1
|
Yang C, Lu D, Zhang X, Li Y, Zhao M, Yang Y. Edible and herbal plants against Helicobacter pylori infection: From epidemiological, experimental studies to clinical perspectives. Microb Pathog 2025; 201:107386. [PMID: 39983882 DOI: 10.1016/j.micpath.2025.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Helicobacter pylori (H. pylori) infection is an important global public health concern, causing conditions like gastritis, gastroduodenal ulcers, gastric lymphoma, distal gastric cancer and other gastric diseases. With the increasing prevalence of antibiotics resistance, the cure rate of antibiotics-based triple or quadruple therapy has declined to 80 % or less. Moreover, side effects still remain. Hence, alternative, more potent and safer anti-H. pylori medications are required. Numerous studies have indicated that natural products from medical plants are valuable repositories for the prevention of H. pylori infection with advantages in little side effects due to the co-evolution with biological systems for millions of years. In this review, we highlighted the anti-H. pylori activities and the responsive mechanism of edible and medical plants based on epidemiological, experimental, and clinical studies, providing the basis for future development of functional foods or drugs against H. pylori.
Collapse
Affiliation(s)
- Chaofeng Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dan Lu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaoyuan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuying Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Mojiao Zhao
- Department of Chinese Medicine and Health Care, Changchun Humanities and Sciences College, Changchun, China
| | - Yong Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China; International College, Krirk University, Bangkok, Thailand.
| |
Collapse
|
2
|
Yang J, Zhang Y, Guo B, Peng Q, Chen H, Ye M, Yi W, Ding W. Combined transcriptomic and metabolomic analyses reveal the pharmacognostic mechanism of the metabolism of flavonoids in different parts of Polygonum capitatum. THE PLANT GENOME 2025; 18:e20543. [PMID: 39807534 PMCID: PMC11729211 DOI: 10.1002/tpg2.20543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025]
Abstract
The plant Polygonum capitatum (P. capitatum) contains a variety of flavonoids that are distributed differently among different parts. Nevertheless, differentially expressed genes (DEGs) associated with this heterogeneous distribution have not been identified. In this study, combined with transcriptomic and metabonomic analysis, we identified significant DEGs related to variations in flavonoid composition among different parts of P. capitatum. Subsequently, transcriptomic and nontargeted metabolomic analyses revealed that flavonoids and phenolic acids in different parts of P. capitatum were significantly enriched in the phenylpropanoid biosynthesis, shikimic acid biosynthesis, and flavonoid biosynthesis pathways. The expression levels of genes encoding enzymes, including shikimate O-hydroxycinnamoyltransferase (HCT), chalcone synthase (CHS), flavonoid 3',5'-hydroxylase (CYP75A), flavones 3-hydroxylase (F3H), flavonol synthase (FLS), leucoanthocyanidin reductase (LAR), trans-cinnamate 4-monooxygenase (CYP73A), and shikimate kinase (SK), were found to be the lowest in the leaves of P. capitatum via quantitative PCR. Interestingly, these genes are involved in the biosynthesis of quality markers such as gallic acid, quercetin, and quercitrin in P. capitatum. Finally, the targeted metabolomic results reconfirmed that the gallic acid, quercetin, and quercitrin contents were the highest in the leaves of P. capitatum. This research provides a theoretical basis for further understanding the differential regulatory mechanism of flavonoid metabolism in different parts of P. capitatum, providing novel insights into the pharmacognostic basis of P. capitatum.
Collapse
Affiliation(s)
- Jie Yang
- Department of Fundamental MedicineBijie Medical CollegeBijieGuizhouChina
- The Key Laboratory for Health IndustryBijie Medical CollegeBijieGuizhouChina
- Department of Fundamental MedicineChengdu University of Traditional Chinese MedicineChengduChina
| | - Yu Zhang
- Department of Traditional Chinese MedicineChongqing Medical and Pharmaceutical CollegeChongqingChina
| | - Bu‐Fa Guo
- Department of Fundamental MedicineBijie Medical CollegeBijieGuizhouChina
| | - Qi‐Lun Peng
- Department of Fundamental MedicineBijie Medical CollegeBijieGuizhouChina
| | - Hong‐Yu Chen
- Department of Fundamental MedicineBijie Medical CollegeBijieGuizhouChina
| | - Mao Ye
- The Key Laboratory for Health IndustryBijie Medical CollegeBijieGuizhouChina
| | - Wei Yi
- Department of PharmacyGuangzhou Medical UniversityGuangzhouChina
| | - Wei‐Jun Ding
- Department of Fundamental MedicineChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
3
|
Wang Y, Liu Y, Zheng X. Hyperoside Alleviates Helicobacter pylori-Induced Gastric Epithelial Cell Injury by Regulating Nrf2/HO-1 Signaling. Pol J Microbiol 2025; 74:60-70. [PMID: 40146790 PMCID: PMC11949383 DOI: 10.33073/pjm-2025-005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025] Open
Abstract
Infection with Helicobacter pylori is the major causative factor of chronic gastritis, peptic ulcer, gastric cancer, and other diseases. Gastric mucosal epithelial injury characterized by abnormal apoptosis, oxidative stress, and inflammation is a crucial mechanism of H. pylori infection. Hyperoside (HYP) is a flavonol glycoside derived from many herbal plants, which exhibits potent anti-apoptotic, antioxidant, and anti-inflammatory properties. Our research explored whether it exerts protective effects on H. pylori-infected human gastric epithelial cells. GES-1 cells were first treated for 24 h with HYP (0, 10, 20, 40, 80, 100, or 120 μM) to determine the cytotoxicity of HYP. Subsequently, GES-1 cells were pre-treated for 4 h with HYP (80 μM), followed by exposure to H. pylori for 24 h. CCK-8 assay, flow cytometry assay, ELISA, RT-qPCR, DCFH-DA staining, the commercial assay kits, immunofluorescence staining, and western blotting were used to assess cell viability, cell apoptosis, pro-inflammatory cytokine levels, oxidative stress marker levels, and Nrf2/HO-1 signaling-related molecule levels. The Nrf2 inhibitor ML385 was employed to verify the beneficial role of Nrf2 activation in HYP-mediated GES-1 cell injury induced by H. pylori. The results showed that HYP pre-treatment reversed H. pylori-induced cell apoptosis, inflammation, and oxidative stress in GES-1 cells. Furthermore, HYP downregulated Nrf2, HO-1, and NQO1 protein levels in H. pylori-infected GES-1 cells. ML385 overturned the protective effects of HYP against H. pylori-induced GES-1 cell apoptosis, inflammation, and oxidative stress. In conclusion, HYP protects gastric epithelial cells against H. pylori-induced cell injury by activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yanfen Wang
- Department of Basic Medicine, Henan Vocational College of Nursing, Anyang, China
| | - Yuxue Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiuhua Zheng
- Department of Clinical Medicine, Henan Vocational College of Nursing, Anyang, China
| |
Collapse
|
4
|
Warias P, Plewa P, Poniewierska-Baran A. Resveratrol, Piceatannol, Curcumin, and Quercetin as Therapeutic Targets in Gastric Cancer-Mechanisms and Clinical Implications for Natural Products. Molecules 2024; 30:3. [PMID: 39795061 PMCID: PMC11721033 DOI: 10.3390/molecules30010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Gastric cancer remains a significant global health challenge, driving the need for innovative therapeutic approaches. Natural polyphenolic compounds such as resveratrol, piceatannol, curcumin, and quercetin currently show promising results in the prevention and treatment of various cancers, due to their diverse biological activities. This review presents the effects of natural compounds on important processes related to cancer, such as apoptosis, proliferation, migration, invasion, angiogenesis, and autophagy. Resveratrol, naturally found in red grapes, has been shown to induce apoptosis and inhibit the proliferation, migration, and invasion of gastric cancer cells. Piceatannol, a metabolite of resveratrol, shares similar anticancer properties, particularly in modulating autophagy. Curcumin, derived from turmeric, is known for its anti-inflammatory and antioxidant properties, and its ability to inhibit tumor growth and metastasis. Quercetin, a flavonoid found in various fruits and vegetables, induces cell cycle arrest and apoptosis while enhancing the efficacy of conventional therapies. Despite their potential, challenges such as low bioavailability limit their clinical application, necessitating further research into novel delivery systems. Collectively, these compounds represent a promising avenue for enhancing gastric cancer treatment and improving patient outcomes through their multifaceted biological effects.
Collapse
Affiliation(s)
- Paulina Warias
- Doctoral School, University of Szczecin, Mickiewicza 18, 70-384 Szczecin, Poland;
| | - Paulina Plewa
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Agata Poniewierska-Baran
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| |
Collapse
|
5
|
Jang YS, Kang DM, Ko YJ, Ra MJ, Jung SM, Ahn MJ, Lee S, Kim KH. Discovery of Isograndidentatin D, a Novel Phenolic Glycoside, and Anti- Helicobacter pylori Phenolics from Salix koreensis Twigs. PLANTS (BASEL, SWITZERLAND) 2024; 13:3603. [PMID: 39771300 PMCID: PMC11678160 DOI: 10.3390/plants13243603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Salix koreensis Anderss (Salicaceae), commonly referred to as Korean willow, is native to East Asia, particularly Korea and China, and it has been used in traditional Korean folk medicine for its potent anti-inflammatory, analgesic, and antioxidant properties. In our ongoing research efforts to discover biologically new natural products, phytochemical analysis on an ethanolic extract of S. koreensis twigs yielded the isolation and identification of ten phenolic compounds (1-10), including a newly discovered phenolic glycoside (1) named isograndidentatin D, isolated via HPLC purification. The structure of compound 1 was determined through extensive 1D and 2D NMR spectral data analysis and high-resolution electrospray ionization mass spectrometry (HR-ESIMS). Its absolute configuration was established using DP4+ probability analysis combined with gauge-including atomic orbital NMR chemical shift calculations and chemical reaction methods. The other known compounds were identified as isograndidentatin B (2), trichocarposide (3), glanduloidin C (4), tremuloidin (5), 3-O-acetylsalicin (6), 2-O-acetylsalicin (7), salicin (8), salireposide (9), and coumaric acid (10), confirmed by comparing their NMR spectra with previously reported data and further verified through liquid chromatography/mass spectrometry (LC/MS) analysis. The isolated compounds 1-10 were tested for their anti-Helicobacter pylori activities. Among these, compounds 4 and 5 demonstrated moderate anti-H. pylori activity at a concentration of 100 μM. Specifically, compound 5 showed an inhibitory activity of 35.9 ± 5.4%, making it slightly more potent than compound 4, with 34.0 ± 1.0% inhibition. These results were comparable to that of quercetin, a known anti-H. pylori agent used as a positive control in this study, which showed 38.4 ± 2.3% inhibition. The remaining compounds exhibited very weak inhibitory effects. This study highlights the potential of S. koreensis twigs as a valuable natural source of bioactive compounds for therapeutic applications against H. pylori.
Collapse
Affiliation(s)
- Yoon Seo Jang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Dong-Min Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-M.K.); (M.-J.A.)
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul 08826, Republic of Korea;
| | - Moon-Jin Ra
- Hongcheon Institute of Medicinal Herb, Hongcheon 25142, Republic of Korea; (M.-J.R.); (S.-M.J.)
| | - Sang-Mi Jung
- Hongcheon Institute of Medicinal Herb, Hongcheon 25142, Republic of Korea; (M.-J.R.); (S.-M.J.)
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-M.K.); (M.-J.A.)
| | - Seulah Lee
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
6
|
Du Y, Chi X, Chen Q, Xiao Y, Ma Z, Wang Z, Guo Z, Chen P, Chen Z, Zhang M, Guo J, Zhou Y, Yang C. Investigating the Mechanism of Banxia Xiexin Decoction in Treating
Gastritis and Diabetes Mellitus through Network Pharmacology and
Molecular Docking Analysis. CURRENT DRUG THERAPY 2024; 19:878-897. [DOI: 10.2174/0115748855287070240409061220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 01/03/2025]
Abstract
Background:
Banxia Xiexin decoration (BXD), a complex prescription in Traditional Chinese
Medicine (TCM), clinically acts as a treatment for gastritis and diabetes while its mechanism of
treatment remains unknown.
Objection:
This study aimed to explore the common mechanism of BXD in treating gastritis and
diabetes based on network pharmacology and molecular docking technology.
Methods:
The seven Chinese herbal components and drug targets were collected from the Traditional
Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) for gastritis and
diabetes using GeneCards, DisGeNET, Comparative Toxicogenomics Database (CTD), and Online
Mendelian Inheritance in Man (OMIM) databases. Common drug and disease targets were imported
into the STRING data platform for protein-protein interaction (PPI) analysis, and Cytoscape 3.7.2
software for network topology analysis, and core targets were filtered.
Results:
There were 124 components, 249 targets, 449 targets for gastritis, and 4005 targets for diabetes.
After mapping, 83 BXD targets for gastritis and diabetes were obtained, and the targets with
high correlation were STAT 3, JUN, TNF, IL-6, etc. More relevant targets were involved in the cancer
pathway, AGE-RAGE signaling pathway of diabetic complications, fluid shear stress, and atherosclerosis
pathway.
Conclusion:
This study preliminarily reveals that BXD may play a role in the treatment of gastritis
and diabetes mellitus through multi-components, multi-targets, and multi-pathways, and proposes
some potential "component-target-pathway" hypotheses in light of previous reports.
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523059, People's Republic of China
| | - Xianhong Chi
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Qianwen Chen
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Yue Xiao
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Zhendong Ma
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Zhenjie Wang
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Zhuoming Guo
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Peng Chen
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Zilin Chen
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Mengting Zhang
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Jinyan Guo
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Yuqi Zhou
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Chun Yang
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| |
Collapse
|
7
|
Huang M, Luo S, Yang J, Xiong H, Lu X, Ma X, Zeng J, Efferth T. Optimized therapeutic potential of Sijunzi-similar formulae for chronic atrophic gastritis via Bayesian network meta-analysis. EXCLI JOURNAL 2024; 23:1185-1207. [PMID: 39421026 PMCID: PMC11484511 DOI: 10.17179/excli2024-7618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Chronic atrophic gastritis (CAG) is considered as a significant risk factor for triggering gastric cancer incidence, if not effectively treated. Sijunzi decoction (SD) is a well-known classic formula for treating gastric disorders, and Sijunzi-similar formulae (SF) derived from SD have also been highly regarded by Chinese clinical practitioners for their effectiveness in treating chronic atrophic gastritis. Currently, there is a lack of meta-analysis for these formulae, leaving unclear which exhibits optimal efficacy. Therefore, we employed Bayesian network meta-analysis (BNMA) to evaluate the efficacy and safety of SF as an intervention for CAG and to establish a scientific foundation for the clinical utilization of SF. The result of meta-analysis demonstrated that the combination of SF and basic therapy outperformed basic therapy alone in terms of clinical efficacy rate, eradication rate of H. pylori, and incidence of adverse events. As indicated by the SUCRA value, Chaishao Liujunzi decoction (CLD) demonstrated superior efficacy in enhancing clinical effectiveness and ameliorating H. pylori infection, and it also showed remarkable effectiveness in minimizing the occurrence of adverse events. Comprehensive analysis of therapeutic efficacy suggests that CLD is most likely the optimal choice among these six formulations, holding potential value for optimizing clinical treatment strategies. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Meilan Huang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayue Yang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Huiling Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- TCM Regulating Metabolic Disease Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
8
|
Lin Y, Liu K, Lu F, Zhai C, Cheng F. Programmed cell death in Helicobacter pylori infection and related gastric cancer. Front Cell Infect Microbiol 2024; 14:1416819. [PMID: 39145306 PMCID: PMC11322058 DOI: 10.3389/fcimb.2024.1416819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining the normal structure and function of the digestive tract in the body. Infection with Helicobacter pylori (H. pylori) is an important factor leading to gastric damage, promoting the Correa cascade and accelerating the transition from gastritis to gastric cancer. Recent research has shown that several PCD signaling pathways are abnormally activated during H. pylori infection, and the dysfunction of PCD is thought to contribute to the development of gastric cancer and interfere with treatment. With the deepening of studies on H. pylori infection in terms of PCD, exploring the interaction mechanisms between H. pylori and the body in different PCD pathways may become an important research direction for the future treatment of H. pylori infection and H. pylori-related gastric cancer. In addition, biologically active compounds that can inhibit or induce PCD may serve as key elements for the treatment of this disease. In this review, we briefly describe the process of PCD, discuss the interaction between different PCD signaling pathways and the mechanisms of H. pylori infection or H. pylori-related gastric cancer, and summarize the active molecules that may play a therapeutic role in each PCD pathway during this process, with the expectation of providing a more comprehensive understanding of the role of PCD in H. pylori infection.
Collapse
Affiliation(s)
- Yukun Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kunjing Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Changming Zhai
- Department of Rheumatism, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Wang Z, Zhou X, Hu X, Zheng C. Quercetin ameliorates Helicobacter pylori-induced gastric epithelial cell injury by regulating specificity protein 1/lipocalin 2 axis in gastritis. J Appl Toxicol 2024; 44:641-650. [PMID: 38056887 DOI: 10.1002/jat.4566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023]
Abstract
Helicobacter pylori (HP) infection is the main cause of most cases of gastritis. Quercetin has been shown to have anti-inflammatory, anti-bacterial, and antiviral activities and has been demonstrated to be involved in HP-induced gastric mucosa injury. Moreover, the secretory protein lipocalin-2 (LCN2) was elevated in HP-infected gastric mucosa. Thus, this work aimed to study the interaction between quercetin and LCN2 in HP-triggered gastric injury during gastritis. Human gastric epithelial cell line GES-1 cells were exposed to HP for functional experiments. Cell viability, apoptosis, and inflammation were evaluated by cell counting kit-8, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Levels of genes and proteins were tested using quantitative reverse transcription polymerase chain reaction and western blotting analyses. The interaction between LCN2 and specificity protein 1 (SP1) was validated using chromatin immunoprecipitation assay and dual-luciferase reporter assay. Thereafter, we found quercetin treatment suppressed HP-induced GES-1 cell apoptotic and inflammatory injury and macrophage M1 polarization. LCN2 was highly expressed in HP-infected gastritis patients and HP-infected GES-1 cells, while quercetin reduced LCN2 expression in HP-infected GES-1 cells; moreover, LCN2 knockdown reversed HP-induced GES-1 cell injury and macrophage M1 polarization, and forced expression of LCN2 abolished the protective effects of quercetin on GES-1 cells under HP infection. Mechanistically, SP1 bound to LCN2 promoter and promoted its transcription. Also, SP1 overexpression counteracted the functions of quercetin on HP-stimulated GES-1 cells. In all, quercetin ameliorated HP-induced gastric epithelial cell apoptotic and inflammatory injuries, and macrophage M1 polarization via the SP1/LCN2 axis.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Hu
- Department of Digestive Endoscopy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Congru Zheng
- Department of Digestive Endoscopy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Nie K, Zheng Z, Li X, Chang Y, Liu F, Wang X. Explore the active ingredients and potential mechanisms of JianPi QingRe HuaYu Methods in the treatment of gastric inflammation-cancer transformation by network pharmacology and experimental validation. BMC Complement Med Ther 2023; 23:411. [PMID: 37964307 PMCID: PMC10644588 DOI: 10.1186/s12906-023-04232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND JianPi QingRe HuaYu Methods (JQH) have been long used to treat chronic atrophic gastritis (CAG) and precancerous lesions of gastric cancer (PLGC). However, whether JQH can inhibit the transformation of gastritis to gastric cancer (GC) remains unclear. METHODS Herein, we first retrieved the active ingredients and targets of JQH from the TCMSP database and the targets related to the gastric inflammation-cancer transformation from public databases. Differentially expressed genes (DEGs) related to gastric inflammation-cancer transformation were identified from the Gene Expression Omnibus (GEO) database. Then, we obtained the potential therapeutic targets of JQH in treating gastric inflammation-cancer transformation by intersecting drugs and disease targets. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analyses of the potential therapeutic targets were conducted using R software. Next, we conducted molecular docking and in vitro experiments to validate our results. RESULTS We obtained 214 potential therapeutic targets of JQH by intersecting drugs and disease targets. We found that the potential mechanisms of JQH in treating gastric inflammation-cancer transformation might be related to JAK-STAT, Wnt, p53 and VEGF signaling pathways. The molecular docking indicated that quercetin, as the main active ingredient of JQH, might inhibit gastric inflammation-cancer transformation by binding with specific receptors. Our experimental results showed that quercetin inhibited cells proliferation (P < 0.001), promoted cell apoptosis (P < 0.001), reduced the secretion of pro-inflammatory cytokines (P < 0.001) and promoted the secretion of anti-inflammatory cytokines (P < 0.001) in MNNG-induced GES-1 cells. Furthermore, quercetin inhibited cells proliferation (P < 0.001) and reduced mRNA and protein level of markers of PLGC (P < 0.001) in CDCA-induced GES-1 cells. CONCLUSION These results provide the material basis and regulatory mechanisms of JQH in treating gastric inflammation-cancer transformation.
Collapse
Affiliation(s)
- Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- School of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhihua Zheng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Xiushen Li
- Shenzhen University General Hospital, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - FengBin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaoyu Wang
- School of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Yang Y, Yan J, Huang J, Wu X, Yuan Y, Yuan Y, Zhang S, Mo F. Exploring the mechanism by which quercetin re-sensitizes breast cancer to paclitaxel: network pharmacology, molecular docking, and experimental verification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3045-3059. [PMID: 37148401 DOI: 10.1007/s00210-023-02510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
This study is aimed to explore the potential molecular mechanism of quercetin reversing paclitaxel (PTX) resistance in breast cancer (BC) by network pharmacology, molecular docking, and experimental verification. Pharmacological platform databases are used to predict quercetin targets and BC PTX-resistance genes and constructed the expression profile of quercetin chemosensitization. The overlapping targets were input into the STRING database and used Cytoscape v3.9.0 to construct the protein-protein interaction (PPI) network. Subsequently, these targets were performed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses and molecular docking. Finally, we further detected the potential role of quercetin in improving PTX sensitivity in BC in vitro experiments. Compounds and targets screening hinted that 220 quercetin predicted targets, 244 BC PTX resistance-related genes, and 66 potential sensitive target genes (PSTGs). Network pharmacology screening revealed the top-15 crucial targets in PPI network of quercetin reversing the sensitivity of BC to PTX. KEGG analysis revealed that they were mainly enriched in the EGFR/ERK signaling pathway. Molecular docking showed that both quercetin and PTX could stably bind to the key targets in the EGFR/ERK signaling pathway. In vitro experiments further confirmed that quercetin inhibited the key targets in the EGFR/ERK axis to the suppression of cell proliferation and promotion of apoptosis in PTX-resistance BC cells, and restoring the activity of the resistant cells to PTX. Our results suggested that quercetin increased the sensitivity of BC to PTX through inhibiting EGFR/ERK axis, and it is an effective treatment for reversing PTX resistance.
Collapse
Affiliation(s)
- Ye Yang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Jiaoyan Yan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Jian Huang
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xiangyi Wu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Yuan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Yuan
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Shu Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China.
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Fei Mo
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China.
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
12
|
Huang Y, Chen S, Yao Y, Wu N, Xu M, Du H, Yin Z, Zhao Y, Tu Y. Ovotransferrin Inhibits TNF-α Induced Inflammatory Response in Gastric Epithelial Cells via MAPK and NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12474-12486. [PMID: 37566483 DOI: 10.1021/acs.jafc.3c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Ovotransferrin (OVT) has been confirmed to have anti-inflammatory activity. However, its effect and mechanism on gastric inflammation are unclear. In this study, the effect and mechanism of the OVT on the tumor necrosis factor-α (TNF-α) induced inflammatory response in gastric epithelial cells (GES-1) were investigated. The enzyme linked immunosorbent assay (ELISA) was used to determine the levels of inflammation cytokines, followed by RNA sequencing to explore the potential pathways of its anti-inflammatory effect, and then it was validated by Western blotting and pathways inhibitors. Results showed that the OVT at concentrations of 50-400 μg/mL displayed nontoxicity against GES-1 cells. Additionally, 100 μg/mL of OVT obviously reduced the secretion of interleukin (IL)-8, IL-6, and TNF-α by 63.02% (630.09/1703.98), 35.53% (935.81/1451.43), and 36.19% (964.60/1511.63), respectively. The results of RNA sequencing exhibited that the OVT significantly influences the activation of mitogen-activated protein kinase (MAPK) and the nuclear factor kappa-light-chain enhancer of activated B cell (NF-κB) pathways, which was verified by the levels of p-IKK, p-IκB, p-P65, p-ERK, p-JNK, and p-P38 protein. IL-8 contents released by GES-1 cells after incubation with inhibitors of NF-κB and MAPK pathways further confirmed that OVT hindered activation of these two pathways. Collectively, these results suggested that OVT was a natural protein with the potential to treat gastric inflammation.
Collapse
Affiliation(s)
- Yan Huang
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
13
|
Han L, Li T, Wang Y, Lai W, Zhou H, Niu Z, Su J, Lv G, Zhang G, Gao J, Huang J, Lou Z. Weierning, a Chinese patent medicine, improves chronic atrophic gastritis with intestinal metaplasia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116345. [PMID: 36906155 DOI: 10.1016/j.jep.2023.116345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weierning tablet (WEN) is a traditional Chinese patent medicine widely used in clinical for chronic atrophic gastritis (CAG) therapy for years. However, the underlying mechanisms of WEN on anti-CAG are still unveiled. AIM OF THE STUDY The present study aimed to elucidate the characteristic function of WEN on anti-CAG and to illuminate its potential mechanism. METHODS The CAG model was established by gavage rats with a modeling solution (consisting of 2% sodium salicylate and 30% alcohol) with irregular diets and free access to 0.1% ammonia solution for two months on end. An enzyme-linked immunosorbent assay was used to measure the serum levels of gastrin, pepsinogen, and inflammatory cytokines. qRT-PCR was applied to measure mRNA expressions of IL-6, IL-18, IL-10, TNF-α, and γ-IFN in gastric tissue. Pathological changes and the ultrastructure of gastric mucosa were examined by hematoxylin and eosin staining and transmission electron microscopy, respectively. AB-PAS staining was applied to observe the intestinal metaplasia of gastric mucosa. Immunohistochemistry and Western blot were used to measure the expression levels of mitochondria apoptosis-related proteins and Hedgehog pathway-related proteins in gastric tissues. Expressions of Cdx2 and Muc2 protein were determined by immunofluorescent staining. RESULTS WEN could dose-dependently lower the serum level of IL-1β and the mRNA expressions of IL-6, IL-8, IL-10, TNF-α, and γ-IFN in gastric tissue. Also, WEN significantly alleviated the collagen deposition in gastric submucosa, regulated the expressions of Bax, Cleaved-caspase9, Bcl2, and Cytochrome c to reduce the apoptosis of gastric mucosa epithelial cells, and maintained the integrity of the gastric mucosal barrier. Moreover, WEN could reduce protein expressions of Cdx2, Muc2, Shh, Gli1, and Smo, and reverse intestinal metaplasia of gastric mucosa to block the progress of CAG. CONCLUSION This study demonstrated a positive effect of WEN on improving CAG and reverse intestinal metaplasia. These functions were related to the suppression of gastric mucosal cells' apoptosis and the inhibition of Hedgehog pathways' activation.
Collapse
Affiliation(s)
- Liping Han
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Ting Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Yingying Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Weizi Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Hengpu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Zhuangwei Niu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| | - Jianbo Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310053, China.
| |
Collapse
|
14
|
Erinle TJ, Boulianne M, Miar Y, Scales R, Adewole D. Red osier dogwood and its use in animal nutrition: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:64-77. [PMID: 37009073 PMCID: PMC10060110 DOI: 10.1016/j.aninu.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
As the human population increases globally, the food animal industry has not been spared from the monumental demand for edible animal products, particularly meat. This has necessitated the simultaneous expansion of the productivity of the animal sector to meet the ever-growing human needs. Although antibiotics have been used in food animal production with commendable positive impacts on their growth performance, their sole contributive factor to the increasing incidence of antimicrobial resistance has ushered the strict restrictions placed on their use in the animal sector. This has handed a setback to both animals and farmers; thus, the intense push for a more sustainable antibiotic alternative for use in animal production. The use of plants with concentrated phytogenic compounds has gained much interest due to their beneficial bioactivities, including antioxidant and selective antimicrobial. While the reported beneficial activities of phytogenic additives on animals vary due to their varying total polyphenol concentrations (TPC), red osier dogwood (ROD) plant materials boast of high TPC with excellent antioxidant prowess and growth improvement capacities compared to some plant extracts commonly used in research. However, its adoption in research and commercial scale is still low. Thus, the present review aims to provide concise information on the dietary potential of ROD plant materials in animal feeding.
Collapse
Affiliation(s)
- Taiwo Joseph Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| | - Martine Boulianne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe QC, J2S 2M2, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| | - Robert Scales
- Red Dog Enterprises Ltd., Swan River MB, R0L 1Z0, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| |
Collapse
|
15
|
Yang L, Liu X, Zhu J, Zhang X, Li Y, Chen J, Liu H. Progress in traditional Chinese medicine against chronic gastritis: From chronic non-atrophic gastritis to gastric precancerous lesions. Heliyon 2023; 9:e16764. [PMID: 37313135 PMCID: PMC10258419 DOI: 10.1016/j.heliyon.2023.e16764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/13/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Chronic gastritis (CG) is a persistent inflammation of the gastric mucosa that can cause uncomfortable symptoms in patients. Traditional Chinese medicine (TCM) has been widely used to treat CG due to its precise efficacy, minimal side effects, and holistic approach. Clinical studies have confirmed the effectiveness of TCM in treating CG, although the mechanisms underlying this treatment have not yet been fully elucidated. In this review, we summarized the clinical research and mechanisms of TCM used to treat CG. Studies have shown that TCM mechanisms for CG treatment include H. pylori eradication, anti-inflammatory effects, immune modulation, regulation of gastric mucosal cell proliferation, apoptosis, and autophagy levels.
Collapse
Affiliation(s)
- Liangjun Yang
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Xinying Liu
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Jiajie Zhu
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Xi Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ya Li
- Lin ‘an Hospital of Traditional Chinese Medicine, Hangzhou 311300, China
| | - Jiabing Chen
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Haiyan Liu
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
16
|
Liang Z, Xu Y, Zhang Y, Zhang X, Song J, Qian H, Jin J. Anticancer applications of phytochemicals in gastric cancer: Effects and molecular mechanism. Front Pharmacol 2023; 13:1078090. [PMID: 36712679 PMCID: PMC9877357 DOI: 10.3389/fphar.2022.1078090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant cancer and is a life-threatening disease worldwide. Phytochemicals have been shown to be a rational, safe, non-toxic, and very promising approach to the prevention and treatment of cancer. It has been found that phytochemicals have protective effects against GC through inhibiting cell proliferation, inducing apoptosis and autophagy, suppressing cell invasion and migration, anti-angiogenesis, inhibit Helicobacter pylori infection, regulating the microenvironment. In recent years, the role of phytochemicals in the occurrence, development, drug resistance and prognosis of GC has attracted more and more attention. In order to better understand the relationship between phytochemicals and gastric cancer, we briefly summarize the roles and functions of phytochemicals in GC tumorigenesis, development and prognosis. This review will probably help guide the public to prevent the occurrence and development of GC through phytochemicals, and develop functional foods or drugs for the prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhaofeng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yumeng Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiajia Song
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, China
| |
Collapse
|
17
|
Hu J, He T, Liu J, Jia S, Li B, Xu W, Liao M, Guo L. Pharmacological and molecular analysis of the effects of Huangqi Jianzhong decoction on proliferation and apoptosis in GES-1 cells infected with H. pylori. Front Pharmacol 2022; 13:1009705. [PMID: 36249768 PMCID: PMC9556892 DOI: 10.3389/fphar.2022.1009705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Infection with Helicobacter pylori (H. pylori) can cause chronic gastritis and other digestive tract diseases, and represents a public health concern. Current anti-H. pylori treatment can result in antibiotic resistance and other adverse reactions. Huangqi Jianzhong decoction (HQJZD) is a prescription form of traditional Chinese medicine for chronic gastritis that increases probiotics and inhibits H. pylori. In this study, its anti-bacterial activity against H. pylori receives a preliminary evaluation, and a pharmacology analysis is performed to predict its underlying mechanisms. Methods: Human GES-1 cells are divided into a blank control group, a model group, a HQJZD low-dose (2.08 mg·mL−1), a high-dose group (4.16 mg·mL−1), and a positive control group (amoxicillin, 5 μg·mL−1). After culture, the CCK-8 method is used to detect cell viability; flow cytometry is used to detect cell apoptosis rate; and RT-qPCR is used to detect the expression of mRNA virulence factors, including HpPrtC, OPiA, IceA1, and BabA2. Network pharmacology analysis and molecular docking were performed to explore the mechanisms of HQJZD in treating H. pylori gastritis, based on its anti-H. pylori infection effect. Results: We noted lower cell survival rates in the model group, but higher apoptosis rates and mRNA expressions of HpPrtC, OPiA, IceA1, and BabA2 than in the control group (p < 0.05). Compared to the model group, the cell survival rate of each dosage group of Huangqi Jianzhong decoction and the positive control group increased significantly, while the apoptosis rate and the mRNA expressions of HpPrtC, OPiA, IceA1, and BabA2 were decreased significantly. The effect in each HQJZD group was dose-dependent (p < 0.05). Network pharmacological analysis involving 159 signaling pathways was used to screen 6 key active components of HQJZD and 102 potential target proteins for the treatment of H. pylori-related gastritis. The molecular docking results revealed that the 6 active compounds had a strong binding ability with the target proteins of ALB, IL-6, AKT1, IL-1B, and JUN. Conclusion: HQJZD effectively increases the proliferation rate of human GES-1 cells after infection, while reducing the level of apoptosis. The mechanism may be related to multiple components, multiple targets and pathways, which provides a scientific basis for further elucidating the mechanism of action, the pharmacodynamic material basis, and the clinical application of HQJZD against H. pylori infection.
Collapse
Affiliation(s)
- Jingnan Hu
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China
| | - Tao He
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Jianfang Liu
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China
| | - Sujie Jia
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Bolin Li
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Weichao Xu
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Man Liao
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China
| | - Lifang Guo
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Lifang Guo,
| |
Collapse
|
18
|
Lin Y, He L, Chen XJ, Zhang X, Yan XL, Tu B, Zeng Z, He MH. Polygonum capitatum, the Hmong Medicinal Flora: A Comprehensive Review of Its Phytochemical, Pharmacological and Pharmacokinetic Characteristics. Molecules 2022; 27:6407. [PMID: 36234943 PMCID: PMC9571880 DOI: 10.3390/molecules27196407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Polygonum capitatum, known as "Tou Hua Liao" (Chinese name), is a crucial source of Hmong medicinal plants that has benefited human health for a long time. This folk-medicinal plant is widely distributed in the south-west of China for the treatment of various urologic disorders including urinary tract infections, pyelonephritis, and urinary calculus. The purpose of this paper was to provide a systematic and comprehensive overview of the traditional usages, botany, phytochemistry, pharmacology, pharmacokinetics and clinical applications of this flora. Up until the end of 2022, at least 91 compounds had been reported from P. capitatum, mainly covering the classes of flavonoids, lignanoids, phenols and other components. The compounds and extracts isolated from P. capitatum exhibit a wide range of pharmacological activities, such as anti-inflammatory, antioxidant, antimicrobial, anticancer, analgesic, hypothermic, diuretic and other pharmacological effects. Qualitative and quantitative chemical analyses were also covered. Furthermore, the possible development trends and perspectives for future research on this medicinal plant were also discussed.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Lei He
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Xing-Jun Chen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Xu Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Xue-Long Yan
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Bo Tu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| | - Ming-Hui He
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- School of Pharmacy, Guizhou Medical University, University Town, Guian New District, Guizhou 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550031, China
| |
Collapse
|
19
|
Li Y, Li X, Tan Z. Basic Traditional Chinese Medicinal Compound for Adjuvant Treatment of Helicobacter pylori-Related Gastritis: Implication for Anti- H. pylori-Related Gastritis Drug Discovery. Nat Prod Commun 2022; 17. [DOI: 10.1177/1934578x221113968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
This study was aimed at evaluating the efficacy of traditional Chinese medicine (TCM) in the adjuvant treatment of Helicobacter pylori-associated gastritis (HPAG) and exploring the molecular mechanism underlying the action of the basic TCM compounds against HPAG. Eight representative Chinese and British databases were combed for pertinent literature. In light of the basic principle of evidence-based medicine, this work rigorously stuck to the inclusion and exclusion of criteria so as to plump for qualified articles. Also, the data mining method was adopted to help determine the basic TCM compound for HPAG treatment. Furthermore, a network pharmacology-based strategy was used to uncover the underlying mechanisms of the basic TCM compound against HPAG. Ultimately, molecular docking was used for preliminary verification. TCM combined with triple or quadruple therapy against HPAG possessed more advantages in improving the total effective rate and H. pylori eradication rate than triple or quadruple therapy alone. The basic TCM plant materials against HPAG consisted of Citrus reticulata Blanco, Glycyrrhiza uralensis Fisch, Pinellia ternata (Thunb.) Breit, Coptis chinensis Franch, and Poria cocos (Schw.) Wolf. Quercetin, kaempferol, naringenin, baicalein, nobiletin, and hederagenin were determined as the key active ingredients of the basic TCM preparation against HPAG. Moreover, these ingredients played a therapeutic role by acting on AKT1, TP53, interleukin (IL)-6, VEGFA, CASP3, MAPK3, JUN, TNF, and MAPK8 via Pathways in cancer, PI3K-Akt signaling pathway, TNF signaling pathway, and MAPK signaling pathway. The results of molecular docking indicated that the key ingredients could bind stably with the core targets. The efficacy of the TCM in the adjuvant treatment of HPAG is worthy of affirmation. Compatible use of the key ingredients of the basic TCM compound is a novel idea of drug research with profound clinical significance and research value in the development of anti- H. pylori drugs.
Collapse
Affiliation(s)
- Yuli Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
20
|
Evaluation of Gastroprotective Activity of Licorice and Turmeric Rhizome Aqueous Extract against Ethanol-Induced Gastric Injury in Male Wistar Rats. MEDICAL LABORATORY JOURNAL 2022. [DOI: 10.52547/mlj.16.4.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
21
|
Mirazimi SMA, Dashti F, Tobeiha M, Shahini A, Jafari R, Khoddami M, Sheida AH, EsnaAshari P, Aflatoonian AH, Elikaii F, Zakeri MS, Hamblin MR, Aghajani M, Bavarsadkarimi M, Mirzaei H. Application of Quercetin in the Treatment of Gastrointestinal Cancers. Front Pharmacol 2022; 13:860209. [PMID: 35462903 PMCID: PMC9019477 DOI: 10.3389/fphar.2022.860209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Many cellular signaling pathways contribute to the regulation of cell proliferation, division, motility, and apoptosis. Deregulation of these pathways contributes to tumor cell initiation and tumor progression. Lately, significant attention has been focused on the use of natural products as a promising strategy in cancer treatment. Quercetin is a natural flavonol compound widely present in commonly consumed foods. Quercetin has shown significant inhibitory effects on tumor progression via various mechanisms of action. These include stimulating cell cycle arrest or/and apoptosis as well as its antioxidant properties. Herein, we summarize the therapeutic effects of quercetin in gastrointestinal cancers (pancreatic, gastric, colorectal, esophageal, hepatocellular, and oral).
Collapse
Affiliation(s)
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raha Jafari
- Department of Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Mehrad Khoddami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Parastoo EsnaAshari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Aflatoonian
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fateme Elikaii
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Melika Sadat Zakeri
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohammad Aghajani
- Infectious Disease Research Center, School of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | - Minoodokht Bavarsadkarimi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
22
|
Network Pharmacology and Molecular Docking Analysis on Pharmacological Mechanisms of Astragalus membranaceus in the Treatment of Gastric Ulcer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9007396. [PMID: 35140802 PMCID: PMC8820867 DOI: 10.1155/2022/9007396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Astragalus membranaceus (AM, family: Leguminosae) exerts significant therapeutic effect on gastric ulcer (GU); however, there are scarce studies on its molecular mechanism against GU. This study aims to explore the key ingredients, key targets, and potential mechanisms of AM in the treatment of GU by utilizing network pharmacology and molecular docking. METHODS Several public databases were used to predict the targets of AM and GU, respectively, and the drug and disease targets were intersected to obtain the common targets. Next, the key ingredients and key targets were identified by constructing ingredient-target network and protein-protein-interaction (PPI) network. Gene Ontology biological processes (GOBP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were carried out on the common targets in order to ascertain the biological processes and signaling pathways involved. Finally, molecular docking was conducted to verify the binding affinity between the key ingredients and key targets. RESULTS A total of 552 predicted targets were obtained from 23 screened active ingredients, of which 203 targets were the common targets with GU. Quercetin, kaempferol, and isorhamnetin were identified as the key ingredients by constructing ingredient-target network, and TP53, AKT1, VEGFA, IL6, TNF, CASP3, and EGFR were selected as the key targets by constructing PPI network. GOBP and KEGG pathway enrichment analysis suggested that the therapeutic effect of AM on GU involved multiple biological processes and signaling pathways related to inflammation, oxidative stress, apoptosis, cell proliferation, and angiogenesis. Molecular docking validation demonstrated that all key ingredients had good binding affinity with the key targets. CONCLUSION This study revealed the key ingredients, key targets, and potential mechanisms of AM against GU, and these data may provide some crucial references for subsequent research and development of drugs for treating GU.
Collapse
|
23
|
Li Z, Du X, Li Y, Wang R, Liu C, Cao Y, Wu W, Sun J, Wang B, Huang Y. Pharmacokinetics of gallic acid and protocatechuic acid in humans after dosing with Relinqing (RLQ) and the potential for RLQ-perpetrated drug-drug interactions on organic anion transporter (OAT) 1/3. PHARMACEUTICAL BIOLOGY 2021; 59:757-768. [PMID: 34144662 PMCID: PMC8216263 DOI: 10.1080/13880209.2021.1934039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Relinqing granules (RLQ) are being used alone or in combination with antibacterial drugs to treat urological disorders. OBJECTIVE This study investigates the pharmacokinetics of RLQ in humans and the potential for RLQ-perpetrated interactions on transporters. MATERIALS AND METHODS Twelve healthy subjects (six women and six men) participated to compare single- and multiple-dose pharmacokinetics of RLQ. In the single-dose study, all 12 subjects received 8 g of RLQ orally. After a 7-d washout period, the subjects received 8 g of RLQ for seven consecutive days (t.i.d.) and then a single dose. Gallic acid (GA) and protocatechuic acid (PCA) in plasma and urine samples were analysed using LC-MS/MS. The transfected cells were used to study the inhibitory effect of GA (50-5000 μg/L) and PCA (10-1000 μg/L) on transporters OAT1, OAT3, OCT2, OATP1B1, P-gp and BCRP. RESULTS GA and PCA were absorbed into the blood within 1 h after administration and rapidly eliminated with a half-life of less than 2 h. The mean peak concentrations of GA (102 and 176 μg/L) and PCA (4.54 and 7.58 μg/L) were lower in males than females, respectively. The 24 h urine recovery rates of GA and PCA were about 10% and 5%, respectively. The steady-state was reached in 7 d without accumulation. GA was a potent inhibitor of OAT1 (IC50 = 3.73 μM) and OAT3 (IC50 = 29.41 μM), but not OCT2, OATP1B1, P-gp or BCRP. DISCUSSION AND CONCLUSIONS GA and PCA are recommended as PK-markers in RLQ-related pharmacokinetic and drug interaction studies. We should pay more attention to the potential for RLQ-perpetrated interactions on transporters.
Collapse
Affiliation(s)
- Ziqiang Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xi Du
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yanfen Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Ruihua Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Changxiao Liu
- Tianjin Institute of Pharmaceutical Research, Tianjin, PR China
| | - Yanguang Cao
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Weidang Wu
- TIPR Pharmaceutical Responsible Co., Ltd, Tianjin, PR China
| | - Jinxia Sun
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Baohe Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| |
Collapse
|
24
|
Karuppusamy N, Mariyappan V, Chen SM, Keerthi M, Ramachandran R. A simple electrochemical sensor for quercetin detection based on cadmium telluride nanoparticle incorporated on boron, sulfur co-doped reduced graphene oxide composite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Song X, He Y, Liu M, Yang Y, Yuan Y, Yan J, Zhang M, Huang J, Zhang S, Mo F. Mechanism underlying Polygonum capitatum effect on Helicobacter pylori-associated gastritis based on network pharmacology. Bioorg Chem 2021; 114:105044. [PMID: 34157554 DOI: 10.1016/j.bioorg.2021.105044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori (H. pylori) infection is a common disease that can cause H. pylori-associated gastritis (HAG), peptic ulcers, and gastric cancer. As a traditional Chinese medicine, Polygonum capitatum (PC) manifests its unique advantages in the prevention and treatment of complex diseases and chronic diseases, due to its ability to clear heat, detoxify and relieve pain, promote blood circulation, and remove blood stasis. In order to explore the molecular mechanism of PC for HAG, the study collected the predicted targets of active compounds, conducted functional analysis by the STRING database, collected HAG differential expression genes, and conducted KEGG enrichment analysis on the intersection of predicted targets and differential expression genes of gastritis by Cluego. The results show that PC works mainly by affecting phosphorylation of IκBα, NF-κB p65, p38MAPK, and ERK1/2 and nuclear transposition of NF-κB p65 and p-p38MAPK, which has been proved by in vivo and in vitro experiments. These results suggest that PC may act on HAG with multiple targets and pathways, and play a key role in the process of HAG treatment.
Collapse
Affiliation(s)
- Xiaohan Song
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Yun He
- Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang 550004, China
| | - Min Liu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Ye Yang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Yan Yuan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Jiaoyan Yan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Mengwei Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Jian Huang
- Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang 550004, China
| | - Shu Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China; Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang 550004, China.
| | - Fei Mo
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China; Department of Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang 550004, China.
| |
Collapse
|
26
|
Chen K, Zhang L, Qu Z, Wan F, Li J, Yang Y, Yan H, Huang S. Uncovering the Mechanisms and Molecular Targets of Weibing Formula 1 against Gastritis: Coupling Network Pharmacology with GEO Database. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5533946. [PMID: 34471638 PMCID: PMC8405302 DOI: 10.1155/2021/5533946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023]
Abstract
Weibing Formula 1, a classic traditional formula, has been widely used clinically to treat gastritis in recent years. However, the potential pharmacological mechanism of Weibing Formula 1 is still unclear to date. A network pharmacology-based strategy was performed to uncover the underlying mechanisms of Weibing Formula 1 against gastritis. Furthermore, we structured the drug-active ingredients-genes-disease network and PPI network of shared targets, and function enrichment analysis of these targets was carried out. Ultimately, Gene Expression Omnibus (GEO) datasets and real-time quantitative PCR were used to verify the related genes. We found 251 potential targets corresponding to 135 bioactive components of Weibing Formula 1. Then, 327 gastritis-related targets were known gastritis-related targets. Among which, 60 common targets were shared between potential targets of Weibing Formula 1 and known gastritis-related targets. The results of pathway enrichment analysis displayed that 60 common targets mostly participated in various pathways related to Toll-like receptor signaling pathway, MAPK signaling pathway, cytokine-cytokine receptor interaction pathway, chemokine signaling pathway, and apoptosis. Based on the GSE60427 dataset, 15 common genes were shared between differentially expressed genes and 60 candidate targets. The verification results of the GSE5081 dataset showed that except for DUOX2 and VCAM1, the other 13 genes were significantly upregulated in gastritis, which was consistent with the results in the GSE60427 dataset. More importantly, real-time quantitative PCR results showed that the expressions of PTGS2, MMP9, CXCL2, and CXCL8 were significantly upregulated and NOS2, EGFR, and IL-10 were downregulated in gastritis patients, while the expressions of PTGS2, MMP9, CXCL2, and CXCL8 were significantly downregulated and NOS2, EGFR, and IL-10 were upregulated after the treatment of Weibing Formula 1. PTGS2, NOS2, EGFR, MMP9, CXCL2, CXCL8, and IL-10 may be the important direct targets of Weibing Formula 1 in gastritis treatment. Our study revealed the mechanism of Weibing Formula 1 in gastritis from an overall and systematic perspective, providing a theoretical basis for further knowing and application of this formula in the future.
Collapse
Affiliation(s)
- Ke Chen
- Department of Traditional Chinese Medicine, People's Hospital of Xinjin District, Chengdu, China
| | - Luojian Zhang
- Department of Rehabilitation Medicine, China MCC5 Group Corp. Ltd. Hospital, China
| | - Zhen Qu
- Department of Foot and Ankle, Sichuan Provincial Orthopaedic Hospital, China
| | - Feng Wan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, China
- State Key Laboratory of Southwestern Chinese Medicine Resources/Chengdu University of Traditional Chinese Medicine, China
| | - Jia Li
- Department of Traditional Chinese Medicine, People's Hospital of Xinjin District, Chengdu, China
| | - Ye Yang
- Department of Traditional Chinese Medicine, People's Hospital of Xinjin District, Chengdu, China
| | - Hui Yan
- Department of Traditional Chinese Medicine, People's Hospital of Xinjin District, Chengdu, China
| | - Shile Huang
- Department of Acupuncture and Moxibustion, Hospital of Chengdu University of Traditional Chinese Medicine, China
| |
Collapse
|
27
|
González A, Casado J, Lanas Á. Fighting the Antibiotic Crisis: Flavonoids as Promising Antibacterial Drugs Against Helicobacter pylori Infection. Front Cell Infect Microbiol 2021; 11:709749. [PMID: 34354964 PMCID: PMC8329489 DOI: 10.3389/fcimb.2021.709749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over half of the world’s population is estimated to be infected with Helicobacter pylori. Chronic infection with this microbial class I carcinogen is considered the most important risk factor for developing gastric cancer. The increasing antimicrobial resistance to first-line antibiotics mainly causes the failure of current eradication therapies, inducing refractory infections. The alarming increase in multidrug resistance in H. pylori isolates worldwide is already beginning to limit the efficacy of existing treatments. Consequently, the World Health Organization (WHO) has included H. pylori in its list of “priority pathogens” for which new antibiotics are urgently needed. Novel strategies must be followed to fight this antibiotic crisis, including properly exploiting the proven therapeutic potential of medicinal plants and plant-derived phytochemicals. In this mini-review, we overview the impressive properties of naturally occurring flavonoids as effective antimicrobial agents against H. pylori, which support the use of these plant-derived bioactive compounds as promising drug candidates for inclusion in novel and personalized combinatory therapies against H. pylori infection.
Collapse
Affiliation(s)
- Andrés González
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Javier Casado
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Ángel Lanas
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain.,Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain.,Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| |
Collapse
|
28
|
Li Y, Li X, Tan Z. An overview of traditional Chinese medicine therapy for Helicobacter pylori-related gastritis. Helicobacter 2021; 26:e12799. [PMID: 33765344 DOI: 10.1111/hel.12799] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Helicobacter pylori-associated gastritis (HPAG) is a common digestive system disease that its therapeutic goal is to eradicate Helicobacter pylori. However, due to the widespread use of antibiotics, problems for example, antibiotic resistance, reinfection, and gastrointestinal side effects have emerged. The solution of above problems provides a broad space for traditional Chinese medicine (TCM) to exert its remarkable advantages on the treatment of HPAG. METHODS Extensive database retrieval using platforms not limited to but including Web of Science, SpringerLink, ScienceDirect, Google Scholar, China National Knowledge Infrastructure, Wanfang, and VIP database was performed using keywords such as "Helicobacter pylori-associated gastritis" or "HPAG" or "Helicobacter pylori" or "H. pylori" or "gastritis" and "traditional Chinese medicine" or "TCM" or "herbs" or "Chinese herbal medicine". In addition, related books, PhD, and master's dissertations were also researched to provide a comprehensive review. RESULTS This review mainly introduces the clinical efficacy of TCM formulas for HPAG, as well as active ingredient and pharmacological mechanisms of herbs. What's more, this review puts forward potential prospects for future research. CONCLUSION These research works have shown the therapeutic benefits of TCM in the treatment of HPAG. The development of TCM with more specific functions and practical data will not only become a significant trend in the world market but also have an irreplaceable role in the future treatment of HPAG. More continued researches should be undertaken in the future.
Collapse
Affiliation(s)
- Yuli Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
29
|
Shen X, Zhang W, Peng C, Yan J, Chen P, Jiang C, Yuan Y, Chen D, Zhu W, Yao M. In vitro anti-bacterial activity and network pharmacology analysis of Sanguisorba officinalis L. against Helicobacter pylori infection. Chin Med 2021; 16:33. [PMID: 33865425 PMCID: PMC8052767 DOI: 10.1186/s13020-021-00442-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background Helicobacter pylori (H. pylori) infection has become an international public health problem, and antibiotic-based triple or quadruple therapy is currently the mainstay of treatment. However, the effectiveness of these therapies decreases due to resistance to multiple commonly used antibiotics. Sanguisorba officinalis L. (S. officinalis), a traditional Chinese medicine clinically used for hemostasis and treatment of diarrhea, has various pharmacological activities. In this study, in vitro antimicrobial activity was used for the preliminary evaluation of S. officinalis against H. pylori. And a pharmacology analysis approach was also utilized to elucidate its underlying mechanisms against H. pylori infection. Methods Micro-broth dilution method, agar dilution method, checkerboard assay, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used for the assessment of anti-bacterial activity. Active ingredients screening, GO analysis, KEGG analysis, construction of PPI network, molecular docking, and RT-qPCR were used to elucidate the underlying pharmacological mechanisms of S. officinalis against H. pylori infection. Results The minimum inhibitory concentration (MIC) values of S. officinalis against multiple H. pylori strains including clinically isolated multi-drug resistant (MDR) strains were ranging from 160 to 320 µg/ml. These results showed that S. officinalis had additive interaction with four commonly used antibiotics and could exert antibacterial effect by changing the morphology of bacteria without developing drug resistance. Through network pharmacology analysis, 8 active ingredients in S. officinalis were screened out for subsequent studies. Among 222 putative targets of S. officinalis, 49 targets were identified as potential targets for treatment of H. pylori infection. And these 49 targets were significantly enriched in GO processes such as protein kinase B signaling, protein kinase activity, protein kinase binding, and KEGG pathways such as Pathways in cancer, MicroRNAs in cancer, and TNF signaling pathway. Protein-protein interaction analysis yielded 5 core targets (AKT1, VEGFA, EGFR, SRC, CCND1), which were validated by molecular docking and RT-qPCR. Conclusions Overall, this study confirmed the in vitro inhibitory activity of S. officinalis against H. pylori and explored the possible pharmacological mechanisms, laying the foundation for further research and clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00442-1.
Collapse
Affiliation(s)
- Xue Shen
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Weijia Zhang
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chang Peng
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiahui Yan
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Pengting Chen
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Cheng Jiang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuemei Yuan
- School of Ecology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Donglian Chen
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Meicun Yao
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Gastroprotective Effects of Polyphenols against Various Gastro-Intestinal Disorders: A Mini-Review with Special Focus on Clinical Evidence. Molecules 2021; 26:molecules26072090. [PMID: 33917379 PMCID: PMC8038706 DOI: 10.3390/molecules26072090] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022] Open
Abstract
Polyphenols are classified as an organic chemical with phenolic units that display an array of biological functions. However, polyphenols have very low bioavailability and stability, which make polyphenols a less bioactive compound. Many researchers have indicated that several factors might affect the efficiency and the metabolism (biotransformation) of various polyphenols, which include the gut microbiota, structure, and physical properties as well as its interactions with other dietary nutrients (macromolecules). Hence, this mini-review covers the two-way interaction between polyphenols and gut microbiota (interplay) and how polyphenols are metabolized (biotransformation) to produce various polyphenolic metabolites. Moreover, the protective effects of numerous polyphenols and their metabolites against various gastrointestinal disorders/diseases including gastritis, gastric cancer, colorectal cancer, inflammatory bowel disease (IBD) like ulcerative colitis (UC), Crohn’s disease (CD), and irritable bowel syndrome (IBS) like celiac disease (CED) are discussed. For this review, the authors chose only a few popular polyphenols (green tea polyphenol, curcumin, resveratrol, quercetin), and a discussion of their proposed mechanism underpinning the gastroprotection was elaborated with a special focus on clinical evidence. Overall, this contribution would help the general population and science community to identify a potent polyphenol with strong antioxidant, anti-inflammatory, anti-cancer, prebiotic, and immunomodulatory properties to combat various gut-related diseases or disorders (complementary therapy) along with modified lifestyle pattern and standard gastroprotective drugs. However, the data from clinical trials are much limited and hence many large-scale clinical trials should be performed (with different form/metabolites and dose) to confirm the gastroprotective activity of the above-mentioned polyphenols and their metabolites before recommendation.
Collapse
|
31
|
Lu S, Zhou S, Chen J, Zheng J, Ren J, Qi P, Zhu Z, Li Z. Quercetin Nanoparticle Ameliorates Lipopolysaccharide-Triggered Renal Inflammatory Impairment by Regulation of Sirt1/NF-KB Pathway. J Biomed Nanotechnol 2021; 17:230-241. [PMID: 33785094 DOI: 10.1166/jbn.2021.3031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a conventional complication of sepsis, acute kidney injury (AKI) is characterized by high incidence and mortality. Effective management methods are still lacking. Quercetin belongs to a kind of flavonoids that exerts many functions, for example anti-inflammation and anti-fibrosis. However, its function in sepsis AKI is uncertain. Our study therefore set out to assess the function of quercetin in AKI mice model induced by lipopolysaccharide (LPS) and human proximal tubular cells (HK-2), including the potential mechanisms. Quercetin was loaded onto a biodegradable polymer carrier (nanoparticle) to enhance its bioavailability. The data showed that quercetin administration strikingly improved renal dysfunction and ameliorated tubular injury caused by LPS in mice. In mice model and in cultured cells, quercetin pretreatment obviously restrained LPS-triggered cell apoptosis and inflammation, including generation of various cytokines. Moreover, the results from mice model and cell model showed that quercetin could diminish IκBα and p65 phosphorylation after LPS treatment. The most significant observation of this study was that quercetin elevated the expression of Sirt1. Transfection of Sirt1 specific shRNA mitigated the suppression of quercetin on cell apoptosis, inflammation and of NF-κB activation triggered by LPS. Therefore, these sequels indicate that quercetin protects against sepsis-associated AKI by upregulation Sirt1 expression through quenching NF-κB activation and may be an encouraging therapeutic agent for patients with sepsis-associated AKI.
Collapse
Affiliation(s)
- Shan Lu
- Department of Emergency, The First Affiliated Hospital ofZhengzhou University, Zhengzhou 450052, PR China
| | - Shuai Zhou
- Department of Cardiology, The First Affiliated Hospital ofZhengzhou University, Zhengzhou 450052, PR China
| | - Juwu Chen
- Department of Emergency, The First Affiliated Hospital ofZhengzhou University, Zhengzhou 450052, PR China
| | - Jian Zheng
- Department of Thyroid Surgery, The First Affiliated Hospital ofZhengzhou University, Zhengzhou 450052, PR China
| | - Jia Ren
- Department of Emergency, The First Affiliated Hospital ofZhengzhou University, Zhengzhou 450052, PR China
| | - Peiyi Qi
- Department of Emergency, The First Affiliated Hospital ofZhengzhou University, Zhengzhou 450052, PR China
| | - Zhiqiang Zhu
- Department of Emergency, The First Affiliated Hospital ofZhengzhou University, Zhengzhou 450052, PR China
| | - Zhenzhen Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| |
Collapse
|
32
|
Marzouk AA, Taher ES, Shaykoon MSA, Lan P, Abd-Allah WH, Aboregela AM, El-Behairy MF. Design, synthesis, biological evaluation, and computational studies of novel thiazolo-pyrazole hybrids as promising selective COX-2 inhibitors: Implementation of apoptotic genes expression for ulcerogenic liability assessment. Bioorg Chem 2021; 111:104883. [PMID: 33865053 DOI: 10.1016/j.bioorg.2021.104883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
A novel series of thiazolo-pyrazole hybrids has been prepared and assessed for their in vitro COX-1/COX-2 inhibitory activity. Compound 6c exhibited the most selective COX-2 inhibition profile (SI of 264) not far of Celecoxib (294). In-vivo anti-inflammatory activity revealed that compound 6d exhibited the highest activity (97.30% inhibition of edema) exceeding reference standard Indomethacin (84.62% inhibition of edema). The ulcerogenic liability tested, using gross, microscopic, biochemical analysis and apoptotic genes expression, showed that compound 6b matched the optimal candidate activity (ulcer index = 120, selectivity index of ~ 162 and 77% in-vivo inhibition of edema). Meanwhile, compound 6 m (ulcer index = 0) showcased the highest safety profile. Molecular modeling analysis and drug likeness studies presented appreciated agreement with the biological evaluation.
Collapse
Affiliation(s)
- Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt
| | - Ehab S Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt.
| | - Montaser Sh A Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| | - Walaa Hamada Abd-Allah
- Pharmaceutical Chemistry Department, Collage of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, P.O. 77, 6th of October City, Giza, Egypt
| | - Adel M Aboregela
- Basic Medical Science, College of Medicine, University of Bisha, Saudi Arabia; Human Anatomy and Embryology, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32897 Egypt
| |
Collapse
|
33
|
Wu F, Chen C, Peng F. Potential Association Between Asthma, Helicobacter pylori Infection, and Gastric Cancer. Front Oncol 2021; 11:630235. [PMID: 33763365 PMCID: PMC7982477 DOI: 10.3389/fonc.2021.630235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/05/2021] [Indexed: 02/01/2023] Open
Abstract
Background: The prevalence of Helicobacter pylori infection (HPI) is still high around the world, which induces gastric diseases, such as gastric cancer (GC). The epidemiological investigation showed that there was an association between HPI and asthma (AST). Coptidis rhizoma (CR) has been reported as an herbal medicine with anti-inflammatory and anti-bacterial effects. Purpose: The present study was aimed to investigate the protective mechanism of HPI on AST and its adverse effects on the development of GC. Coptis chinensis was used to neutralize the damage of HPI in GC and to hopefully intensify certain protective pathways for AST. Method: The information about HPI was obtained from the public database Comparative Toxicogenomics Database (CTD). The related targets in AST and GC were obtained from the public database GeneCards. The ingredients of CR were obtained from the public database Traditional Chinese Medicine Systems Pharmacology (TCMSP). The network pharmacology including gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and molecular docking were utilized. Protein–protein interaction was constructed to analyze the functional link of target genes. The molecular docking was employed to study the potential effects of active ingredients from CR on key target genes. Result: The top 10 key targets of HPI for AST were CXCL9, CX3CL1, CCL20, CCL4, PF4, CCL27, C5AR1, PPBP, KNG1, and ADORA1. The GO biological process involved mainly leukocyte migration, which responded to bacterium. The (R)-canadine and quercetin were selected from C. chinensis, which were employed to explore if they inhibited the HPI synchronously and protect against AST. The targets of (R)-canadine were SLC6A4 and OPRM1. For ingredient quercetin, the targets were AKR1B1 and VCAM1. Conclusion: CXCL9 and VCAM1 were the common targets of AST and HPI, which might be one of the imported targets of HPI for AST. Quercetin could be an effective ingredient to suppress HPI and help prevent AST.
Collapse
Affiliation(s)
- Fengxia Wu
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Cai Chen
- Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China
| | - Fulai Peng
- Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China
| |
Collapse
|
34
|
Liu JF, Guo D, Kang EM, Wang YS, Gao XZ, Cong HY, Liu P, Zhang NQ, Wang MY. Acute and chronic infection of H. pylori caused the difference in apoptosis of gastric epithelial cells. Microb Pathog 2021; 150:104717. [PMID: 33421608 DOI: 10.1016/j.micpath.2020.104717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Helicobacter pylori (H. pylori) is one of the most important pathogenic bacteria associated with various gastrointestinal diseases. At present, its apoptotic or antiapoptotic mechanism on gastric epithelial cells remains unknown and needs further illustrated. In this study, acute infection model (H. pylori and GES-1 cells were co-cultured for 24 h at a multiplicity of infection MOI of 100:1) and chronic infection model (GES-1 cells were infected repeatedly every 24 h at a multiplicity of infection MOI of 100:1 for approximately 8 weeks) were established, respectively. the chronic H. pylori infected GES-1 cells underwent a typically morphological change and Western Blot results showed that there was slight decrease in expression of E-cadherin, and obvious increase in expression of Vimentin. Apoptosis of these two models were analyzed by flow cytometry compared with the control cells, meanwhile, apoptosis associated markers (Bcl-xL, Bcl-2, Bax, etc) were detected by Western blot, additional in clinical H. pylori-positive gastric cancer tissues. Results showed that compared with the control cells, acute infection of H. pylori significantly accelerated the apoptosis of GES-1, increased the expression of Bax and Cleaved caspase-3, down-regulated expression of Bcl-xL and Bcl-2. Moreover, an opposite result was found in chronic infection of model and clinical gastric cancer tissues, and enhanced expression of NF-κB p65. Taken together, these findings suggest that H. pylori infection plays differential effects on apoptosis of gastric epithelial cells.
Collapse
Affiliation(s)
- Jia-Fei Liu
- Department of Central Lab, Weihai Municipal Hospital, Shandong University. Weihai, Shandong, 264200, PR China; Department of Medical Laboratory Science, Weifang Medical University, Weifang, Shandong, 261000, PR China
| | - Dong Guo
- Department of Central Lab, Weihai Municipal Hospital, Shandong University. Weihai, Shandong, 264200, PR China
| | - En-Ming Kang
- Department of Central Lab, Weihai Municipal Hospital, Shandong University. Weihai, Shandong, 264200, PR China
| | - Yu-Shan Wang
- School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning, 116044, PR China
| | - Xiao-Zhong Gao
- Department of Gastroenterology, Weihai Municipal Hospital, Shandong University. Weihai, Shandong, 264200, PR China
| | - Hai-Yan Cong
- Department of Central Lab, Weihai Municipal Hospital, Shandong University. Weihai, Shandong, 264200, PR China
| | - Peng Liu
- Department of Central Lab, Weihai Municipal Hospital, Shandong University. Weihai, Shandong, 264200, PR China
| | - Nai-Qian Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, Shandong, 264209, PR China.
| | - Ming-Yi Wang
- Department of Central Lab, Weihai Municipal Hospital, Shandong University. Weihai, Shandong, 264200, PR China; Department of Medical Laboratory Science, Weifang Medical University, Weifang, Shandong, 261000, PR China.
| |
Collapse
|
35
|
Shi D, Liu L, Li H, Pan D, Yao X, Xiao W, Yao X, Yu Y. Identifying the molecular basis of Jinhong tablets against chronic superficial gastritis via chemical profile identification and symptom-guided network pharmacology analysis. J Pharm Anal 2021; 12:65-76. [PMID: 35573887 PMCID: PMC9073317 DOI: 10.1016/j.jpha.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Danfeng Shi
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Lingxian Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Haibo Li
- Kanion Pharmaceutical Co., Ltd., State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Dabo Pan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Wei Xiao
- Kanion Pharmaceutical Co., Ltd., State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
- Corresponding author.
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
- Corresponding author.
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
- Corresponding author.
| |
Collapse
|
36
|
Vafadar A, Shabaninejad Z, Movahedpour A, Fallahi F, Taghavipour M, Ghasemi Y, Akbari M, Shafiee A, Hajighadimi S, Moradizarmehri S, Razi E, Savardashtaki A, Mirzaei H. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci 2020; 10:32. [PMID: 32175075 PMCID: PMC7063794 DOI: 10.1186/s13578-020-00397-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/29/2020] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer is known as a serious malignancy that affects women's reproductive tract and can considerably threat their health. A wide range of molecular mechanisms and genetic modifications have been involved in ovarian cancer pathogenesis making it difficult to develop effective therapeutic platforms. Hence, discovery and developing new therapeutic approaches are required. Medicinal plants, as a new source of drugs, could potentially be used alone or in combination with other medicines in the treatment of various cancers such as ovarian cancer. Among various natural compounds, quercetin has shown great anti-cancer and anti-inflammatory properties. In vitro and in vivo experiments have revealed that quercetin possesses a cytotoxic impact on ovarian cancer cells. Despite obtaining good results both in vitro and in vivo, few clinical studies have assessed the anti-cancer effects of quercetin particularly in the ovarian cancer. Therefore, it seems that further clinical studies may introduce quercetin as therapeutic agent alone or in combination with other chemotherapy drugs to the clinical setting. Here, we not only summarize the anti-cancer effects of quercetin but also highlight the therapeutic effects of quercetin in the ovarian cancer.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Fallahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Mona Taghavipour
- Department of Gynecology and Obstetrics, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Akbari
- Department of Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON Canada
| | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| |
Collapse
|
37
|
Hu S, Niu J, Zhang R, Li X, Luo M, Sang T, Guo J, Liu J, Ding X, Li X, Ma Y, Gao R. Orexin A associates with inflammation by interacting with OX1R/OX2R receptor and activating prepro-Orexin in cancer tissues of gastric cancer patients. GASTROENTEROLOGIA Y HEPATOLOGIA 2020; 43:240-247. [PMID: 31983458 DOI: 10.1016/j.gastrohep.2019.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Gastric cancer (GC) has been become the second leading cause for cancer-associated death. This study aimed to investigate Orexin A levels and associated receptors in tumor tissues of GC patients. PATIENTS AND METHODS Forty-six consecutive gastric cancer patients (GC, n=46) and 13 chronic atrophic gastritis patients (CAG, n=13) were recruited. Meanwhile, 18 health individuals visiting Medical Examination Department were involved as control (N group, n=18). ELISA was used to examine Orexin A concentration. Immunohistochemistry assay was used to examine OX1R and OX2R. HE staining was applied to evaluate inflammation. qRT-PCR was employed to detect OX1R, OX2R, prepro-Orexin mRNAs. Serum Helicobacter pylori (H. pylori) infection was measured. RESULTS Orexin A expression in GC patients was significantly up-regulated compared to N group and CAG group (p<0.05). Orexin A expression was increased in CAG group compared to N group (p<0.05). Gastric cancer tissues exhibited significantly obvious inflammation compared to N group and CAG group (p<0.05). OX1R and OX2R expressions were significantly down-regulated in GC group compared to N group and CAG group (p<0.05). OX1R and OX2R were lower significantly in GC group compared to CAG group (p<0.05). Prepro-Orexin was significantly depleted in tumor tissues of GC group compared to N group and CAG group (p<0.05). Orexin A expression was un-associated with gender, age and differential grades (p>0.05). CAG and GC patients demonstrated higher H. pylori infection rates. CONCLUSION Orexin A was associated with inflammation by interacting with OX1R/OX2R receptor and activating prepro-Orexin in tumor tissues of gastric cancer patients.
Collapse
Affiliation(s)
- Shengjuan Hu
- Digestive division, Endoscopic center, People's Hospital of Ningxia Hui Autunomous Region, Yinchuan, China.
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Rong Zhang
- 521 Hospital of Norinco Group, Xi'an, China
| | - Ximei Li
- Digestive division, Endoscopic center, People's Hospital of Ningxia Hui Autunomous Region, Yinchuan, China
| | - Ming Luo
- Digestive division, Endoscopic center, People's Hospital of Ningxia Hui Autunomous Region, Yinchuan, China
| | - Tian Sang
- Digestive division, Endoscopic center, People's Hospital of Ningxia Hui Autunomous Region, Yinchuan, China
| | - Jianyang Guo
- Digestive division, Endoscopic center, People's Hospital of Ningxia Hui Autunomous Region, Yinchuan, China
| | - Jun Liu
- Digestive division, Endoscopic center, People's Hospital of Ningxia Hui Autunomous Region, Yinchuan, China
| | - Xiaoling Ding
- Digestive division, Endoscopic center, People's Hospital of Ningxia Hui Autunomous Region, Yinchuan, China
| | - Xuemei Li
- Digestive division, Endoscopic center, People's Hospital of Ningxia Hui Autunomous Region, Yinchuan, China
| | - Yuhong Ma
- Digestive division, Endoscopic center, People's Hospital of Ningxia Hui Autunomous Region, Yinchuan, China
| | - Ruiping Gao
- Digestive division, Endoscopic center, People's Hospital of Ningxia Hui Autunomous Region, Yinchuan, China
| |
Collapse
|
38
|
Sharafutdinov I, Backert S, Tegtmeyer N. Cortactin: A Major Cellular Target of the Gastric Carcinogen Helicobacter pylori. Cancers (Basel) 2020; 12:E159. [PMID: 31936446 PMCID: PMC7017262 DOI: 10.3390/cancers12010159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cortactin is an actin binding protein and actin nucleation promoting factor regulating cytoskeletal rearrangements in nearly all eukaryotic cell types. From this perspective, cortactin poses an attractive target for pathogens to manipulate a given host cell to their own benefit. One of the pathogens following this strategy is Helicobacter pylori, which can cause a variety of gastric diseases and has been shown to be the major risk factor for the onset of gastric cancer. During infection of gastric epithelial cells, H. pylori hijacks the cellular kinase signaling pathways, leading to the disruption of key cell functions. Specifically, by overruling the phosphorylation status of cortactin, H. pylori alternates the activity of molecular interaction partners of this important protein, thereby manipulating the performance of actin-cytoskeletal rearrangements and cell movement. In addition, H. pylori utilizes a unique mechanism to activate focal adhesion kinase, which subsequently prevents host epithelial cells from extensive lifting from the extracellular matrix in order to achieve chronic infection in the human stomach.
Collapse
Affiliation(s)
| | | | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058 Erlangen, Germany; (I.S.); (S.B.)
| |
Collapse
|
39
|
González A, Salillas S, Velázquez-Campoy A, Espinosa Angarica V, Fillat MF, Sancho J, Lanas Á. Identifying potential novel drugs against Helicobacter pylori by targeting the essential response regulator HsrA. Sci Rep 2019; 9:11294. [PMID: 31383920 PMCID: PMC6683298 DOI: 10.1038/s41598-019-47746-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing antibiotic resistance evolved by Helicobacter pylori has alarmingly reduced the eradication rates of first-line therapies. To overcome the current circulating resistome, we selected a novel potential therapeutic target in order to identify new candidate drugs for treating H. pylori infection. We screened 1120 FDA-approved drugs for molecules that bind to the essential response regulator HsrA and potentially inhibit its biological function. Seven natural flavonoids were identified as HsrA binders. All of these compounds noticeably inhibited the in vitro DNA binding activity of HsrA, but only four of them, apigenin, chrysin, kaempferol and hesperetin, exhibited high bactericidal activities against H. pylori. Chrysin showed the most potent bactericidal activity and the most synergistic effect in combination with clarithromycin or metronidazole. Flavonoid binding to HsrA occurs preferably at its C-terminal effector domain, interacting with amino acid residues specifically involved in forming the helix-turn-helix DNA binding motif. Our results validate the use of HsrA as a novel and effective therapeutic target in H. pylori infection and provide molecular evidence of a novel antibacterial mechanism of some natural flavonoids against H. pylori. The results further support the valuable potential of natural flavonoids as candidate drugs for novel antibacterial strategies.
Collapse
Affiliation(s)
- Andrés González
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009, Zaragoza, Spain.
- Institute for Biocomputation and Physics of Complex Systems, Mariano Esquillor (Edif. I + D), 50018, Zaragoza, Spain.
| | - Sandra Salillas
- Institute for Biocomputation and Physics of Complex Systems, Mariano Esquillor (Edif. I + D), 50018, Zaragoza, Spain
- Department of Biochemistry & Molecular and Cell Biology, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems, Mariano Esquillor (Edif. I + D), 50018, Zaragoza, Spain
- CIBERehd, Monforte de Lemos 3-5, 28029, Madrid, Spain
- ARAID Foundation, Ranillas 1-D, 500018, Zaragoza, Spain
| | - Vladimir Espinosa Angarica
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, #12-01, 117599, Singapore, Singapore
| | - María F Fillat
- Institute for Biocomputation and Physics of Complex Systems, Mariano Esquillor (Edif. I + D), 50018, Zaragoza, Spain
- Department of Biochemistry & Molecular and Cell Biology, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Javier Sancho
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems, Mariano Esquillor (Edif. I + D), 50018, Zaragoza, Spain
- Department of Biochemistry & Molecular and Cell Biology, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Ángel Lanas
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009, Zaragoza, Spain
- CIBERehd, Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, San Juan Bosco 15, 50009, Zaragoza, Spain
| |
Collapse
|
40
|
Calcagno DQ, Wisnieski F, Mota ERDS, Maia de Sousa SB, Costa da Silva JM, Leal MF, Gigek CO, Santos LC, Rasmussen LT, Assumpção PP, Burbano RR, Smith MAC. Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives. Epigenomics 2019; 11:349-362. [DOI: 10.2217/epi-2018-0081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.
Collapse
Affiliation(s)
- Danielle Q Calcagno
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Universidade Federal do Pará, Belém, PA, Brazil
- Residência Multiprofissional em Saúde/Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Elizangela R da Silva Mota
- Programa de Pós-graduação em Química Medicinal e Modelagem Molecular, Universidade Federal do Pará, Belém, PA, Brazil
| | - Stefanie B Maia de Sousa
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Mariana F Leal
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| | - Carolina O Gigek
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
- Departamento de Patologia, Universidade Federal de São Paulo, SP, Brazil
| | - Leonardo C Santos
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| | - Lucas T Rasmussen
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade do Sagrado Coração, Bauru, SP, Brazil
| | - Paulo P Assumpção
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Rommel R Burbano
- Programa de Pós-graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, PA, Brazil
| | - Marília AC Smith
- Disciplina de Genética, Universidade Federal de São Paulo, SP, Brazil
| |
Collapse
|