1
|
Bhattacharya S, Dutta A, Khanra PK, Gupta N, Dutta R, Tzvetkov NT, Milella L, Ponticelli M. In silico exploration of 4(α-l-rhamnosyloxy)-benzyl isothiocyanate: A promising phytochemical-based drug discovery approach for combating multi-drug resistant Staphylococcus aureus. Comput Biol Med 2024; 179:108907. [PMID: 39033680 DOI: 10.1016/j.compbiomed.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus infections significantly threaten global health. With rising resistance to current antibiotics and limited solutions, the urgent discovery of new, effective, and affordable antibacterials with low toxicity is imperative to combat diverse MDR S. aureus strains. Hence, in this study, we introduce an in silico phytochemical-based approach for discovering novel antibacterial agents, underscoring the potential of computational approaches in therapeutic discovery. Glucomoringin Isothiocyanate (GMG-ITC) from Moringa oleifera Lam. is one of the phytochemical compounds with several biological activities, including antimicrobial, anti-inflammatory, and antioxidant activities, and is also effective against S. aureus. This study focuses on screening GMG-ITC as a potential drug candidate to combat MDR S. aureus infections through a molecular docking approach. Moreover, interaction amino acid analysis, in silico pharmacokinetics, compound target prediction, pathway enrichment analysis and molecular dynamics (MD) simulations were conducted for further investigation. Molecular docking and interaction analysis showed strong binding affinity towards S. aureus lipase, dihydrofolate reductase, and other MDR S. aureus proteins, including penicillin-binding protein 2a, MepR, D-Ala:D-Ala ligase, and RPP TetM, through hydrophilic and hydrophobic interactions. GMG-ITC also showed a strong binding affinity to cyclooxygenase-2 and FAD-dependent NAD(P)H oxidase, suggesting that it is a potential anti-inflammatory and antioxidant candidate that may eliminate inflammation and oxidative stress associated with S. aureus infections. MD simulations validated the stability of the GMG-ITC molecular interactions determined by molecular docking. In silico pharmacokinetic analysis highlights its potency as a drug candidate, showing strong absorption, distribution, and excretion properties in combination with low toxicity. It acts as an active protease and enzyme inhibitor with moderate activity against GPCR ligands, ion channels, nuclear receptor ligands, and kinases. Enrichment analysis further elucidated its involvement in important biological, molecular, and cellular functions with potential therapeutic applications in diseases like cancer, hepatitis B, and influenza. Results suggest that GMG-ITC is an effective antibacterial agent that could treat MDR S. aureus-associated infections.
Collapse
Affiliation(s)
- Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, 165 00, Czech Republic
| | - Adrish Dutta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Pijush Kanti Khanra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 39, Assam, India
| | - Neha Gupta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Ritesh Dutta
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology & Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences (BAS), Acad. G. Bonchev Str., Bl. 21, 1113, Sofia, Bulgaria
| | - Luigi Milella
- Department of Science, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| | - Maria Ponticelli
- Department of Biochemical Pharmacology & Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences (BAS), Acad. G. Bonchev Str., Bl. 21, 1113, Sofia, Bulgaria; Department of Science, University of Basilicata, Via Dell'Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
2
|
Chiș A, Noubissi PA, Pop OL, Mureșan CI, Fokam Tagne MA, Kamgang R, Fodor A, Sitar-Tăut AV, Cozma A, Orășan OH, Hegheș SC, Vulturar R, Suharoschi R. Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties. PLANTS (BASEL, SWITZERLAND) 2023; 13:20. [PMID: 38202328 PMCID: PMC10780634 DOI: 10.3390/plants13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Moringa oleifera (M. oleifera) is a tropical tree native to Pakistan, India, Bangladesh, and Afghanistan; it is cultivated for its nutritious leaves, pods, and seeds. This scientific study was conducted to outline the anti-inflammatory properties and mechanisms of action of bioactive compounds from M. oleifera. The existing research has found that the plant is used in traditional medicine due to its bioactive compounds, including phytochemicals: flavonoids and polyphenols. The compounds are thought to exert their anti-inflammatory effects due to: (1) inhibition of pro-inflammatory enzymes: quercetin and kaempferol inhibit the pro-inflammatory enzymes (cyclooxygenase and lipoxygenase); (2) regulation of cytokine production: isothiocyanates modulate signaling pathways involved in inflammation, such as the nuclear factor-kappa B (NF-kappa B) pathway; isothiocyanates inhibit the production of pro-inflammatory cytokines such as TNF-α (tumor necrosis factor α) and IL-1β (interleukin-1β); and (3) antioxidant activity: M. oleifera contains flavonoids, polyphenols, known to reduce oxidative stress and inflammation. The review includes M. oleifera's effects on cardiovascular protection, anti-hypertensive activities, type 2 diabetes, inflammatory bowel disease, and non-alcoholic fatty liver disease (NAFLD). This research could prove valuable for exploring the pharmacological potential of M. oleifera and contributing to the prospects of developing effective medicines for the benefit of human health.
Collapse
Affiliation(s)
- Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Paul Aimé Noubissi
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Oana-Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Carmen Ioana Mureșan
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Michel Archange Fokam Tagne
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon;
| | - René Kamgang
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hațieganu” University of Medicine and Pharmacy, 2-4 Clinicilor St., 400012 Cluj-Napoca, Romania;
| | - Adela-Viviana Sitar-Tăut
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Angela Cozma
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Olga Hilda Orășan
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Simona Codruța Hegheș
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Dos Santos Szewczyk K, Skowrońska W, Kruk A, Makuch-Kocka A, Bogucka-Kocka A, Miazga-Karska M, Grzywa-Celińska A, Granica S. Chemical composition of extracts from leaves, stems and roots of wasabi (Eutrema japonicum) and their anti-cancer, anti-inflammatory and anti-microbial activities. Sci Rep 2023; 13:9142. [PMID: 37277512 DOI: 10.1038/s41598-023-36402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023] Open
Abstract
The purpose of our study was to evaluate the composition of the extracts obtained from the roots and leaves of Eutrema japonicum cultivated in Poland. For this purpose, LC-DAD-IT-MS and LC-Q-TOF-MS analyses were used. The results revealed the presence of forty-two constituents comprising glycosinolates, phenylpropanoid glycosides, flavone glycosides, hydroxycinnamic acids, and other compounds. Then, the resultant extracts were subjected to an assessment of the potential cytotoxic effect on human colon adenocarcinoma cells, the effect on the growth of probiotic and intestinal pathogenic strains, as well as their anti-inflammatory activity. It was demonstrated that 60% ethanol extract from the biennial roots (WR2) had the strongest anti-inflammatory, antibacterial, and cytotoxic activities compared to the other samples. Our results suggest that extracts from E. japonicum may be considered as a promising compound for the production of health-promoting supplements.
Collapse
Affiliation(s)
| | - Weronika Skowrońska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1 Street, 02-097, Warsaw, Poland
| | - Aleksandra Kruk
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1 Street, 02-097, Warsaw, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Małgorzata Miazga-Karska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Anna Grzywa-Celińska
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy Medical, Centre for Preclinical Research, University of Warsaw, Banacha 1 Street, 02-097, Warsaw, Poland.
| |
Collapse
|
4
|
Muzammil S, Neves Cruz J, Mumtaz R, Rasul I, Hayat S, Khan MA, Khan AM, Ijaz MU, Lima RR, Zubair M. Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts. Molecules 2023; 28:molecules28020710. [PMID: 36677768 PMCID: PMC9864430 DOI: 10.3390/molecules28020710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
The delayed healing of wounds among people with diabetes is a severe problem worldwide. Hyperglycemia and increased levels of free radicals are the major inhibiting factors of wound healing in diabetic patients. Plant extracts are a rich source of polyphenols, allowing them to be an effective agent for wound healing. Drying temperature and extraction solvent highly affect the stability of polyphenols in plant materials. However, there is a need to optimize the extraction protocol to ensure the efficacy of the final product. For this purpose, the effects of drying temperature and solvents on the polyphenolic composition and diabetic wound healing activity of Moringa oleifera leaves were examined in the present research. Fresh leaves were oven dried at different temperatures (10 °C, 30 °C, 50 °C, and 100 °C) and extracted in three solvents (acetone, ethanol, and methanol) to obtain twelve extracts in total. The extracts were assessed for free radical scavenging and antihyperglycemic effects using DPPH (2,2-diphenylpicrylhydrazyl) and α- glucosidase inhibition assays. Alongside this, a scratch assay was performed to evaluate the cell migration activity of M. oleifera on the human retinal pigment epithelial cell line. The cytotoxicity of the plant extracts was assessed on human retinal pigment epithelial (RPE) and hepatocellular carcinoma (Huh-7) cell lines. Using high-performance liquid chromatography, phenolic compounds in extracts of M. oleifera were identified. We found that an ethanol-based extract prepared by drying the leaves at 10 °C contained the highest amounts of identified polyphenols. Moringa oleifera extracts showed remarkable antioxidant, antidiabetic, and cell migration properties. The best results were obtained with leaves dried at 10 °C and 30 °C. Decreased activities were observed with drying temperatures of 50 °C and above. Moreover, M. oleifera extracts exhibited no toxicity on RPE cells, and the same extracts were cytotoxic for Huh-7 cells. This study revealed that M. oleifera leaves extracts can enhance wound healing in diabetic conditions due to their antihyperglycemic, antioxidant, and cell migration effects. The leaves of this plant can be an excellent therapeutic option when extracted at optimum conditions.
Collapse
Affiliation(s)
- Saima Muzammil
- Department of Microbiology, Government College University (GCU), Faisalabad 38000, Pakistan
| | - Jorddy Neves Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Rabia Mumtaz
- Department of Bioinformatics and Biotechnology, Government College University (GCU), Faisalabad 38000, Pakistan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University (GCU), Faisalabad 38000, Pakistan
| | - Sumreen Hayat
- Department of Microbiology, Government College University (GCU), Faisalabad 38000, Pakistan
| | - Muhammad Asaf Khan
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan 59300, Pakistan
| | - Arif Muhammad Khan
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University (GCU), Faisalabad 38000, Pakistan
- Correspondence: ; Tel.:+92-3327-797-527
| |
Collapse
|
5
|
Azlan UK, Khairul Annuar NA, Mediani A, Aizat WM, Damanhuri HA, Tong X, Yanagisawa D, Tooyama I, Wan Ngah WZ, Jantan I, Hamezah HS. An insight into the neuroprotective and anti-neuroinflammatory effects and mechanisms of Moringa oleifera. Front Pharmacol 2023; 13:1035220. [PMID: 36686668 PMCID: PMC9849397 DOI: 10.3389/fphar.2022.1035220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are sporadic maladies that affect patients' lives with progressive neurological disabilities and reduced quality of life. Neuroinflammation and oxidative reaction are among the pivotal factors for neurodegenerative conditions, contributing to the progression of NDs, such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS) and Huntington's disease (HD). Management of NDs is still less than optimum due to its wide range of causative factors and influences, such as lifestyle, genetic variants, and environmental aspects. The neuroprotective and anti-neuroinflammatory activities of Moringa oleifera have been documented in numerous studies due to its richness of phytochemicals with antioxidant and anti-inflammatory properties. This review highlights up-to-date research findings on the anti-neuroinflammatory and neuroprotective effects of M. oleifera, including mechanisms against NDs. The information was gathered from databases, which include Scopus, Science Direct, Ovid-MEDLINE, Springer, and Elsevier. Neuroprotective effects of M. oleifera were mainly assessed by using the crude extracts in vitro and in vivo experiments. Isolated compounds from M. oleifera such as moringin, astragalin, and isoquercitrin, and identified compounds of M. oleifera such as phenolic acids and flavonoids (chlorogenic acid, gallic acid, ferulic acid, caffeic acid, kaempferol, quercetin, myricetin, (-)-epicatechin, and isoquercitrin) have been reported to have neuropharmacological activities. Therefore, these compounds may potentially contribute to the neuroprotective and anti-neuroinflammatory effects. More in-depth studies using in vivo animal models of neurological-related disorders and extensive preclinical investigations, such as pharmacokinetics, toxicity, and bioavailability studies are necessary before clinical trials can be carried out to develop M. oleifera constituents into neuroprotective agents.
Collapse
Affiliation(s)
- Ummi Kalthum Azlan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Ahmed Mediani
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hanafi Ahmad Damanhuri
- 2Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Xiaohui Tong
- 3School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Daijiro Yanagisawa
- 4Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Wan Zurinah Wan Ngah
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ibrahim Jantan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia,*Correspondence: Hamizah Shahirah Hamezah,
| |
Collapse
|
6
|
Anti-Sporotrichotic Activity, Lambert-W Inhibition Kinetics and 3D Structural Characterization of Sporothrix schenckii Catalase as Target of Glucosinolates from Moringa oleifera. Sci Pharm 2022. [DOI: 10.3390/scipharm90040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most human fungal infections exhibit significant defensive oxidative stress responses, which contribute to their pathogenicity. An important component of these reactions is the activation of catalase for detoxification. To discover new antifungal chemicals, the antifungal activity of methanol extracts of Moringa oleifera from two commercial products (Akuanandi and Mas Lait) was investigated. The methanolic extracts’ activity against Sporothrix schenckii was determined using an assay for minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC). The MIC concentrations varied between 0.5 μg/mL and 8 μg/mL. Akuanandi extract had the lowest MIC (0.5 μg/mL) and MLC (1 μg/mL) values. M. oleifera methanolic extracts were tested for catalase inhibition. The Ki values of the M. oleifera extract against S. schenckii catalase (SsCAT) was found to be 0.7 μg/mL for MOE-AK and 0.08 μg/mL for MOE-ML. Catalase’s 3D structure in SsCAT is unknown. The homology of SsCAT was modeled with an in silico study using a 3D structure from SWISS MODEL and validation the predicted 3D structure was carried out using PROCHECK and MolProbity. Docking simulations were used to analyze protein interactions using Pymol, PoseView, and PLIP. The results revealed that M. oleifera glucosinolates interacts with SsCAT. A molecular interaction analysis revealed two inhibitor compounds (glucosinalbin and glucomoringin) with high binding affinity to key allosteric-site residues. The binding energies revealed that glucosinalbin and glucomoringin bind with high affinity to SsCAT (docking energy values: −9.8 and −9.0 kcal/mol, respectively). The findings of this study suggest that glucosinolates derived from M. oleifera could be used instead of synthetic fungicides to control S. schenckii infections. We hope that the findings of this work will be valuable for developing and testing novel natural anti-sporothrix therapeutic agents in the future.
Collapse
|
7
|
Wang S, Liu S, Hao G, Zhao L, Lü X, Wang H, Wang L, Zhang J, Ge W. Antimicrobial activity and mechanism of isothiocyanate from Moringa oleifera seeds against Bacillus cereus and Cronobacter sakazakii and its application in goat milk. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Wu J, Cui S, Liu J, Tang X, Zhao J, Zhang H, Mao B, Chen W. The recent advances of glucosinolates and their metabolites: Metabolism, physiological functions and potential application strategies. Crit Rev Food Sci Nutr 2022:1-18. [PMID: 35389274 DOI: 10.1080/10408398.2022.2059441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucosinolates and their metabolites from Brassicaceae plants have received widespread attention due to their anti-inflammatory effects. Glucosinolates occurs an "enterohepatic circulation" in the body, and the glucosinolates metabolism mainly happens in the intestine. Glucosinolates can be converted into isothiocyanates by intestinal bacteria, which are active substances with remarkable anti-inflammatory, anti-cancer, anti-obesity and neuroprotective properties. This biotransformation can greatly improve the bioactivities of glucosinolates. However, multiple factors in the environment can affect the biotransformation to isothiocyanates, including acidic pH, ferrous ions and thiocyanate-forming protein. The derivatives of glucosinolates under those conditions are usually nitriles and thiocyanates, which may impair the potential health benefits. In addition, isothiocyanates are extremely unstable because of an active sulfhydryl group, which limits their applications. This review mainly summarizes the classification, synthesis, absorption, metabolism, physiological functions and potential application strategies of glucosinolates and their metabolites.
Collapse
Affiliation(s)
- Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junsheng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| |
Collapse
|
9
|
Giuberti G, Rocchetti G, Montesano D, Lucini L. The potential of Moringa oleifera in food formulation: a promising source of functional compounds with health-promoting properties. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Li H, Ming X, Xu D, Mo H, Liu Z, Hu L, Zhou X. Transcriptome Analysis and Weighted Gene Co-expression Network Reveal Multitarget-Directed Antibacterial Mechanisms of Benzyl Isothiocyanate against Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11733-11741. [PMID: 34558287 DOI: 10.1021/acs.jafc.1c03979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus can cause many diseases and has a strong tendency to develop resistance to multiple antibiotics. In this study, benzyl isothiocyanate (BITC) was shown to have an excellent inhibitory effect on S. aureus ATCC25923 and methicillin-resistant S. aureus strains, with a minimum inhibitory concentration of 10 μg/mL. Under a scanning electron microscope, shrinkage and lysis of the cellular envelope were observed when exposed to BITC, and a bactericidal mode of BITC against S. aureus was further confirmed through flow cytometry. Additionally, the RNA profiles of S. aureus cells exposed to BITC indicated a violent transcriptional response to BITC. Through Kyoto Encyclopedia of Genes and Genomes analysis, it was found that many pathways involving bacterial survival were significantly affected, such as RNA degradation, oxidative phosphorylation, arginine biosynthesis, and so forth. A gene co-expression network was constructed using weighted gene co-expression network analysis, and six biologically meaningful co-expression modules and 125 hub genes were identified from the network. Among them, EfeB, GroES, SmpB, and Lsp were possibly targeted by BITC, leading to the death of S. aureus. Our results indicated a great potential of BITC to be applied in food safety and pharmaceuticals, highlighting its multitarget-directed bactericidal effects on S. aureus.
Collapse
Affiliation(s)
- Hongbo Li
- Department of Food and Bioengineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Xujia Ming
- Department of Food and Bioengineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Dan Xu
- Department of Food and Bioengineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Haizhen Mo
- Department of Food and Bioengineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Zhenbin Liu
- Department of Food and Bioengineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Liangbin Hu
- Department of Food and Bioengineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Xiaohui Zhou
- Department of Pathobiology & Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
11
|
Arora S, Arora S. Nutritional significance and therapeutic potential of Moringa oleifera: The wonder plant. J Food Biochem 2021; 45:e13933. [PMID: 34533234 DOI: 10.1111/jfbc.13933] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
Moringa oleifera is a multi-purpose plant and a comprehensive source of dietary components such as proteins, essential amino acids, vitamins, antioxidants, etc. The plant is also a rich source of other bioactive components, including flavonoids, glucosinolates, isothiocyanates, alkaloids, terpenoids, phenolics, etc. Incorporating M. oleifera in diet can improve the nutritional status of pregnant and nursing mothers and helps to combat malnutrition and iron deficiency anemia (IDA) among children. The phytochemicals and secondary metabolites, especially the polyphenolic compounds from Moringa, have a significant free-radical scavenging effect attributed to this plant's therapeutic potential. Investigations targeting to explore M. oleifera for its nutritional makeup, novel bioactive components, and analysis of their health-promoting attributes have received much attention. This review demonstrates an overview of recent (past ten years) advancements and patenting activity in discovering different parts of M. oleifera plant for providing adequate nutritive and bioactive components. The pharmacological potential and action mechanisms of M. oleifera in many diseases like diabetes mellitus, cancer, hypertension, ulcer, etc., are also discussed. PRACTICAL APPLICATIONS: Moringa oleifera is a vital plant that has a varied set of nutritional and therapeutic properties. The indigenous components of Moringa can treat humankind of its diseases and contribute to overall health. The qualitative and functional characteristics of its components indicate possible commercial exploitation of this high-value plant by utilizing its plant parts in many proprietary medicines and nutraceuticals. In conclusion, the Moringa plant needs to be used commercially. It can lead to tremendous economic development if the industries and researchers exploit its potential for highly nutritional super food and therapeutic application by undertaking further research to corroborate earlier studies.
Collapse
Affiliation(s)
- Shalini Arora
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Saurabh Arora
- Biomedical Instruments and Devices HUB, A Centre for Innovation, Design and Clinical Validation, Post Graduate Institute of Medical Education and Research, Chandigarh, Haryana, India
| |
Collapse
|
12
|
Dzuvor CKO, Pan S, Amanze C, Amuzu P, Asakiya C, Kubi F. Bioactive components from Moringa oleifera seeds: production, functionalities and applications - a critical review. Crit Rev Biotechnol 2021; 42:271-293. [PMID: 34151645 DOI: 10.1080/07388551.2021.1931804] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A readily distinguishable and indigenous member of the plant kingdom in the Indian subcontinent is the 'drumstick tree', i.e. Moringa oleifera Lam. In addition to India, this drought-tolerant and rapidly evolving tree is currently extensively disseminated across the globe, including subtropical and tropical areas. The plant boasts a high nutritional, nutraceutical and therapeutic profile, mainly attributing to its significant repertoire of the biologically active components in different parts: protein, flavonoids, saponins, phenolic acids, tannin, isothiocyanate, lipids, minerals, vitamins, amongst others. M. oleifera seeds have been shown to elicit a myriad of pharmacological potential and health benefits, including: antimicrobial, anticancer, antidiabetic, antioxidant, antihypertensive, anti-inflammatory and cardioprotective properties. Additionally, the seed cakes obtained from post-extraction process are utilized for: coagulation, flocculation and sedimentation purposes, benefiting effluent management and the purification of water, mainly because of their capability in eliminating microbes and organic matter. Despite the extraordinary focus on other parts of the plant, especially the foliage, the beneficial aspects of the seeds have not been sufficiently highlighted. The health benefits of bioactive components in the seeds are promising and demonstrate enough potential to facilitate the development of functional foods. In this review, we present a critical account of the types, characteristics, production and isolation of bioactive components from M. oleifera seeds. Furthermore, we appraise the: pharmacological activities, cosmetic, biodiesel, lubricative, modern farming, nutritive and wastewater treatment applications of these functional ingredients. We infer that there is a need for further human/clinical studies and evaluation, despite their health benefits. Additionally, the safety issues need to be adequately clarified and assessed, in order to establish a conventional therapeutic profile.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Melbourne, Australia
| | - Sharadwata Pan
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
| | - Prosper Amuzu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P R China
| | - Charles Asakiya
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Francis Kubi
- Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
13
|
Liu Y, Luo X, Wang M, Xia Z, Huang Y. Microorganisms as Bio-SPE Materials for Extraction of Pharmaceutical Drugs: Mechanism of Extraction. Anal Chem 2021; 93:7665-7672. [PMID: 34004111 DOI: 10.1021/acs.analchem.1c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In solid-phase extraction (SPE), the extraction materials depend on the physicochemical interactions to obtain the target analytes from complex systems. However, many matrix interferences existing in real samples influence the extraction efficiency through these common interactions. Therefore, extraction materials based on more special interactions for biological systems need to be developed. In this work, live microorganisms including Escherichia coli and Staphylococcus aureus were considered as the potential biological SPE (bio-SPE) materials with their biological functions in the live state. To study the enrichment and selectivity of the bio-SPE, four antibacterial drugs and two non-antibacterial drugs were employed as the target analytes. The enrichment factor (EF) was used as the evaluation index. The results showed that when using chlorpheniramine (CPM) and ofloxacin (OFLO), the enrichment capacity of E. coli was better than that of S. aureus. When extracting a single analyte, the enrichment ability of E. coli for CPM was significantly higher than other analytes, and the EF was 8.5. In a mixture solution of antibacterial analytes, OFLO could be enriched mostly by E. coli. However, in the mixture solution of antibacterial and non-antibacterial analytes, CPM was enriched more than that of antibacterial analytes. In real rat plasma, bio-SPE using live E. coli could obviously extract CPM, while traditional liquid-liquid extraction could not. The confocal microscopy results showed that the extraction mechanism may not only depend on the surface adsorption of bacteria with analytes but also on the uptake into bacteria. This provides a valuable basis for the development of more biological separation materials based on biological interactions.
Collapse
Affiliation(s)
- Yi Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xinxin Luo
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yike Huang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
14
|
Milla PG, Peñalver R, Nieto G. Health Benefits of Uses and Applications of Moringa oleifera in Bakery Products. PLANTS 2021; 10:plants10020318. [PMID: 33562157 PMCID: PMC7915875 DOI: 10.3390/plants10020318] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022]
Abstract
Moringa oleifera belongs to the Moringaceae family and is the best known of the native Moringa oleifera genus. For centuries, it has been used as a system of Ayurvedic and Unani medicine and has a wide range of nutritional and bioactive compounds, including proteins, essential amino acids, carbohydrates, lipids, fibre, vitamins, minerals, phenolic compounds, phytosterols and others. These characteristics allow it to have pharmacological properties, including anti-diabetic, anti-inflammatory, anticarcinogenic, antioxidant, cardioprotective, antimicrobial and hepatoprotective properties. The entire Moringa oleifera plant is edible, including its flowers, however, it is not entirely safe, because of compounds that have been found mainly in the root and bark, so the leaf was identified as the safest. Moringa oleifera is recognised as an excellent source of phytochemicals, with potential applications in functional and medicinal food preparations due to its nutritional and medicinal properties; many authors have experimented with incorporating it mainly in biscuits, cakes, brownies, meats, juices and sandwiches. The results are fascinating, as the products increase their nutritional value; however, the concentrations cannot be high, as this affects the organoleptic characteristics of the supplemented products. The aim of this study is to review the application of Moringa oleifera in bakery products, which will allow the creation of new products that improve their nutritional and functional value.
Collapse
Affiliation(s)
- Paula García Milla
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Espinardo, Spain; (P.G.M.); (R.P.)
- Molecular Microbiology and Food Research Laboratory, Escuela de Nutrición y Dietética, Facultad de Ciencias para el cuidado de la Salud, Universidad San Sebastián, Santiago 8420524, Chile
| | - Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Espinardo, Spain; (P.G.M.); (R.P.)
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Espinardo, Spain; (P.G.M.); (R.P.)
- Correspondence: ; Tel.: +34-868889624; Fax: +34-868884147
| |
Collapse
|
15
|
Coello KE, Frias J, Martínez-Villaluenga C, Cartea ME, Abilleira R, Peñas E. Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa ( Moringa oleifera L.). Foods 2020; 9:E1639. [PMID: 33182814 PMCID: PMC7696275 DOI: 10.3390/foods9111639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Moringa oleifera L. is greatly appreciated for its high content of phytochemicals. Although most parts of moringa tree have been widely studied, seeds remained scarcely explored. The first goal of this study was to investigate the effectiveness of germination to improve the nutritional composition (proximate composition and levels of vitamins B1 and B2), content of bioactive compounds (glucosinolates, phenolics and γ-aminobutyric acid, GABA) and antioxidant activity of moringa seed. Germination improved protein, fat, fiber, riboflavin, phenolics, some individual glucosinolates (GLS) and GABA contents, as well as the antioxidant potential in moringa sprouts, but the extent of the improvement depended on germination conditions. The second objective of this work was to identify the optimal germination conditions to maximize nutritional and bioactive quality of moringa by applying multi-response optimization (response surface methodology, RSM). RSM models indicated that 28 °C and 24 h were the optimal conditions to enhance the accumulation of riboflavin, phenolics and antioxidant activity of sprouts, while the highest GABA and total GLS contents were observed at 36 °C for 96 h and thiamine achieved the maximum content at 36 °C for 24 h. These results show that moringa sprouts are promising functional foods that might be also used as ingredients for the elaboration of novel foodstuffs.
Collapse
Affiliation(s)
- Karín E. Coello
- Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador;
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Rosaura Abilleira
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| |
Collapse
|
16
|
García-Beltrán JM, Mansour AT, Alsaqufi AS, Ali HM, Esteban MÁ. Effects of aqueous and ethanolic leaf extracts from drumstick tree (Moringa oleifera) on gilthead seabream (Sparus aurata L.) leucocytes, and their cytotoxic, antitumor, bactericidal and antioxidant activities. FISH & SHELLFISH IMMUNOLOGY 2020; 106:44-55. [PMID: 32739532 DOI: 10.1016/j.fsi.2020.06.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Aqueous and ethanolic extracts of drumstick, Moringa oleifera, leaves were evaluated in vitro to ascertain their principal active components and determine their immunostimulant, cytotoxic, antitumoral, bactericidal and antioxidant activities. Phytochemical screening of M. oleifera leaf extracts showed a greater abundance of phenolic and cyanogenic glycosides in aqueous than in ethanolic extracts, characterized by several flavonoids, condensed tannins and saponins. No significant effects on gilthead seabream (Sparus aurata) head-kidney leucocyte activities (phagocytic ability and capacity, respiratory burst and peroxidase) were detected after incubation for 24 h with different concentrations (0.001/1 mg mL-1) of either extract. In addition, the aqueous extract showed a marked cytotoxic effect on both SAF-1 (at doses above 0.01 mg mL-1) and PLHC-1 (at doses above 0.25 mg mL-1) cell lines. The ethanolic extract improved the viability of SAF-1 cells and decreased the viability of PLHC-1 cells when used at higher concentrations. Both the ethanolic and, particularly, the aqueous extracts showed significant bactericidal activity on pathogenic Vibrio anguillarum and Photobacterium damselae strains. The antiradical activity of M. oleifera, as determined by the ABTS assay, increased in a linear dose-response with increasing extract concentrations. The results as a whole for the cytotoxic, bactericidal and antioxidant activities of M. oleifera leaf extracts point to their possible use as additives in functional diets for farmed fish.
Collapse
Affiliation(s)
- José María García-Beltrán
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Abdallah Tageldein Mansour
- Department of Aquaculture and Animal Production, College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Saud Alsaqufi
- Department of Aquaculture and Animal Production, College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Hayssam M Ali
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
17
|
Maina S, Misinzo G, Bakari G, Kim HY. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020; 25:E3682. [PMID: 32806771 PMCID: PMC7464879 DOI: 10.3390/molecules25163682] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Glucosinolates (GSs) are common anionic plant secondary metabolites in the order Brassicales. Together with glucosinolate hydrolysis products (GSHPs), they have recently gained much attention due to their biological activities and mechanisms of action. We review herein the health benefits of GSs/GSHPs, approaches to improve the plant contents, their bioavailability and bioactivity. In this review, only literature published between 2010 and March 2020 was retrieved from various scientific databases. Findings indicate that these compounds (natural, pure, synthetic, and derivatives) play an important role in human/animal health (disease therapy and prevention), plant health (defense chemicals, biofumigants/biocides), and food industries (preservatives). Overall, much interest is focused on in vitro studies as anti-cancer and antimicrobial agents. GS/GSHP levels improvement in plants utilizes mostly biotic/abiotic stresses and short periods of phytohormone application. Their availability and bioactivity are directly proportional to their contents at the source, which is affected by methods of food preparation, processing, and extraction. This review concludes that, to a greater extent, there is a need to explore and improve GS-rich sources, which should be emphasized to obtain natural bioactive compounds/active ingredients that can be included among synthetic and commercial products for use in maintaining and promoting health. Furthermore, the development of advanced research on compounds pharmacokinetics, their molecular mode of action, genetics based on biosynthesis, their uses in promoting the health of living organisms is highlighted.
Collapse
Affiliation(s)
- Sylvia Maina
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gerald Misinzo
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
- SACIDS Africa Centre of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro 25523, Tanzania
| | - Gaymary Bakari
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; (G.M.); (G.B.)
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea;
| |
Collapse
|
18
|
Borgonovo G, De Petrocellis L, Schiano Moriello A, Bertoli S, Leone A, Battezzati A, Mazzini S, Bassoli A. Moringin, A Stable Isothiocyanate from Moringa oleifera, Activates the Somatosensory and Pain Receptor TRPA1 Channel In Vitro. Molecules 2020; 25:molecules25040976. [PMID: 32098328 PMCID: PMC7070407 DOI: 10.3390/molecules25040976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Moringa oleifera Lam. is a tropical plant widely used in traditional medicines and as a food supplement. It is characterized by the presence of glucosinolates and isothiocyanates; the stable isothiocyanate 4-[(α-l-rhamnosyloxy)benzyl]isothiocyanate (moringin) has been widely studied for its bioactivity as hypoglycemic, antimicrobial, anticancer and in particular for its involvement in nociception and neurogenic pain. Moringa extracts and pure moringin were submitted to in vitro assays with the somatosensory TRPA1 ion channel, proving that moringin is a potent and effective agonist of this receptor involved in nociceptive function and pain states. Moringin do not activate or activates very weakly the vanilloids somatosensory channels TRPV1,2,3 and 4, and the melastatin cooling receptor TRPM8. The comparison of moringin’s activity with other known agonists of natural origin is also discussed.
Collapse
Affiliation(s)
- Gigliola Borgonovo
- Department of Food, Environment and Nutrition-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (S.B.); (A.L.); (A.B.); (S.M.)
| | - Luciano De Petrocellis
- Endocannabinoid Research Group-Institute of Biomolecular Chemistry-CNR, Pozzuoli, I-87078 Napoli, Italy; (L.D.P.); (A.S.M.)
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group-Institute of Biomolecular Chemistry-CNR, Pozzuoli, I-87078 Napoli, Italy; (L.D.P.); (A.S.M.)
- Epitech Group SpA, Saccolongo, 35030 Padova, Italy
| | - Simona Bertoli
- Department of Food, Environment and Nutrition-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (S.B.); (A.L.); (A.B.); (S.M.)
| | - Alessandro Leone
- Department of Food, Environment and Nutrition-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (S.B.); (A.L.); (A.B.); (S.M.)
| | - Alberto Battezzati
- Department of Food, Environment and Nutrition-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (S.B.); (A.L.); (A.B.); (S.M.)
| | - Stefania Mazzini
- Department of Food, Environment and Nutrition-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (S.B.); (A.L.); (A.B.); (S.M.)
| | - Angela Bassoli
- Department of Food, Environment and Nutrition-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (S.B.); (A.L.); (A.B.); (S.M.)
- Correspondence: ; Tel.: +39-0250316815
| |
Collapse
|
19
|
Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Noor NM, Abdull Razis AF. Prospective role of mitochondrial apoptotic pathway in mediating GMG-ITC to reduce cytotoxicity in H 2O 2-induced oxidative stress in differentiated SH-SY5Y cells. Biomed Pharmacother 2019; 119:109445. [PMID: 31541852 DOI: 10.1016/j.biopha.2019.109445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
The antioxidant and neuroprotective activity of Glucomoringin isothiocyanate (GMG-ITC) have been reported in in vivo and in vitro models of neurodegenerative diseases. However, its neuroprotective role via mitochondrial-dependent pathway in a noxious environment remains unknown. The main objective of the present study was to unveil the mitochondrial apoptotic genes' profile and prospectively link with neuroprotective activity of GMG-ITC through its ROS scavenging. The results showed that pre-treatment of differentiated SH-SY5Y cells with 1.25 μg/mL purified isolated GMG-ITC, significantly reduced reactive oxygen species (ROS) production level, compared to H2O2 control group, as evidenced by flow cytometry-based evaluation of ROS generation. Presence of GMG-ITC prior to development of oxidative stress condition, downregulated the expression of cyt-c, p53, Apaf-1, Bax, CASP3, CASP8 and CASP9 genes with concurrent upregulation of Bcl-2 gene in mitochondrial apoptotic signalling pathway. Protein Multiplex revealed significant decreased in cyt-c, p53, Apaf-1, Bax, CASP8 and CASP9 due to GMG-ITC pre-treatment in oxidative stress condition. The present findings speculated that pre-treatment with GMG-ITC may alleviate oxidative stress condition in neuronal cells by reducing ROS production level and protect the cells against apoptosis via neurodegenerative disease potential pathways.
Collapse
Affiliation(s)
- Mohammed Sani Jaafaru
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Kaduna State University, Main Campus, PMB 2339, Kaduna, Nigeria.
| | - Norshariza Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Rozita Rosli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Hauwa'u Yakubu Bako
- Department of Biochemistry, Kaduna State University, Main Campus, PMB 2339, Kaduna, Nigeria.
| | - Noramaliza Mohd Noor
- Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Ahmad Faizal Abdull Razis
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
20
|
Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Saad N, Noor NM, Abdull Razis AF. Neuroprotective effects of glucomoringin-isothiocyanate against H 2O 2-Induced cytotoxicity in neuroblastoma (SH-SY5Y) cells. Neurotoxicology 2019; 75:89-104. [PMID: 31521693 DOI: 10.1016/j.neuro.2019.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022]
Abstract
Neurodegenerative diseases (NDDs) are pathological conditions characterised by progressive damage of neuronal cells leading to eventual loss of structure and function of the cells. Due to implication of multi-systemic complexities of signalling pathways in NDDs, the causes and preventive mechanisms are not clearly delineated. The study was designed to investigate the potential signalling pathways involved in neuroprotective activities of purely isolated glucomoringin isothiocyanate (GMG-ITC) against H2O2-induced cytotoxicity in neuroblastoma (SH-SY5Y) cells. GMG-ITC was isolated from Moringa oleifera seeds, and confirmed with NMR and LC-MS based methods. Gene expression analysis of phase II detoxifying markers revealed significant increase in the expression of all the genes involved, due to GMG-ITC pre-treatment. GMG-ITC also caused significant decreased in the expression of NF-kB, BACE1, APP and increased the expressions of IkB and MAPT tau genes in the differentiated cells as confirmed by multiplex genetic system analysis. The effect was reflected on the expressed proteins in the differentiated cells, where GMG-ITC caused increased in expression level of Nrf2, SOD-1, NQO1, p52 and c-Rel of nuclear factor erythroid factor 2 (Nrf2) and nuclear factor kappa-B (NF-kB) pathways respectively. The findings revealed the potential of GMG-ITC to abrogate oxidative stress-induced neurodegeneration through Nrf2 and NF-kB signalling pathways.
Collapse
Affiliation(s)
- Mohammed Sani Jaafaru
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Kaduna State University, Main Campus, PMB 2339, Kaduna, Nigeria.
| | - Norshariza Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Rozita Rosli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Hauwa'u Yakubu Bako
- Department of Biochemistry, Kaduna State University, Main Campus, PMB 2339, Kaduna, Nigeria.
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Noramaliza Mohd Noor
- Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Ahmad Faizal Abdull Razis
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
21
|
Dhakad AK, Ikram M, Sharma S, Khan S, Pandey VV, Singh A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytother Res 2019; 33:2870-2903. [PMID: 31453658 DOI: 10.1002/ptr.6475] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022]
Abstract
The genus Moringa Adans. comprises 13 species, of which Moringa oleifera Lam. native to India and cultivated across the world owing to its drought and frost resistance habit is widely used in traditional phytomedicine and as rich source of essential nutrients. Wide spectrum of phytochemical ingredients among leaf, flower, fruit, seed, seed oil, bark, and root depend on cultivar, season, and locality. The scientific studies provide insights on the use of M. oleifera with different aqueous, hydroalcoholic, alcoholic, and other organic solvent preparations of different parts for therapeutic activities, that is, antibiocidal, antitumor, antioxidant, anti-inflammatory, cardio-protective, hepato-protective, neuro-protective, tissue-protective, and other biological activities with a high degree of safety. A wide variety of alkaloid and sterol, polyphenols and phenolic acids, fatty acids, flavanoids and flavanol glycosides, glucosinolate and isothiocyanate, terpene, anthocyanins etc. are believed to be responsible for the pragmatic effects. Seeds are used with a view of low-cost biosorbent and coagulant agent for the removal of metals and microbial contamination from waste water. Thus, the present review explores the use of M. oleifera across disciplines for its prominent bioactive ingredients, nutraceutical, therapeutic uses and deals with agricultural, veterinarian, biosorbent, coagulation, biodiesel, and other industrial properties of this "Miracle Tree."
Collapse
Affiliation(s)
- Ashok K Dhakad
- Department of Forestry and Natural Resources, Punjab Agricultural University, Ludhiana, India
| | - Mohsin Ikram
- Forest Entomology Division, Forest Research Institute, Dehradun, India
| | - Shivani Sharma
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Salman Khan
- Forest Entomology Division, Forest Research Institute, Dehradun, India
| | - Vijay V Pandey
- Forest Pathology Division, Forest Research Institute, Dehradun, India
| | - Avtar Singh
- Department of Forestry and Natural Resources, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
22
|
Melrose J. The Glucosinolates: A Sulphur Glucoside Family of Mustard Anti-Tumour and Antimicrobial Phytochemicals of Potential Therapeutic Application. Biomedicines 2019; 7:biomedicines7030062. [PMID: 31430999 PMCID: PMC6784281 DOI: 10.3390/biomedicines7030062] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
This study reviewed aspects of the biology of two members of the glucosinolate family, namely sinigrin and glucoraphanin and their anti-tumour and antimicrobial properties. Sinigrin and glucoraphanin are converted by the β-sulphoglucosidase myrosinase or the gut microbiota into their bioactive forms, allyl isothiocyanate (AITC) and sulphoraphanin (SFN) which constitute part of a sophisticated defence system plants developed over several hundred million years of evolution to protect them from parasitic attack from aphids, ticks, bacteria or nematodes. Delivery of these components from consumption of cruciferous vegetables rich in the glucosinolates also delivers many other members of the glucosinolate family so the dietary AITCs and SFN do not act in isolation. In vitro experiments with purified AITC and SFN have demonstrated their therapeutic utility as antimicrobials against a range of clinically important bacteria and fungi. AITC and SFN are as potent as Vancomycin in the treatment of bacteria listed by the World Health Organisation as antibiotic-resistant “priority pathogens” and also act as anti-cancer agents through the induction of phase II antioxidant enzymes which inactivate potential carcinogens. Glucosinolates may be useful in the treatment of biofilms formed on medical implants and catheters by problematic pathogenic bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus and are potent antimicrobials against a range of clinically important bacteria and fungi. The glucosinolates have also been applied in the prevention of bacterial and fungal spoilage of food products in advanced atmospheric packaging technology which improves the shelf-life of these products.
Collapse
Affiliation(s)
- James Melrose
- Honorary Senior Research Associate, Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia.
- Adjunct Professor, Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Sydney Medical School, Northern, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
23
|
Moringin from Moringa Oleifera Seeds Inhibits Growth, Arrests Cell-Cycle, and Induces Apoptosis of SH-SY5Y Human Neuroblastoma Cells through the Modulation of NF-κB and Apoptotic Related Factors. Int J Mol Sci 2019; 20:ijms20081930. [PMID: 31010127 PMCID: PMC6515259 DOI: 10.3390/ijms20081930] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023] Open
Abstract
In the last decades, glucosinolates (GLs), precursors of isothiocyanates (ITCs), have been studied mostly for their chemopreventive and chemotherapeutic properties. The aim of our research was to study the antiproliferative effect of 4-(α-L-rhamnopyranosyloxy) benzyl glucosinolate (glucomoringin; GMG) bioactivated by myrosinase enzyme to form the corresponding isothiocyanate 4-(α-L-rhamnopyranosyloxy) benzyl C (moringin) in SH-SY5Y human neuroblastoma cells. We found that moringin significantly reduced SH-SY5Y cell growth in a time and concentration-dependent (p < 0.05, 0.01, and 0.001 vs. ctrl, after treatment with 16.4 µM moringin for 24, 48, and 72 h, respectively) manner through a mechanism involving the activation of apoptotic machinery. In addition, it altered the normal progression of cells through the cell cycle, increasing the cell population in both G2 and S phases, as well as decreasing that in the G1 phase. Studying the drug mechanism of action, we found that moringin was able to increase the expression of p53, p21, and Bax at both the protein and transcriptional level. Moreover, exposure of SH-SY5Y cells to moringin significantly increased the gene expression of both caspase 3 and 9 and enhanced their cleavage, thereby initiating an intrinsic apoptotic cascade. Finally, moringin inhibited nuclear translocation of NF-κB. Our study demonstrates the ability of moringin to reduce the growth of SH-SY5Y cells and reveals its mechanism of action, suggesting its promising role as an anticancer drug.
Collapse
|
24
|
Nontoxic Glucomoringin-Isothiocyanate (GMG-ITC) Rich Soluble Extract Induces Apoptosis and Inhibits Proliferation of Human Prostate Adenocarcinoma Cells (PC-3). Nutrients 2018; 10:nu10091174. [PMID: 30150582 PMCID: PMC6163982 DOI: 10.3390/nu10091174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023] Open
Abstract
The incidence of prostate cancer malignancy along with other cancer types is increasing worldwide, resulting in high mortality rate due to lack of effective medications. Moringa oleifera has been used for the treatment of communicable and non-communicable ailments across tropical countries, yet, little has been documented regarding its effect on prostate cancer. We evaluated the acute toxicity and apoptosis inducing effect of glucomoringin-isothiocyanate rich soluble extracts (GMG-ITC-RSE) from M. oleifera in vivo and in vitro, respectively. Glucomoringin was isolated, identified, and characterized using fundamental analytical chemistry tools where Sprague-Dawley (SD) rats, murine fibroblast (3T3), and human prostate adenocarcinoma cells (PC-3) were used for acute toxicity and bioassays experiments. GMG-ITC-RSE did not instigate adverse toxic reactions to the animals even at high doses (2000 mg/kg body weight) and affected none of the vital organs in the rats. The extract exhibited high levels of safety in 3T3 cells, where more than 90% of the cells appeared viable when treated with the extract in a time-dependent manner even at high dose (250 µg/mL). GMG-ITC-RSE significantly triggered morphological aberrations distinctive to apoptosis observed under microscope. These findings obviously revealed the putative safety of GMG-ITC-RSE in vivo and in vitro, in addition to its anti-proliferative effect on PC-3 cells.
Collapse
|
25
|
Romeo L, Lanza Cariccio V, Iori R, Rollin P, Bramanti P, Mazzon E. The α-Cyclodextrin/Moringin Complex: A New Promising Antimicrobial Agent against Staphylococcus aureus. Molecules 2018; 23:molecules23092097. [PMID: 30134562 PMCID: PMC6225138 DOI: 10.3390/molecules23092097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial resistance is one of the major clinical concerns, making the discovery of new antimicrobial drugs desirable. Moringin (MOR), the major isothiocyanate produced from Moringa oleifera seeds, could represent an alternative therapeutic strategy to commonly used antibiotics. The aim of our study was to investigate the antimicrobial effect of MOR conjugated with α-cyclodextrin (MOR/α-CD), a complex with an improved solubility and stability in aqueous solutions. Our data demonstrated that MOR/α-CD was able to exert antimicrobial activity against the S. aureus reference strains (ATCC 25923, ATCC 6538, and ATCC BAA-977). Moreover, MOR/α-CD showed bacteriostatic effects (MIC = minimum inhibitory concentration = 0.5 mg/mL) and bactericidal properties (MBC = minimum bactericidal concentration = 1 mg/mL) against the overall assessed strains. In addition, MOR/α-CD showed bactericidal activity against the S. aureus strain ATCC BAA-977 after treatment with erythromycin (Ery), which induced clindamycin-resistance on the erm (A) gene. This evidence led us to assume that MOR/α-CD could be a promising antimicrobial agent against strains with the clindamycin-resistant phenotype (CC-resistant).
Collapse
Affiliation(s)
- Letizia Romeo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Veronica Lanza Cariccio
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Renato Iori
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128 Bologna, Italy.
| | - Patrick Rollin
- Institute of Organic and Analytical Chemistry (ICOA), Université d'Orléans et the French National Center for Scientific Research (CNRS), Pôle de chimie, rue de Chartres, BP 6759, 45067 Orléans, CEDEX 2, France.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
26
|
Mathiron D, Iori R, Pilard S, Soundara Rajan T, Landy D, Mazzon E, Rollin P, Djedaïni-Pilard F. A Combined Approach of NMR and Mass Spectrometry Techniques Applied to the α-Cyclodextrin/Moringin Complex for a Novel Bioactive Formulation †. Molecules 2018; 23:E1714. [PMID: 30011859 PMCID: PMC6099948 DOI: 10.3390/molecules23071714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/30/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022] Open
Abstract
Moringin, obtained via enzymatic conversion of the glucosinolate precursor glucomoringin, is an uncommon member of the isothiocyanate class, and has been proven to possess a broad range of biological activities such as antitumor activity, protection against neurodegenerative disorders and bactericidal effects. Since moringin is weakly soluble in water and unstable in aqueous medium, cyclodextrins (CDs) were considered for the development of a new moringin formulation, with a view to improving its solubility and stability in aqueous solution for use as an anti-inflammatory. A combined structural study using proton nuclear magnetic resonance (¹H-NMR), diffusion-ordered spectroscopy (DOSY) and ion mobility mass spectrometry (IM-MS) is reported, highlighting the formation of a 1:1 α-CD/moringin inclusion complex. The association constant K was determined (1300 M-1 at 300 K). Completion of the structural characterization was performed by T-ROESY and MS/MS experiments, which evidenced the mode of penetration of moringin into α-CD. Finally, the "chaperone-like" properties of α-CD with respect to the stability of moringin have been highlighted.
Collapse
Affiliation(s)
- David Mathiron
- Plateforme Analytique, Institut de Chimie de Picardie FR 3085 CNRS, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France.
| | - Renato Iori
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128 Bologna, Italy.
| | - Serge Pilard
- Plateforme Analytique, Institut de Chimie de Picardie FR 3085 CNRS, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France.
| | - Thangavelu Soundara Rajan
- Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), ULCO, F-59140 Dunkerque, France.
| | - Emanuela Mazzon
- Istituti di Ricovero e Cura a Carattere Scientifico, IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Patrick Rollin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans et CNRS, UMR 7311, BP 6759, F-45067 Orléans, France.
| | - Florence Djedaïni-Pilard
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources UMR 7378, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France.
| |
Collapse
|
27
|
Jaja-Chimedza A, Zhang L, Wolff K, Graf BL, Kuhn P, Moskal K, Carmouche R, Newman S, Salbaum JM, Raskin I. A dietary isothiocyanate-enriched moringa ( Moringa oleifera) seed extract improves glucose tolerance in a high-fat-diet mouse model and modulates the gut microbiome. J Funct Foods 2018; 47:376-385. [PMID: 30930963 DOI: 10.1016/j.jff.2018.05.056] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Moringa oleifera (moringa) has been traditionally used for the treatment of diabetes and in water purification. We previously showed that moringa seed extract (MSE), standardized to its primary bioactive isothiocyanate (MIC-1), modulated inflammatory and antioxidant signaling pathways in vitro. To understand the efficacy and mechanisms of action of MSE in vivo, we incorporated MSE into the diets of normal and obese C57Bl/6J male mice fed a standard low-fat diet or a very high-fat diet for 12 wk, respectively. MSE supplementation resulted in reduced body weight, decreased adiposity, improved glucose tolerance, reduced inflammatory gene expression, and increased antioxidant gene expression. 16S rRNA gene sequencing and quantitative PCR of fecal/cecal samples showed major modulation of the gut microbial community and a significantly reduced bacterial load, similar to an antibiotic response. This suggests that MSE improves metabolic health by its intracellular anti-inflammatory and antioxidant activities, and/or its antibiotic-like restructuring of the gut microbiota.
Collapse
Affiliation(s)
- Asha Jaja-Chimedza
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Jersey, USA
| | - Li Zhang
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Jersey, USA.,Department of Human Microbiome, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China
| | - Khea Wolff
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Jersey, USA
| | - Brittany L Graf
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Jersey, USA
| | - Peter Kuhn
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Jersey, USA
| | - Kristin Moskal
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Jersey, USA
| | - Richard Carmouche
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Susan Newman
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - J Michael Salbaum
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ilya Raskin
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Jersey, USA
| |
Collapse
|
28
|
Wild and domesticated Moringa oleifera differ in taste, glucosinolate composition, and antioxidant potential, but not myrosinase activity or protein content. Sci Rep 2018; 8:7995. [PMID: 29789671 PMCID: PMC5964143 DOI: 10.1038/s41598-018-26059-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/03/2018] [Indexed: 11/09/2022] Open
Abstract
Taste drives consumption of foods. The tropical tree Moringa oleifera is grown worldwide as a protein-rich leafy vegetable and for the medicinal value of its phytochemicals, in particular its glucosinolates, which can lead to a pronounced harsh taste. All studies to date have examined only cultivated, domestic variants, meaning that potentially useful variation in wild type plants has been overlooked. We examine whether domesticated and wild type M. oleifera differ in myrosinase or glucosinolate levels, and whether these different levels impact taste in ways that could affect consumption. We assessed taste and measured levels of protein, glucosinolate, myrosinase content, and direct antioxidant activity of the leaves of 36 M. oleifera accessions grown in a common garden. Taste tests readily highlighted differences between wild type and domesticated M. oleifera. There were differences in direct antioxidant potential, but not in myrosinase activity or protein quantity. However, these two populations were readily separated based solely upon their proportions of the two predominant glucosinolates (glucomoringin and glucosoonjnain). This study demonstrates substantial variation in glucosinolate composition within M. oleifera. The domestication of M. oleifera appears to have involved increases in levels of glucomoringin and substantial reduction of glucosoonjnain, with marked changes in taste.
Collapse
|
29
|
Fahey JW, Olson ME, Stephenson KK, Wade KL, Chodur GM, Odee D, Nouman W, Massiah M, Alt J, Egner PA, Hubbard WC. The Diversity of Chemoprotective Glucosinolates in Moringaceae (Moringa spp.). Sci Rep 2018; 8:7994. [PMID: 29789618 PMCID: PMC5964242 DOI: 10.1038/s41598-018-26058-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/03/2018] [Indexed: 01/04/2023] Open
Abstract
Glucosinolates (GS) are metabolized to isothiocyanates that may enhance human healthspan by protecting against a variety of chronic diseases. Moringa oleifera, the drumstick tree, produces unique GS but little is known about GS variation within M. oleifera, and even less in the 12 other Moringa species, some of which are very rare. We assess leaf, seed, stem, and leaf gland exudate GS content of 12 of the 13 known Moringa species. We describe 2 previously unidentified GS as major components of 6 species, reporting on the presence of simple alkyl GS in 4 species, which are dominant in M. longituba. We document potent chemoprotective potential in 11 of 12 species, and measure the cytoprotective activity of 6 purified GS in several cell lines. Some of the unique GS rank with the most powerful known inducers of the phase 2 cytoprotective response. Although extracts of most species induced a robust phase 2 cytoprotective response in cultured cells, one was very low (M. longituba), and by far the highest was M. arborea, a very rare and poorly known species. Our results underscore the importance of Moringa as a chemoprotective resource and the need to survey and conserve its interspecific diversity.
Collapse
Affiliation(s)
- Jed W Fahey
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, Maryland, USA. .,Johns Hopkins University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Baltimore, Maryland, USA. .,Johns Hopkins University School of Medicine, Department of Pharmacology and Molecular Sciences, Baltimore, Maryland, USA. .,Johns Hopkins University Bloomberg School of Public Health, Department of International Health, Center for Human Nutrition, Baltimore, Maryland, USA.
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito de Ciudad Universitaria, Ciudad de México, 04510, Mexico.,The International Moringa Germplasm Collection, Ejido de la Reforma Agraria, Jalisco, Mexico
| | - Katherine K Stephenson
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, Maryland, USA.,Johns Hopkins University School of Medicine, Department of Pharmacology and Molecular Sciences, Baltimore, Maryland, USA
| | - Kristina L Wade
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, Maryland, USA.,Johns Hopkins University School of Medicine, Department of Pharmacology and Molecular Sciences, Baltimore, Maryland, USA
| | - Gwen M Chodur
- Cullman Chemoprotection Center, Johns Hopkins University, Baltimore, Maryland, USA.,Johns Hopkins University Bloomberg School of Public Health, Department of International Health, Center for Human Nutrition, Baltimore, Maryland, USA.,Graduate Group in Nutritional Biology, UC Davis, Davis, California, USA
| | - David Odee
- Biotechnology Laboratory, Kenya Forestry Research Institute, Nairobi, Kenya
| | - Wasif Nouman
- Department of Forestry, Range, and Wildlife Management, Bahauddin Zakariya University, Multan, Pakistan
| | - Michael Massiah
- George Washington University, Department of Chemistry, Columbian College of Arts and Sciences, Washington DC, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Baltimore, Maryland, USA
| | - Patricia A Egner
- Johns Hopkins University Bloomberg School of Public Health, Department of Environmental Health and Engineering, Baltimore, Maryland, USA
| | - Walter C Hubbard
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Protective Effect of Glucosinolates Hydrolytic Products in Neurodegenerative Diseases (NDDs). Nutrients 2018; 10:nu10050580. [PMID: 29738500 PMCID: PMC5986460 DOI: 10.3390/nu10050580] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 01/22/2023] Open
Abstract
Crucifer vegetables, Brassicaceae and other species of the order Brassicales, e.g., Moringaceae that are commonly consumed as spice and food, have been reported to have potential benefits for the treatment and prevention of several health disorders. Though epidemiologically inconclusive, investigations have shown that consumption of those vegetables may result in reducing and preventing the risks associated with neurodegenerative disease development and may also exert other biological protections in humans. The neuroprotective effects of these vegetables have been ascribed to their secondary metabolites, glucosinolates (GLs), and their related hydrolytic products, isothiocyanates (ITCs) that are largely investigated for their various medicinal effects. Extensive pre-clinical studies have revealed more than a few molecular mechanisms of action elucidating multiple biological effects of GLs hydrolytic products. This review summarizes the most significant and up-to-date in vitro and in vivo neuroprotective actions of sulforaphane (SFN), moringin (MG), phenethyl isothiocyanate (PEITC), 6-(methylsulfinyl) hexyl isothiocyanate (6-MSITC) and erucin (ER) in neurodegenerative diseases.
Collapse
|
31
|
Jaafaru MS, Nordin N, Shaari K, Rosli R, Abdull Razis AF. Isothiocyanate from Moringa oleifera seeds mitigates hydrogen peroxide-induced cytotoxicity and preserved morphological features of human neuronal cells. PLoS One 2018; 13:e0196403. [PMID: 29723199 PMCID: PMC5933767 DOI: 10.1371/journal.pone.0196403] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/12/2018] [Indexed: 01/12/2023] Open
Abstract
Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC) or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA) induced differentiated neuroblastoma cells (SHSY5Y) via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammed Sani Jaafaru
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Kaduna State University, Main Campus, Kaduna, Nigeria
| | - Norshariza Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Product, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Rozita Rosli
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
32
|
Romeo L, Iori R, Rollin P, Bramanti P, Mazzon E. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections. Molecules 2018. [PMID: 29522501 PMCID: PMC6017699 DOI: 10.3390/molecules23030624] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of plant-derived products as antimicrobial agents has been investigated in depth. Isothiocyanates (ITCs) are bioactive products resulting from enzymatic hydrolysis of glucosinolates (GLs), the most abundant secondary metabolites in the botanical order Brassicales. Although the antimicrobial activity of ITCs against foodborne and plant pathogens has been well documented, little is known about their antimicrobial properties against human pathogens. This review collects studies that focus on this topic. Particular focus will be put on ITCs’ antimicrobial properties and their mechanism of action against human pathogens for which the current therapeutic solutions are deficient and therefore of prime importance for public health. Our purpose was the evaluation of the potential use of ITCs to replace or support the common antibiotics. Even though ITCs appear to be effective against the most important human pathogens, including bacteria with resistant phenotypes, the majority of the studies did not show comparable results and thus it is very difficult to compare the antimicrobial activity of the different ITCs. For this reason, a standard method should be used and further studies are needed.
Collapse
Affiliation(s)
- Letizia Romeo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Renato Iori
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128 Bologna, Italy.
| | - Patrick Rollin
- Institute of Organic and Analytical Chemistry (ICOA), Université d'Orléans et the French National Center for Scientific Research (CNRS), UMR 7311, BP 6759, F-45067 Orléans, France.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
33
|
Abd Rani NZ, Husain K, Kumolosasi E. Moringa Genus: A Review of Phytochemistry and Pharmacology. Front Pharmacol 2018; 9:108. [PMID: 29503616 PMCID: PMC5820334 DOI: 10.3389/fphar.2018.00108] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Moringa is a genus of medicinal plants that has been used traditionally to cure wounds and various diseases such as colds and diabetes. In addition, the genus is also consumed as a source of nutrients and widely used for purifying water. The genus consists of 13 species that have been widely cultivated throughout Asia and Africa for their multiple uses. The purpose of this review is to provide updated and categorized information on the traditional uses, phytochemistry, biological activities, and toxicological research of Moringa species in order to explore their therapeutic potential and evaluate future research opportunities. The literature reviewed for this paper was obtained from PubMed, ScienceDirect, and Google Scholar journal papers published from 1983 to March 2017. Moringa species are well-known for their antioxidant, anti-inflammatory, anticancer, and antihyperglycemic activities. Most of their biological activity is caused by their high content of flavonoids, glucosides, and glucosinolates. By documenting the traditional uses and biological activities of Moringa species, we hope to support new research on these plants, especially on those species whose biological properties have not been studied to date.
Collapse
Affiliation(s)
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | |
Collapse
|
34
|
Han Z, Park A, Su WW. Valorization of papaya fruit waste through low-cost fractionation and microbial conversion of both juice and seed lipids. RSC Adv 2018; 8:27963-27972. [PMID: 35542705 PMCID: PMC9084329 DOI: 10.1039/c8ra05539d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/27/2018] [Indexed: 11/21/2022] Open
Abstract
Seed oil from papaya waste was validated as a novel carbon substrate for Yarrowia lipolytica to produce high-value products.
Collapse
Affiliation(s)
- Zhenlin Han
- Department of Molecular Biosciences and Bioengineering
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Alex Park
- Department of Molecular Biosciences and Bioengineering
- University of Hawaii at Manoa
- Honolulu
- USA
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering
- University of Hawaii at Manoa
- Honolulu
- USA
| |
Collapse
|
35
|
Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health. Int J Mol Sci 2016; 17:ijms17122141. [PMID: 27999405 PMCID: PMC5187941 DOI: 10.3390/ijms17122141] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023] Open
Abstract
Moringa oleifera seeds are a promising resource for food and non-food applications, due to their content of monounsaturated fatty acids with a high monounsaturated/saturated fatty acids (MUFA/SFA) ratio, sterols and tocopherols, as well as proteins rich in sulfated amino acids. The rapid growth of Moringa trees in subtropical and tropical areas, even under conditions of prolonged drought, makes this plant a reliable resource to enhance the nutritional status of local populations and, if rationalized cultivation practices are exploited, their economy, given that a biodiesel fuel could be produced from a source not in competition with human food crops. Despite the relatively diffuse use of Moringa seeds and their oil in traditional medicine, no pharmacological activity study has been conducted on humans. Some encouraging evidence, however, justifies new efforts to obtain clear and definitive information on the benefits to human health arising from seed consumption. A critical review of literature data concerning the composition of Moringa oil has set in motion a plan for future investigations. Such investigations, using the seeds and oil, will focus on cultivation conditions to improve plant production, and will study the health effects on human consumers of Moringa seeds and their oil.
Collapse
|
36
|
Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol Res 2016; 196:44-68. [PMID: 28164790 DOI: 10.1016/j.micres.2016.12.003] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022]
Abstract
In recent years, many studies have shown that phytochemicals exert their antibacterial activity through different mechanisms of action, such as damage to the bacterial membrane and suppression of virulence factors, including inhibition of the activity of enzymes and toxins, and bacterial biofilm formation. In this review, we summarise data from the available literature regarding the antibacterial effects of the main phytochemicals belonging to different chemical classes, alkaloids, sulfur-containing phytochemicals, terpenoids, and polyphenols. Some phytochemicals, besides having direct antimicrobial activity, showed an in vitro synergistic effect when tested in combination with conventional antibiotics, modifying antibiotic resistance. Review of the literature showed that phytochemicals represent a possible source of effective, cheap and safe antimicrobial agents, though much work must still be carried out, especially in in vivo conditions to ensure the selection of effective antimicrobial substances with low side and adverse effects.
Collapse
Affiliation(s)
| | - Erika Coppo
- Sezione di Microbiologia DISC University of Genoa, Italy
| | - Anna Marchese
- Sezione di Microbiologia DISC-IRCCS San Martino-IST University of Genoa, Italy.
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Dirección de Investigación, Universidad Central de Chile, Santiago, Chile
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Rajan TS, Giacoppo S, Iori R, De Nicola GR, Grassi G, Pollastro F, Bramanti P, Mazzon E. Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages. Fitoterapia 2016; 112:104-15. [DOI: 10.1016/j.fitote.2016.05.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 01/10/2023]
|
38
|
Giacoppo S, Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E. The Isothiocyanate Isolated from Moringa oleifera Shows Potent Anti-Inflammatory Activity in the Treatment of Murine Subacute Parkinson's Disease. Rejuvenation Res 2016; 20:50-63. [PMID: 27245199 DOI: 10.1089/rej.2016.1828] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present study was aimed at estimating a possible neuroprotective effect of glucomoringin (GMG) [4-(α-L-rhamnopyranosyloxy)benzyl glucosinolate] bioactivated with the enzyme myrosinase to form the corresponding isothiocyanate [4-(α-L-rhamnopyranosyloxy)benzyl C; moringin] in the treatment or prevention of Parkinson's disease (PD). In this study, the beneficial effects of moringin were compared with those of pure GMG, not enzymatically activated, in an in vivo experimental mouse model of subacute PD. Subacute PD was induced in C57BL/6 mice by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mice were pretreated daily for 1 week with moringin (10 mg/kg +5 μL myrosinase/mouse) and with GMG (10 mg/kg). Behavioral evaluations were also performed to assess motor deficits and bradykinesia in MPTP mice. Besides, assuming that pretreatment with moringin could modulate the triggering of inflammatory cascade with a correlated response, we tested its in vitro anti-inflammatory activity by using a model of RAW 264.7 macrophages stimulated with lipopolysaccharide. Achieved results in vivo showed a higher efficacy of moringin compared with GMG not only to modulate the inflammatory pathway but also oxidative stress and apoptotic pathways. In addition, the greater effectiveness of moringin in countering mainly the inflammatory pathway has been corroborated by the results obtained in vitro. The relevance and innovation of the present study lie in the possible use of a safe formulation of a bioactive compound, resulting from exogenous myrosinase hydrolysis of the natural phytochemical GMG, which can be used in clinical practice as a useful drug for the treatment or prevention of PD.
Collapse
Affiliation(s)
| | | | - Gina Rosalinda De Nicola
- 2 Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CREA-CIN) , Bologna, Italy
| | - Renato Iori
- 2 Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CREA-CIN) , Bologna, Italy
| | - Patrick Rollin
- 3 Université d'Orléans et CNRS , ICOA, UMR 7311, Orléans, France
| | | | | |
Collapse
|
39
|
Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells. Fitoterapia 2016; 110:1-7. [PMID: 26882972 DOI: 10.1016/j.fitote.2016.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/05/2023]
Abstract
Isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit tumorigenesis and they have received significant attention as potential chemotherapeutic agents against cancer. Astrocytoma grade IV is the most frequent and most malignant primary brain tumor in adults without any curative treatment. New therapeutic drugs are therefore urgently required. In the present study, we investigated the in vitro antitumor activity of the glycosylated isothiocyanate moringin [4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate] produced from quantitative myrosinase-induced hydrolysis of glucomoringin (GMG) under neutral pH value. We have evaluated the potency of moringin on apoptosis induction and cell death in human astrocytoma grade IV CCF-STTG1 cells. Moringin showed to be effective in inducing apoptosis through p53 and Bax activation and Bcl-2 inhibition. In addition, oxidative stress related Nrf2 transcription factor and its upstream regulator CK2 alpha expressions were modulated at higher doses, which indicated the involvement of oxidative stress-mediated apoptosis induced by moringin. Moreover, significant reduction in 5S rRNA was noticed with moringin treatment. Our in vitro results demonstrated the antitumor efficacy of moringin derived from myrosinase-hydrolysis of GMG in human malignant astrocytoma cells.
Collapse
Affiliation(s)
- Thangavelu Soundara Rajan
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Gina Rosalinda De Nicola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per le Colture Industriali (CREA-CIN), Via Di Corticella 133, Bologna 40128, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di Ricerca per le Colture Industriali (CREA-CIN), Via Di Corticella 133, Bologna 40128, Italy
| | - Patrick Rollin
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, F-45067 Orléans, France
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
40
|
Agerbirk N, De Nicola GR, Olsen CE, Müller C, Iori R. Derivatization of isothiocyanates and their reactive adducts for chromatographic analysis. PHYTOCHEMISTRY 2015; 118:109-115. [PMID: 26342619 DOI: 10.1016/j.phytochem.2015.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 06/05/2023]
Abstract
Isothiocyanates form adducts with a multitude of biomolecules, and these adducts need analytical methods. Likewise, analytical methods for hydrophilic isothiocyanates are needed. We considered reaction with ammonia to form thiourea derivatives. The hydrophilic, glycosylated isothiocyanate moringin, 4-(α-L-rhamnopyranosyloxy)benzyl isothiocyanate, was efficiently derivatized to the thiourea derivative by incubation with ammonia. The hydrophobic benzyl isothiocyanate was also efficiently derivatized to the thiourea derivative. The thiourea group provided a UV absorbing chromophore, and the derivatives showed expectable sodium and hydrogen adducts in ion trap mass spectrometry and were suitable for liquid chromatography analysis. Reactive dithiocarbamate adducts constitute the major type of reactive ITC adduct expected in biological matrices. Incubation of a model dithiocarbamate with ammonia likewise resulted in conversion to the corresponding thiourea derivative, suggesting that a variety of matrix-bound reactive isothiocyanate adducts can be determined using this strategy. As an example of the application of the method, recovery of moringin and benzyl isothiocyanate applied to cabbage leaf discs was studied in simulated insect feeding assays. The majority of moringin was recovered as native isothiocyanate, but a major part of benzyl isothiocyanate was converted to reactive adducts.
Collapse
Affiliation(s)
- Niels Agerbirk
- Copenhagen Plant Science Center and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Gina Rosalinda De Nicola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Carl Erik Olsen
- Copenhagen Plant Science Center and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| |
Collapse
|
41
|
Müller C, van Loon J, Ruschioni S, De Nicola GR, Olsen CE, Iori R, Agerbirk N. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. PHYTOCHEMISTRY 2015; 118:139-148. [PMID: 26318325 DOI: 10.1016/j.phytochem.2015.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 08/11/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
Isothiocyanates (ITCs), released from Brassicales plants after hydrolysis of glucosinolates, are known for their negative effects on herbivores but mechanisms have been elusive. The ITCs are initially present in dissolved form at the site of herbivore feeding, but volatile ITCs may subsequently enter the gas phase and all ITCs may react with matrix components. Deterrence to herbivores resulting from topically applied volatile ITCs in artificial feeding assays may hence lead to ambiguous conclusions. In the present study, the non-volatile ITC moringin (4-(α-L-rhamnopyranosyloxy)benzyl ITC) and its glucosinolate precursor glucomoringin were examined for effects on behaviour and taste physiology of specialist insect herbivores of Brassicales. In feeding bioassays, glucomoringin was not deterrent to larvae of Pieris napi (Lepidoptera: Pieridae) and Athalia rosae (Hymenoptera: Tenthredinidae), which are adapted to glucosinolates. Glucomoringin stimulated feeding of larvae of the related Pieris brassicae (Lepidoptera: Pieridae) and also elicited electrophysiological activity from a glucosinolate-sensitive gustatory neuron in the lateral maxillary taste sensilla. In contrast, the ITC moringin was deterrent to P. napi and P. brassicae at high levels and to A. rosae at both high and low levels when topically applied to cabbage leaf discs (either 12, 120 or 1200 nmol moringin per leaf disc of 1cm diameter). Survival of A. rosae was also significantly reduced when larvae were kept on leaves treated with moringin for several days. Furthermore, moringin elicited electrophysiological activity in a deterrent-sensitive neuron in the medial maxillary taste sensillum of P. brassicae, providing a sensory mechanism for the deterrence and the first known ITC taste response of an insect. In simulated feeding assays, recovery of moringin was high, in accordance with its non-volatile nature. Our results demonstrate taste-mediated deterrence of a non-volatile, natural ITC to glucosinolate-adapted insects.
Collapse
Affiliation(s)
- Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Joop van Loon
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Blanche, 60131 Ancona, Italy
| | - Gina Rosalinda De Nicola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Carl Erik Olsen
- Copenhagen Plant Science Center and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Niels Agerbirk
- Copenhagen Plant Science Center and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
42
|
Administration of 4-(α-L-rhamnosyloxy)-benzyl isothiocyanate delays disease phenotype in SOD1(G93A) rats: a transgenic model of amyotrophic lateral sclerosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:259417. [PMID: 26075221 PMCID: PMC4436451 DOI: 10.1155/2015/259417] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022]
Abstract
4-(α-L-Rhamnosyloxy)-benzyl glucosinolate (glucomoringin, GMG) is a compound found in Moringa oleifera seeds. Myrosinase-catalyzed hydrolysis at neutral pH of GMG releases the biologically active compound 4-(α-L-rhamnosyloxy)-benzyl isothiocyanate (GMG-ITC). The present study was designed to test the potential therapeutic effectiveness of GMG-ITC to counteract the amyotrophic lateral sclerosis (ALS) using SOD1tg rats, which physiologically develops SOD1G93A at about 16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a day with GMG (10 mg/Kg) bioactivated with myrosinase (20 µL/rat) via intraperitoneal (i.p.) injection for two weeks before disease onset and the treatment was prolonged for further two weeks before the sacrifice. Immune-inflammatory markers as well as apoptotic pathway were investigated to establish whether GMG-ITC could represent a new promising tool in clinical practice to prevent ALS. Achieved data display clear differences in molecular and biological profiles between treated and untreated SOD1tg rats leading to guessing that GMG-ITC can interfere with the pathophysiological mechanisms at the basis of ALS development. Therefore, GMG-ITC produced from myrosinase-catalyzed hydrolysis of pure GMG could be a candidate for further studies aimed to assess its possible use in clinical practice for the prevention or to slow down this disease.
Collapse
|
43
|
4(α-l-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury. Bioorg Med Chem 2014; 23:80-8. [PMID: 25497964 DOI: 10.1016/j.bmc.2014.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 11/23/2022]
Abstract
4(α-l-Rhamnosyloxy)-benzyl isothiocyanate (glucomoringin isothiocyanate; GMG-ITC) is released from the precursor 4(α-l-rhamnosyloxy)-benzyl glucosinolate (glucomoringin; GMG) by myrosinase (β-thioglucoside glucohydrolase; E.C. 3.2.1.147) catalyzed hydrolysis. GMG is an uncommon member of the glucosinolate group as it presents a unique characteristic consisting in a second glycosidic residue within the side chain. It is a typical glucosinolate found in large amounts in the seeds of Moringa oleifera Lam., the most widely distributed plant of the Moringaceae family. GMG was purified from seed-cake of M. oleifera and was hydrolyzed by myrosinase at neutral pH in order to form the corresponding GMG-ITC. This bioactive phytochemical can play a key role in counteracting the inflammatory response connected to the oxidative-related mechanisms as well as in the control of the neuronal cell death process, preserving spinal cord tissues after injury in mice. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24g) for 1 min., via four-level T5-T8 after laminectomy. In particular, the purpose of this study was to investigate the dynamic changes occurring in the spinal cord after ip treatment with bioactive GMG-ITC produced 15 min before use from myrosinase-catalyzed hydrolysis of GMG (10mg/kg body weight+5 μl Myr mouse/day). The following parameters, such as histological damage, distribution of reticular fibers in connective tissue, nuclear factor (NF)-κB translocation and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) degradation, expression of inducible Nitric Oxide Synthases (iNOS), as well as apoptosis, were evaluated. In conclusion, our results show a protective effect of bioactive GMG-ITC on the secondary damage, following spinal cord injury, through an antioxidant mechanism of neuroprotection. Therefore, the bioactive phytochemical GMG-ITC freshly produced before use by myrosinase-catalyzed hydrolysis of pure GMG, could prove to be useful in the treatment of spinal cord trauma.
Collapse
|
44
|
Zhang H, Liu RQ, Liu KC, Li QB, Li QY, Liu SZ. A one-pot approach to pyridyl isothiocyanates from amines. Molecules 2014; 19:13631-42. [PMID: 25185069 PMCID: PMC6271198 DOI: 10.3390/molecules190913631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 11/16/2022] Open
Abstract
A one-pot preparation of pyridyl isothiocyanates (ITCs) from their corresponding amines has been developed. This method involves aqueous iron(III) chloride-mediated desulfurization of a dithiocarbamate salt that is generated in situ by treatment of an amine with carbon disulfide in the present of DABCO or sodium hydride. The choice of base is of decisive importance for the formation of the dithiocarbamate salts. This one-pot process works well for a wide range of pyridyl ITCs. Utilizing this protocol, some highly electron-deficient pyridyl and aryl ITCs are obtained in moderate to good yields.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Rui-Quan Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Ke-Chang Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Qi-Bo Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Qing-Yang Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Shang-Zhong Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
45
|
Maldini M, Maksoud SA, Natella F, Montoro P, Petretto GL, Foddai M, De Nicola GR, Chessa M, Pintore G. 'Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry'. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:900-910. [PMID: 25230187 DOI: 10.1002/jms.3437] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Moringa oleifera is a medicinal plant and an excellent dietary source of micronutrients (vitamins and minerals) and health-promoting phytochemicals (phenolic compounds, glucosinolates and isothiocyanates). Glucosinolates and isothiocyanates are known to possess anti-carcinogenic and antioxidant effects and have attracted great interest from both toxicological and pharmacological points of view, as they are able to induce phase 2 detoxification enzymes and to inhibit phase 1 activation enzymes. Phenolic compounds possess antioxidant properties and may exert a preventative effect in regards to the development of chronic degenerative diseases. The aim of this work was to assess the profile and the level of bioactive compounds in all parts of M. oleifera seedlings, by using different MS approaches. First, flow injection electrospray ionization mass spectrometry (FI-ESI-MS) fingerprinting techniques and chemometrics (PCA) were used to achieve the characterization of the different plant's organs in terms of profile of phenolic compounds and glucosinolates. Second, LC-MS and LC-MS/MS qualitative and quantitative methods were used for the identification and/or determination of phenolics and glucosinolates in M. oleifera.
Collapse
Affiliation(s)
- Mariateresa Maldini
- University of Sassari, Department of Chemistry and Pharmacy via F. Muroni, 23/b, 07100, Sassari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Galuppo M, Giacoppo S, De Nicola GR, Iori R, Navarra M, Lombardo GE, Bramanti P, Mazzon E. Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia 2014; 95:160-74. [PMID: 24685508 DOI: 10.1016/j.fitote.2014.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/12/2014] [Accepted: 03/22/2014] [Indexed: 12/16/2022]
Abstract
Glucomoringin (4(α-L-rhamnosyloxy)-benzyl glucosinolate) (GMG) is an uncommon member of glucosinolate group belonging to the Moringaceae family, of which Moringa oleifera Lam. is the most widely distributed. Bioactivation of GMG with the enzyme myrosinase forms the corresponding isothiocyanate (4(α-L-rhamnosyloxy)-benzyl isothiocyanate) (GMG-ITC), which can play a key role in antitumoral activity and counteract the inflammatory response. The aim of this study was to assess the effect of GMG-ITC treatment in an experimental mouse model of multiple sclerosis (MS), an inflammatory demyelinating disease with neurodegeneration characterized by demyelinating plaques, neuronal, and axonal loss. For this reason, C57Bl/6 male mice were injected with myelin oligodendrocyte glycoprotein35-55 which is able to evoke an autoimmune response against myelin fibers miming human multiple sclerosis physiopatogenesis. Results clearly showed that the treatment was able to counteract the inflammatory cascade that underlies the processes leading to severe MS. In particular, GMG-ITC was effective against proinflammatory cytokine TNF-α. Oxidative species generation including the influence of iNOS, nitrotyrosine tissue expression and cell apoptotic death pathway was also evaluated resulting in a lower Bax/Bcl-2 unbalance. Taken together, this work adds new interesting properties and applicability of GMG-ITC and this compound can be suggested as a useful drug for the treatment or prevention of MS, at least in association with current conventional therapy.
Collapse
Affiliation(s)
- Maria Galuppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Gina Rosalinda De Nicola
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per le Colture Industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Renato Iori
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per le Colture Industriali (CRA-CIN), Via di Corticella 133, 40128 Bologna, Italy
| | - Michele Navarra
- Università degli Studi di Messina, Facoltà di Farmacia, Dipartimento di Scienze del farmaco e dei Prodotti per la Salute, Viale Annunziata, 98168 Messina, Italy
| | - Giovanni Enrico Lombardo
- Università degli Studi di Messina, Facoltà di Farmacia, Dipartimento di Scienze del farmaco e dei Prodotti per la Salute, Viale Annunziata, 98168 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|