1
|
Zhang DJ, Yuan ZQ, Yue YX, Zhang M, Wu WJ, Yang CG, Qiu WW. Synthesis and antibacterial activities of heterocyclic ring-fused 20(S)-protopanaxadiol derivatives. Bioorg Med Chem 2024; 112:117901. [PMID: 39232465 DOI: 10.1016/j.bmc.2024.117901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Multidrug-resistant (MDR) bacterial infections are becoming a life-threatening issue in public health; therefore, it is urgent to develop novel antibacterial agents for treating infections caused by MDR bacteria. The 20(S)-protopanaxadiol (PPD) derivative 9 was identified as a novel antibacterial hit compound in screening of our small synthetic natural product-like (NPL) library. A series of novel PPD derivatives with heterocyclic rings fused at the C-2 and C-3 positions of the A-ring were synthesized and their antibacterial activities against Staphylococcus aureus (S. aureus) Newman strain and MDR S. aureus strains (USA300, NRS-1, NRS-70, NRS-100, NRS-108, NRS-271, XJ017, and XJ036) were evaluated. Among these compounds, quinoxaline derivative 56 (SH617) exhibited the highest activity with MICs of 0.5-4 μg/mL against the S. aureus Newman strain and the eight MDR S. aureus strains. Its antibacterial activity was comparable to that of the positive control, vancomycin. In the zebrafish, 56 revealed no obvious toxicity even at a high administered dose. In vivo, following a lethal infection induced by USA300 strains in zebrafish, 56 exhibited significantly increased survival rates in a dose-dependent manner.
Collapse
Affiliation(s)
- De-Jie Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zi-Qi Yuan
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Xin Yue
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Min Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Wen-Juan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
2
|
Fontana G, Badalamenti N, Bruno M, Maggi F, Dell’Annunziata F, Capuano N, Varcamonti M, Zanfardino A. Biological Properties of Oleanolic Acid Derivatives Bearing Functionalized Side Chains at C-3. Int J Mol Sci 2024; 25:8480. [PMID: 39126048 PMCID: PMC11312724 DOI: 10.3390/ijms25158480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Triterpene acids are a class of pentacyclic natural carboxylic compounds endowed with a variety of biological activities including antitumor, antimicrobial, and hepatoprotective effects. In this work, several oleanolic acid derivatives were synthesized by structurally modifying them on the C-3 position. All synthesized derivatives were evaluated for possible antibacterial and antiviral activity, and among all the epimers, 6 and 7 demonstrated the best biological activities. Zone-of-inhibition analyses were conducted against two strains, E. coli as a Gram-negative and S. aureus as a Gram-positive model. Subsequently, experiments were performed using the microdilution method to determine the minimum inhibitory concentration (MIC). The results showed that only the derivative with reduced hydrogen bonding ability on ring A possesses remarkable activity toward E. coli. The conversion from acid to methyl ester implies a loss of activity, probably due to a reduced affinity with the bacterial membrane. Before the antiviral activity, the cytotoxicity of triterpenes was evaluated through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Samples 6 and 7 showed less than 50% cytotoxicity at 0.625 and 1 mg/mL, respectively. The antiviral activity against SARS-CoV-2 and PV-1 did not indicate that triterpene acids had any inhibitory capacity in the sub-toxic concentration range.
Collapse
Affiliation(s)
- Gianfranco Fontana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.F.); (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.F.); (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.F.); (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
- Centro Interdipartimentale di Ricerca “Riutilizzo Bio-Based degli Scarti da Matrici Agroalimentari” (RIVIVE), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (F.D.); (N.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (F.D.); (N.C.)
| | - Mario Varcamonti
- Department of Biology, University of Naples, Federico II, Via Cinthia, 80126 Naples, Italy; (M.V.); (A.Z.)
| | - Anna Zanfardino
- Department of Biology, University of Naples, Federico II, Via Cinthia, 80126 Naples, Italy; (M.V.); (A.Z.)
| |
Collapse
|
3
|
Liu G, Qin P, Cheng X, Wu L, Zhao W, Gao W. Evaluation of the mechanistic basis for the antibacterial activity of ursolic acid against Staphylococcus aureus. Front Microbiol 2024; 15:1389242. [PMID: 38827151 PMCID: PMC11140147 DOI: 10.3389/fmicb.2024.1389242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
The antibiotics are generally regarded as the first choice approach to treat dairy mastitis, targeting the public health problems associated with the food safety and the emergence of antibioticresistant bacteria. The objective of the study was to evaluate the antibacterial efficacy of ursolic acid (UA) when used to treat Staphylococcus aureus and other isolates associated with bovine mastitis and to clarify the mechanistic basis for these effects. The bacteriostatic properties of UA extracted from Rosmarinus officinalis L. at four different purity levels were assessed by calculating minimum inhibitory concentration (MIC) values, while the synergistic effects of combining 98% UA with antibiotics were evaluated by measuring the fractional inhibitory concentration index (FICI). Changes in biofilm formation and the growth curves of the clinical isolates were assessed to clarify the bacteriostatic effect of UA. Furthermore, the cell wall integrity, protein synthesis, and reactive oxygen species (ROS) production were assessed to determine the antibacterial mechanism of UA treatment. Ultimately, UA was revealed to exhibit robust activity against Gram-positive bacteria including S. aureus (ATCC 25923), Streptococcus dysgalactiae (ATCC27957), Streptococcus agalactiae (ATCC13813), Enterococcus faecalis (ATCC29212), and Streptococcus mutans (ATCC25175). However, it did not affect Escherichia coli (ATCC 25922). The MIC values of UA preparations that were 98, 50, 30, and 10% pure against S. aureus were 39, 312, 625, and 625 μg/mL, respectively, whereas the corresponding MIC for E. coli was >5,000 μg/mL. The minimum bactericidal concentrations of 98% UA when used to treat three clinical S. aureus isolates (S4, S5, and S6) were 78, 78, and 156 μg/mL, respectively. Levels of biofilm formation for clinical S. aureus isolates decreased with increasing 98% UA concentrations. Above the MIC dose, UA treatment resulted in the dissolution of bacterial cell walls and membranes, with cells becoming irregularly shaped and exhibiting markedly impaired intracellular protein synthesis. S. aureus treated with 98% UA was able to rapidly promote intracellular ROS biogenesis. Together, these data highlight the promising utility of UA as a compound that can be used together with other antibiotics for the treatment of infections caused by S. aureus.
Collapse
Affiliation(s)
- Guanhui Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Qin
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Xinying Cheng
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Lifei Wu
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| | - Wentao Zhao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Wei Gao
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| |
Collapse
|
4
|
Liu G, Qin P, Cheng X, Wu L, Wang R, Gao W. Ursolic acid: biological functions and application in animal husbandry. Front Vet Sci 2023; 10:1251248. [PMID: 37964910 PMCID: PMC10642196 DOI: 10.3389/fvets.2023.1251248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Ursolic acid (UA) is a plant-derived pentacyclic triterpenoid with 30 carbon atoms. UA has anti-inflammatory, antioxidative, antimicrobial, hepato-protective, anticancer, and other biological activities. Most studies on the biological functions of UA have been performed in mammalian cell (in vitro) and rodent (in vivo) models. UA is used in animal husbandry as an anti-inflammatory and antiviral agent, as well as for enhancing the integrity of the intestinal barrier. Although UA has been shown to have significant in vitro bacteriostatic effects, it is rarely used in animal nutrition. The use of UA as a substitute for oral antibiotics or as a novel feed additive in animal husbandry should be considered. This review summarizes the available data on the biological functions of UA and its applications in animal husbandry.
Collapse
Affiliation(s)
- Guanhui Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Qin
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Xinying Cheng
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Lifei Wu
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| | - Ruoning Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Wei Gao
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| |
Collapse
|
5
|
Nistor M, Rugina D, Diaconeasa Z, Socaciu C, Socaciu MA. Pentacyclic Triterpenoid Phytochemicals with Anticancer Activity: Updated Studies on Mechanisms and Targeted Delivery. Int J Mol Sci 2023; 24:12923. [PMID: 37629103 PMCID: PMC10455110 DOI: 10.3390/ijms241612923] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Pentacyclic triterpenoids (TTs) represent a unique family of phytochemicals with interesting properties and pharmacological effects, with some representatives, such as betulinic acid (BA) and betulin (B), being mainly investigated as potential anticancer molecules. Considering the recent scientific and preclinical investigations, a review of their anticancer mechanisms, structure-related activity, and efficiency improved by their insertion in nanolipid vehicles for targeted delivery is presented. A systematic literature study about their effects on tumor cells in vitro and in vivo, as free molecules or encapsulated in liposomes or nanolipids, is discussed. A special approach is given to liposome-TTs and nanolipid-TTs complexes to be linked to microbubbles, known as contrast agents in ultrasonography. The production of such supramolecular conjugates to deliver the drugs to target cells via sonoporation represents a new scientific and applicative direction to improve TT efficiency, considering that they have limited availability as lipophilic molecules. Relevant and recent examples of in vitro and in vivo studies, as well as the challenges for the next steps towards the application of these complex delivery systems to tumor cells, are discussed, as are the challenges for the next steps towards the application of targeted delivery to tumor cells, opening new directions for innovative nanotechnological solutions.
Collapse
Affiliation(s)
- Madalina Nistor
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Dumitrita Rugina
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Carmen Socaciu
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Mihai Adrian Socaciu
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
- Department of Radiology, Imaging & Nuclear Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Guo R, Shang JH, Ye RH, Zhao YL, Luo XD. Pharmacological investigation of indole alkaloids from Alstonia scholaris against chronic glomerulonephritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154958. [PMID: 37453192 DOI: 10.1016/j.phymed.2023.154958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND As one of the most commonly used folk medicines in "Dai" ethno-medicine system, Alstonia scholaris (l.) R. Br. has also been used for treat "water related diseases", such as chronic kidney disease. However, few study was reported for it on the intervention of chronic glomerulonephritis (CGN). PURPOSE To investigate the effect and potential mechanism of indole alkaloids from A. scholaris leaves in ICR mice with adriamycin nephropathy, as well as providing experimental evidence for the further application. METHODS ICR Mice were selected for injections of adriamycin (ADR) to induce the CGN model and administered total alkaloids (TA) and four main alkaloids continuously for 42 and 28 days, respectively. The pharmacological effects were indicated by serum, urine, and renal pathological observations. The targets and pathways of indole alkaloids on CGN intervention were predicted using the network pharmacology approach, and the immortalized mice glomerular podocyte (MPC5) cells model stimulated by ADR was subsequently selected to further verify this by western blotting and RT-qPCR methods. RESULTS TA and four major compounds dramatically reduced the levels of urinary protein, serum urea nitrogen (BUN), and creatinine (CRE) in ADR - induced CGN mice, while increasing serum albumin (ALB) and total protein (TP) levels as well as ameliorating kidney damage. Moreover, four alkaloids effected on 33 major target proteins and 153 pathways in the CGN, among which, PI3K-Akt as the main pathway, an important pathway for kidney protection by network pharmacology prediction, and then the four target proteins - HRAS, CDK2, HSP90AA1, and KDR were screened. As a result, Val-and Epi can exert a protective effect on ADR-stimulated MPC5 cells injury at a concentration of 50 μM. Furthermore, the proteins and RNA expression of HRAS, HSP90AA1, and KDR were down-regulated, and CDK2 was up-regulated after the intervention of Val-and Epi, which were supported by Western blotting and RT-qPCR. Additionally, Val-and Epi inhibited ROS production in the MPC5 cells model. CONCLUSION This study is the first to confirm the potential therapeutic effect of alkaloids from A. scholaris on CGN. TA with major bioactive components (vallesamine and 19‑epi-scholaricine) could exert protective effects against the ADR-induced CGN by regulating four key proteins: HRAS, CDK2, HSP90AA1, and KDR of the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Rui Guo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China; Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Jian-Hua Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201, PR China
| | - Rui-Han Ye
- Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201, PR China.
| |
Collapse
|
7
|
Teixeira EH, Andrade AL, Pereira R, Farias LP, Monteiro GS, Marinho MM, Marinho ES, Santos HS, de Vasconcelos MA. Antimicrobial, Antibiofilm Activities and Synergic Effect of Triterpene 3β,6β,16β-trihydroxyilup-20(29)-ene Isolated from Combretum leprosum Leaves Against Staphylococcus Strains. Curr Microbiol 2023; 80:176. [PMID: 37029832 DOI: 10.1007/s00284-023-03284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
Antimicrobial resistance is a natural phenomenon and is becoming a huge global public health problem, since some microorganisms not respond to the treatment of several classes of antibiotics. The objective of the present study was to evaluate the antibacterial, antibiofilm, and synergistic effect of triterpene 3β,6β,16β-trihydroxyilup-20(29)-ene (CLF1) against Staphylococcus aureus and Staphylococcus epidermidis strains. Bacterial susceptibility to CLF1 was evaluated by minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assay. In addition, the effect combined with antibiotics (ampicillin and tetracycline) was verified by the checkerboard method. The biofilms susceptibility was assessed by enumeration of colony-forming units (CFUs) and quantification of total biomass by crystal violet staining. The compound showed bacteriostatic and bactericidal activity against all Staphylococcal strains tested. The synergistic effect with ampicillin was observed only for S. epidermidis strains. Moreover, CLF1 significantly inhibited the biofilm formation and disrupted preformed biofilm of the all strains. Scanning electron microscopy (SEM) images showed changes in the cell morphology and structure of S. aureus ATCC 700698 biofilms (a methicillin-resistant S. aureus strain). Molecular docking simulations showed that CLF1 has a more favorable interaction energy than the antibiotic ampicillin on penicillin-binding protein (PBP) 2a of MRSA, coupled in different regions of the protein. Based on the results obtained, CLF1 proved to be a promising antimicrobial compound against Staphylococcus biofilms.
Collapse
Affiliation(s)
- Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Rafael Pereira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Livia Pontes Farias
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Gabrieli Sobral Monteiro
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Marcia Machado Marinho
- Faculdade de Educação, Ciência e Letras de Iguatu, Universidade Estadual do Ceará, Iguatu, Ceará, Brazil
| | - Emmanuel Silva Marinho
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual do Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Hélcio Silva Santos
- Centro de Ciências Exatas e Tecnologia, Universidade Estadual Vale do Acaraú, Sobral, Ceará, Brazil
| | - Mayron Alves de Vasconcelos
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Universidade do Estado de Minas Gerais, Unidade de Divinopolis, Divinopolis, MG, 35501-179, Brazil
- Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, 59610-210, Brazil
| |
Collapse
|
8
|
Gil-Martínez L, Mut-Salud N, Ruiz-García JA, Falcón-Piñeiro A, Maijó-Ferré M, Baños A, De la Torre-Ramírez JM, Guillamón E, Verardo V, Gómez-Caravaca AM. Phytochemicals Determination, and Antioxidant, Antimicrobial, Anti-Inflammatory and Anticancer Activities of Blackberry Fruits. Foods 2023; 12:foods12071505. [PMID: 37048326 PMCID: PMC10094647 DOI: 10.3390/foods12071505] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
A comprehensive characterization of the phytochemicals present in a blackberry fruit extract by HPLC-TOF-MS has been carried out. The main compounds in the extract were ursane-type terpenoids which, along with phenolic compounds, may be responsible for the bioactivity of the extract. In vitro antioxidant capacity was assessed through Folin–Ciocalteu (31.05 ± 4.9 mg GAE/g d.w.), FRAP (637.8 ± 3.2 μmol Fe2+/g d.w.), DPPH (IC50 97.1 ± 2.4 μg d.w./mL) and TEAC (576.6 ± 8.3 μmol TE/g d.w.) assays. Furthermore, the extract exerted remarkable effects on in vitro cellular antioxidant activity in HUVEC cells at a concentration of 5 mg/mL. Antimicrobial activity of the extract was also tested. Most sensible microorganisms were Gram-positive bacteria, such as E. faecalis, B. cereus and Gram-negative E. coli (MBC of 12.5 mg/mL). IC50 values against colon tumoral cells HT-29 (4.9 ± 0.2 mg/mL), T-84 (5.9 ± 0.3 mg/mL) and SW-837 (5.9 ± 0.2 mg/mL) were also obtained. Furthermore, blackberry extract demonstrated anti-inflammatory activity inhibiting the secretion of pro-inflammatory IL-8 cytokines in two cellular models (HT-29 and T-84) in a concentration-dependent manner. These results support that blackberry fruits are an interesting source of bioactive compounds that may be useful in the prevention and treatment of different diseases, mainly related to oxidative stress.
Collapse
Affiliation(s)
- Lidia Gil-Martínez
- Department of Analytical Chemistry, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - Nuria Mut-Salud
- Department of Microbiology, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - José Antonio Ruiz-García
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Ana Falcón-Piñeiro
- Department of Microbiology, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | | | - Alberto Baños
- Department of Microbiology, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | | | - Enrique Guillamón
- Department of Chemical Engineering, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avd. Conocimiento s/n, 18100 Granada, Spain
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Avda Fuentenueva, 18071 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avd. Conocimiento s/n, 18100 Granada, Spain
| |
Collapse
|
9
|
Lombrea A, Semenescu AD, Magyari-Pavel IZ, Turks M, Lugiņina J, Peipiņš U, Muntean D, Dehelean CA, Dinu S, Danciu C. Comparison of In Vitro Antimelanoma and Antimicrobial Activity of 2,3-Indolo-betulinic Acid and Its Glycine Conjugates. PLANTS (BASEL, SWITZERLAND) 2023; 12:1253. [PMID: 36986941 PMCID: PMC10058300 DOI: 10.3390/plants12061253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Malignant melanoma is one of the most pressing problems in the developing world. New therapeutic agents that might be effective in treating malignancies that have developed resistance to conventional medications are urgently required. Semisynthesis is an essential method for improving the biological activity and the therapeutic efficacy of natural product precursors. Semisynthetic derivatives of natural compounds are valuable sources of new drug candidates with a variety of pharmacological actions, including anticancer ones. Two novel semisynthetic derivatives of betulinic acid-N-(2,3-indolo-betulinoyl)diglycylglycine (BA1) and N-(2,3-indolo-betulinoyl)glycylglycine (BA2)-were designed and their antiproliferative, cytotoxic, and anti-migratory activity against A375 human melanoma cells was determined in comparison with known N-(2,3-indolo-betulinoyl)glycine (BA3), 2,3-indolo-betulinic acid (BA4) and naturally occurring betulinic acid (BI). A dose-dependent antiproliferative effect with IC50 values that ranged from 5.7 to 19.6 µM was observed in the series of all five compounds including betulinic acid. The novel compounds BA1 (IC50 = 5.7 µM) and BA2 (IC50 = 10.0 µM) were three times and two times more active than the parent cyclic structure B4 and natural BI. Additionally, compounds BA2, BA3, and BA4 possess antibacterial activity against Streptococcus pyogenes ATCC 19615 and Staphylococcus aureus ATCC 25923 with MIC values in the range of 13-16 µg/mL and 26-32 µg/mL, respectively. On the other hand, antifungal activity toward Candida albicans ATCC 10231 and Candida parapsilosis ATCC 22019 was found for compound BA3 with MIC 29 µg/mL. This is the first report of antibacterial and antifungal activity of 2,3-indolo-betulinic acid derivatives and also the first extended report on their anti-melanoma activity, which among others includes data on anti-migratory activity and shows the significance of amino acid side chain on the observed activity. The obtained data justify further research on the anti-melanoma and antimicrobial activity of 2,3-indolo-betulinic acid derivatives.
Collapse
Affiliation(s)
- Adelina Lombrea
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
| | - Alexandra-Denisa Semenescu
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
| | - Jevgeņija Lugiņina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
| | - Uldis Peipiņš
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
- Nature Science Technologies Ltd., Rupnicu Str. 4, LV-2114 Olaine, Latvia
| | - Delia Muntean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
| |
Collapse
|
10
|
Fabroni S, Trovato A, Ballistreri G, Tortorelli SA, Foti P, Romeo FV, Rapisarda P. Almond [ Prunus dulcis (Mill.) DA Webb] Processing Residual Hull as a New Source of Bioactive Compounds: Phytochemical Composition, Radical Scavenging and Antimicrobial Activities of Extracts from Italian Cultivars ('Tuono', 'Pizzuta', 'Romana'). Molecules 2023; 28:molecules28020605. [PMID: 36677662 PMCID: PMC9864005 DOI: 10.3390/molecules28020605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
In this study we developed a new extract, by the use of conventional solid-solvent extraction and a food-grade hydroalcoholic solvent, rich in phenolic and triterpenoid components from almon hull to be employed as functional ingredient in food, pharma and cosmetic sectors. Two autochthonous Sicilian cultivars ('Pizzuta' and 'Romana') and an Apulian modern cultivar ('Tuono') have been tested for the production of the extract. Results showed that the two Sicilian varieties, and in particular the 'Romana' one, present the best characteristics to obtain extracts rich in triterpenoids and hydroxycinnamic acids, useful for the production of nutraceutical supplements. About triterpenoids, the performance of the hydroalcoholic extraction process allowed to never go below 46% of recovery for 'Pizzuta' samples, with significantly higher percentages of recovery for 'Tuono' and 'Romana' extracts (62.61% and 73.13%, respectively) while hydroxycinnamic acids were recovered at higher recovery rate (84%, 89% and 88% for 'Pizzuta', 'Romana' and 'Tuono' extracts, respectively). Invitro antioxidant and antimicrobial activities exerted by the extracts showed promising results with P. aeruginosa being the most affected strain, inhibited up to the 1/8 dilution with 'Romana' extract. All the three tested extracts exerted an antimicrobial action up to 1/4 dilutions but 'Romana' and 'Pizzuta' extracts always showed the greatest efficacy.
Collapse
|
11
|
Özdemir Z, Wimmer Z. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. PHYTOCHEMISTRY 2022; 203:113340. [PMID: 35987401 DOI: 10.1016/j.phytochem.2022.113340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 05/20/2023]
Abstract
Medicinal plants have been used to treat different diseases throughout the human history namely in traditional medicine. Most of the plants mentioned in this review article belong among them, including those that are widely spread in the nature, counted frequently to be food and nutrition plants and producing pharmacologically important secondary metabolites. Triterpenoids represent an important group of plant secondary metabolites displaying emerging pharmacological importance. This review article sheds light on four selected triterpenoids, oleanolic, ursolic, betulinic and platanic acid, and on their amide derivatives as important natural or semisynthetic agents in cancer treatment, and, in part, in pathogenic microbe treatment. A literature search was made in the Web of Science for the given key words covering the required area of secondary plant metabolites and their amide derivatives. The most recently published findings on the biological activity of the selected triterpenoids, and on the structures and biological activity of their relevant amide derivatives have been summarized therein. Mainly anti-cancer effects, and, in part, antimicrobial and other effects of the four selected triterpenoids and their amide derivatives have also been reviewed. A comparison of the effects of the parent plant products and those of their amide derivatives has been made.
Collapse
Affiliation(s)
- Zulal Özdemir
- University of Chemistry and Technology in Prague, Technická 5, 16028, Prague 6, Czech Republic; Institute of Experimental Botany AS CR, Isotope Laboratory, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| | - Zdeněk Wimmer
- University of Chemistry and Technology in Prague, Technická 5, 16028, Prague 6, Czech Republic; Institute of Experimental Botany AS CR, Isotope Laboratory, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
12
|
Sycz Z, Wojnicz D, Tichaczek-Goska D. Does Secondary Plant Metabolite Ursolic Acid Exhibit Antibacterial Activity against Uropathogenic Escherichia coli Living in Single- and Multispecies Biofilms? Pharmaceutics 2022; 14:pharmaceutics14081691. [PMID: 36015317 PMCID: PMC9415239 DOI: 10.3390/pharmaceutics14081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Multispecies bacterial biofilms are the often cause of chronic recurrent urinary tract infections within the human population. Eradicating such a complex bacterial consortium with standard pharmacotherapy is often unsuccessful. Therefore, plant-derived compounds are currently being researched as an alternative strategy to antibiotic therapy for preventing bacterial biofilm formation and facilitating its eradication. Therefore, our research aimed to determine the effect of secondary plant metabolite ursolic acid (UA) on the growth and survival, the quantity of exopolysaccharides formed, metabolic activity, and morphology of uropathogenic Gram-negative rods living in single- and mixed-species biofilms at various stages of their development. Spectrophotometric methods were used for biofilm mass formation and metabolic activity determination. The survival of bacteria was established using the serial dilution assay. The decrease in survival and inhibition of biofilm creation, both single- and multispecies, as well as changes in the morphology of bacterial cells were noticed. As UA exhibited better activity against young biofilms, the use of UA-containing formulations, especially during the initial steps of urinary tract infection, seems to be reasonable. However, the future direction should be a thorough understanding of the mechanisms of UA activity as a bioactive substance.
Collapse
|
13
|
Synergistic activity between beta-lactams and igy antibodies against Pseudomonas aeruginosa in vitro. Mol Immunol 2022; 148:1-5. [DOI: 10.1016/j.molimm.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
|
14
|
Liang M, Ge X, Xua H, Ma K, Zhang W, Zan Y, Efferth T, Xue Z, Hua X. Phytochemicals with activity against methicillin-resistant Staphylococcus aureus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154073. [PMID: 35397285 DOI: 10.1016/j.phymed.2022.154073] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The evolution of resistance to antimicrobials is a ubiquitous phenomenon. The evolution of antibiotic resistance in Staphylococcus aureus suggests that there is no remedy with sustaining effectiveness against this pathogen. The limited number of antibacterial drug classes and the common occurrence of cross-resistant bacteria reinforce the urgent need to discover new compounds targeting novel cellular functions. Natural products are a potential source of novel antibacterial agents. Anti-MRSA (methicillin-resistant S. aureus) bioactive compounds from Streptomyces and the anti-MRSA activity of a series of plant extracts have been reviewed respectively. However, there has been no detailed review of the precise bioactive components from plants. PURPOSE The present review aimed to summarize the phytochemicals that have been reported with anti-MRSA activities, analyze their structure-activity relationship and novel anti-MRSA mechanisms. METHODS Data contained in this review article are compiled from the authoritative databases PubMed, Web of Science, Google Scholar, and so on. RESULTS This review summarizes 100 phytochemicals (27 flavonoids, 23 alkaloids, 17 terpenes and 33 others) that have been tested for their anti-MRSA activity. Among these phytochemicals, 39 compounds showed remarkable anti-MRSA activity with MIC values less than 10 μg/ml, 14 compounds with MIC ranges including values < 10 μg/ml, 5 compounds with MIC values less than 5 μM; 11 phytochemicals show synergism anti-MRSA effects in combination with antibiotics. Phytochemicals exerted anti-MRSA activities mainly by destroying the membrane structure and inhibiting the efflux pump. CONCLUSIONS The 58 compounds with excellent anti-MRSA activity the 11 compounds with synergistic anti-MRSA effect, especially cannabinoids, xanthones and fatty acids should be further studied in vitro. Novel targets, such as cell membrane and efflux pump could be promising alternatives to develop antibacterial drugs in the future in order to prevent drug resistance.
Collapse
Affiliation(s)
- Miaomiao Liang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala SE-75124, Sweden
| | - Hui Xua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Kaifeng Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Wei Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Yibo Zan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| |
Collapse
|
15
|
Hu BY, Zhao YL, Ma DY, Xiang ML, Zhao LX, Luo XD. Anti-hyperuricemic bioactivity of Alstonia scholaris and its bioactive triterpenoids in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115049. [PMID: 35150817 DOI: 10.1016/j.jep.2022.115049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE One folk use of Alstonia scholaris (L.) R. Br. in "Dai" ethno-medicine system is to treat gouty arthritis, which might be caused by hyperuricemia, but anti-hyperuricemic investigation of A. scholaris were rarely reported. AIM OF THE STUDY To verify anti-hyperuricemic property of A. scholaris, and explore its bioactive compounds in vivo and in vitro. MATERIALS AND METHODS The anti-hyperuricemic bioactivity of the non-alkaloids fraction and compounds were evaluated with potassium oxonate (PO) induced hyperuricemia mice model in vivo, and monosodium urate (MSU) induced human renal tubular epithelial cells (HK-2) was selected to test in vitro, respectively, with benzobromarone as the positive control. 11 triterpenoids were isolated by phytochemical methods and their structures were elucidated by spectroscopic analysis and ECD calculation. RESULTS The non-alkaloids fraction of A. scholaris decreased the serum uric acid (UA) level in mice model significantly at the doses of 100 mg/kg and 200 mg/kg, and then nine ursane- and two oleanane-triterpenoids including four new compounds (1-3 and 10) were isolated from the bioactive fraction, in which compounds 1, 4, 5, 6 and 10 exhibited better anti-hyperuricemic tendency in vitro by promoting the excretion of UA in MSU-induced HK-2 cell model at a concentration of 5 μM. Furthermore, compounds 1 and 4 were proved to reduce the serum UA level in mice significantly at 5 mg/kg in vivo. CONCLUSIONS The results supported the traditional use of A. scholaris in treating gouty arthritis, and also provided new bioactive triterpenoids for further chemical and pharmacological investigation.
Collapse
Affiliation(s)
- Bin-Yuan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Dan-Yu Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Mei-Ling Xiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Li-Xing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
16
|
Brahmachari G, Mandal B, Palafox MA, Chandra SK, Ferrer C, Arévalo P, Karmakar I. Studies on the molecular structure of pterocaronol: A new biologically relevant nor-triterpenoid from Peltophorum pterocarpum (Fabaceae). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Khusnutdinova EF, Sinou V, Babkov DA, Kazakova O, Brunel JM. Development of New Antimicrobial Oleanonic Acid Polyamine Conjugates. Antibiotics (Basel) 2022; 11:antibiotics11010094. [PMID: 35052971 PMCID: PMC8772916 DOI: 10.3390/antibiotics11010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
A series of oleanolic acid derivatives holding oxo- or 3-N-polyamino-3-deoxy-substituents at C3 as well as carboxamide function at C17 with different long chain polyamines have been synthesized and evaluated for antimicrobial activities. Almost all series presented good to moderate activity against Gram-positive S. aureus, S. faecalis and B. cereus bacteria with minimum inhibitory concentration (MIC) values from 3.125 to 200 µg/mL. Moreover, compounds possess important antimicrobial activities against Gram-negative E. coli, P. aeruginosa, S. enterica, and EA289 bacteria with MICs ranging from 6.25 to 200 µg/mL. The testing of ability to restore antibiotic activity of doxycycline and erythromycin at a 2 µg/mL concentration in a synergistic assay showed that oleanonic acid conjugate with spermine spacered through propargylamide led to a moderate improvement in terms of antimicrobial activities of the different selected combinations against both P. aeruginosa and E. coli. The study of mechanism of action of the lead conjugate 2i presenting a N-methyl norspermidine moiety showed the effect of disruption of the outer bacterial membrane of P. aeruginosa PA01 cells. Computational ADMET profiling renders this compound as a suitable starting point for pharmacokinetic optimization. These results give confidence to the successful outcome of bioconjugation of polyamines and oleanane-type triterpenoids in the development of antimicrobial agents.
Collapse
Affiliation(s)
- Elmira F. Khusnutdinova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia;
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France;
- Correspondence: (E.F.K.); (J.M.B.)
| | - Véronique Sinou
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France;
| | - Denis A. Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, 400087 Volgograd, Russia;
| | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia;
| | - Jean Michel Brunel
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France;
- Correspondence: (E.F.K.); (J.M.B.)
| |
Collapse
|
18
|
Sycz Z, Tichaczek-Goska D, Wojnicz D. Anti-Planktonic and Anti-Biofilm Properties of Pentacyclic Triterpenes-Asiatic Acid and Ursolic Acid as Promising Antibacterial Future Pharmaceuticals. Biomolecules 2022; 12:98. [PMID: 35053246 PMCID: PMC8774094 DOI: 10.3390/biom12010098] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to the ever-increasing number of multidrug-resistant bacteria, research concerning plant-derived compounds with antimicrobial mechanisms of action has been conducted. Pentacyclic triterpenes, which have a broad spectrum of medicinal properties, are one of such groups. Asiatic acid (AA) and ursolic acid (UA), which belong to this group, exhibit diverse biological activities that include antioxidant, anti-inflammatory, diuretic, and immunostimulatory. Some of these articles usually contain only a short section describing the antibacterial effects of AA or UA. Therefore, our review article aims to provide the reader with a broader understanding of the activity of these acids against pathogenic bacteria. The bacteria in the human body can live in the planktonic form and create a biofilm structure. Therefore, we found it valuable to present the action of AA and UA on both planktonic and biofilm cultures. The article also presents mechanisms of the biological activity of these substances against microorganisms.
Collapse
Affiliation(s)
| | - Dorota Tichaczek-Goska
- Department of Biology and Medical Parasitology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (Z.S.); (D.W.)
| | | |
Collapse
|
19
|
Schito AM, Caviglia D, Piatti G, Zorzoli A, Marimpietri D, Zuccari G, Schito GC, Alfei S. Efficacy of Ursolic Acid-Enriched Water-Soluble and Not Cytotoxic Nanoparticles against Enterococci. Pharmaceutics 2021; 13:1976. [PMID: 34834390 PMCID: PMC8625572 DOI: 10.3390/pharmaceutics13111976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid acid found in many medicinal plants and aromas, is known for its antibacterial effects against multi-drug-resistant (MDR) Gram-positive bacteria, which seriously threaten human health. Unfortunately, UA water-insolubility, low bioavailability, and systemic toxicity limit the possibilities of its application in vivo. Consequently, the beneficial activities of UA observed in vitro lose their potential clinical relevance unless water-soluble, not cytotoxic UA formulations are developed. With a nano-technologic approach, we have recently prepared water-soluble UA-loaded dendrimer nanoparticles (UA-G4K NPs) non-cytotoxic on HeLa cells, with promising physicochemical properties for their clinical applications. In this work, with the aim of developing a new antibacterial agent based on UA, UA-G4K has been tested on different strains of the Enterococcus genus, including marine isolates, toward which UA-G4K has shown minimum inhibitory concentrations (MICs) very low (0.5-4.3 µM), regardless of their resistance to antibiotics. Time-kill experiments, in addition to confirming the previously reported bactericidal activity of UA against E. faecium, also established it for UA-G4K. Furthermore, cytotoxicity experiments on human keratinocytes revealed that nanomanipulation of UA significantly reduced the cytotoxicity of UA, providing UA-G4K NPs with very high LD50 (96.4 µM) and selectivity indices, which were in the range 22.4-192.8, depending on the enterococcal strain tested. Due to its physicochemical and biological properties, UA-G4K could be seriously evaluated as a novel oral-administrable therapeutic option for tackling difficult-to-treat enterococcal infections.
Collapse
Affiliation(s)
- Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| |
Collapse
|
20
|
Verstraeten S, Catteau L, Boukricha L, Quetin-Leclercq J, Mingeot-Leclercq MP. Effect of Ursolic and Oleanolic Acids on Lipid Membranes: Studies on MRSA and Models of Membranes. Antibiotics (Basel) 2021; 10:antibiotics10111381. [PMID: 34827319 PMCID: PMC8615140 DOI: 10.3390/antibiotics10111381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and the major causative agent of life-threatening hospital- and community-acquired infections. A combination of antibiotics could be an opportunity to address the widespread emergence of antibiotic-resistant strains, including Methicillin-Resistant S. aureus (MRSA). We here investigated the potential synergy between ampicillin and plant-derived antibiotics (pentacyclic triterpenes, ursolic acid (UA) and oleanolic acid (OA)) towards MRSA (ATCC33591 and COL) and the mechanisms involved. We calculated the Fractional Inhibitory Concentration Index (FICI) and demonstrated synergy. We monitored fluorescence of Bodipy-TR-Cadaverin, propidium iodide and membrane potential-sensitive probe for determining the ability of UA and OA to bind to lipoteichoic acids (LTA), and to induce membrane permeabilization and depolarization, respectively. Both pentacyclic triterpenes were able to bind to LTA and to induce membrane permeabilization and depolarization in a dose-dependent fashion. These effects were not accompanied by significant changes in cellular concentration of pentacyclic triterpenes and/or ampicillin, suggesting an effect mediated through lipid membranes. We therefore focused on membranous effects induced by UA and OA, and we investigated on models of membranes, the role of specific lipids including phosphatidylglycerol and cardiolipin. The effect induced on membrane fluidity, permeability and ability to fuse were studied by determining changes in fluorescence anisotropy of DPH/generalized polarization of Laurdan, calcein release from liposomes, fluorescence dequenching of octadecyl-rhodamine B and liposome-size, respectively. Both UA and OA showed a dose-dependent effect with membrane rigidification, increase of membrane permeabilization and fusion. Except for the effect on membrane fluidity, the effect of UA was consistently higher compared with that obtained with OA, suggesting the role of methyl group position. All together the data demonstrated the potential role of compounds acting on lipid membranes for enhancing the activity of other antibiotics, like ampicillin and inducing synergy. Such combinations offer an opportunity to explore a larger antibiotic chemical space.
Collapse
Affiliation(s)
- Sandrine Verstraeten
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium; (S.V.); (L.C.); (L.B.)
- Université Catholique de Louvain, de Duve Institute, Cellular Biology, Avenue Hippocrate 75, UCL B1.75.02, 1200 Brussels, Belgium
| | - Lucy Catteau
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium; (S.V.); (L.C.); (L.B.)
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium;
| | - Laila Boukricha
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium; (S.V.); (L.C.); (L.B.)
| | - Joelle Quetin-Leclercq
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium;
| | - Marie-Paule Mingeot-Leclercq
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium; (S.V.); (L.C.); (L.B.)
- Correspondence:
| |
Collapse
|
21
|
Kazakova O, Tret'yakova E, Baev D. Evaluation of A-azepano-triterpenoids and related derivatives as antimicrobial and antiviral agents. J Antibiot (Tokyo) 2021; 74:559-573. [PMID: 34253887 PMCID: PMC8273037 DOI: 10.1038/s41429-021-00448-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
A series of semisynthetic triterpenoids with A-ring azepano- and A-seco-fragments as well as hydrazido/hydrazono-substituents at C3 and C28 has been synthesized and evaluated for antimicrobial activity against key ESKAPE pathogens and DNA viruses (HSV-1, HCMV, HPV-11). It was found that azepanouvaol 8, 3-amino-3,4-seco-4(23)-en derivatives of uvaol 21 and glycyrrhetol-dien 22 as well as azepano-glycyrrhetol-tosylate 32 showed strong antimicrobial activities against MRSA with MIC ≤ 0.15 μM that exceeds the effect of antibiotic vancomycin. Azepanobetulinic acid cyclohexyl amide 4 exhibited significant bacteriostatic effect against MRSA (MIC ≤ 0.15 μM) with low cytotoxicity to HEK-293 even at a maximum tested concentration of >20 μM (selectivity index SI 133) and may be considered a noncytotoxic anti-MRSA agent. Azepanobetulin 1, azepanouvaol 8, and azepano-glycyrrhetol 15 showed high potency towards HCMV (EC50 0.15; 0.11; 0.11 µM) with selectivity indexes SI50 115; 136; 172, respectively. The docking studies suggest the possible interactions of the leading compounds with the molecular targets.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054, Ufa, Russian Federation.
| | - Elena Tret'yakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054, Ufa, Russian Federation
| | - Dmitry Baev
- N.N. Vorozhtzov Novosibirsk Institute of Organic Chemistry SB RAS, 9, Lavrent'ev Ave., Novosibirsk, 630090, Russian Federation
| |
Collapse
|
22
|
Hu BY, Zhao YL, Xiong DS, He YJ, Zhou ZS, Zhu PF, Wang ZJ, Wang YL, Zhao LX, Luo XD. Potent Antihyperuricemic Triterpenoids Based on Two Unprecedented Scaffolds from the Leaves of Alstonia scholaris. Org Lett 2021; 23:4158-4162. [PMID: 34013731 DOI: 10.1021/acs.orglett.1c01102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bin-Yuan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201, P. R. China
| | - Deng-Sen Xiong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ying-Jie He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhong-Shun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Pei-Feng Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201, P. R. China
| | - Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yong-Liang Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Li-Xing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Nature Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201, P. R. China
| |
Collapse
|
23
|
Lyu X, Wang L, Shui Y, Jiang Q, Chen L, Yang W, He X, Zeng J, Li Y. Ursolic acid inhibits multi-species biofilms developed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii. Arch Oral Biol 2021; 125:105107. [PMID: 33735629 DOI: 10.1016/j.archoralbio.2021.105107] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The current study aimed to assess the antimicrobial activity of ursolic acid (UA) against multi-species biofilms formed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii, as well as to measure its biocompatibility. METHODS Crystal violet staining, CFU counting, CCK-8 assays and scanning electron microscopy (SEM) were applied to investigate the effect of UA on multi-species biofilms. UA's effect on exopolysaccharides (EPS) production was measured using confocal laser scanning microscopy (CLSM) and the anthrone-sulfuric acid method. Fluorescent in situ hybridization (FISH) was applied to visualize and quantify the microbial composition of multi-species biofilms. Quantitative real-time PCR (qRT-PCR) was used to measure the expression of virulence genes of S. mutans, S. sanguinis, and S. gordonii under UA treatment. Moreover, CCK-8 assays were performed to evaluate its cytotoxicity against human oral keratinocytes (HOKs) and human gingival epithelial cells (HGEs). RESULTS The results showed that UA had significant antimicrobial activity against common oral streptococci. UA also reduced the EPS synthesis of oral streptococci and suppressed gtf genes' expression. In addition, UA reduced the proportion of S. mutans in multi-species biofilms. Besides, UA had low cytotoxicity against HOKs and HGEs. CONCLUSIONS UA exhibited antibiofilm activity against oral pathogenic bacteria and had the potential to be used in dental caries treatment.
Collapse
Affiliation(s)
- Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingsong Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoya He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
24
|
Falev DI, Ul'yanovskii NV, Ovchinnikov DV, Faleva AV, Kosyakov DS. Screening and semi-quantitative determination of pentacyclic triterpenoids in plants by liquid chromatography-tandem mass spectrometry in precursor ion scan mode. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:252-261. [PMID: 32638461 DOI: 10.1002/pca.2971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Pentacyclic triterpenoids (PCTs) are secondary plant metabolites. They are of exceptional interest as biologically active substances and raw materials for a wide range of medications. Thus, the development of a methodology for rapid screening of PCTs in plant biomass is an important task. OBJECTIVE The goal of this work was to develop an approach for simultaneous screening and semi-quantitative determination of PCTs in plant tissues by liquid chromatography-tandem mass spectrometry with a precursor ion scan (PrecIS). MATERIALS AND METHODS Pressurised liquid extraction (PLE) with methanol was used for the isolation of PCTs from plant biomass. Screening and semi-quantitative determination of PCTs in the obtained extracts were carried out by reversed phase high-performance liquid chromatography-tandem mass spectrometry in a PrecIS mode. RESULTS The product ion at m/z 95 with collision energy of 40 V was used as a diagnostic ion to identify PCTs by the PrecIS mode. In plant materials, 26 PCTs and their derivatives, such as PCTs esters and glycosides, were detected and identified. Calculation of the relative response factor for nine available PCTs showed that using a betulin calibration curve allows us to estimate the semi-quantitative content of PCTs and their derivatives in plant PLE extracts. CONCLUSION The developed approach can be applied for simultaneous untargeted screening and semi-quantitative determination of PCTs and their derivatives in various plants at sub-parts per million levels.
Collapse
Affiliation(s)
- Danil I Falev
- Core Facility Centre "Arktika", Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Nikolay V Ul'yanovskii
- Core Facility Centre "Arktika", Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Denis V Ovchinnikov
- Core Facility Centre "Arktika", Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Anna V Faleva
- Core Facility Centre "Arktika", Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Dmitry S Kosyakov
- Core Facility Centre "Arktika", Northern (Arctic) Federal University, Arkhangelsk, Russia
| |
Collapse
|
25
|
Sheng Q, Li F, Chen G, Li J, Li J, Wang Y, Lu Y, Li Q, Li M, Chai K. Ursolic Acid Regulates Intestinal Microbiota and Inflammatory Cell Infiltration to Prevent Ulcerative Colitis. J Immunol Res 2021; 2021:6679316. [PMID: 34007853 PMCID: PMC8111854 DOI: 10.1155/2021/6679316] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/28/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and relapsing inflammatory bowel disorder in the colon and rectum leading to low life-quality and high societal costs. Ursolic acid (UA) is a natural product with pharmacological and biological activities. The studies are aimed at investigating the protective and treatment effects of UA against the dextran sulfate sodium- (DSS-) induced UC mouse model and its underlying mechanism. UA was orally administered at different time points before and after the DSS-induced model. Mice body weight, colon length, and histological analysis were used to evaluate colon tissue damage and therapeutic evaluation. Intestinal transcriptome and microbe 16 s sequencing was used to analyze the mechanisms of UA in the prevention and treatment of UC. The early prevention effect of UA could effectively delay mouse weight loss and colon length shorten. UA alleviated UC inflammation and lowered serum and colon IL-6 levels. Three classical inflammatory pathways: MAPKs, IL-6/STAT3, and PI3K were downregulated by UA treatment. The proportion of macrophages and neutrophils in inflammatory cell infiltration was reduced in UA treatment groups. UA could significantly reduce the richness of intestinal flora to avoid the inflammatory response due to the destruction of the intestinal epithelial barrier. The function of UA against UC was through reducing intestinal flora abundance and regulating inflammatory and fatty acid metabolism signaling pathways to affect immune cell infiltration and cytokine expression.
Collapse
Affiliation(s)
- Qinsong Sheng
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of College of Medicine, Zhejiang University, China
| | - Fei Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Guanping Chen
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Jiacheng Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Jing Li
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - YiFan Wang
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Yingyan Lu
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Qun Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Mingqian Li
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Kequn Chai
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| |
Collapse
|
26
|
Lombrea A, Scurtu AD, Avram S, Pavel IZ, Turks M, Lugiņina J, Peipiņš U, Dehelean CA, Soica C, Danciu C. Anticancer Potential of Betulonic Acid Derivatives. Int J Mol Sci 2021; 22:3676. [PMID: 33916089 PMCID: PMC8037575 DOI: 10.3390/ijms22073676] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Clinical trials have evidenced that several natural compounds, belonging to the phytochemical classes of alkaloids, terpenes, phenols and flavonoids, are effective for the management of various types of cancer. Latest research has proven that natural products and their semisynthetic variants may serve as a starting point for new drug candidates with a diversity of biological and pharmacological activities, designed to improve bioavailability, overcome cellular resistance, and enhance therapeutic efficacy. This review was designed to bring an update regarding the anticancer potential of betulonic acid and its semisynthetic derivatives. Chemical derivative structures of betulonic acid including amide, thiol, and piperidine groups, exert an amplification of the in vitro anticancer potential of betulonic acid. With the need for more mechanistic and in vivo data, some derivatives of betulonic acids may represent promising anticancer agents.
Collapse
Affiliation(s)
- Adelina Lombrea
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| | - Alexandra Denisa Scurtu
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stefana Avram
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.)
| | - Jevgeņija Lugiņina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.)
| | - Uldis Peipiņš
- Nature Science Technologies Ltd., Saules Str. 19, LV-3601 Ventspils, Latvia;
| | - Cristina Adriana Dehelean
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Codruta Soica
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
- Department of Pharmaceutical Chemistry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| |
Collapse
|
27
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
28
|
Dat TD, Viet ND, My PLT, Linh NT, Thanh VH, Linh NTT, Ngan NTK, Linh NTT, Nam HM, Phong MT, Hieu NH. The Application of Ethanolic Ultrasonication to Ameliorate the Triterpenoid Content Extracted from Vietnamese
Ganoderma lucidum
with the Examination by Gas Chromatography. ChemistrySelect 2021. [DOI: 10.1002/slct.202004242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tran Do Dat
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Duc Viet
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Phan Le Thao My
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Vuong Hoai Thanh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Thuy Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Kim Ngan
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Ngo Thi Thuy Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Hoang Minh Nam
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trang Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
29
|
Shi Y, Leng Y, Liu D, Liu X, Ren Y, Zhang J, Chen F. Research Advances in Protective Effects of Ursolic Acid and Oleanolic Acid Against Gastrointestinal Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:413-435. [PMID: 33622215 DOI: 10.1142/s0192415x21500191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestinal tract plays an essential role in protecting tissues from the invasion of external harmful substances due to impaired barrier function. Furthermore, it participates in immunomodulation by intestinal microorganisms, which is important in health. When the intestinal tract is destroyed, it can lose its protective function, resulting in multiple systemic complications. In severe cases, it may lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). Thus far, there are no curative therapies for intestinal mucosal barrier injury, other than a few drugs that can relieve symptoms. Thus, the development of novel curative agents for gastrointestinal diseases remains a challenge. Ursolic acid (UA) and its isomer, Oleanolic acid (OA), are pentacyclic triterpene acid compounds. Both their aglycone and glycoside forms have anti-oxidative, anti-inflammatory, anti-ulcer, antibacterial, antiviral, antihypertensive, anti-obesity, anticancer, antidiabetic, cardio protective, hepatoprotective, and anti-neurodegenerative properties in living organisms. In recent years, several studies have shown that UA and OA can reduce the risk of intestinal pathological injury, alleviate intestinal dysfunction, and restore intestinal barrier function. The present study evaluated the beneficial effects of UA and OA on intestinal damage and diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC).
Collapse
Affiliation(s)
- Yajing Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| | - Yufang Leng
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Disheng Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Xin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Yixing Ren
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianmin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
30
|
Bao M, Zhang L, Liu B, Li L, Zhang Y, Zhao H, Ji X, Chen Q, Hu M, Bai J, Pang G, Yi J, Tan Y, Lu C. Synergistic effects of anti-MRSA herbal extracts combined with antibiotics. Future Microbiol 2020; 15:1265-1276. [PMID: 33026882 DOI: 10.2217/fmb-2020-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MRSA is a super drug-resistant bacterium. Developing new drug or therapeutic strategies against MRSA is urgently needed. Increasing evidence has shown that herbal extracts and antibiotics can have synergistic effects against MRSA. This review focuses on commonly used antibiotics combined with herbal extracts against MRSA and the corresponding mechanisms. Through systematic analysis, we found that herbal extracts combined with antibiotics, such as β-lactams, quinolones, aminoglycosides, tetracyclines and glycopeptides, could greatly enhance the antibacterial effects of the antibiotics, reduce the dosage and toxic side effects, and reverse MRSA resistance. Therefore, we conclude that herbal extracts combined with antibiotics may be a promising strategy to combat MRSA. This review provides a novel idea for overcoming antibiotic resistance.
Collapse
Affiliation(s)
- Mei Bao
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lulu Zhang
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Zhang
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Heru Zhao
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyu Ji
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Chen
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingliang Hu
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingan Bai
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoming Pang
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Camargo LRP, de Carvalho VM, Díaz IEC, Paciencia MLB, Frana SA, Younes RN, Varella AD, Reis LFL, Suffredini IB. Susceptibility of virulent and resistant Escherichia coli strains to non-polar and polar compounds identified in Microplumeria anomala. Vet World 2020; 13:1376-1387. [PMID: 32848314 PMCID: PMC7429380 DOI: 10.14202/vetworld.2020.1376-1387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Escherichia coli is one of the main pathogens responsible for veterinary and human infections, and it is associated with significant economic losses in the livestock, as it causes severe diseases to humans, particularly in children. For that reason, there is a need for introducing new drugs to treat E. coli diseases. The Brazilian species richness is a source of potential new antibacterial natural products. The study aimed at the biological and chemical investigation of the organic extract obtained from the stem of Microplumeria anomala (Apocynaceae), EB127, as it was identified as a potential source of new antibacterial compounds to be used in Veterinary. Materials and Methods The antibacterial activity was evaluated by disk diffusion and microdilution assays; chromatography, nuclear magnetic resonance spectrometry, and mass spectrometry were used in the isolation and identification of compounds. Results EB127 showed activity against E. coli ATCC25922, and against three E. coli strains that were isolated from frigarte's cloaca, named 31/1A, 35A, and 51A. Lupeol, 3-acetyl-11-oxo-β-amyrin, 3-acetyl-11-oxo-α-amyrin, sitosterol, stigmasterol, 3β,7α-dihydroxy-cholest-5-ene, 3β-hydroxy-cholest-5-en-7-one, and 3β-hydroxy-cholest-5,22-dien-7-one were identified in fraction Hex/CHCl3, while loganin, loganic acid, methylanomaline, and anomaline were all identified in EB127 and protocatechuic acid hexoside, ferulic acid, secoxyloganin, feruloylquinic acid, vanillic acid hexoside, protocatechuic acid-4-O-β-hexoside, and rosmarinic acid were tentatively identified in fraction 10%ACN/H2O. E. coli 51A (virulent/non-resistant) showed sensitivity to the antibacterial action of fraction Hex/CHCl3 which contains alkaloids, triterpenes, and steroids, while E. coli 35A (resistant/non-virulent) were more susceptible to 10%ACN/H2O, which contains iridoids as loganin and loganic acid, and glycosylated and non-glycosylated caffeic acids. Conclusion Fraction 10%ACN/H2O is of interest in pursuing new drugs to treat resistant E. coli, in veterinary. All compounds were isolated from the plant for the first time and have shown potential as new antibacterial natural products from Amazon plants to be used in veterinary and human diseases.
Collapse
Affiliation(s)
| | - Vania Maria de Carvalho
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Ingrit Elida Collantes Díaz
- Department of Chemistry Engineer, Chemistry and Textile Engineer Faculty, Engineer National University, Lima, Peru
| | | | - Sergio Alexandre Frana
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil.,Center for Research in Biodiversity, Paulista University, São Paulo, Brazil
| | | | - Antonio Drauzio Varella
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | | | - Ivana Barbosa Suffredini
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil.,Center for Research in Biodiversity, Paulista University, São Paulo, Brazil
| |
Collapse
|
32
|
The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics (Basel) 2020. [DOI: 10.3390/antibiotics9060325
expr 928323768 + 816400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The discovery of antibiotics has revolutionized the medicine and treatment of microbial infections. However, the current scenario has highlighted the difficulties in marketing new antibiotics and an exponential increase in the appearance of resistant strains. On the other hand, research in the field of drug-discovery has revaluated the potential of natural products as a unique source for new biologically active molecules and scaffolds for the medicinal chemistry. In this review, we first contextualized the worldwide problem of antibiotic resistance and the importance that natural products of plant origin acquire as a source of new lead compounds. We then focused on terpenes and their potential development as antimicrobials, highlighting those studies that showed an activity against conventional antibiotic-resistant strains.
Collapse
|
33
|
The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics (Basel) 2020; 9:antibiotics9060325. [PMID: 32545761 PMCID: PMC7344648 DOI: 10.3390/antibiotics9060325] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of antibiotics has revolutionized the medicine and treatment of microbial infections. However, the current scenario has highlighted the difficulties in marketing new antibiotics and an exponential increase in the appearance of resistant strains. On the other hand, research in the field of drug-discovery has revaluated the potential of natural products as a unique source for new biologically active molecules and scaffolds for the medicinal chemistry. In this review, we first contextualized the worldwide problem of antibiotic resistance and the importance that natural products of plant origin acquire as a source of new lead compounds. We then focused on terpenes and their potential development as antimicrobials, highlighting those studies that showed an activity against conventional antibiotic-resistant strains.
Collapse
|
34
|
Cappiello F, Loffredo MR, Del Plato C, Cammarone S, Casciaro B, Quaglio D, Mangoni ML, Botta B, Ghirga F. The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics (Basel) 2020; 9:325. [PMID: 32545761 PMCID: PMC7344648 DOI: 10.3390/antibiotics9060325&set/a 898859781+915895989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The discovery of antibiotics has revolutionized the medicine and treatment of microbial infections. However, the current scenario has highlighted the difficulties in marketing new antibiotics and an exponential increase in the appearance of resistant strains. On the other hand, research in the field of drug-discovery has revaluated the potential of natural products as a unique source for new biologically active molecules and scaffolds for the medicinal chemistry. In this review, we first contextualized the worldwide problem of antibiotic resistance and the importance that natural products of plant origin acquire as a source of new lead compounds. We then focused on terpenes and their potential development as antimicrobials, highlighting those studies that showed an activity against conventional antibiotic-resistant strains.
Collapse
Affiliation(s)
- Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.); (M.L.M.)
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.); (M.L.M.)
| | - Cristina Del Plato
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (S.C.); (B.B.)
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Silvia Cammarone
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (S.C.); (B.B.)
| | - Bruno Casciaro
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
- Correspondence: (B.C.); (D.Q.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (S.C.); (B.B.)
- Correspondence: (B.C.); (D.Q.)
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.); (M.L.M.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (S.C.); (B.B.)
| | - Francesca Ghirga
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| |
Collapse
|
35
|
Martinenghi LD, Jønsson R, Lund T, Jenssen H. Isolation, Purification, and Antimicrobial Characterization of Cannabidiolic Acid and Cannabidiol from Cannabis sativa L. Biomolecules 2020; 10:E900. [PMID: 32545687 PMCID: PMC7355595 DOI: 10.3390/biom10060900] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence of multi-drug resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) causes a major threat to public health due to its limited therapeutic options. There is an urgent need for the development of new effective antimicrobial agents and alternative strategies that are effective against resistant bacteria. The parallel legalization of cannabis and its products has fueled research into its many therapeutic avenues in many countries around the world. This study aimed at the development of a reliable method for the extraction, purification, characterization, and quantification of cannabidiolic acid (CBDA) and its decarboxylated form cannabidiol (CBD) present in the fiber type Cannabis sativa L. The two compounds were extracted by ethanol, purified on a C18 sep-pack column, and the extracts were analyzed by high performance liquid chromatography coupled with ultraviolet (UV)-vis and ESI-MS (electrospray ionization mass spectrometry) detection. The antimicrobial effect of CBDA and CBD was also evaluated. CBD displayed a substantial inhibitory effect on Gram-positive bacteria with minimal inhibitory concentrations ranging from 1 to 2 µg/mL. Time kill analysis and minimal bactericidal concentration revealed potential bactericidal activity of CBDA and CBD. While cannabinoids showed a significant antimicrobial effect on the Gram-positive S. aureus and Staphylococcus epidermidis, no activity was noticed on Gram-negative Escherichia coli and Pseudomonas aeruginosa. CBDA presented a two-fold lower antimicrobial activity than its decarboxylated form, suggesting that the antimicrobial pharmacophore of the analyzed cannabinoids falls in the ability for permeabilizing the bacterial cell membrane and acting as a detergent-like agent. A synergy test performed on MRSA with CBD and a range of antibiotics did not indicate a synergetic effect, but noteworthy no antagonist influence either. CBD and CBDA manifested low hemolytic activity on human red blood cells. Likewise, the safety of CBD toward human keratinocyte cells presents no toxicity at a concentration of up to seven-fold higher than the antibacterial minimal inhibitory concentration. Similarly, both CBD and CBDA are well tolerated by mammals, including humans, and conserve a safe value limits for blood-contacting drug development. Overall, CBD exhibited a strong antimicrobial effect against Gram-positive strains and could serve as an alternative drug for tackling MRSA.
Collapse
Affiliation(s)
| | | | | | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (L.D.M.); (R.J.); (T.L.)
| |
Collapse
|
36
|
Salazar JR, Loza-Mejía MA, Soto-Cabrera D. Chemistry, Biological Activities and In Silico Bioprospection of Sterols and Triterpenes from Mexican Columnar Cactaceae. Molecules 2020; 25:molecules25071649. [PMID: 32260146 PMCID: PMC7180492 DOI: 10.3390/molecules25071649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
The Cactaceae family is an important source of triterpenes and sterols. The wide uses of those plants include food, gathering, medicinal, and live fences. Several studies have led to the isolation and characterization of many bioactive compounds. This review is focused on the chemistry and biological properties of sterols and triterpenes isolated mainly from some species with columnar and arborescent growth forms of Mexican Cactaceae. Regarding the biological properties of those compounds, apart from a few cases, their molecular mechanisms displayed are not still fully understand. To contribute to the above, computational chemistry tools have given a boost to traditional methods used in natural products research, allowing a more comprehensive exploration of chemistry and biological activities of isolated compounds and extracts. From this information an in silico bioprospection was carried out. The results suggest that sterols and triterpenoids present in Cactaceae have interesting substitution patterns that allow them to interact with some bio targets related to inflammation, metabolic diseases, and neurodegenerative processes. Thus, they should be considered as attractive leads for the development of drugs for the management of chronic degenerative diseases.
Collapse
Affiliation(s)
- Juan Rodrigo Salazar
- Correspondence: (J.R.S.); (M.A.L.-M.); Tel.: +52-55-5278-9500 (J.R.S. & M.A.L.-M.)
| | - Marco A. Loza-Mejía
- Correspondence: (J.R.S.); (M.A.L.-M.); Tel.: +52-55-5278-9500 (J.R.S. & M.A.L.-M.)
| | | |
Collapse
|
37
|
Betulinic Acid-Nitrogen Heterocyclic Derivatives: Design, Synthesis, and Antitumor Evaluation in Vitro. Molecules 2020; 25:molecules25040948. [PMID: 32093264 PMCID: PMC7070564 DOI: 10.3390/molecules25040948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/02/2020] [Accepted: 02/17/2020] [Indexed: 01/05/2023] Open
Abstract
Betulinic acid (BA) is a star member of the pentacyclic triterpenoid family, which exhibits great prospects for antitumor drug development. In an attempt to develop novel antitumor candidates, 21 BA-nitrogen heterocyclic derivatives were synthetized, in addition to four intermediates, 23 of which were first reported. Moreover, they were screened for in-vitro cytotoxicity against four tumor cell lines (Hela, HepG-2, BGC-823 and SK-SY5Y) by a standard methylthiazol tetrazolium (MTT) assay. The majority of these derivatives showed much stronger cytotoxic activity than BA. Remarkably, the most potent compound 7e (the half maximal inhibitory concentration (IC50) of which was 2.05 ± 0.66 μM) was 12-fold more toxic in vitro than BA-treated Hela. Furthermore, multiple fluorescent staining techniques and flow cytometry collectively revealed that compound 7e could induce the early apoptosis of Hela cells. Structure–activity relationships were also briefly discussed. The present study highlighted the importance of introducing nitrogen heterocyclic rings into betulinic acid in the discovery and development of novel antitumor agents.
Collapse
|
38
|
Peng X, Lin Y, Liang J, Zhou M, Zhou J, Ruan H. Triterpenoids from the barks of Juglans hopeiensis. PHYTOCHEMISTRY 2020; 170:112201. [PMID: 31778881 DOI: 10.1016/j.phytochem.2019.112201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Nine undescribed triterpenoids (jughopenoids A-I), including seven nortriterpenoids and two normal triterpenoids, together with fourteen known analogues, were isolated from the barks of Juglans hopeiensis Hu. The structures of the undescribed triterpenoids were established by integrated spectroscopic analysis and single crystal X-ray diffraction. Jughopenoid A represented an unprecedented lupane-type nortriterpenoid with a five-membered lactone ring A. Selected isolates were tested for their cytotoxic effects against human HT-29 colon carcinoma, human HepG2 hepatocellular carcinoma, and human PC-3 prostate cancer cell lines. Their immunosuppressive activities against ConA-induced T cell proliferation and LPS-induced B cell proliferation were also evaluated.
Collapse
Affiliation(s)
- Xiaogang Peng
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Hangkonglu 13, Wuhan, 430030, PR China
| | - Yi Lin
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Hangkonglu 13, Wuhan, 430030, PR China
| | - Jingjing Liang
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Hangkonglu 13, Wuhan, 430030, PR China
| | - Ming Zhou
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Hangkonglu 13, Wuhan, 430030, PR China
| | - Jia Zhou
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Hangkonglu 13, Wuhan, 430030, PR China
| | - Hanli Ruan
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Hangkonglu 13, Wuhan, 430030, PR China.
| |
Collapse
|
39
|
Falev DI, Kosyakov DS, Ul'yanovskii NV, Ovchinnikov DV. Rapid simultaneous determination of pentacyclic triterpenoids by mixed-mode liquid chromatography–tandem mass spectrometry. J Chromatogr A 2020; 1609:460458. [DOI: 10.1016/j.chroma.2019.460458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/07/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
|
40
|
Kianfé BY, Teponno RB, Kühlborn J, Tchuenguem RT, Ponou BK, Helaly SE, Dzoyem JP, Opatz T, Tapondjou LA. Flavans and other chemical constituents of Crinum biflorum (Amaryllidaceae). BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.103953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Mlala S, Oyedeji AO, Gondwe M, Oyedeji OO. Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules 2019; 24:E2751. [PMID: 31362424 PMCID: PMC6695944 DOI: 10.3390/molecules24152751] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Non-communicable diseases (NCDs) such as cancer, diabetes, and chronic respiratory and cardiovascular diseases continue to be threatening and deadly to human kind. Resistance to and side effects of known drugs for treatment further increase the threat, while at the same time leaving scientists to search for alternative sources from nature, especially from plants. Pentacyclic triterpenoids (PT) from medicinal plants have been identified as one class of secondary metabolites that could play a critical role in the treatment and management of several NCDs. One of such PT is ursolic acid (UA, 3 β-hydroxy-urs-12-en-28-oic acid), which possesses important biological effects, including anti-inflammatory, anticancer, antidiabetic, antioxidant and antibacterial effects, but its bioavailability and solubility limits its clinical application. Mimusops caffra, Ilex paraguarieni, and Glechoma hederacea, have been reported as major sources of UA. The chemistry of UA has been studied extensively based on the literature, with modifications mostly having been made at positions C-3 (hydroxyl), C12-C13 (double bonds) and C-28 (carboxylic acid), leading to several UA derivatives (esters, amides, oxadiazole quinolone, etc.) with enhanced potency, bioavailability and water solubility. This article comprehensively reviews the information that has become available over the last decade with respect to the sources, chemistry, biological potency and clinical trials of UA and its derivatives as potential therapeutic agents, with a focus on addressing NCDs.
Collapse
Affiliation(s)
- Sithenkosi Mlala
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Private Bag X1, Mthatha 5117, South Africa
| | - Mavuto Gondwe
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, Private Bag X1, Mthatha 5117, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.
| |
Collapse
|
42
|
Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori MR, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los MJ, Mokarram P, Madrakian T, Ghavami S. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv 2019; 38:107409. [PMID: 31220568 DOI: 10.1016/j.biotechadv.2019.06.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Betulin (B) and Betulinic acid (BA) are natural pentacyclic lupane-structure triterpenoids which possess a wide range of pharmacological activities. Recent evidence indicates that B and BA have several properties useful for the treatment of metabolic disorders, infectious diseases, cardiovascular disorders, and neurological disorders. In the current review, we discuss B and BA structures and derivatives and then comprehensively explain their pharmacological effects in relation to various diseases. We also explain antiviral, antibacterial and anti-cancer effects of B and BA. Finally, we discuss the delivery methods, in which these compounds most effectively target different systems.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanaz Dastghaib
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Forough Khadem
- Department of Immunology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Hamid Behrouj
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Mahdi Ghamsari
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Andrzej Hudecki
- Institue of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Science, Zahedan, Iran
| | - Marek J Los
- Biotechnology Center, Silesian University of Technology, ul Bolesława Krzywoustego 8, Gliwice, Poland; Linkocare Life Sciences AB, Teknikringen 10, Plan 3, 583 30 Linköping, Sweden
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
43
|
Choi WH, Lee IA. The Mechanism of Action of Ursolic Acid as a Potential Anti-Toxoplasmosis Agent, and Its Immunomodulatory Effects. Pathogens 2019; 8:pathogens8020061. [PMID: 31075881 PMCID: PMC6631288 DOI: 10.3390/pathogens8020061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
This study was performed to investigate the mechanism of action of ursolic acid in terms of anti-Toxoplasma gondii effects, including immunomodulatory effects. We evaluated the anti-T. gondii effects of ursolic acid, and analyzed the production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines through co-cultured immune cells, as well as the expression of intracellular organelles of T. gondii. The subcellular organelles and granules of T. gondii, particularly rhoptry protein 18, microneme protein 8, and inner membrane complex sub-compartment protein 3, were markedly decreased when T. gondii was treated with ursolic acid, and their expressions were effectively inhibited. Furthermore, ursolic acid effectively increased the production of NO, ROS, interleukin (IL)-10, IL-12, granulocyte macrophage colony stimulating factor (GM-CSF), and interferon-β, while reducing the expression of IL-1β, IL-6, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta 1 (TGF-β1) in T. gondii-infected immune cells. These results demonstrate that ursolic acid not only causes anti-T. gondii activity/action by effectively inhibiting the survival of T. gondii and the subcellular organelles of T. gondii, but also induces specific immunomodulatory effects in T. gondii-infected immune cells. Therefore, this study indicates that ursolic acid can be effectively utilized as a potential candidate agent for developing novel anti-toxoplasmosis drugs, and has immunomodulatory activity.
Collapse
Affiliation(s)
- Won Hyung Choi
- Marine Bio Research & Education Center, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| | - In Ah Lee
- Department of Chemistry, College of Natural Science, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| |
Collapse
|
44
|
Askarinia M, Ganji A, Jadidi-Niaragh F, Hasanzadeh S, Mohammadi B, Ghalamfarsa F, Ghalamfarsa G, Mahmoudi H. A review on medicinal plant extracts and their active ingredients against methicillin-resistant and methicillin-sensitive Staphylococcus aureus. JOURNAL OF HERBMED PHARMACOLOGY 2019. [DOI: 10.15171/jhp.2019.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Staphylococcus aureus is among the pathogens capable of developing a broad spectrum of infections in human beings. In addition to the hospital, the bacterium is present in the community and has a high resistance to antibiotics, which is also increasing on an ongoing basis. Resistance to β-lactam antibiotic family is one of the concerns about the bacterium that has encountered the treatment of such infections with difficulty. Due to the increased resistance and importance of this bacterium, new strategies are needed to control this pathogen. One of these approaches is the use of medicinal plants, which has attracted many researchers in the last decade. Several studies have been carried out or are being designed using various herbs to find active ingredients to deal with this bacterium. The aim of this study was to present the antibacterial activity of different medicinal plants and the effects of their active ingredients on methicillin-resistant and methicillin-sensitive S. aureus and to clarify the pathway to further studies in this regard.
Collapse
Affiliation(s)
- Marzieh Askarinia
- Student Research Committee, Yasuj University of medical sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Ganji
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Hasanzadeh
- Department of Internal Medicine, Yasouj University of Medical Sciences, Yasouj, Iran
| | - Bahram Mohammadi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farideh Ghalamfarsa
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ghasem Ghalamfarsa
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hassan Mahmoudi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
45
|
Carvalho Junior AR, Martins ALDB, Cutrim BDS, Santos DM, Maia HS, Silva MSMD, Zagmignan A, Silva MRC, Monteiro CDA, Guilhon GMSP, Cantanhede Filho AJ, Nascimento da Silva LC. Betulinic Acid Prevents the Acquisition of Ciprofloxacin-Mediated Mutagenesis in Staphylococcus aureus. Molecules 2019; 24:molecules24091757. [PMID: 31067626 PMCID: PMC6539033 DOI: 10.3390/molecules24091757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022] Open
Abstract
The occurrence of damage on bacterial DNA (mediated by antibiotics, for example) is intimately associated with the activation of the SOS system. This pathway is related to the development of mutations that might result in the acquisition and spread of resistance and virulence factors. The inhibition of the SOS response has been highlighted as an emerging resource, in order to reduce the emergence of drug resistance and tolerance. Herein, we evaluated the ability of betulinic acid (BA), a plant-derived triterpenoid, to reduce the activation of the SOS response and its associated phenotypic alterations, induced by ciprofloxacin in Staphylococcus aureus. BA did not show antimicrobial activity against S. aureus (MIC > 5000 µg/mL), however, it (at 100 and 200 µg/mL) was able to reduce the expression of recA induced by ciprofloxacin. This effect was accompanied by an enhancement of the ciprofloxacin antimicrobial action and reduction of S. aureus cell volume (as seen by flow cytometry and fluorescence microscopy). BA could also increase the hyperpolarization of the S. aureus membrane, related to the ciprofloxacin action. Furthermore, BA inhibited the progress of tolerance and the mutagenesis induced by this drug. Taken together, these findings indicate that the betulinic acid is a promising lead molecule in the development helper drugs. These compounds may be able to reduce the S. aureus mutagenicity associated with antibiotic therapies.
Collapse
Affiliation(s)
| | | | | | - Deivid Martins Santos
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075-120, Brazil.
| | - Hermerson Sousa Maia
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075-120, Brazil.
| | | | - Adrielle Zagmignan
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075-120, Brazil.
| | | | | | | | | | | |
Collapse
|
46
|
Thang PT, Dung NA, Giap TH, Oanh VTK, Hang NTM, Huong TT, Thanh LN, Huong DTM, Van Cuong P. Preliminary study on the chemical constituents of the leaves of Macaranga balansae
Gagnep. VIETNAM JOURNAL OF CHEMISTRY 2018. [DOI: 10.1002/vjch.201800061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pham Toan Thang
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
- School of Chemical Engineering; Hanoi University of Science and Technology; 1 Dai Co Viet, Hai Ba Trung, Hanoi Viet Nam
| | - Nguyen Anh Dung
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| | - Tran Huu Giap
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| | - Vu Thi Kim Oanh
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| | - Nguyen Thi Minh Hang
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| | - Tran Thu Huong
- School of Chemical Engineering; Hanoi University of Science and Technology; 1 Dai Co Viet, Hai Ba Trung, Hanoi Viet Nam
| | - Le Nguyen Thanh
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| | - Doan Thi Mai Huong
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| | - Pham Van Cuong
- Advanced Center for Bioorganic Chemistry; Institute of Marine Biochemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay, Hanoi Viet Nam
| |
Collapse
|
47
|
Nzogong RT, Ndjateu FST, Ekom SE, Fosso JAM, Awouafack MD, Tene M, Tane P, Morita H, Choudhary MI, Tamokou JDD. Antimicrobial and antioxidant activities of triterpenoid and phenolic derivatives from two Cameroonian Melastomataceae plants: Dissotis senegambiensis and Amphiblemma monticola. Altern Ther Health Med 2018; 18:159. [PMID: 29769064 PMCID: PMC5956543 DOI: 10.1186/s12906-018-2229-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Background Antimicrobial resistance is a serious threat against humankind and the search for new therapeutics is needed. This study aims to investigate the antimicrobial and antioxidant activities of ethanol extracts and compounds isolated from Dissotis senegambiensis and Amphiblemma monticola, two Cameroonian Melastomataceae species traditionally used for the treatment of fever, malaria and infectious diseases. Methods The plant extracts were prepared by maceration in ethanol. Standard chromatographic and spectroscopic methods were used to isolate and identify fourteen compounds from the two plant species [1–6 (from D. senegambiensis), 3, 4 and 7–14 (from A. monticola)]. A two-fold serial micro-dilution method was used to determine the minimum inhibitory concentration (MIC) against four bacterial strains including two resistant bacterial strains, methicillin resistant S. aureus (MRSA3) and methicillin resistant S. aureus (MRSA4) and three yeast strains. Results The fractionation of EtOH extracts afforded fourteen compounds belonging to triterpenoid and phenolic derivatives. The ethanol extracts, compounds 3, 5–8, 10 and the mixture of 10 + 12 were active against all the tested bacterial and fungal species. Compound 7 (MIC = 16–32 μg/mL) and 10 (MIC = 8–16 μg/mL) displayed the largest antibacterial and antifungal activities, respectively. Compounds 7, 10 and the mixture of 10 + 12 showed prominent antibacterial activity against methicillin- resistant S. aureus (MRSA) which is in some cases equal to that of ciprofloxacin used as reference antibacterial drug. Compound 8 also showed high radical-scavenging activities and ferric reducing power when compared with vitamin C and butylated hydroxytoluene used as reference antioxidants. The tested samples were non-toxic to normal cells highlighting their good selectivity. Conclusions The result of this investigation reveals the potential of D. senegambiensis and A. monticola as well as the most active compounds in the search for new antimicrobial and antioxidant agents. So, further investigations are needed. Electronic supplementary material The online version of this article (10.1186/s12906-018-2229-2) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Gundoju N, Bokam R, Yalavarthi NR, Azad R, Ponnapalli MG. Betulinic acid derivatives: a new class of α-glucosidase inhibitors and LPS-stimulated nitric oxide production inhibition on mouse macrophage RAW 264.7 cells. Nat Prod Res 2018; 33:2618-2622. [PMID: 29683341 DOI: 10.1080/14786419.2018.1462182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chemical manipulation studies were conducted on betulinic acid (1), twenty-one new rationally designed analogues of 1 with modifications at C-28 were synthesized for their evaluation of inhibitory effects on α-glucosidase and LPS-stimulated nitric oxide production in mouse macrophage RAW 264.7 cells. Compound 2 (IC50 = 5.4 μM) exhibited an almost 1.4-fold increase in α-glucosidase inhibitory activity on yeast α-glucosidase while analogues 5 (IC50 16.4 μM) and 11 (IC50 16.6 μM) exhibited a 2-fold enhanced inhibitory activity on NO-production than betulinic acid.
Collapse
Affiliation(s)
- Narayanarao Gundoju
- a Natural Products Chemistry Division , Indian Institute of Chemical Technology , Hyderabad , India
| | - Ramesh Bokam
- a Natural Products Chemistry Division , Indian Institute of Chemical Technology , Hyderabad , India
| | - Nageswara Rao Yalavarthi
- a Natural Products Chemistry Division , Indian Institute of Chemical Technology , Hyderabad , India
| | - Rajaram Azad
- b Department of Animal Biology , University of Hyderabad , Hyderabad , India
| | - Mangala Gowri Ponnapalli
- a Natural Products Chemistry Division , Indian Institute of Chemical Technology , Hyderabad , India
| |
Collapse
|
49
|
Krishna C, Bhargavi MV, Krupadanam GLD. Design, Synthesis, and Cytotoxicity of Semisynthetic Betulinic Acid-1,2,4-Oxadiazole Amide Derivatives. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Catteau L, Reichmann NT, Olson J, Pinho MG, Nizet V, Van Bambeke F, Quetin-Leclercq J. Synergy between Ursolic and Oleanolic Acids from Vitellaria paradoxa Leaf Extract and β-Lactams against Methicillin-Resistant Staphylococcus aureus: In Vitro and In Vivo Activity and Underlying Mechanisms. Molecules 2017; 22:E2245. [PMID: 29258194 PMCID: PMC6149719 DOI: 10.3390/molecules22122245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
Combining antibiotics with resistance reversing agents is a key strategy to overcome bacterial resistance. Upon screening antimicrobial activities of plants used in traditional medicine, we found that a leaf dichloromethane extract from the shea butter tree (Vitellaria paradoxa) had antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with further evidence of synergy when combined with β-lactams. Using HPLC-MS, we identified ursolic (UA) and oleanolic acids (OA) in leaves and twigs of this species, and quantified them by HPLC-UV as the major constituents in leaf extracts (21% and 6% respectively). Both pure triterpenic acids showed antimicrobial activity against reference and clinical strains of MRSA, with MICs ranging from 8-16 mg/L for UA to 32-128 mg/L for OA. They were highly synergistic with β-lactams (ampicillin and oxacillin) at subMIC concentrations. Reversion of MRSA phenotype was attributed to their capacity to delocalize PBP2 from the septal division site, as observed by fluorescence microscopy, and to disturb thereby peptidoglycan synthesis. Moreover, both compounds also inhibited β-lactamases activity of living bacteria (as assessed by inhibition of nitrocefin hydrolysis), but not in bacterial lysates, suggesting an indirect mechanism for this inhibition. In a murine model of subcutaneous MRSA infection, local administration of UA was synergistic with nafcillin to reduce lesion size and inflammatory cytokine (IL-1β) production. Thus, these data highlight the potential interest of triterpenic acids as resistance reversing agents in combination with β-lactams against MRSA.
Collapse
Affiliation(s)
- Lucy Catteau
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
- Cellular and Molecular Pharmacology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| | - Nathalie T Reichmann
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Joshua Olson
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0760, USA.
| | - Mariana G Pinho
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0760, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0760, USA.
| | - Françoise Van Bambeke
- Cellular and Molecular Pharmacology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
- MASSMET Platform, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|