affiliation(s)
- Jiaqian Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Haimei Meng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Iddrisu Lukman
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jianmeng Liao
- Zhanjiang Institute for Food and Drug Control, Zhanjiang, 524022, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Continuing Education, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
7
|
Maller C, Schedel F, Köhn M. A Modular Approach for the Synthesis of Diverse Heterobifunctional Cyanine Dyes. J Org Chem 2024; 89:3844-3856. [PMID: 38413005 PMCID: PMC10949230 DOI: 10.1021/acs.joc.3c02673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Herein, we present a straightforward synthetic route for the design and synthesis of diverse heterobifunctional cyanine 5 dyes. We optimized the workup by harnessing the pH- and functional group-dependent solubility of the asymmetric cyanine 5 dyes. Therefore, purification through chromatography is deferred until the last synthesis step. Demonstrating successful large-scale synthesis, our modular approach prevents functional group degradation by introducing them in the last synthesis step. These modifiable heterobifunctional dyes offer significant utility in advancing biological studies.
Collapse
Affiliation(s)
- Corina Maller
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg 79104, Germany
- Faculty
of Chemistry and Pharmacy, University of
Freiburg, Freiburg 79104, Germany
- Faculty
of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Franziska Schedel
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg 79104, Germany
- Faculty
of Chemistry and Pharmacy, University of
Freiburg, Freiburg 79104, Germany
- Faculty
of Biology, University of Freiburg, Freiburg 79104, Germany
- Spermann
Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg 79104, Germany
| | - Maja Köhn
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg 79104, Germany
- Faculty
of Biology, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
8
|
Mogîldea ED, Mitoi ME, Biță-Nicolae C, Murariu D. Urban Flora Riches: Unraveling Metabolic Variation Along Altitudinal Gradients in Two Spontaneous Plant Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:657. [PMID: 38475503 DOI: 10.3390/plants13050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Using resilient, self-sustaining plants in urban green spaces enhances environmental and cultural benefits and reduces management costs. We assessed two spontaneous plant species, Linaria vulgaris Mill. and Cichorium intybus L., in four sites from the surrounding urban areas, ranging in altitude from 78 to 1040 m. Protection against UV-B radiation is crucial for plants at higher altitudes, guiding our focus on UV-visible absorption spectra, fluorometric emission spectra, secondary metabolite accumulation, and pigment dynamics in leaves. Our findings revealed a slight increase in UV-absorbing compounds with altitude and species-specific changes in visible spectra. The UV-emission of fluorochromes decreased, while red emission increased with altitude but only in chicory. Polyphenols and flavonoids showed a slight upward trend with altitude. Divergent trends were observed in condensed tannin accumulation, with L. vulgaris decreasing and C. intybus increasing with altitude. Additionally, chicory leaves from higher altitudes (792 and 1040 m) contained significantly lower triterpene concentrations. In L. vulgaris, chlorophyll pigments and carotenoids varied with sites, contrasting with UV absorbance variations. For C. intybus, pigment variation was similar to absorbance changes in the UV and VIS range, except at the highest altitude. These observations provide valuable insights into species-specific strategies for adapting to diverse environmental contexts.
Collapse
Affiliation(s)
- Elena Daniela Mogîldea
- Institute of Biology Bucharest, Romanian Academy, 296 Spl. Independentei, 060031 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Monica Elena Mitoi
- Institute of Biology Bucharest, Romanian Academy, 296 Spl. Independentei, 060031 Bucharest, Romania
| | - Claudia Biță-Nicolae
- Institute of Biology Bucharest, Romanian Academy, 296 Spl. Independentei, 060031 Bucharest, Romania
| | - Dumitru Murariu
- Institute of Biology Bucharest, Romanian Academy, 296 Spl. Independentei, 060031 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| |
Collapse
|
9
|
Shi Y, Liu J, Liu Y, Quan H, Li B, Lu H, Ding H, Yu Z, Han J. Detection of breast cancer cells by a near-infrared fluorescent probe targeting mitochondrial viscosity. Heliyon 2023; 9:e18704. [PMID: 37560648 PMCID: PMC10407741 DOI: 10.1016/j.heliyon.2023.e18704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Monitoring abnormal viscosity in biological systems is important for basic research and clinical applications. Fluorescence imaging technology is adaptable for the visualization of tumor tissues due to its comprehensive features. However, fluorescence detection of intracellular viscosity in clinical samples remains challenging. We developed a promising near-infrared fluorescent probe, M556, for viscosity measurement. M556, which targets mitochondria, was successfully applied to monitor the mitochondrial viscosity in living cells. Furthermore, M556 was demonstrated to effectively discriminate tumors from normal tissues in a mouse tumor model and in clinical specimens from breast cancer patients, thus indicating the potential perioperative use of this probe by clinicians to assist with biopsy procedures.
Collapse
Affiliation(s)
- Yu Shi
- Department of Breast Cancer, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junjun Liu
- Department of Breast Cancer, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yingying Liu
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing 100191, China
| | - Hong Quan
- Department of Breast Cancer, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bo Li
- Department of Breast Cancer, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Haili Lu
- Department of Breast Cancer, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hanzhi Ding
- Department of Breast Cancer, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Han
- Department of Breast Cancer, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
10
|
Cerezo J, Gao S, Armaroli N, Ingrosso F, Prampolini G, Santoro F, Ventura B, Pastore M. Non-Phenomenological Description of the Time-Resolved Emission in Solution with Quantum-Classical Vibronic Approaches-Application to Coumarin C153 in Methanol. Molecules 2023; 28:molecules28093910. [PMID: 37175320 PMCID: PMC10180259 DOI: 10.3390/molecules28093910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
We report a joint experimental and theoretical work on the steady-state spectroscopy and time-resolved emission of the coumarin C153 dye in methanol. The lowest energy excited state of this molecule is characterized by an intramolecular charge transfer thus leading to remarkable shifts of the time-resolved emission spectra, dictated by the methanol reorganization dynamics. We selected this system as a prototypical test case for the first application of a novel computational protocol aimed at the prediction of transient emission spectral shapes, including both vibronic and solvent effects, without applying any phenomenological broadening. It combines a recently developed quantum-classical approach, the adiabatic molecular dynamics generalized vertical Hessian method (Ad-MD|gVH), with nonequilibrium molecular dynamics simulations. For the steady-state spectra we show that the Ad-MD|gVH approach is able to reproduce quite accurately the spectral shapes and the Stokes shift, while a ∼0.15 eV error is found on the prediction of the solvent shift going from gas phase to methanol. The spectral shape of the time-resolved emission signals is, overall, well reproduced, although the simulated spectra are slightly too broad and asymmetric at low energies with respect to experiments. As far as the spectral shift is concerned, the calculated spectra from 4 ps to 100 ps are in excellent agreement with experiments, correctly predicting the end of the solvent reorganization after about 20 ps. On the other hand, before 4 ps solvent dynamics is predicted to be too fast in the simulations and, in the sub-ps timescale, the uncertainty due to the experimental time resolution (300 fs) makes the comparison less straightforward. Finally, analysis of the reorganization of the first solvation shell surrounding the excited solute, based on atomic radial distribution functions and orientational correlations, indicates a fast solvent response (≈100 fs) characterized by the strengthening of the carbonyl-methanol hydrogen bond interactions, followed by the solvent reorientation, occurring on the ps timescale, to maximize local dipolar interactions.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Sheng Gao
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Nicola Armaroli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Francesca Ingrosso
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| | - Giacomo Prampolini
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Barbara Ventura
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| |
Collapse
|
11
|
Li Y, Chen L, Si L, Yang Y, Zhou C, Yu F, Xia G, Wang H. Triphenylamine-equipped 1,8-naphthaolactam: a versatile scaffold for the custom design of efficient subcellular imaging agents. J Mater Chem B 2023; 11:2431-2439. [PMID: 36810648 DOI: 10.1039/d2tb02528k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Fluorescence imaging has enabled much progress in biological fields, while the evolution of commercially available dyes has lagged behind their advanced applications. Herein, we launch triphenylamine-equipped 1,8-naphthaolactam (NP-TPA) as a versatile scaffold for the custom design of an efficient subcellular imaging agent (NP-TPA-Tar), given its bright and constant emissions in various states, significant Stokes shifts, and facile modifiability. The resultant four NP-TPA-Tars maintain excellent emission behavior with targeted modifications and can map the spatial distribution of lysosomes, mitochondria, endoplasmic reticulum, and plasma membrane in Hep G2 cells. Compared to its commercial counterpart, NP-TPA-Tar has a 2.8-25.2 fold increase in Stokes shift, a 1.2-1.9 fold increase in photostability, enhanced targeting capability, and comparable imaging efficiency even at low concentrations of 50 nM. This work will help to accelerate the update of current imaging agents and super-resolution and real-time imaging in biological applications.
Collapse
Affiliation(s)
- Yingzhong Li
- Institute for Advanced Study and College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, 330031, P. R. China.
| | - Lizhen Chen
- Institute for Advanced Study and College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, 330031, P. R. China.
| | - Leilei Si
- Institute for Advanced Study and College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, 330031, P. R. China.
| | - Yang Yang
- Institute for Advanced Study and College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, 330031, P. R. China.
| | - Chunlei Zhou
- Institute for Advanced Study and College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, 330031, P. R. China.
| | - Fuqing Yu
- Institute for Advanced Study and College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, 330031, P. R. China.
| | - Guomin Xia
- Institute for Advanced Study and College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, 330031, P. R. China.
| | - Hongming Wang
- Institute for Advanced Study and College of Chemistry, Nanchang University, 999 Xuefu Road, Nanchang, 330031, P. R. China.
| |
Collapse
|
12
|
Rzewnicka A, Krysiak J, Pawłowska R, Żurawiński R. Red-Emitting Dithienothiophene S, S-Dioxide Dyes for Cellular Membrane Staining. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16051806. [PMID: 36902920 PMCID: PMC10003865 DOI: 10.3390/ma16051806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/12/2023]
Abstract
A series of dithienothiophene S,S-dioxide (DTTDO) dyes was designed, synthesized, and investigated for their suitability in fluorescent cell imaging. Synthetized (D-π-A-π-D)-type DTTDO derivatives have molecule lengths close to the thickness of the phospholipid membrane, and they contain on both ends two positively charged or neutral polar groups to increase their solubility in water and to ensure simultaneous interaction with polar groups of the inner and outer part of the cellular membrane. DTTDO derivatives exhibit absorbance and emission maxima in the 517-538 nm and 622-694 nm range, respectively, and a large Stokes shift up to 174 nm. Fluorescence microscopy experiments revealed that these compounds selectively intercalate into cell membranes. Moreover, a cytotoxicity assay conducted on a model human live cells indicates low toxicity of these compounds at the concentrations required for effective staining. With suitable optical properties, low cytotoxicity, and high selectivity against cellular structures, DTTDO derivatives are proven to be attractive dyes for fluorescence-based bioimaging.
Collapse
Affiliation(s)
- Aneta Rzewnicka
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Jerzy Krysiak
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Róża Pawłowska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Remigiusz Żurawiński
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
13
|
Abstract
Micro-/nanorobots (MNRs) can be autonomously propelled on demand in complex biological environments and thus may bring revolutionary changes to biomedicines. Fluorescence has been widely used in real-time imaging, chemo-/biosensing, and photo-(chemo-) therapy. The integration of MNRs with fluorescence generates fluorescent MNRs with unique advantages of optical trackability, on-the-fly environmental sensitivity, and targeting chemo-/photon-induced cytotoxicity. This review provides an up-to-date overview of fluorescent MNRs. After the highlighted elucidation about MNRs of various propulsion mechanisms and the introductory information on fluorescence with emphasis on the fluorescent mechanisms and materials, we systematically illustrate the design and preparation strategies to integrate MNRs with fluorescent substances and their biomedical applications in imaging-guided drug delivery, intelligent on-the-fly sensing and photo-(chemo-) therapy. In the end, we summarize the main challenges and provide an outlook on the future directions of fluorescent MNRs. This work is expected to attract and inspire researchers from different communities to advance the creation and practical application of fluorescent MNRs on a broad horizon.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xia Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
14
|
Swanson WB, Durdan M, Eberle M, Woodbury S, Mauser A, Gregory J, Zhang B, Niemann D, Herremans J, Ma PX, Lahann J, Weivoda M, Mishina Y, Greineder CF. A library of Rhodamine6G-based pH-sensitive fluorescent probes with versatile in vivo and in vitro applications. RSC Chem Biol 2022; 3:748-764. [PMID: 35755193 PMCID: PMC9175114 DOI: 10.1039/d2cb00030j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/24/2022] [Indexed: 01/11/2023] Open
Abstract
Acidic pH is critical to the function of the gastrointestinal system, bone-resorbing osteoclasts, and the endolysosomal compartment of nearly every cell in the body. Non-invasive, real-time fluorescence imaging of acidic microenvironments represents a powerful tool for understanding normal cellular biology, defining mechanisms of disease, and monitoring for therapeutic response. While commercially available pH-sensitive fluorescent probes exist, several limitations hinder their widespread use and potential for biologic application. To address this need, we developed a novel library of pH-sensitive probes based on the highly photostable and water-soluble fluorescent molecule, Rhodamine 6G. We demonstrate versatility in terms of both pH sensitivity (i.e., pK a) and chemical functionality, allowing conjugation to small molecules, proteins, nanoparticles, and regenerative biomaterial scaffold matrices. Furthermore, we show preserved pH-sensitive fluorescence following a variety of forms of covalent functionalization and demonstrate three potential applications, both in vitro and in vivo, for intracellular and extracellular pH sensing. Finally, we develop a computation approach for predicting the pH sensitivity of R6G derivatives, which could be used to expand our library and generate probes with novel properties.
Collapse
Affiliation(s)
- W Benton Swanson
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
| | - Margaret Durdan
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Cell and Molecular Biology Program, Medical School, University of Michigan Ann Arbor MI USA
| | - Miranda Eberle
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan Ann Arbor MI USA
| | - Seth Woodbury
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan Ann Arbor MI USA
| | - Ava Mauser
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
| | - Jason Gregory
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Chemical Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
| | - Boya Zhang
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Pharmacology, Medical School, University of Michigan Ann Arbor MI USA
| | - David Niemann
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan Ann Arbor MI USA
- Department of Chemical Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
| | - Jacob Herremans
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan Ann Arbor MI USA
| | - Peter X Ma
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Materials Science and Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan Ann Arbor MI USA
| | - Joerg Lahann
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Chemical Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
- Department of Materials Science and Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan Ann Arbor MI USA
| | - Megan Weivoda
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Pharmacology, Medical School, University of Michigan Ann Arbor MI USA
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan Ann Arbor MI USA
| | - Yuji Mishina
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
| | - Colin F Greineder
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Pharmacology, Medical School, University of Michigan Ann Arbor MI USA
- Department of Emergency Medicine, Medical School, University of Michigan NCRC 2800 Plymouth Road, Bldg #26 Ann Arbor MI 48109 USA
| |
Collapse
|
15
|
Lin Y, Qiu T, Lan Y, Li Z, Wang X, Zhou M, Li Q, Li Y, Liang J, Zhang J. Multi-Modal Optical Imaging and Combined Phototherapy of Nasopharyngeal Carcinoma Based on a Nanoplatform. Int J Nanomedicine 2022; 17:2435-2446. [PMID: 35656166 PMCID: PMC9151321 DOI: 10.2147/ijn.s357493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck with a high incidence rate worldwide, especially in southern China. Phototheranostics in combination with nanoparticles is an integrated strategy for enabling simultaneous diagnosis, real-time monitoring, and administration of precision therapy for nasopharyngeal carcinoma (NPC). It has shown great potential in the field of cancer diagnosis and treatment owing to its unique noninvasive advantages. Many Chinese and international research teams have applied nano-targeted drugs to optical diagnosis and treatment technology to conduct multimodal imaging and collaborative treatment of NPC, which has become a hot research topic. In this review, we aimed to introduce the recent developments in phototheranostics of NPC based on a nanoplatform. This study aimed to elaborate on the applications of nanoplatform-based optical imaging strategies and treatment modalities, including fluorescence imaging, photoacoustic imaging, Raman spectroscopy imaging, photodynamic therapy, and photothermal therapy. This study is expected to provide a scientific basis for further research and development of NPC diagnosis and treatment.
Collapse
Affiliation(s)
- Yanping Lin
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Ting Qiu
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, People's Republic of China
| | - Yintao Lan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China
| | - Zhaoyong Li
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Xin Wang
- Department of Oncology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511500, People's Republic of China
| | - Mengyu Zhou
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China
| | - Qiuyu Li
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Yao Li
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Junsheng Liang
- Department of Radiology, DongGuan Tungwah Hospital, DongGuan, Guangdong, 523000, People's Republic of China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People's Republic of China.,Department of Oncology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511500, People's Republic of China
| |
Collapse
|
16
|
Han X, Wang Y, Huang Y, Wang X, Choo J, Chen L. Fluorescent probes for biomolecule detection under environmental stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128527. [PMID: 35231812 DOI: 10.1016/j.jhazmat.2022.128527] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The use of fluorescent probes in visible detection has been developed over the last several decades. Biomolecules are essential in the biological processes of organisms, and their distribution and concentration are largely influenced by environmental factors. Significant advances have occurred in the applications of fluorescent probes for the detection of the dynamic localization and quantity of biomolecules during various environmental stress-induced physiological and pathological processes. Herein, we summarize representative examples of small molecule-based fluorescent probes that provide bimolecular information when the organism is under environmental stress. The discussion includes strategies for the design of smart small-molecule fluorescent probes, in addition to their applications in biomolecule imaging under environmental stresses, such as hypoxia, ischemia-reperfusion, hyperthermia/hypothermia, organic/inorganic chemical exposure, oxidative/reductive stress, high glucose stimulation, and drug treatment-induced toxicity. We believe that comprehensive insight into the beneficial applications of fluorescent probes in biomolecule detection under environmental stress should enable the further development and effective application of fluorescent probes in the biochemical and biomedical fields.
Collapse
Affiliation(s)
- Xiaoyue Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Present: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, UK; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
17
|
Dron SM, Bohorquez SJ, Mestach D, Paulis M. Reducing the amount of coalescing aid in high performance waterborne polymeric coatings. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Maceda A, Terrazas T. Fluorescence Microscopy Methods for the Analysis and Characterization of Lignin. Polymers (Basel) 2022; 14:961. [PMID: 35267784 PMCID: PMC8912355 DOI: 10.3390/polym14050961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Lignin is one of the most studied and analyzed materials due to its importance in cell structure and in lignocellulosic biomass. Because lignin exhibits autofluorescence, methods have been developed that allow it to be analyzed and characterized directly in plant tissue and in samples of lignocellulose fibers. Compared to destructive and costly analytical techniques, fluorescence microscopy presents suitable alternatives for the analysis of lignin autofluorescence. Therefore, this review article analyzes the different methods that exist and that have focused specifically on the study of lignin because with the revised methods, lignin is characterized efficiently and in a short time. The existing qualitative methods are Epifluorescence and Confocal Laser Scanning Microscopy; however, other semi-qualitative methods have been developed that allow fluorescence measurements and to quantify the differences in the structural composition of lignin. The methods are fluorescence lifetime spectroscopy, two-photon microscopy, Föster resonance energy transfer, fluorescence recovery after photobleaching, total internal reflection fluorescence, and stimulated emission depletion. With these methods, it is possible to analyze the transport and polymerization of lignin monomers, distribution of lignin of the syringyl or guaiacyl type in the tissues of various plant species, and changes in the degradation of wood by pulping and biopulping treatments as well as identify the purity of cellulose nanofibers though lignocellulosic biomass.
Collapse
Affiliation(s)
- Agustín Maceda
- Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Texcoco 56230, Mexico;
| | - Teresa Terrazas
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| |
Collapse
|
19
|
Plou J, Valera PS, García I, de Albuquerque CDL, Carracedo A, Liz-Marzán LM. Prospects of Surface-Enhanced Raman Spectroscopy for Biomarker Monitoring toward Precision Medicine. ACS PHOTONICS 2022; 9:333-350. [PMID: 35211644 PMCID: PMC8855429 DOI: 10.1021/acsphotonics.1c01934] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 05/14/2023]
Abstract
Future precision medicine will be undoubtedly sustained by the detection of validated biomarkers that enable a precise classification of patients based on their predicted disease risk, prognosis, and response to a specific treatment. Up to now, genomics, transcriptomics, and immunohistochemistry have been the main clinically amenable tools at hand for identifying key diagnostic, prognostic, and predictive biomarkers. However, other molecular strategies, including metabolomics, are still in their infancy and require the development of new biomarker detection technologies, toward routine implementation into clinical diagnosis. In this context, surface-enhanced Raman scattering (SERS) spectroscopy has been recognized as a promising technology for clinical monitoring thanks to its high sensitivity and label-free operation, which should help accelerate the discovery of biomarkers and their corresponding screening in a simpler, faster, and less-expensive manner. Many studies have demonstrated the excellent performance of SERS in biomedical applications. However, such studies have also revealed several variables that should be considered for accurate SERS monitoring, in particular, when the signal is collected from biological sources (tissues, cells or biofluids). This Perspective is aimed at piecing together the puzzle of SERS in biomarker monitoring, with a view on future challenges and implications. We address the most relevant requirements of plasmonic substrates for biomedical applications, as well as the implementation of tools from artificial intelligence or biotechnology to guide the development of highly versatile sensors.
Collapse
Affiliation(s)
- Javier Plou
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Pablo S. Valera
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
| | - Isabel García
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | | | - Arkaitz Carracedo
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), 48160 Derio, Spain
- Biomedical
Research Networking Center in Cancer (CIBERONC), 48160, Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
- Translational
Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, 48160 Derio, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
20
|
Watson ER, Taherian Fard A, Mar JC. Computational Methods for Single-Cell Imaging and Omics Data Integration. Front Mol Biosci 2022; 8:768106. [PMID: 35111809 PMCID: PMC8801747 DOI: 10.3389/fmolb.2021.768106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Integrating single cell omics and single cell imaging allows for a more effective characterisation of the underlying mechanisms that drive a phenotype at the tissue level, creating a comprehensive profile at the cellular level. Although the use of imaging data is well established in biomedical research, its primary application has been to observe phenotypes at the tissue or organ level, often using medical imaging techniques such as MRI, CT, and PET. These imaging technologies complement omics-based data in biomedical research because they are helpful for identifying associations between genotype and phenotype, along with functional changes occurring at the tissue level. Single cell imaging can act as an intermediary between these levels. Meanwhile new technologies continue to arrive that can be used to interrogate the genome of single cells and its related omics datasets. As these two areas, single cell imaging and single cell omics, each advance independently with the development of novel techniques, the opportunity to integrate these data types becomes more and more attractive. This review outlines some of the technologies and methods currently available for generating, processing, and analysing single-cell omics- and imaging data, and how they could be integrated to further our understanding of complex biological phenomena like ageing. We include an emphasis on machine learning algorithms because of their ability to identify complex patterns in large multidimensional data.
Collapse
Affiliation(s)
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica Cara Mar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Lee H, Kim J, Kim HH, Kim CS, Kim J. Review on Optical Imaging Techniques for Multispectral Analysis of Nanomaterials. Nanotheranostics 2022; 6:50-61. [PMID: 34976580 PMCID: PMC8671957 DOI: 10.7150/ntno.63222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/11/2021] [Indexed: 11/26/2022] Open
Abstract
Biomedical imaging is an essential tool for investigating biological responses in vivo. Among the several imaging techniques, optical imaging systems with multispectral analysis of nanoparticles have been widely investigated due to their ability to distinguish the substances in biological tissues in vivo. This review article focus on multispectral optical imaging techniques that can provide molecular functional information. We summarize the basic principle of the spectral unmixing technique that enables the delineation of optical chromophores. Then, we explore the principle, typical system configuration, and biomedical applications of the representative optical imaging techniques, which are fluorescence imaging, two-photon microscopy, and photoacoustic imaging. The results in the recent studies show the great potential of the multispectral analysis techniques for monitoring responses of biological systems in vivo.
Collapse
Affiliation(s)
- Haeni Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Jaeheung Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung-Hoi Kim
- Department of Laboratory Medicine and Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
22
|
Ji C, Tan J, Yuan Q. Defect Luminescence Based Persistent Phosphors—From Controlled Synthesis to Bioapplications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cailing Ji
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Jie Tan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| |
Collapse
|
23
|
Pottanam Chali S, Azhdari S, Galstyan A, Gröschel AH, Ravoo BJ. Biodegradable supramolecular micelles via host-guest interaction of cyclodextrin-terminated polypeptides and adamantane-terminated polycaprolactones. Chem Commun (Camb) 2021; 57:9446-9449. [PMID: 34528969 DOI: 10.1039/d1cc03372g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biodegradable supramolecular micelles were prepared exploiting the host-guest interaction of cyclodextrin and adamantane. Cyclodextrin-initiated polypeptides acted as the hydrophilic corona, whereas adamantane-terminated polycaprolactones served as the hydrophobic core.
Collapse
Affiliation(s)
- Sharafudheen Pottanam Chali
- Organic Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149 Münster, Germany.
| | - Suna Azhdari
- Physical Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 28, 48149 Münster, Germany
| | - Anzhela Galstyan
- Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - André H Gröschel
- Physical Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 28, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149 Münster, Germany.
| |
Collapse
|
24
|
Biranje A, Azmi N, Tiwari A, Chaskar A. Quantum Dots Based Fluorescent Probe for the Selective Detection of Heavy Metal Ions. J Fluoresc 2021; 31:1241-1250. [PMID: 34181146 DOI: 10.1007/s10895-021-02755-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
Heavy metal ions are one of the primary causes of environmental pollution. A marshal effect of heavy metal ions is a paramount ultimatum to humans, aquatic animals and other organisms present in nature. Multitude arrays of materials have been proclaimed for sensing of heavy metal ions and also many methodologies are applied for heavy metal ion sensing. Due to their toxicity and non-biodegradability, it is required to be perceived immediately prior to its manifestation of harmful effects. Quantum Dots (QDs) are zero-dimensional nanomaterial particles and owing to their distinctive optical and electronic properties, they are utilized as nanosensors. QDs have enriched fluorescence properties which includes broad excitation spectrum, narrow emission spectrum and photostability. QDs offer eclectic and sensitive detection of heavy metal ions due to presence of discrete capping agents and different functional groups present on the surface of the QDs. These capping layers and functional groups attune the sensing capability of the QDs, which leverages the interactions of QDs with various analytes by different mechanisms. This review, comprising of papers from 2011 to 2020,focuses on heavy metal ions sensing potential of various quantum dots and its applicability as a nanosensor for on field heavy metal ions detection in water. Quantum Dots (QDs) based Heavy Metal Detection.
Collapse
Affiliation(s)
- Akshaya Biranje
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Kalina, Santacruz (East), Mumbai, 400098, India
| | - Namrah Azmi
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Kalina, Santacruz (East), Mumbai, 400098, India
| | - Abhishekh Tiwari
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Kalina, Santacruz (East), Mumbai, 400098, India.
| | - Atul Chaskar
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Kalina, Santacruz (East), Mumbai, 400098, India.
| |
Collapse
|
25
|
Kushnazarova RA, Mirgorodskaya AB, Kuznetsov DM, Tyryshkina AA, Voloshina AD, Gumerova SK, Lenina OA, Nikitin EN, Zakharova LY. Modulation of aggregation behavior, antimicrobial properties and catalytic activity of piperidinium surfactants by modifying their head group with a polar fragment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Mikulin I, Ljubić I, Piantanida I, Vasilev A, Mondeshki M, Kandinska M, Uzelac L, Martin-Kleiner I, Kralj M, Tumir LM. Polycationic Monomeric and Homodimeric Asymmetric Monomethine Cyanine Dyes with Hydroxypropyl Functionality-Strong Affinity Nucleic Acids Binders. Biomolecules 2021; 11:biom11081075. [PMID: 34439741 PMCID: PMC8391988 DOI: 10.3390/biom11081075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
New analogs of the commercial asymmetric monomethine cyanine dyes thiazole orange (TO) and thiazole orange homodimer (TOTO) with hydroxypropyl functionality were synthesized and their properties in the presence of different nucleic acids were studied. The novel compounds showed strong, micromolar and submicromolar affinities to all examined DNA ds-polynucleotides and poly rA-poly rU. The compounds studied showed selectivity towards GC-DNA base pairs over AT-DNA, which included both binding affinity and a strong fluorescence response. CD titrations showed aggregation along the polynucleotide with well-defined supramolecular chirality. The single dipyridinium-bridged dimer showed intercalation at low dye-DNA/RNA ratios. All new cyanine dyes showed potent micromolar antiproliferative activity against cancer cell lines, making them promising theranostic agents.
Collapse
Affiliation(s)
- Ivana Mikulin
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia; (I.M.); (I.L.); (I.P.)
| | - Ivana Ljubić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia; (I.M.); (I.L.); (I.P.)
| | - Ivo Piantanida
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia; (I.M.); (I.L.); (I.P.)
| | - Aleksey Vasilev
- Faculty of Chemistry and Pharmacy, Department of Pharmaceutical and Applied Organic Chemistry, Sofia University “St. Kliment Ohridski”, 1000 Sofia, Bulgaria;
- Correspondence: (A.V.); (L.-M.T.); Tel.: +359-98-836-6528 (A.V.); +385-1-457-1220 (L.-M.T.)
| | - Mihail Mondeshki
- Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany;
| | - Meglena Kandinska
- Faculty of Chemistry and Pharmacy, Department of Pharmaceutical and Applied Organic Chemistry, Sofia University “St. Kliment Ohridski”, 1000 Sofia, Bulgaria;
| | - Lidija Uzelac
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia; (L.U.); (I.M.-K.); (M.K.)
| | - Irena Martin-Kleiner
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia; (L.U.); (I.M.-K.); (M.K.)
| | - Marijeta Kralj
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia; (L.U.); (I.M.-K.); (M.K.)
| | - Lidija-Marija Tumir
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia; (I.M.); (I.L.); (I.P.)
- Correspondence: (A.V.); (L.-M.T.); Tel.: +359-98-836-6528 (A.V.); +385-1-457-1220 (L.-M.T.)
| |
Collapse
|
27
|
Arsenyan P, Lapcinska S. Straightforward Functionalization of Sulfur-Containing Peptides via 5- and 6-endo-dig Cyclization Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1343-5607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractWe present a simple and convenient method for the generation of sulfenyl electrophiles from peptides containing S–S or S–H bonds by employing N-chlorosuccinimide. The corresponding sulfenyl electrophiles are further utilized in 5- and 6-endo-dig cyclization reactions yielding indolizinium salts, indoles, benzo[b]furans, polyaromatic hydrocarbons (PAHs) and isocoumarins, as well as quinolinones bearing a glutathione moiety. PAH derivatives can be used as selective fluorescent dyes for the visualization of lipid droplets in living cells.
Collapse
|
28
|
Oggianu M, Figus C, Ashoka-Sahadevan S, Monni N, Marongiu D, Saba M, Mura A, Bongiovanni G, Caltagirone C, Lippolis V, Cannas C, Cadoni E, Mercuri ML, Quochi F. Silicon-based fluorescent platforms for copper(ii) detection in water. RSC Adv 2021; 11:15557-15564. [PMID: 35481193 PMCID: PMC9029085 DOI: 10.1039/d1ra02695j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
The potential of silicon-based fluorescent platforms for the detection of trace toxic metal ions was investigated in an aqueous environment. To this aim, silicon chips were first functionalized with amino groups, and fluorescein organic dyes, used as sensing molecules, were then covalently linked to the surface via formation of thiourea groups. The obtained hybrid heterostructures exhibited high sensitivity and selectivity towards copper(ii), a limit of detection compatible with the recommended upper limits for copper in drinking water, and good reversibility using a standard metal-chelating agent. The fluorophore-analyte interaction mechanism at the basis of the reported fluorescence quenching, as well as the potential of performance improvement, were also studied. The herein presented sensing architecture allows, in principle, tailoring of the selectivity towards other metal ions by proper fluorophore selection, and provides a favorable outlook for integration of fluorescent chemosensors with silicon photonics technology.
Collapse
Affiliation(s)
- Mariangela Oggianu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Cristiana Figus
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Suchithra Ashoka-Sahadevan
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Noemi Monni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Daniela Marongiu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Michele Saba
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Giovanni Bongiovanni
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Carla Cannas
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Maria Laura Mercuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| | - Francesco Quochi
- Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso Universitario di Monserrato I-09042 Monserrato (CA) Italy
- INSTM, Cagliari Unit Via Giuseppe Giusti, 9 I-50121 Firenze Italy
| |
Collapse
|
29
|
Li M, Li H, Wu Q, Niu N, Huang J, Zhang L, Li Y, Wang D, Tang BZ. Hypoxia-activated probe for NIR fluorescence and photoacoustic dual-mode tumor imaging. iScience 2021; 24:102261. [PMID: 33763638 PMCID: PMC7973868 DOI: 10.1016/j.isci.2021.102261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/13/2021] [Accepted: 02/25/2021] [Indexed: 01/21/2023] Open
Abstract
Construction of tumor microenvironment responsive probe with more than one imaging modality, in particular toward hypoxia of solid tumors, is an appealing yet significantly challenging task. In this work, we designed a hypoxia-activated probe TBTO (Triphenylamine-Benzothiadiazole-Triphenylamine derivative featuring four diethylamino N-Oxide groups) for in vivo imaging. TBTO could undergo bioreduction in a hypoxic microenvironment to yield compound TBT sharing both near-infrared (NIR) aggregation-induced emission and strong twisted intramolecular charge transfer features, which endows the probe with excellent performance in NIR fluorescence and photoacoustic dual-mode tumor imaging. This study offers useful insights into designing a new generation agent for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Meng Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Huan Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Qian Wu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Niu Niu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jiachang Huang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Lingmin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Ying Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
30
|
Feng L, Xie Y, Au-Yeung SK, Hailu HB, Liu Z, Chen Q, Zhang J, Pang Q, Yao X, Yang M, Zhang L, Sun H. A fluorescent molecular rotor probe for tracking plasma membranes and exosomes in living cells. Chem Commun (Camb) 2021; 56:8480-8483. [PMID: 32588854 DOI: 10.1039/d0cc03069d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A rotor-based probe MRMP-1 was designed and synthesized. MRMP-1 can bind to plasma membranes very quickly and stably with remarkable fluorescence enhancement. It can be used to monitor the dynamic changes in cell membranes in real-time under stimuli conditions. Importantly, MRMP-1 is the first rotor-based fluorescent sensor to label exosomes in living cells.
Collapse
Affiliation(s)
- Ling Feng
- Cancer and Aging Research Institution, School of Life Science, Shandong University of Technology, China and Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Yusheng Xie
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Sung King Au-Yeung
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China and Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Hagos Birhanu Hailu
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China and Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Zhiyang Liu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Qiuxiang Pang
- Cancer and Aging Research Institution, School of Life Science, Shandong University of Technology, China
| | - Xi Yao
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China and Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Mengsu Yang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China and Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Liang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China and Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
31
|
Mafireyi TJ, Escobedo JO, Strongin RM. Fluorogenic probes for thioredoxin reductase activity. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
32
|
Barone V, Ceselin G, Fusè M, Tasinato N. Accuracy Meets Interpretability for Computational Spectroscopy by Means of Hybrid and Double-Hybrid Functionals. Front Chem 2020; 8:584203. [PMID: 33195078 PMCID: PMC7645164 DOI: 10.3389/fchem.2020.584203] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Accuracy and interpretability are often seen as the devil and holy grail in computational spectroscopy and their reconciliation remains a primary research goal. In the last few decades, density functional theory has revolutionized the situation, paving the way to reliable yet effective models for medium size molecules, which could also be profitably used by non-specialists. In this contribution we will compare the results of some widely used hybrid and double hybrid functionals with the aim of defining the most suitable recipe for all the spectroscopic parameters of interest in rotational and vibrational spectroscopy, going beyond the rigid rotor/harmonic oscillator model. We will show that last-generation hybrid and double hybrid functionals in conjunction with partially augmented double- and triple-zeta basis sets can offer, in the framework of second order vibrational perturbation theory, a general, robust, and user-friendly tool with unprecedented accuracy for medium-size semi-rigid molecules.
Collapse
Affiliation(s)
- Vincenzo Barone
- SMART Laboratory, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Giorgia Ceselin
- SMART Laboratory, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Marco Fusè
- SMART Laboratory, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Nicola Tasinato
- SMART Laboratory, Scuola Normale Superiore di Pisa, Pisa, Italy
| |
Collapse
|
33
|
Šmidlehner T, Košćak M, Božinović K, Majhen D, Schmuck C, Piantanida I. Fluorimetric and CD Recognition between Various ds-DNA/RNA Depends on a Cyanine Connectivity in Cyanine-guanidiniocarbonyl-pyrrole Conjugate. Molecules 2020; 25:molecules25194470. [PMID: 33003366 PMCID: PMC7583847 DOI: 10.3390/molecules25194470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 11/16/2022] Open
Abstract
Two novel isosteric conjugates of guanidiniocarbonyl-pyrrole and 6-bromo-TO (thiazole orange) were prepared, differing only in linker connectivity to cyanine (benzothiazole nitrogen vs. quinoline nitrogen). The quinoline analog was significantly more susceptible to aggregation in an aqueous medium, which resulted in induced circular dichroism (ICD; λ = 450-550 nm) recognition between A-T(U) and G-C basepair containing polynucleotides. The benzothiazole-isostere showed pronounced (four-fold) fluorimetric selectivity toward ds-RNA in comparison to any ds-DNA, at variance to its quinoline-analogue fluorescence being weakly selective to GC-DNA. Preliminary screening on human tumor and normal lung cell lines showed that both dyes very efficiently enter living cells and accumulate in mitochondria, causing moderate cytotoxic effects, and thus could be considered as lead compounds toward novel theragnostic mitochondrial dyes.
Collapse
Affiliation(s)
- Tamara Šmidlehner
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (T.Š.); (M.K.)
| | - Marta Košćak
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (T.Š.); (M.K.)
| | - Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.M.)
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (K.B.); (D.M.)
| | - Carsten Schmuck
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany;
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (T.Š.); (M.K.)
- Correspondence: ; Tel.: +385-1-4571-326
| |
Collapse
|
34
|
Baster Z, Rajfur Z. BatchDeconvolution: a Fiji plugin for increasing deconvolution workflow. BIO-ALGORITHMS AND MED-SYSTEMS 2020. [DOI: 10.1515/bams-2020-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractDeconvolution microscopy is a very useful, software-based technique allowing to deblur microscopy images and increase both lateral and axial resolutions. It can be used along with many of fluorescence microscopy imaging techniques. By increasing axial resolution, it also enables three-dimensional imaging using a basic wide-field fluorescence microscope. Unfortunately, commercially available deconvolution software is expensive, while freely available programs have limited capabilities of a batch file processing. In this work we present BatchDeconvolution, a Fiji plugin that bridges two programs that we used subsequently in an image deconvolution pipeline: PSF Generator and DeconvolutionLab2, both from Biomedical Imaging Group, EPFL. Our software provides a simple way to perform a batch processing of multiple microscopy files with minimal working time required from the user.
Collapse
Affiliation(s)
- Zbigniew Baster
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Zenon Rajfur
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| |
Collapse
|
35
|
Lelle M, Otte M, Bonus M, Gohlke H, Benndorf K. Fluorophore-Labeled Cyclic Nucleotides as Potent Agonists of Cyclic Nucleotide-Regulated Ion Channels. Chembiochem 2020; 21:2311-2320. [PMID: 32227403 PMCID: PMC7497086 DOI: 10.1002/cbic.202000116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/26/2020] [Indexed: 12/22/2022]
Abstract
High-affinity fluorescent derivatives of cyclic adenosine and guanosine monophosphate are powerful tools for investigating their natural targets. Cyclic nucleotide-regulated ion channels belong to these targets and are vital for many signal transduction processes, such as vision and olfaction. The relation of ligand binding to activation gating is still challenging, and there is a need for fluorescent probes that enable the process to be broken down to the single-molecule level. This inspired us to prepare fluorophore-labeled cyclic nucleotides, which are composed of a bright dye and a nucleotide derivative with a thiophenol motif at position 8 that has already been shown to enable superior binding affinity. These bioconjugates were prepared by a novel cross-linking strategy that involves substitution of the nucleobase with a modified thiophenolate in good yield. Both fluorescent nucleotides are potent activators of different cyclic nucleotide-regulated ion channels with respect to the natural ligand and previously reported substances. Molecular docking of the probes excluding the fluorophore reveals that the high potency can be attributed to additional hydrophobic and cation-π interactions between the ligand and the protein. Moreover, the introduced substances have the potential to investigate related target proteins, such as cAMP- and cGMP-dependent protein kinases, exchange proteins directly activated by cAMP or phosphodiesterases.
Collapse
Affiliation(s)
- Marco Lelle
- Institute of Physiology IIUniversity Hospital JenaKollegiengasse 907743JenaGermany
| | - Maik Otte
- Institute of Physiology IIUniversity Hospital JenaKollegiengasse 907743JenaGermany
| | - Michele Bonus
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstrasse 140225DüsseldorfGermany
- John von Neumann Institute for Computing (NIC)Jülich Supercomputing Centre (JSC) andInstitute of Biological Information Processing (IBI-7: Structural Biochemistry)Forschungszentrum Jülich GmbHWilhelm-Johnen-Strasse52425JülichGermany
| | - Klaus Benndorf
- Institute of Physiology IIUniversity Hospital JenaKollegiengasse 907743JenaGermany
| |
Collapse
|
36
|
Wong CY, Al-Salami H, Dass CR. Current status and applications of animal models in pre-clinical development of orally administered insulin-loaded nanoparticles. J Drug Target 2020; 28:882-903. [DOI: 10.1080/1061186x.2020.1759078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chun Y. Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
- Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, Australia
| | - Crispin R. Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
37
|
Wang W, Liu Y, Niu J, Lin W. Discrimination of live and dead cells with two different sets of signals and unique application in vivo imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118115. [PMID: 32007905 DOI: 10.1016/j.saa.2020.118115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Discriminating living and dead cells is of great significance for the study of apoptosis. In this work, we have developed a unique fluorescent probe (RPIC) for discriminating live and dead cells with duel-channel fluorescence imaging under double excitation and double emission mode. Dead cells treated with RPIC shows weak fluorescence signals in red channel, however, strong fluorescence signals are appeared in red channel in live cells. Weak and strong green fluorescence signals present at live cells and dead cells, respectively. Moreover, RPIC can detect successfully apoptosis of cancer cells. For in-vivo imaging, RPIC can discriminate successfully live and dead zebrafish with the same method. More interestingly, it is found that RPIC possesses the ability of discriminating normal mice and tumor mice.
Collapse
Affiliation(s)
- Weishan Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China
| | - Yong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China
| | - Jie Niu
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, PR China.
| |
Collapse
|
38
|
Zeng XY, Zhu QZ, Yu QQ, Wang MQ. Conjugating a groove binder analogue to a styryl-quinolinium scaffold for the light-up detection of duplex and G-Quadruplex DNA with different binding modes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117705. [PMID: 31718971 DOI: 10.1016/j.saa.2019.117705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
The rational design of novel small molecules, which can target specific DNA sequences or secondary structural DNAs, is one of the most important goals in medicinal chemistry. Also the studies of DNA binding potency which can give fundamental insight into binding mechanisms and specificity are essential. In this paper, a N-methylated quinolinium probe NSQ functionalized with a G-Quadruplex DNA groove binder analogue was designed and synthesized. NSQ was found to express selective and sensitive for "light-up" detection of both G-Quadruplex and duplex DNAs over RNA and other biomolecules. The characteristics of NSQ and its interactions with DNAs were comprehensively evaluated by means of fluorescence, UV-Vis, circular dichroism, FID assay, DFT calculation and molecular docking. NSQ exhibited higher binding affinity to G-Quadruplex than to duplex DNA. Binding mechanism analysis indicated NSQ interacted with G-Quadruplex DNA mainly through end-stacking mode, while bound with duplex DNA into the minor groove of AT-rich regions. Further, NSQ exhibited potent in vitro anti-tumor activity, and to elucidate the cellular applications, confocal cell imaging was carried out and validated its mainly nuclear localization.
Collapse
Affiliation(s)
- Xin-Yue Zeng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qing-Zhong Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Quan-Qi Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ming-Qi Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
39
|
Wang W, Liu Y, Niu J, Lin W. Discriminating normal and inflammatory models by viscosity changes with a mitochondria-targetable fluorescent probe. Analyst 2020; 144:6247-6253. [PMID: 31552926 DOI: 10.1039/c9an01573f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intracellular viscosity abnormalities can lead to diabetes, neurodegenerative diseases and cancer. In this work, we developed a mitochondria-targetable fluorescent probe (EIMV) for discriminating normal and inflammatory models by viscosity changes. It was found that EIMV showed excellent properties, including high photostability, low cytotoxicity, red emission and favorable biocompatibility. In view of these unique features, this probe could successfully identify normal and cancer cells via viscosity changes. Furthermore, the EIMV probe successfully identified zebrafish with different viscosities by the same method. Moreover, EIMV exhibited different fluorescence signals in normal and inflammatory mice due to changes in viscosity. Therefore, the probe provides a new method to study the relationship between diseases and viscosity in the fields of biology and medicine.
Collapse
Affiliation(s)
- Weishan Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | | | | | | |
Collapse
|
40
|
Eggenstein E, Richter A, Skerra A. FluoroCalins: engineered lipocalins with novel binding functions fused to a fluorescent protein for applications in biomolecular imaging and detection. Protein Eng Des Sel 2019; 32:289-296. [PMID: 31927584 DOI: 10.1093/protein/gzz047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 11/14/2022] Open
Abstract
FluoroCalins represent novel bifunctional protein reagents derived from engineered lipocalins fused to a fluorescent reporter protein, here the enhanced green fluorescent protein (eGFP). We demonstrate the construction, facile bacterial production and broad applicability of FluoroCalins using two Anticalin® molecules directed against the tumor vasculature-associated extra domain B of fibronectin (ED-B) and the vascular endothelial growth factor receptor 3, a marker of tumor and lymphangiogenesis. FluoroCalins were prepared with two different spacers: (i) a short Ser3Ala linker and (ii) a long hydrophilic and conformationally unstructured PASylation® polypeptide comprising 200 Pro, Ala and Ser residues. These FluoroCalins were applied for direct target quantification in enzyme-linked immunosorbent assay as well as target detection by flow cytometry and fluorescence microscopy of live and fixed cells, respectively, demonstrating high specificity and signal-to-noise ratio. Hence, FluoroCalins offer a promising alternative to antibody-based reagents for state of the art fluorescent in vitro detection and biomolecular imaging.
Collapse
Affiliation(s)
- Evelyn Eggenstein
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Antonia Richter
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| |
Collapse
|
41
|
A Software Tool for High-Throughput Real-Time Measurement of Intensity-Based Ratio-Metric FRET. Cells 2019; 8:cells8121541. [PMID: 31795419 PMCID: PMC6952787 DOI: 10.3390/cells8121541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Förster resonance energy transfer (FRET) is increasingly used for non-invasive measurement of fluorescently tagged molecules in live cells. In this study, we have developed a freely available software tool MultiFRET, which, together with the use of a motorised microscope stage, allows multiple single cells to be studied in one experiment. MultiFRET is a Java plugin for Micro-Manager software, which provides real-time calculations of ratio-metric signals during acquisition and can simultaneously record from multiple cells in the same experiment. It can also make other custom-determined live calculations that can be easily exported to Excel at the end of the experiment. It is flexible and can work with multiple spectral acquisition channels. We validated this software by comparing the output of MultiFRET to that of a previously established and well-documented method for live ratio-metric FRET experiments and found no significant difference between the data produced with the use of the new MultiFRET and other methods. In this validation, we used several cAMP FRET sensors and cell models: i) isolated adult cardiomyocytes from transgenic mice expressing the cytosolic epac1-camps and targeted pmEpac1 and Epac1-PLN sensors, ii) isolated neonatal mouse cardiomyocytes transfected with the AKAP79-CUTie sensor, and iii) human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) transfected with the Epac-SH74 sensor. The MultiFRET plugin is an open source freely available package that can be used in a wide area of live cell imaging when live ratio-metric calculations are required.
Collapse
|
42
|
Fluorescence Imaging of Mitochondria with Three Different Sets of Signals Based on Fluorene Cation Fluorescent Probe. J Fluoresc 2019; 29:1457-1465. [DOI: 10.1007/s10895-019-02451-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
|
43
|
Aswathy PR, Sharma S, Tripathi NP, Sengupta S. Regioisomeric BODIPY Benzodithiophene Dyads and Triads with Tunable Red Emission as Ratiometric Temperature and Viscosity Sensors. Chemistry 2019; 25:14870-14880. [DOI: 10.1002/chem.201902952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/17/2019] [Indexed: 02/06/2023]
Affiliation(s)
- P. R. Aswathy
- Department of Chemical SciencesIndian Institute of Science, Education and Research (IISER) Mohali Punjab 140306 India
| | - Sushil Sharma
- Department of Chemical SciencesIndian Institute of Science, Education and Research (IISER) Mohali Punjab 140306 India
| | - Narendra Pratap Tripathi
- Department of Chemical SciencesIndian Institute of Science, Education and Research (IISER) Mohali Punjab 140306 India
| | - Sanchita Sengupta
- Department of Chemical SciencesIndian Institute of Science, Education and Research (IISER) Mohali Punjab 140306 India
| |
Collapse
|
44
|
Schmidt D, Stolte M, Süß J, Liess A, Stepanenko V, Würthner F. Protein-like Enwrapped Perylene Bisimide Chromophore as a Bright Microcrystalline Emitter Material. Angew Chem Int Ed Engl 2019; 58:13385-13389. [PMID: 31329325 PMCID: PMC6772080 DOI: 10.1002/anie.201907618] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Indexed: 01/01/2023]
Abstract
Strongly emissive solid-state materials are mandatory components for many emerging optoelectronic technologies, but fluorescence is often quenched in the solid state owing to strong intermolecular interactions. The design of new organic pigments, which retain their optical properties despite their high tendency to crystallize, could overcome such limitations. Herein, we show a new material with monomer-like absorption and emission profiles as well as fluorescence quantum yields over 90 % in its crystalline solid state. The material was synthesized by attaching two bulky tris(4-tert-butylphenyl)phenoxy substituents at the perylene bisimide bay positions. These substituents direct a packing arrangement with full enwrapping of the chromophore and unidirectional chromophore alignment within the crystal lattice to afford optical properties that resemble those of their natural pigment counterparts, in which chromophores are rigidly embedded in protein environments.
Collapse
Affiliation(s)
- David Schmidt
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Matthias Stolte
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Jasmin Süß
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Liess
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Vladimir Stepanenko
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
45
|
Schmidt D, Stolte M, Süß J, Liess A, Stepanenko V, Würthner F. Protein‐like Enwrapped Perylene Bisimide Chromophore as a Bright Microcrystalline Emitter Material. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David Schmidt
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität Würzburg Am Hubland 97074 Würzburg Germany
| | - Matthias Stolte
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jasmin Süß
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Liess
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität Würzburg Am Hubland 97074 Würzburg Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität Würzburg Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
46
|
Liu Y, Wei Y, Bian Y, He S, Wang X, Liu X, Li C, Wu Q, Zeng X, Wang H, Liu K. A 2-(benzo[d]thiazol-2-yl)phenol based on conjugated polymer: Highly selective colorimetric fluorescent chemosensor for F-depending on Si–O bond cleavage reaction. HIGH PERFORM POLYM 2019. [DOI: 10.1177/0954008319866003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Design and synthesis of highly selective fluorine ion probes become particularly important owing to the specific role of fluorine ion in chemical and biomedical progresses. As a new-type of fluorescent material, conjugated polymers with unique photometric properties have been widely researched by scientists in the field of the fluorescence sensors. In this study, the polymer PBTPV-OSi containing benzothiazole moiety is synthesized via palladium-catalyzed Heck coupling reaction. This polymer not only exhibits good solubility in organic solvents but also shows high selectivity for fluorine ion detection in comparison to other anions. Upon addition of F− to PBTPV-OSi solution, Si–O cleavage of PBTPV-OSi leads to the fluorescence quenching of the polymer in tetrahydrofuran dramatically, and the detection limit is 8 × 10−6 mol/L. Moreover, besides detecting fluorine ion from organic phase, the probe can also effectively detect potassium fluoride from inorganic phase. More importantly, a naked-eye detectable chromogenic and fluorogenic dual response to fluorine ion (F−) can be visibly noted and the detection process of fluorine ion is relatively fast.
Collapse
Affiliation(s)
- Yinhong Liu
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Yuhan Wei
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Yongshuang Bian
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Shengjiao He
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Xin Wang
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Xin Liu
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Hanguang Wang
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Kuan Liu
- College of Science, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
47
|
Ratiometric Fluorescent Nanoprobe for Highly Sensitive Determination of Mercury Ions. Molecules 2019; 24:molecules24122278. [PMID: 31248146 PMCID: PMC6631757 DOI: 10.3390/molecules24122278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 11/26/2022] Open
Abstract
In this study, a novel dual-emission ratiometric fluorescent nanoprobe (RFN) was synthesized and ultilized for highly sensitive determination of mercury ions. In this nanoprobe, fluorescein isothiocyanate (FITC) doped silica (SiO2) served as a reference signal, FITC–SiO2 microspheres were synthesized and modified with amino groups, and then Au Nanoclusters (AuNCs) were combined with the amino groups on the surface of the FITC–SiO2 microspheres to obtain the RFN. The selectivity, stability, and pH of the RFN were then optimized, and the determination of mercury ions was performed under optimal conditions. The probe fluorescence intensity ratio (F520 nm/F680 nm) and Hg2+ concentration (1.0 × 10−10 mol/L to 1.0 × 10−8 mol/L) showed a good linear relationship, with a correlation coefficient of R2 = 0.98802 and a detection limit of 1.0 × 10−10 mol/L, respectively. The probe was used for the determination of trace mercury ion in water samples, and the recovery rate was 98.15~100.45%, suggesting a wide range of applications in monitoring pollutants, such as heavy metal ion and in the area of environmental protection.
Collapse
|
48
|
Puzzarini C, Bloino J, Tasinato N, Barone V. Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chem Rev 2019; 119:8131-8191. [DOI: 10.1021/acs.chemrev.9b00007] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
49
|
Šmidlehner T, Rožman A, Piantanida I. Advances in Cyanine - Amino Acid Conjugates and Peptides for Sensing of DNA, RNA and Protein Structures. Curr Protein Pept Sci 2019; 20:1040-1045. [PMID: 31092178 DOI: 10.2174/1389203720666190513084102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/23/2019] [Accepted: 04/06/2019] [Indexed: 12/27/2022]
Abstract
Small molecule spectrophotometric probes for DNA/RNA and proteins are of the utmost importance for diagnostics in biochemical and biomedical research. Both, naturally occurring and synthetic probes, often include peptide sequence responsible for the selectivity toward the particular target; however, commercially available dyes are restricted to single point attachment to the peptide (having one reactive group). Here presented are our recent advances in the development of novel amino acidfluorophore probes, with the unique characteristic of free N- and C-terminus available for incorporation at any peptide backbone position. Intriguingly, already monomeric amino acid-fluorophores showed recognition among various DNA/RNA, whereby steric impact and contribution of halogens is systematically studied. Moreover, some dyes revealed intracellular mitochondria specificity. Further, several hetero-dimeric chromophore systems were prepared, demonstrating that synergistic effect can lead to simultaneous DNA, RNA and protein fluorimetric recognition, combined with enzyme inhibition. Also, homodimeric cyanines equipped with chlorine revealed intriguing DNA/RNA selectivity in respect to well-known parent TOTO and YOYO dyes.
Collapse
Affiliation(s)
- Tamara Šmidlehner
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry. Ruder Boskovic Institute, Zagreb, Croatia
| | - Andrea Rožman
- Pliva Croatia Ltd, Research and Development, Zagreb, Croatia
| | - Ivo Piantanida
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry. Ruder Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
50
|
Kabatas S, Agüi‐Gonzalez P, Saal K, Jähne S, Opazo F, Rizzoli SO, Phan NTN. Boron-Containing Probes for Non-optical High-Resolution Imaging of Biological Samples. Angew Chem Int Ed Engl 2019; 58:3438-3443. [PMID: 30614604 PMCID: PMC6593772 DOI: 10.1002/anie.201812032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/08/2018] [Indexed: 11/10/2022]
Abstract
Boron has been employed in materials science as a marker for imaging specific structures by electron energy loss spectroscopy (EELS) or secondary ion mass spectrometry (SIMS). It has a strong potential in biological analyses as well; however, the specific coupling of a sufficient number of boron atoms to a biological structure has proven challenging. Herein, we synthesize tags containing closo-1,2-dicarbadodecaborane, coupled to soluble peptides, which were integrated in specific proteins by click chemistry in mammalian cells and were also coupled to nanobodies for use in immunocytochemistry experiments. The tags were fully functional in biological samples, as demonstrated by nanoSIMS imaging of cell cultures. The boron signal revealed the protein of interest, while other SIMS channels were used for imaging different positive ions, such as the cellular metal ions. This allows, for the first time, the simultaneous imaging of such ions with a protein of interest and will enable new biological applications in the SIMS field.
Collapse
Affiliation(s)
- Selda Kabatas
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center Göttingenvon-Siebold-Straße 3a37075GöttingenGermany
- Department of Neuro- and Sensory PhysiologyUniversity Medical Center GöttingenHumboldtallee 2337073GöttingenGermany
| | - Paola Agüi‐Gonzalez
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center Göttingenvon-Siebold-Straße 3a37075GöttingenGermany
- Department of Neuro- and Sensory PhysiologyUniversity Medical Center GöttingenHumboldtallee 2337073GöttingenGermany
| | - Kim‐Ann Saal
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center Göttingenvon-Siebold-Straße 3a37075GöttingenGermany
- Department of Neuro- and Sensory PhysiologyUniversity Medical Center GöttingenHumboldtallee 2337073GöttingenGermany
| | - Sebastian Jähne
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center Göttingenvon-Siebold-Straße 3a37075GöttingenGermany
- Department of Neuro- and Sensory PhysiologyUniversity Medical Center GöttingenHumboldtallee 2337073GöttingenGermany
| | - Felipe Opazo
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center Göttingenvon-Siebold-Straße 3a37075GöttingenGermany
- Department of Neuro- and Sensory PhysiologyUniversity Medical Center GöttingenHumboldtallee 2337073GöttingenGermany
| | - Silvio O. Rizzoli
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center Göttingenvon-Siebold-Straße 3a37075GöttingenGermany
- Department of Neuro- and Sensory PhysiologyUniversity Medical Center GöttingenHumboldtallee 2337073GöttingenGermany
| | - Nhu T. N. Phan
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center Göttingenvon-Siebold-Straße 3a37075GöttingenGermany
- Department of Neuro- and Sensory PhysiologyUniversity Medical Center GöttingenHumboldtallee 2337073GöttingenGermany
| |
Collapse
|