1
|
Sayyad F, Gandhi K, Sharma R, Amrutha TM, Gautam PB, Harshitha CG. Development and validation of paper-based strip method for the detection of formalin in milk. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2367-2376. [PMID: 39431183 PMCID: PMC11486868 DOI: 10.1007/s13197-024-06003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 10/22/2024]
Abstract
Formalin has been reported to be added to milk to prolong the shelf life of milk. The present study was conducted to develop and validate liquid-phase and paper-based strip methods for the rapid detection of formalin in milk using four different procedures i.e., A, B, C and D. Among all the procedures, procedure A worked successfully both in the liquid-phase and paper-based assays. The developed strip-based method involved the dipping of the strips in milk followed by visualization of change in colour. Formalin adulterated milk gave yellow colour to the strip, while for normal milk, it remained colourless. Limit of detection of developed strips was 0.05% with a response time of 7-8 min. Shelf life of the strips was a minimum of 6 months at both room (30-37 °C) and refrigeration (4 ℃) temperature. The strips can be used both at field as well as household levels for rapid detection of formalin presence in milk with greater sensitivity and hence can contribute in supplying authentic milk to the consumers.
Collapse
Affiliation(s)
| | | | | | | | - Priyae Brath Gautam
- Department of Dairy Chemistry, Warner College of Dairy Technology, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, India
| | | |
Collapse
|
2
|
Craig EM, Oprea F, Alam S, Grodsky A, Miller KE. A simple active fluid model unites cytokinesis, cell crawling, and axonal outgrowth. Front Cell Dev Biol 2024; 12:1491429. [PMID: 39483337 PMCID: PMC11524947 DOI: 10.3389/fcell.2024.1491429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
While the structural organization and molecular biology of neurons are well characterized, the physical process of axonal elongation remains elusive. The classic view posited elongation occurs through the deposition of cytoskeletal elements in the growth cone at the tip of a stationary array of microtubules. Yet, recent studies reveal axonal microtubules and docked organelles flow forward in bulk in the elongating axons of Aplysia, chick sensory, rat hippocampal, and Drosophila neurons. Noting that the morphology, molecular components, and subcellular flow patterns of growth cones strongly resemble the leading edge of migrating cells and the polar regions of dividing cells, our working hypothesis is that axonal elongation utilizes the same physical mechanisms that drive cell crawling and cell division. As a test of that hypothesis, here we take experimental data sets of sub-cellular flow patterns in cells undergoing cytokinesis, mesenchymal migration, amoeboid migration, neuronal migration, and axonal elongation. We then apply active fluid theory to develop a biophysical model that describes the different sub-cellular flow profiles across these forms of motility and how this generates cell motility under low Reynolds numbers. The modeling suggests that mechanisms for generating motion are shared across these processes, and differences arise through modifications of sub-cellular adhesion patterns and the profiles of internal force generation. Collectively, this work suggests that ameboid and mesenchymal cell crawling may have arisen from processes that first developed to support cell division, that growth cone motility and cell crawling are closely related, and that neuronal migration and axonal elongation are fundamentally similar, differing primarily in the motion and strength of adhesion under the cell body.
Collapse
Affiliation(s)
- Erin M. Craig
- Central Washington University, Department of Physics, Ellensburg, WA, United States
| | - Francesca Oprea
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Sajid Alam
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Ania Grodsky
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Kyle E. Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Fatima I, Rehman A, Ding Y, Wang P, Meng Y, Rehman HU, Warraich DA, Wang Z, Feng L, Liao M. Breakthroughs in AI and multi-omics for cancer drug discovery: A review. Eur J Med Chem 2024; 280:116925. [PMID: 39378826 DOI: 10.1016/j.ejmech.2024.116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Cancer is one of the biggest medical challenges we face today. It is characterized by abnormal, uncontrolled growth of cells that can spread to different parts of the body. Cancer is extremely complex, with genetic variations and the ability to adapt and evolve. This means we must continuously pursue innovative approaches to developing new cancer drugs. While traditional drug discovery methods have led to important breakthroughs, they also have significant limitations that make it difficult to efficiently create new, cost-effective cancer therapies. Integrating computational tools into the cancer drug discovery process is a major step forward. By harnessing computing power, we can overcome some of the inherent barriers of traditional methods. This review examines the range of computational techniques now being used, such as molecular docking, QSAR models, virtual screening, and pharmacophore modeling. It looks at recent advances in areas like machine learning and molecular simulations. The review also discusses the current challenges with these technologies and envisions future directions, underscoring how transformative these computational tools can be for creating targeted, new cancer treatments.
Collapse
Affiliation(s)
- Israr Fatima
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Abdur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yanheng Ding
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxuan Meng
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hafeez Ur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Dawood Ahmad Warraich
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhibo Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijun Feng
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Cadar E, Pesterau AM, Prasacu I, Ionescu AM, Pascale C, Dragan AML, Sirbu R, Tomescu CL. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants (Basel) 2024; 13:919. [PMID: 39199165 PMCID: PMC11351696 DOI: 10.3390/antiox13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine collagen is extracted from both vertebrate and invertebrate marine creatures. For vertebrates, this includes fish skin, bones, scales, fins, and cartilage. For invertebrates, it includes mollusks, echinoderms, crustaceans, and poriferans. The method used involved data analysis to organize information for isolating and identifying marine biocompounds with antioxidant properties. Specifically, amino acids with antioxidant properties were identified, enabling the use of hydrolysates and collagen peptides as natural antioxidant nutraceuticals. The methods of extraction of hydrolyzed collagen and collagen peptides by different treatments are systematized. The structural characteristics of collagen, collagen peptides, and amino acids in fish skin and by-products, as well as in invertebrate organisms (jellyfish, mollusks, and crustaceans), are described. The antioxidant properties of different methods of collagen hydrolysates and collagen peptides are systematized, and the results are comparatively analyzed. Their use as natural antioxidant nutraceuticals expands the range of possibilities for the exploitation of natural resources that have not been widely used until now.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania;
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania;
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Ana-Maria Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Bvd. Tomis, No. 145, 900591 Constanta, Romania
| |
Collapse
|
5
|
Visuddho V, Halim P, Helen H, Muhar AM, Iqhrammullah M, Mayulu N, Surya R, Tjandrawinata RR, Ribeiro RIMA, Tallei TE, Taslim NA, Kim B, Syahputra RA, Nurkolis F. Modulation of Apoptotic, Cell Cycle, DNA Repair, and Senescence Pathways by Marine Algae Peptides in Cancer Therapy. Mar Drugs 2024; 22:338. [PMID: 39195454 DOI: 10.3390/md22080338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Marine algae, encompassing both macroalgae and microalgae, have emerged as a promising and prolific source of bioactive compounds with potent anticancer properties. Despite their significant therapeutic potential, the clinical application of these peptides is hindered by challenges such as poor bioavailability and susceptibility to enzymatic degradation. To overcome these limitations, innovative delivery systems, particularly nanocarriers, have been explored. Nanocarriers, including liposomes, nanoparticles, and micelles, have demonstrated remarkable efficacy in enhancing the stability, solubility, and bioavailability of marine algal peptides, ensuring controlled release and prolonged therapeutic effects. Marine algal peptides encapsulated in nanocarriers significantly enhance bioavailability, ensuring more efficient absorption and utilization in the body. Preclinical studies have shown promising results, indicating that nanocarrier-based delivery systems can significantly improve the pharmacokinetic profiles and therapeutic outcomes of marine algal peptides. This review delves into the diverse anticancer mechanisms of marine algal peptides, which include inducing apoptosis, disrupting cell cycle progression, and inhibiting angiogenesis. Further research focused on optimizing nanocarrier formulations, conducting comprehensive clinical trials, and continued exploration of marine algal peptides holds great promise for developing innovative, effective, and sustainable cancer therapies.
Collapse
Affiliation(s)
- Visuddho Visuddho
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Adi Muradi Muhar
- Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Muhammad Iqhrammullah
- Postgraduate Program of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh 23123, Indonesia
| | - Nelly Mayulu
- Department of Nutrition, Faculty of Health Science, Muhammadiyah Manado University, Manado 95249, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Raymond Rubianto Tjandrawinata
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia
| |
Collapse
|
6
|
Li Q, Li B, Wang Q, Wang C, Yu M, Xu T. Marine-derived EGFR inhibitors: novel compounds targeting breast cancer growth and drug resistance. Front Pharmacol 2024; 15:1396605. [PMID: 38751788 PMCID: PMC11094307 DOI: 10.3389/fphar.2024.1396605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Breast cancer (BC) continues to be a major health challenge globally, ranking as the fifth leading cause of cancer mortality among women, despite advancements in cancer detection and treatment. In this study, we identified four novel compounds from marine organisms that effectively target and inhibit the Epidermal Growth Factor Receptor (EGFR), crucial for BC cell growth and proliferation. These compounds not only induced early apoptosis through Caspase-3 activation but also showed significant inhibitory effects on EGFR mutations associated with drug resistance (T790M, L858R, and L858R/T790M), demonstrating high EGFR kinase selectivity. Cell Thermal Shift Assay (CETSA) experiments indicated that Tandyukisin stabilizes EGFR in a concentration-dependent manner. Furthermore, binding competition assays using surface plasmon resonance technology revealed that Tandyukisin and Trichoharzin bound to distinct sites on EGFR and that their combined use enhanced apoptosis in BC cells. This discovery may pave the way for developing new marine-derived EGFR inhibitors, offering a promising avenue for innovative cancer treatment strategies and addressing EGFR-mediated drug resistance.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chengen Wang
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China
| | - Tianfu Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Rushendran R, Begum RF, Singh S A, Narayanan PL, Vellapandian C, Prajapati BG, Paul PK. Navigating neurological disorders: harnessing the power of natural compounds for innovative therapeutic breakthroughs. EXCLI JOURNAL 2024; 23:534-569. [PMID: 38741726 PMCID: PMC11089094 DOI: 10.17179/excli2024-7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 05/16/2024]
Abstract
Novel treatments are needed as neurological issues become more frequent worldwide. According to the report, plants, oceans, microorganisms, and animals contain interesting drug discovery compounds. Alzheimer's, Parkinson's, and stroke reviews emphasize neurological disorders' complexity and natural substances' safety. Learn about marine-derived and herbal substances' neuroprotective characteristics and applications. Molecular pathways show these substances' neurological healing effects. This article discusses clinical usage of Bryostatin-1, Fucoidan, Icariin, Salvianolic acid, Curcumin, Resveratrol, etc. Their potential benefits for asthma and Alzheimer's disease are complex. Although limited, the study promotes rigorous scientific research and collaboration between traditional and alternative medical practitioners. Unexplored natural compounds, quality control, well-structured clinical trials, and interdisciplinary collaboration should guide future study. Developing and employing natural chemicals to treat neurological illnesses requires ethical sourcing, sustainability, and public awareness. This detailed analysis covers natural chemicals' current state, challenges, and opportunities in neurological disorder treatment. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Pavithra Lakshmi Narayanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India
| | - Pijush Kumar Paul
- Department of Pharmacy, Gono Bishwabidyalay University, Mirzanagar, Savar, Dhaka-1344, Bangladesh
| |
Collapse
|
8
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
9
|
Mirra S, Marfany G. From Beach to the Bedside: Harnessing Mitochondrial Function in Human Diseases Using New Marine-Derived Strategies. Int J Mol Sci 2024; 25:834. [PMID: 38255908 PMCID: PMC10815353 DOI: 10.3390/ijms25020834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are double-membrane organelles within eukaryotic cells that act as cellular power houses owing to their ability to efficiently generate the ATP required to sustain normal cell function. Also, they represent a "hub" for the regulation of a plethora of processes, including cellular homeostasis, metabolism, the defense against oxidative stress, and cell death. Mitochondrial dysfunctions are associated with a wide range of human diseases with complex pathologies, including metabolic diseases, neurodegenerative disorders, and cancer. Therefore, regulating dysfunctional mitochondria represents a pivotal therapeutic opportunity in biomedicine. Marine ecosystems are biologically very diversified and harbor a broad range of organisms, providing both novel bioactive substances and molecules with meaningful biomedical and pharmacological applications. Recently, many mitochondria-targeting marine-derived molecules have been described to regulate mitochondrial biology, thus exerting therapeutic effects by inhibiting mitochondrial abnormalities, both in vitro and in vivo, through different mechanisms of action. Here, we review different strategies that are derived from marine organisms which modulate specific mitochondrial processes or mitochondrial molecular pathways and ultimately aim to find key molecules to treat a wide range of human diseases characterized by impaired mitochondrial function.
Collapse
Affiliation(s)
- Serena Mirra
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale, 80121 Naples, Italy;
| | - Gemma Marfany
- Departament of Genetics, Microbiology and Statistics, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Shi Y, Yuan Q, Chen Y, Li X, Zhou Y, Zhou H, Peng F, Jiang Y, Qiao Y, Zhao J, Zhang C, Wang J, Liu K, Dong Z. Corynoline inhibits esophageal squamous cell carcinoma growth via targeting Pim-3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155235. [PMID: 38128397 DOI: 10.1016/j.phymed.2023.155235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is an aggressive and deadly malignancy characterized by late-stage diagnosis, therapy resistance, and a poor 5-year survival rate. Finding novel therapeutic targets and their inhibitors for ESCC prevention and therapy is urgently needed. METHODS We investigated the proviral integration site for maloney murine leukemia virus 3 (Pim-3) protein levels using immunohistochemistry. Using Methyl Thiazolyl Tetrazolium and clone formation assay, we verified the function of Pim-3 in cell proliferation. The binding and inhibition of Pim-3 by corynoline were verified by computer docking, pull-down assay, cellular thermal shift assay, and kinase assay. Cell proliferation, Western blot, and a patient-derived xenograft tumor model were performed to elucidate the mechanism of corynoline inhibiting ESCC growth. RESULTS Pim-3 was highly expressed in ESCC and played an oncogenic role. The augmentation of Pim-3 enhanced cell proliferation and tumor development by phosphorylating mitogen-activated protein kinase 1 (MAPK1) at T185 and Y187. The deletion of Pim-3 induced apoptosis with upregulated cleaved caspase-9 and lower Bcl2 associated agonist of cell death (BAD) phosphorylation at S112. Additionally, binding assays demonstrated corynoline directly bound with Pim-3, inhibiting its activity, and suppressing ESCC growth. CONCLUSIONS Our findings suggest that Pim-3 promotes ESCC progression. Corynoline inhibits ESCC progression through targeting Pim-3.
Collapse
Affiliation(s)
- Yunshu Shi
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China
| | - Qiang Yuan
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China
| | - Yingying Chen
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Xiaoyu Li
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yujuan Zhou
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Hao Zhou
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Feng Peng
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yanan Jiang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yan Qiao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jimin Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan 450000, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China
| | - Chi Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Junyong Wang
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Kangdong Liu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan 450000, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| | - Zigang Dong
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| |
Collapse
|
11
|
Buaban K, Innets B, Petsri K, Sinsook S, Chanvorachote P, Chansriniyom C, Suwanborirux K, Yokoya M, Saito N, Chamni S. Semisynthesis of 5-O-ester derivatives of renieramycin T and their cytotoxicity against non-small-cell lung cancer cell lines. Sci Rep 2023; 13:21485. [PMID: 38057385 PMCID: PMC10700347 DOI: 10.1038/s41598-023-48526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
The semisynthesis of 5-O-ester derivatives of renieramycin T was accomplished through the photoredox reaction of renieramycin M (1), a bistetrahydroisoquinolinequinone alkaloid isolated from the Thai blue sponge Xestospongia sp. This process led to the conversion of compound 1 to renieramycin T (2), which was subsequently subjected to Steglich esterification with appropriate acylating agents containing linear alkyl, N-tert-butoxycarbonyl-L-amino, and heterocyclic aromatic substituent. Notably, the one-pot transformation, combining the photoredox reaction and esterification led to the formation of 7-O-ester derivatives of renieramycin S due to hydrolysis. Subsequently, the in vitro cytotoxicity of the 17 semisynthesized derivatives against human non-small-cell lung cancer (NSCLC) cells in parallel with normal cell lines was evaluated. Among the tested compounds, 5-O-(3-propanoyl) ester of renieramycin T (3b) exhibited potent cytotoxic activity with half-maximal inhibitory concentration (IC50) values at 33.44 and 33.88 nM against H292 and H460 cell lines, respectively. These values were within the same range as compound 1 (IC50 = 34.43 and 35.63 nM) and displayed twofold higher cytotoxicity compared to compound 2 (IC50 = 72.85 and 83.95 nM). The steric characteristics and aromatic orientation of the 5-O-ester substituents played significant roles in their cytotoxicity. Notably, derivative 3b induced apoptosis with minimal necrosis, in contrast to the parental compound 1. Hence, the relationship between the structure and cytotoxicity of renieramycin-ecteinascidin hybrid alkaloids was investigated. This study emphasizes the potential of the series of 5-O-ester derivatives of renieramycin T as promising leads for the further development of potential anti-NSCLC agents.
Collapse
Affiliation(s)
- Koonchira Buaban
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bhurichaya Innets
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Korrakod Petsri
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suwimon Sinsook
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chaisak Chansriniyom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khanit Suwanborirux
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Masashi Yokoya
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Naoki Saito
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Ghasemian M, Kazeminava F, Naseri A, Mohebzadeh S, Abbaszadeh M, Kafil HS, Ahmadian Z. Recent progress in tannic acid based approaches as a natural polyphenolic biomaterial for cancer therapy: A review. Biomed Pharmacother 2023; 166:115328. [PMID: 37591125 DOI: 10.1016/j.biopha.2023.115328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023] Open
Abstract
Significant advancements have been noticed in cancer therapy for decades. Despite this, there are still many critical challenges ahead, including multidrug resistance, drug instability, and side effects. To overcome obstacles of these problems, various types of materials in biomedical research have been explored. Chief among them, the applications of natural compounds have grown rapidly due to their superb biological activities. Natural compounds, especially polyphenolic compounds, play a positive and great role in cancer therapy. Tannic acid (TA), one of the most famous polyphenols, has attracted widespread attention in the field of cancer treatment with unique structural, physicochemical, pharmaceutical, anticancer, antiviral, antioxidant and other strong biological features. This review concentrated on the basic structure along with the important role of TA in tuning oncological signal pathways firstly, and then focused on the use of TA in chemotherapy and preparation of delivery systems including nanoparticles and hydrogels for cancer therapy. Besides, the application of TA/Fe3+ complex coating in photothermal therapy, chemodynamic therapy, combined therapy and theranostics is discussed.
Collapse
Affiliation(s)
- Motaleb Ghasemian
- Department of Medicinal Chemistry, School of Pharmacy, Lorestan University of Medical Science, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Naseri
- Department of Applied Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Soheila Mohebzadeh
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahmoud Abbaszadeh
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
13
|
Khursheed M, Ghelani H, Jan RK, Adrian TE. Anti-Inflammatory Effects of Bioactive Compounds from Seaweeds, Bryozoans, Jellyfish, Shellfish and Peanut Worms. Mar Drugs 2023; 21:524. [PMID: 37888459 PMCID: PMC10608083 DOI: 10.3390/md21100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine, and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (M.K.); (H.G.); (R.K.J.)
| |
Collapse
|
14
|
Pecoraro C, Terrana F, Panzeca G, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Nortopsentins as Leads from Marine Organisms for Anticancer and Anti-Inflammatory Agent Development. Molecules 2023; 28:6450. [PMID: 37764226 PMCID: PMC10537790 DOI: 10.3390/molecules28186450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The marine environment is an excellent source of molecules that have a wide structural diversity and a variety of biological activities. Many marine natural products (MNPs) have been established as leads for anticancer drug discovery. Most of these compounds are alkaloids, including several chemical subclasses. In this review, we focus on the bis-indolyl alkaloid Nortopsentins and their derivatives with antiproliferative properties. Nortopsentins A-C were found to exhibit in vitro cytotoxicity against the P388 murine leukaemia cell line. Their structural manipulation provided a wide range of derivatives with significant anti-tumour activity against human cell lines derived from different cancer types (bladder, colon, gastric, CNS, liver, lung, breast, melanoma, ovarian, pancreatic, prostate, pleural mesothelioma, renal, sarcoma, and uterus). In vivo assays on animal models also proved that Nortopsentins and related bis-indolyl compounds have potent anti-inflammatory activity. These remarks set the foundation for future investigations into the development of new Nortopsentin derivatives as new anticancer and anti-inflammatory agents.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Francesca Terrana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Giovanna Panzeca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme, PI, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| |
Collapse
|
15
|
Ahmed S, Alam W, Aschner M, Filosa R, Cheang WS, Jeandet P, Saso L, Khan H. Marine Cyanobacterial Peptides in Neuroblastoma: Search for Better Therapeutic Options. Cancers (Basel) 2023; 15:cancers15092515. [PMID: 37173981 PMCID: PMC10177606 DOI: 10.3390/cancers15092515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroblastoma is the most prevalent extracranial solid tumor in pediatric patients, originating from sympathetic nervous system cells. Metastasis can be observed in approximately 70% of individuals after diagnosis, and the prognosis is poor. The current care methods used, which include surgical removal as well as radio and chemotherapy, are largely unsuccessful, with high mortality and relapse rates. Therefore, attempts have been made to incorporate natural compounds as new alternative treatments. Marine cyanobacteria are a key source of physiologically active metabolites, which have recently received attention owing to their anticancer potential. This review addresses cyanobacterial peptides' anticancer efficacy against neuroblastoma. Numerous prospective studies have been carried out with marine peptides for pharmaceutical development including in research for anticancer potential. Marine peptides possess several advantages over proteins or antibodies, including small size, simple manufacturing, cell membrane crossing capabilities, minimal drug-drug interactions, minimal changes in blood-brain barrier (BBB) integrity, selective targeting, chemical and biological diversities, and effects on liver and kidney functions. We discussed the significance of cyanobacterial peptides in generating cytotoxic effects and their potential to prevent cancer cell proliferation via apoptosis, the activation of caspases, cell cycle arrest, sodium channel blocking, autophagy, and anti-metastasis behavior.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer, 209 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Philippe Jeandet
- Faculty of Sciences, RIBP-USC INRAe 1488, University of Reims, 51100 Reims, France
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, 00185 Rome, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
16
|
Hesp K, van der Heijden JME, Munroe S, Sipkema D, Martens DE, Wijffels RH, Pomponi SA. First continuous marine sponge cell line established. Sci Rep 2023; 13:5766. [PMID: 37031251 PMCID: PMC10082835 DOI: 10.1038/s41598-023-32394-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
The potential of sponge-derived chemicals for pharmaceutical applications remains largely unexploited due to limited available biomass. Although many have attempted to culture marine sponge cells in vitro to create a scalable production platform for such biopharmaceuticals, these efforts have been mostly unsuccessful. We recently showed that Geodia barretti sponge cells could divide rapidly in M1 medium. In this study we established the first continuous marine sponge cell line, originating from G. barretti. G. barretti cells cultured in OpM1 medium, a modification of M1, grew more rapidly and to a higher density than in M1. Cells in OpM1 reached 1.74 population doublings after 30 min, more than twofold higher than the already rapid growth rate of 0.74 population doublings in 30 min in M1. The maximum number of population doublings increased from 5 doublings in M1 to at least 98 doublings in OpM1. Subcultured cells could be cryopreserved and used to inoculate new cultures. With these results, we have overcome a major obstacle that has blocked the path to producing biopharmaceuticals with sponge cells at industrial scale for decades.
Collapse
Affiliation(s)
- Kylie Hesp
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands.
| | | | - Stephanie Munroe
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Shirley A Pomponi
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| |
Collapse
|
17
|
Analogues of Anticancer Natural Products: Chiral Aspects. Int J Mol Sci 2023; 24:ijms24065679. [PMID: 36982753 PMCID: PMC10058835 DOI: 10.3390/ijms24065679] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Life is chiral, as its constituents consist, to a large degree, of optically active molecules, be they macromolecules (proteins, nucleic acids) or small biomolecules. Hence, these molecules interact disparately with different enantiomers of chiral compounds, creating a preference for a particular enantiomer. This chiral discrimination is of special importance in medicinal chemistry, since many pharmacologically active compounds are used as racemates—equimolar mixtures of two enantiomers. Each of these enantiomers may express different behaviour in terms of pharmacodynamics, pharmacokinetics, and toxicity. The application of only one enantiomer may improve the bioactivity of a drug, as well as reduce the incidence and intensity of adverse effects. This is of special significance regarding the structure of natural products since the great majority of these compounds contain one or several chiral centres. In the present survey, we discuss the impact of chirality on anticancer chemotherapy and highlight the recent developments in this area. Particular attention has been given to synthetic derivatives of drugs of natural origin, as naturally occurring compounds constitute a major pool of new pharmacological leads. Studies have been selected which report the differential activity of the enantiomers or the activities of a single enantiomer and the racemate.
Collapse
|
18
|
Tau-aggregation inhibitors derived from Streptomyces tendae MCCC 1A01534 protect HT22 cells against okadaic acid-induced damage. Int J Biol Macromol 2023; 231:123170. [PMID: 36621732 DOI: 10.1016/j.ijbiomac.2023.123170] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by tau aggregating into neurofibrillary tangles. Targeting tau aggregation is one of the most critical strategies for AD treatment and prevention. Herein, a high-throughput screening of tau-aggregation inhibitors was performed by thioflavin T (ThT) fluorescence assay and tauR3 peptides. According to bioactivity-guided isolation, homoprejadomycin (1) was obtained from the marine bacterium Streptomyces tendae MCCC 1A01534. Two new stable derivatives, 2 and 3, were yielded in a one-step reaction. By ThT assay, transmission electron microscopy, and circular dichroism, we demonstrated that the angucyclinones 2 and 3 inhibited tau aggregation and disaggregated tau fibrils. In the presence of 2, native tauR3 peptides maintained the disorder conformation, whereas the tauR3 aggregates reduced β-sheet structures. And compound 2 was confirmed to inhibit the aggregation of full-length 2N4R tau protein. Furthermore, 2 with low cytotoxicity protected HT22 cells from okadaic acid-induced damage by suppressing tau aggregates. These results indicated that 2 was a promising lead structure with tau therapeutic potency for AD treatment.
Collapse
|
19
|
Mitra S, Rauf A, Sutradhar H, Sadaf S, Hossain MJ, Soma MA, Emran TB, Ahmad B, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M. Potential candidates from marine and terrestrial resources targeting mitochondrial inhibition: Insights from the molecular approach. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109509. [PMID: 36368509 DOI: 10.1016/j.cbpc.2022.109509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Mitochondria are the target sites for multiple disease manifestations, for which it is appealing to researchers' attention for advanced pharmacological interventions. Mitochondrial inhibitors from natural sources are of therapeutic interest due to their promising benefits on physiological complications. Mitochondrial complexes I, II, III, IV, and V are the most common sites for the induction of inhibition by drug candidates, henceforth alleviating the manifestations, prevalence, as well as severity of diseases. Though there are few therapeutic options currently available on the market. However, it is crucial to develop new candidates from natural resources, as mitochondria-targeting abnormalities are rising to a greater extent. Marine and terrestrial sources possess plenty of bioactive compounds that are appeared to be effective in this regard. Ample research investigations have been performed to appraise the potentiality of these compounds in terms of mitochondrial disorders. So, this review outlines the role of terrestrial and marine-derived compounds in mitochondrial inhibition as well as their clinical status too. Additionally, mitochondrial regulation and, therefore, the significance of mitochondrial inhibition by terrestrial and marine-derived compounds in drug discovery are also discussed.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Hriday Sutradhar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samia Sadaf
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka 1205, Bangladesh
| | - Mahfuza Afroz Soma
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka 1205, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Bashir Ahmad
- Institute of Biotechnology & Microbiology, Bacha Khan University, Charsadda, KP, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea; Saveetha Dental College and Hospital, Saveetha Institute of Medical Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
20
|
Montuori E, Hyde CAC, Crea F, Golding J, Lauritano C. Marine Natural Products with Activities against Prostate Cancer: Recent Discoveries. Int J Mol Sci 2023; 24:1435. [PMID: 36674949 PMCID: PMC9865900 DOI: 10.3390/ijms24021435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer is the most common cancer in men, with over 52,000 new cases diagnosed every year. Diagnostics and early treatment are potentially hindered by variations in screening protocols, still largely reliant on serum levels of acid phosphatase and prostate-specific antigen, with tumour diagnosis and grading relying on histopathological examination. Current treatment interventions vary in terms of efficacy, cost and severity of side effects, and relapse can be aggressive and resistant to the current standard of care. For these reasons, the scientific community is looking for new chemotherapeutic agents. This review reports compounds and extracts derived from marine organisms as a potential source of new drugs against prostate cancer. Whilst there are several marine-derived compounds against other cancers, such as multiple myeloma, leukemia, breast and lung cancer, already available in the market, the presently collated findings show how the marine environment can be considered to hold potential as a new drug source for prostate cancer, as well. This review presents information on compounds presently in clinical trials, as well as new compounds/extracts that may enter trials in the future. We summarise information regarding mechanisms of action and active concentrations.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Caroline A C Hyde
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Jon Golding
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| |
Collapse
|
21
|
Ghelani H, Khursheed M, Adrian TE, Jan RK. Anti-Inflammatory Effects of Compounds from Echinoderms. Mar Drugs 2022; 20:693. [PMID: 36355016 PMCID: PMC9699147 DOI: 10.3390/md20110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Chronic inflammation can extensively burden a healthcare system. Several synthetic anti-inflammatory drugs are currently available in clinical practice, but each has its own side effect profile. The planet is gifted with vast and diverse oceans, which provide a treasure of bioactive compounds, the chemical structures of which may provide valuable pharmaceutical agents. Marine organisms contain a variety of bioactive compounds, some of which have anti-inflammatory activity and have received considerable attention from the scientific community for the development of anti-inflammatory drugs. This review describes such bioactive compounds, as well as crude extracts (published during 2010-2022) from echinoderms: namely, sea cucumbers, sea urchins, and starfish. Moreover, we also include their chemical structures, evaluation models, and anti-inflammatory activities, including the molecular mechanism(s) of these compounds. This paper also highlights the potential applications of those marine-derived compounds in the pharmaceutical industry to develop leads for the clinical pipeline. In conclusion, this review can serve as a well-documented reference for the research progress on the development of potential anti-inflammatory drugs from echinoderms against various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Hardik Ghelani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Md Khursheed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Thomas Edward Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
22
|
Ferdous UT, Nurdin A, Ismail S, Balia Yusof ZN. Evaluation of the antioxidant and cytotoxic activities of crude extracts from marine Chlorella sp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Seaweeds in the Oncology Arena: Anti-Cancer Potential of Fucoidan as a Drug—A Review. Molecules 2022; 27:molecules27186032. [PMID: 36144768 PMCID: PMC9506145 DOI: 10.3390/molecules27186032] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Marine natural products are a discerning arena to search for the future generation of medications to treat a spectrum of ailments. Meanwhile, cancer is becoming more ubiquitous over the world, and the likelihood of dying from it is rising. Surgery, radiation, and chemotherapy are the mainstays of cancer treatment worldwide, but their extensive side effects limit their curative effect. The quest for low-toxicity marine drugs to prevent and treat cancer is one of the current research priorities of researchers. Fucoidan, an algal sulfated polysaccharide, is a potent therapeutic lead candidate against cancer, signifying that far more research is needed. Fucoidan is a versatile, nontoxic marine-origin heteropolysaccharide that has received much attention due to its beneficial biological properties and safety. Fucoidan has been demonstrated to exhibit a variety of conventional bioactivities, such as antiviral, antioxidant, and immune-modulatory characteristics, and anticancer activity against a wide range of malignancies has also recently been discovered. Fucoidan inhibits tumorigenesis by prompting cell cycle arrest and apoptosis, blocking metastasis and angiogenesis, and modulating physiological signaling molecules. This review compiles the molecular and cellular aspects, immunomodulatory and anticancer actions of fucoidan as a natural marine anticancer agent. Specific fucoidan and membranaceous polysaccharides from Ecklonia cava, Laminaria japonica, Fucus vesiculosus, Astragalus, Ascophyllum nodosum, Codium fragile serving as potential anticancer marine drugs are discussed in this review.
Collapse
|
24
|
Morais SR, K C, Jeyabalan S, Wong LS, Sekar M, Chidambaram K, Gan SH, Begum MY, Izzati Mat Rani NN, Subramaniyan V, Fuloria S, Fuloria NK, Safi SZ, Sathasivam KV, Selvaraj S, Sharma VK. Anticancer potential of Spirastrella pachyspira (marine sponge) against SK-BR-3 human breast cancer cell line and in silico analysis of its bioactive molecule sphingosine. FRONTIERS IN MARINE SCIENCE 2022; 9. [DOI: 10.3389/fmars.2022.950880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
The rate of breast cancer is rapidly increasing and discovering medications with therapeutic effects play a significant role in women’s health. Drugs derived from marine sponges have recently received FDA approval for the treatment of malignant tumors, including metastatic breast cancer. Spirastrella pachyspira (marine sponge) is mainly obtained from the western coastal region of India, and its anticancer potential has not been explored. Hence, the present study aimed to evaluate the anticancer potential of Spirastrella pachyspira extracts and its bioactive molecule sphingosine. The extracts were prepared using hexane, chloroform, ethyl acetate, and ethanol. The cytotoxic potential of the extracts were determined by an in-vitro MTT assay using SK-BR-3 cancer cell line. Subsequently, acute toxicity investigation was conducted in Swiss albino mice. Then, the anticancer effects of the extract was investigated in a xenograft model of SK-BR-3 caused breast cancer. DAPI staining was used to assess the extract’s ability to induce apoptosis. In addition, in-silico study was conducted on sphingosine with extracellular site of HER2. The ethyl acetate extract of Spirastrella pachyspira (IC50: 0.04 µg/ml) showed comparable anticancer effects with standard doxorubicin (IC50: 0.054 µg/ml). The LD50 of the extracts in acute toxicity testing was fund to be 2000 mg/kg b.wt. The survival index of mice in ethanol extract was 83.33%, whereas that of standard doxirubicin was 100%, indicating that ethyl acetate extract Spirastrella pachyspira has good antiproliferative/cytotoxic properties. The results were well comparable with standard doxorubicin. Further, the docking studies of sphingosine against HER2 demonstrated that the bioactive molecule engage with the extracellular region of HER2 and block the protein as also shown by standard trastuzumab. The findings of this research suggest that Spirastrella pachyspira and sphingosine may be potential candidate for the treatments of breast cancer, particularly for HER2 positive cells. Overall, the present results demonstrate that sphingosine looks like a promising molecule for the development of new drugs for the treatment of cancer. However, in order to carefully define the sphingosine risk-benefit ratio, future research should focus on evaluating in-vivo and clinical anticancer studies. This will involve balancing both their broad-spectrum effectiveness and their toxicity.
Collapse
|
25
|
Timilsina M, Tandan M, Nováček V. Machine learning approaches for predicting the onset time of the adverse drug events in oncology. MACHINE LEARNING WITH APPLICATIONS 2022. [DOI: 10.1016/j.mlwa.2022.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Rady HM, Hassan AZ, Abd-Alla HI, Abdel Raouf H, Salem SM. Hemimycale Arabica Induced Non-Cytotoxic Anti-Migratory Activity in Hepatocellular Carcinoma In Vitro. Asian Pac J Cancer Prev 2022; 23:2921-2928. [PMID: 36172653 PMCID: PMC9810293 DOI: 10.31557/apjcp.2022.23.9.2921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE In this work, we represented new non-cytotoxic treatments to avoid serious side effects of current used cytotoxic anticancer drugs. These treatments can compensate in finding convenient treatment for each individual case using a single agent from marine sponge Hemimycale arabica. METHODS The ethanol extract was partitioned by cold sequential liquid-liquid extraction to afford petroleum ether, diethyl ether, dichloromethane and ethyl acetate fractions. Chemical composition of H. arabica was performed by gas-liquid chromatography and gas chromatography-mass spectroscopy. Anticancer activity was evaluated by means of cytotoxicity, apoptosis induction, tumor cell migration inhibition and expression analysis of proliferation and migration-related genes. RESULTS Our results revealed that all treatments were non-cytotoxic except for dichloromethane fraction which exhibited moderate cytotoxic activity. Caspase-independent apoptosis was induced by total ethanol and dichloromethane fractions while ethyl acetate fraction induces caspase-dependent apoptosis. All treatments inhibited matrix metalloproteinase-independent migration. Petroleum ether and dichloromethane inhibited migration through the down-regulation of FGF and it could be used as anticancer therapy for VEGF-resistance patients. While ethanol inhibited tumor cell migration through down-regulation of all tested genes expression. Ether and ethyl acetate fractions exerted anti-migratory activity without affecting the tested genes. All resuls were statistically significant at p˂0.05. CONCLUSION Total ethanol extract is a promising non-cytotoxic anticancer agent because of its powerful apoptosis induction and capability to block tumor cell migration. Petroleum ether and ether fractions area weak non-cytotoxic anti-migratory agents. Dichloromethane could be a moderate cytotoxic anti-migratory agent induced caspase-independent apoptosis. It could be used in anticancer therapy for VEGF-resistance patients through downregulation of FGF. Ethyl acetate fraction considered a non-cytotoxic agent exerting moderate anti-migratory activity. The new sponge-derived treatments can solve different resistance problems to find a convenient treatment for each individual case using a single agent.
Collapse
|
27
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
28
|
Pattnaik S, Imchen M, Kumavath R, Prasad R, Busi S. Bioactive Microbial Metabolites in Cancer Therapeutics: Mining, Repurposing, and Their Molecular Targets. Curr Microbiol 2022; 79:300. [PMID: 36002695 DOI: 10.1007/s00284-022-02990-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
The persistence and resurgence of cancer, characterized by abnormal cell growth and differentiation, continues to be a serious public health concern critically affecting public health, social life, and the global economy. Hundreds of putative drug molecules of synthetic and natural origin were approved for anticancer therapy in the last few decades. Although conventional anticancer treatment strategies have promising aspects, several factors such as their limitations, drug resistance, and side effects associated with them demand more effort in repositioning or developing novel therapeutic regimens. The rich heritage of microbial bioactive components remains instrumental in providing novel avenues for cancer therapeutics. Actinobacteria, Firmicutes, and fungi have a plethora of bioactive compounds, which received attention for their efficacy in cancer treatment targeting different pathways responsible for abnormal cell growth and differentiation. Yet the full potential remains underexplored to date, and novel compounds from such microbes are reported regularly. In addition, the advent of computational tools has further augmented the mining of microbial secondary metabolites and identifying their molecular targets in cancer cells. Furthermore, the drug-repurposing strategy has facilitated the use of approved drugs of microbial origin in regulating cancer cell growth and progression. The wide diversity of microbial compounds, different mining approaches, and multiple modes of action warrant further investigations on the current status of microbial metabolites in cancer therapeutics. Hence, in this review, we have critically discussed the untapped potential of microbial products in mitigating cancer progression. The review also summarizes the impact of drug repurposing in cancer therapy and discusses the novel avenues for future therapeutic drug development against cancer.
Collapse
Affiliation(s)
- Subhaswaraj Pattnaik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.,Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha, 768019, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.,Department of Genomic Science, School of Biological Sciences, Central University of Kerela, Kasaragod, Kerela, 671316, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerela, Kasaragod, Kerela, 671316, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
29
|
Fu X, Zheng Y, Lin C, Wang P, Wang C. An Evaluation of the Coupling Coordination of Technological Innovation System in China's Marine Biopharmaceutical Industry. JOURNAL OF OCEAN UNIVERSITY OF CHINA : JOUC 2022; 22:271-284. [PMID: 36033646 PMCID: PMC9395770 DOI: 10.1007/s11802-023-5310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The marine biopharmaceutical industry (MBI) has been considered as an important part of the blue economy. The high-quality development of this industry depends on the high-level coordinated development of technological innovation system (TIS). In the present study, the coupling mechanism of industrial innovation input subsystem and innovation output subsystem was analyzed for the first time. On this basis, the development level and coupling coordination level of TIS in China's MBI during 2008-2018 were empirically evaluated with the capacity coupling coordination model. Then, the obstacle factors were diagnosed and recognized with the obstacle model. The results showed that the innovation input index fluctuated at a low level in China's MBI. The innovation output index has basically maintained a growth trend, whereas the quality of development was not high. Although the coupling coordination level of TIS showed a positive change as mild disordered → primary coordinated → well-coordinated, the development type of innovation system has changed from the lagging output of innovation into the lagging input of innovation. Insufficient input of innovation factors remained the main obstacle to the improvement of coordination level. Based on the above analysis, suggestions were put forward from the perspectives of policy and fund guarantees to improve the coupling coordination level in China's MBI.
Collapse
Affiliation(s)
- Xiumei Fu
- School of Economics, Ocean University of China, Qingdao, 266100 China
| | - Yangming Zheng
- School of Economics, Ocean University of China, Qingdao, 266100 China
| | - Chunyu Lin
- School of Economics, Ocean University of China, Qingdao, 266100 China
| | - Ping Wang
- Business School, Qingdao University, Qingdao, 266100 China
| | - Changyun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
30
|
Ahmed S, Alam W, Jeandet P, Aschner M, Alsharif KF, Saso L, Khan H. Therapeutic Potential of Marine Peptides in Prostate Cancer: Mechanistic Insights. Mar Drugs 2022; 20:md20080466. [PMID: 35892934 PMCID: PMC9330892 DOI: 10.3390/md20080466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the leading cause of cancer death in men, and its treatment is commonly associated with severe adverse effects. Thus, new treatment modalities are required. In this context, natural compounds have been widely explored for their anti-PCa properties. Aquatic organisms contain numerous potential medications. Anticancer peptides are less toxic to normal cells and provide an efficacious treatment approach via multiple mechanisms, including altered cell viability, apoptosis, cell migration/invasion, suppression of angiogenesis and microtubule balance disturbances. This review sheds light on marine peptides as efficacious and safe therapeutic agents for PCa.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Philippe Jeandet
- Research Unit “Induced Resistance and Plant Bioprotection”, Department of Biology and Biochemistry, Faculty of Sciences, University of Reims, EA 4707-USC INRAe 1488, SFR Condorcet FR CNRS 3417, P.O. Box 1039, CEDEX 02, 51687 Reims, France;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Luciano Saso
- Department of Physiology and Pharmacology, “Vittorio Erspamer” Sapienza University, 00185 Rome, Italy;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
- Correspondence:
| |
Collapse
|
31
|
Wei J, Liu Y, Teng F, Li L, Zhong S, Luo H, Huang Z. Anticancer effects of marine compounds blocking the nuclear factor kappa B signaling pathway. Mol Biol Rep 2022; 49:9975-9995. [PMID: 35674876 DOI: 10.1007/s11033-022-07556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
The abnormal expression of nuclear factor kappa B (NF-κB) target genes is closely related to the occurrence, metastasis, and invasion of tumor cells and is an inhibitor of their apoptosis. In recent years, the unique biodiversity in the marine environment has aroused great interest. Many studies indicate that some marine compounds exert anticancer effects on most common human tumors by modulating the NF-κB signaling pathway. In this study, 26 marine compounds that reduce cancer cell survival by suppressing the NF-κB signaling pathway were reviewed. They were derived from a wide range of sources, including sponges, fungi, algae and their derivatives or metabolites. These marine compounds exert antitumor effects through the canonical, noncanonical and atypical NF-κB signaling pathways; however, most of their anticancer targets and mechanisms remain unclear, and more research is needed in the future. Our article provides comprehensive information for researchers investigating the bioactivities of marine compounds and developing marine-derived anticancer drugs.
Collapse
Affiliation(s)
- Jiaen Wei
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Yaqi Liu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Fei Teng
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Linshan Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Shanhong Zhong
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China
| | - Hui Luo
- Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China.
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, Guangdong, China.
- Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
32
|
Falco A, Adamek M, Pereiro P, Hoole D, Encinar JA, Novoa B, Mallavia R. The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases. Mar Drugs 2022; 20:md20060363. [PMID: 35736166 PMCID: PMC9230875 DOI: 10.3390/md20060363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The high proliferation of microorganisms in aquatic environments has allowed their coevolution for billions of years with other living beings that also inhabit these niches. Among the different existing types of interaction, the eternal competition for supremacy between the susceptible species and their pathogens has selected, as part of the effector division of the immune system of the former ones, a vast and varied arsenal of efficient antimicrobial molecules, which is highly amplified by the broad biodiversity radiated, above any others, at the marine habitats. At present, the great recent scientific and technological advances already allow the massive discovery and exploitation of these defense compounds for therapeutic purposes against infectious diseases of our interest. Among them, antimicrobial peptides and antimicrobial metabolites stand out because of the wide dimensions of their structural diversities, mechanisms of action, and target pathogen ranges. This revision work contextualizes the research in this field and serves as a presentation and scope identification of the Special Issue from Marine Drugs journal “The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases”.
Collapse
Affiliation(s)
- Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (J.A.E.); (R.M.)
- Correspondence: (A.F.); (M.A.)
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, 30559 Hannover, Germany
- Correspondence: (A.F.); (M.A.)
| | - Patricia Pereiro
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (P.P.); (B.N.)
| | - David Hoole
- School of Life Sciences, Keele University, Keele ST5 5BG, UK;
| | - José Antonio Encinar
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (J.A.E.); (R.M.)
| | - Beatriz Novoa
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (P.P.); (B.N.)
| | - Ricardo Mallavia
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (J.A.E.); (R.M.)
| |
Collapse
|
33
|
Cytotoxic and antimicrobial activities of two new sesquiterpenoids from red sea brittle star Ophiocoma dentata. Sci Rep 2022; 12:8209. [PMID: 35581320 PMCID: PMC9114132 DOI: 10.1038/s41598-022-12192-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Bioactive compounds were extracted from a locally available brittle star; Ophiocoma dentata, collected from the Red Sea, Egypt. Two new sesquiterpenoids; 8, 11-epoxy-9(15)-himachaladiene-4-ol (O8-ophiocomane) and, 11-epoxy-9(15)-himachaladiene-4-ol (O7-ophiocomane) were isolated and characterized using appropriate techniques. Structure elucidation was estimated via 1D NMR, 2D NMR, FT-IR and mass spectroscopy analyses. The isolated compounds were tested for cytotoxic, antibacterial and antifungal activities. Pure compounds showed a dose dependent reduction in MCF-7 cells viability with LC50 of 103.5 and 59.5 μg/ml for compounds 1 and 2 respectively compared to the chemotherapeutic drug cisplatin (47.4 µg/ml). In vivo experiments showed that O. dentate extract significantly reduced tumor progression and improved hematological parameters and liver functions of tumor-bearing mice when administered either before or after tumor cells' injection. The most remarkable antimicrobial effects of O. dentate crude extract were against Staphylococcus aureus, Vibrio damsela and Pseudomonas aeruginosa while the pure compounds showed activity against P. aeruginosa alone. Neither the crude extract nor the pure compounds have shown activity against Aeromonas hydrophila. These results indicates that O. dentata extract and newly isolated compounds have shown a promising cytotoxic, antiproliferative and antimicrobial activities that might be useful for pharmaceutical applications.
Collapse
|
34
|
Ubaid S, Pandey S, Akhtar MS, Rumman M, Singh B, Mahdi AA. SIRT1 Mediates Neuroprotective and Neurorescue Effects of Camel α-Lactalbumin and Oleic Acid Complex on Rotenone-Induced Parkinson's Disease. ACS Chem Neurosci 2022; 13:1263-1272. [PMID: 35385250 DOI: 10.1021/acschemneuro.1c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is the second most common devastating neurodegenerative disorder. Presently used therapies for PD have severe side effects and are limited to only temporary improvement. Therefore, a new therapeutic approach to treat PD urgently needs to be developed. α-Lactalbumin, the most abundant milk protein in camel milk, has been attributed to various medicinal properties. This study intended to investigate the neuroprotective efficacy of the camel α-lactalbumin and oleic acid (CLOA) complex. One mechanism postulated to underlie neuroprotection by the CLOA complex is the induction of silent information regulatory protein (SIRT1). SIRT1 is known to be involved in several pathological and physiological processes, and it has been suggested that SIRT1 plays a protective role in PD. Oxidative stress, inflammation, mitochondrial dysfunction, and apoptosis are involved in PD pathogenesis. Our results revealed that SIRT1 inhibits oxidative stress by maintaining HIF-1α in a deacetylated state. SIRT1 upregulates the expression of FOXO3a and HSF-1, thus inhibiting apoptosis and maintaining the homeostasis of cellular proteins. Increased SIRT1 expression reduces the levels of TNF-α, IL-6, and IL-8, which in turn inhibits neuroinflammation. In addition to SIRT1, the CLOA complex also enhances the expression of survivin and leptin and promotes the survival of neuroblastoma cells. Altogether, our results suggest that the CLOA complex might be a novel therapeutic molecule that could ameliorate neuronal cell damage in PD.
Collapse
Affiliation(s)
- Saba Ubaid
- Department of Biochemistry, King George’s Medical University (KGMU), Lucknow 226003, Uttar Pradesh, India
| | - Shivani Pandey
- Department of Biochemistry, King George’s Medical University (KGMU), Lucknow 226003, Uttar Pradesh, India
| | - Mohd. Sohail Akhtar
- Division of Molecular & Structural Biology, Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Mohammad Rumman
- Department of Biochemistry, King George’s Medical University (KGMU), Lucknow 226003, Uttar Pradesh, India
| | - Babita Singh
- Department of Biochemistry, King George’s Medical University (KGMU), Lucknow 226003, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University (KGMU), Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
35
|
Wu J, Power H, Miranda-Saksena M, Valtchev P, Schindeler A, Cunningham AL, Dehghani F. Identifying HSV-1 Inhibitors from Natural Compounds via Virtual Screening Targeting Surface Glycoprotein D. Pharmaceuticals (Basel) 2022; 15:361. [PMID: 35337158 PMCID: PMC8955139 DOI: 10.3390/ph15030361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
Herpes simplex virus (HSV) infections are a worldwide health problem in need of new effective treatments. Of particular interest is the identification of antiviral agents that act via different mechanisms compared to current drugs, as these could interact synergistically with first-line antiherpetic agents to accelerate the resolution of HSV-1-associated lesions. For this study, we applied a structure-based molecular docking approach targeting the nectin-1 and herpesvirus entry mediator (HVEM) binding interfaces of the viral glycoprotein D (gD). More than 527,000 natural compounds were virtually screened using Autodock Vina and then filtered for favorable ADMET profiles. Eight top hits were evaluated experimentally in African green monkey kidney cell line (VERO) cells, which yielded two compounds with potential antiherpetic activity. One active compound (1-(1-benzofuran-2-yl)-2-[(5Z)-2H,6H,7H,8H-[1,3] dioxolo[4,5-g]isoquinoline-5-ylidene]ethenone) showed weak but significant antiviral activity. Although less potent than antiherpetic agents, such as acyclovir, it acted at the viral inactivation stage in a dose-dependent manner, suggesting a novel mode of action. These results highlight the feasibility of in silico approaches for identifying new antiviral compounds, which may be further optimized by medicinal chemistry approaches.
Collapse
Affiliation(s)
- Jiadai Wu
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia;
| | - Helen Power
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and The Westmead Institute for Medical Research, Westmead 2145, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia;
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and The Westmead Institute for Medical Research, Westmead 2145, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia;
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia; (J.W.); (H.P.); (P.V.); (A.S.)
- Centre for Advanced Food Engineering, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
36
|
Synthesis and inverse virtual screening of new bi-cyclic structures towards cancer-relevant cellular targets. Struct Chem 2022. [DOI: 10.1007/s11224-022-01889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractWe report here synthetic approaches to access new classes of small molecules based on three heterocyclic scaffolds, i.e. 3,7-dihydropyrimido[4,5-d]pyridazine-4,8-dione, 1,8-naphthyridin-4(1H)-one and 4H-pyrido[1,2-a]pyrimidin-4-one. The bi-cyclic structure 3,7-dihydropyrimido[4,5-d]pyridazine-4,8-dione is a new heterocycle, described here for the first time. In silico methodologies of inverse virtual screening have been used to preliminary analyse the molecules, in order to explore their potential as hits for chemical biology investigations. Our computational study has been conducted with 43 synthetically accessible small molecules towards 31 cellular proteins involved in cancer pathogenesis. Binding energies were quantified using molecular docking calculations, allowing to define the relative affinities of the ligands for the cellular targets. Through this methodology, 16 proteins displayed effective interactions with distinct small molecules within the matrix. In addition, 23 ligands have demonstrated high affinity for at least one cellular protein, using as reference the co-crystallised ligand in the X-ray structure. The evaluation of ADME and drug score for selected hits also highlights that these new molecular series can serve as sources of lead candidates for further structure optimisation and biological studies.
Collapse
|
37
|
Abdelgawad MA, Elkanzi NA, Nayl A, Musa A, Hadal Alotaibi N, Arafa W, Gomha SM, Bakr RB. Targeting tumor cells with pyrazolo[3,4-d]pyrimidine scaffold: A literature review on synthetic approaches, structure activity relationship, structural and target-based mechanisms. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
38
|
Ahmed S, Khan H, Fakhri S, Aschner M, Cheang WS. Therapeutic potential of marine peptides in cervical and ovarian cancers. Mol Cell Biochem 2022; 477:605-619. [PMID: 34855045 DOI: 10.1007/s11010-021-04306-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Cervical and ovarian cancers contribute significantly to female morbidity and mortality worldwide. The current standard of treatment, including surgical removal, radiation therapy, and chemotherapy, offers poor outcomes. There are many side effects to traditional chemotherapeutic agents and treatment-resistant types, and often the immune response is depressed. As a result, traditional approaches have evolved to include new alternative remedies, such as natural compounds. Aquatic species provide a rich supply of possible drugs. The potential anti-cancer peptides are less toxic to normal cells and can attenuate multiple drug resistance by providing an efficacious treatment approach. The physiological effects of marine peptides are described in this review focusing on various pathways, such as apoptosis, microtubule balance disturbances, suppression of angiogenesis, cell migration/invasion, and cell viability. The review also highlights the potential role of marine peptides as safe and efficacious therapeutic agent for the treatment of cervical and ovarian cancers.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, 6734667149, Kermanshah, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, China
| |
Collapse
|
39
|
Nagamalla L, Shanmukha Kumar J, Sanjay C, Alsamhan AM, Shaik MR. In-silico study of seaweed secondary metabolites as AXL kinase inhibitors. Saudi J Biol Sci 2022; 29:689-701. [PMID: 35197734 PMCID: PMC8848138 DOI: 10.1016/j.sjbs.2021.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
AXL kinase is an attractive cancer target for drug design and it is involved in different cancers. A set of molecule databases with 1072 secondary metabolites from seaweeds were screened against the AXL kinase active site and eight molecules were shortlisted for further studies. From the docking analysis of the complexes, four molecules GA011, BE005, BC010, and BC005 are showing prominent binging. From the 100 ns of molecular dynamics simulations and ligand-bound complex MM-PBSA free energy analysis, two molecules BC010 (ΔG = −135.38 kJ/mol) and BE005 (ΔG = −141.72 kJ/mol) are showing molecule stability in the active site also showing very strong binding free energies. It suggests these molecules could be the potent molecules for AXL kinase.
Collapse
Affiliation(s)
- Lavanya Nagamalla
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P., India
| | - J.V. Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P., India
- Corresponding authors.
| | - Chintakindi Sanjay
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box. 800, Riyadh 11451, Saudi Arabia
| | - Ali M Alsamhan
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box. 800, Riyadh 11451, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| |
Collapse
|
40
|
Power H, Wu J, Turville S, Aggarwal A, Valtchev P, Schindeler A, Dehghani F. Virtual screening and in vitro validation of natural compound inhibitors against SARS-CoV-2 spike protein. Bioorg Chem 2021; 119:105574. [PMID: 34971947 PMCID: PMC8693770 DOI: 10.1016/j.bioorg.2021.105574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to a major public health burden and has resulted in millions of deaths worldwide. As effective treatments are limited, there is a significant requirement for high-throughput, low resource methods for the discovery of novel antivirals. The SARS-CoV-2 spike protein plays a key role in viral entry and has been identified as a therapeutic target. Using the available spike crystal structure, we performed a virtual screen with a library of 527 209 natural compounds against the receptor binding domain of this protein. Top hits from this screen were subjected to a second, more comprehensive molecular docking experiment and filtered for favourable ADMET properties. The in vitro activity of 10 highly ranked compounds was assessed using a virus neutralisation assay designed to facilitate viral entry in a physiologically relevant manner via the plasma membrane route. Subsequently, four compounds ZINC02111387, ZINC02122196, SN00074072 and ZINC04090608 were identified to possess antiviral activity in the µM range. These findings validate the virtual screening method as a tool for identifying novel antivirals and provide a basis for future drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Helen Power
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia,Centre for Advanced Food Engineering, The University of Sydney, Sydney, NSW, 2006, Australia,Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Jiadai Wu
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia,Centre for Advanced Food Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stuart Turville
- The Kirby Institute, University of NSW, Kensington, NSW 2052, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of NSW, Kensington, NSW 2052, Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia,Centre for Advanced Food Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia,Centre for Advanced Food Engineering, The University of Sydney, Sydney, NSW, 2006, Australia,Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia,Centre for Advanced Food Engineering, The University of Sydney, Sydney, NSW, 2006, Australia,Corresponding author
| |
Collapse
|
41
|
Lin HY, Lin YS, Shih SP, Lee SB, El-Shazly M, Chang KM, Yang YCSH, Lee YL, Lu MC. The Anti-Proliferative Activity of Secondary Metabolite from the Marine Streptomyces sp. against Prostate Cancer Cells. Life (Basel) 2021; 11:life11121414. [PMID: 34947945 PMCID: PMC8706809 DOI: 10.3390/life11121414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Many active substances from marine organisms are produced by symbiotic microorganisms such as bacteria, fungi, and algae. Secondary metabolites from marine actinomycetes exhibited several biological activities and provided interesting drug leads. This study reported the isolation of Lu01-M, a secondary metabolite from the marine actinomycetes Streptomyces sp., with potent anti-proliferative activity against prostate cancers. Lu01-M blocked cell proliferation with IC50 values of 1.03 ± 0.31, 2.12 ± 0.38, 1.27 ± 0.25 μg/mL in human prostate cancer PC3, DU145, and LNCaP cells, respectively. Lu01-M induced cytotoxic activity through multiple mechanisms including cell apoptosis, necroptosis, autophagy, ER stress, and inhibiting colony formation and cell migration. Lu01-M induced cell cycle arrest at the G2/M phase and DNA damage. However, the activity of autophagy induced survival response in cancer cells. Our findings suggested that Lu01-M holds the potential to be developed as an anti-cancer agent against prostate cancers.
Collapse
Affiliation(s)
- Hung-Yu Lin
- School of Medicine, College of Medicine, I-SHOU University, Division of Urology, Department of Surgery, E-Da Cancer & E-Da Hospital, Kaohsiung 824, Taiwan;
| | - Yong-Shiou Lin
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan;
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
| | - Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 115, Taiwan;
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Cairo 115, Egypt;
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 118, Egypt
| | - Ken-Ming Chang
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan;
- Department of Pharmacy, Hengchuen Christian Hospital, Pingtung 946, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (Y.-C.S.H.Y.); (Y.-L.L.); (M.-C.L.)
| | - Yi-Lun Lee
- Department of Urology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung 944, Taiwan
- Correspondence: (Y.-C.S.H.Y.); (Y.-L.L.); (M.-C.L.)
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan;
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan
- Correspondence: (Y.-C.S.H.Y.); (Y.-L.L.); (M.-C.L.)
| |
Collapse
|
42
|
Marondedze EF, Govender PP. Exploiting the glycan receptor-binding site of PltB subunit in salmonella typhi toxin for novel inhibitors: An in-silico approach. J Mol Graph Model 2021; 111:108082. [PMID: 34837784 DOI: 10.1016/j.jmgm.2021.108082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Salmonella typhi (S. typhi), a gram-negative bacterium responsible for gastroenteritis - typhoid - has continually evolved into drug-resistant strains with the most recent being the haplotype H58 strain. The haplotype H58 strain has spread across the globe causing outbreaks in countries such as Pakistan, Zimbabwe, and several underdeveloped regions located in parts of Asia, Central and Southern Africa. Treatment by conventional antibiotics is gradually failing as recorded in the affected countries, including Nigeria and Barcelona - Spain. Therefore, the research presented herein aims to identify novel compounds targeting the typhoid toxin of S. typhi which is responsible for several virulence factors associated with typhoid. In-silico methods that include virtual screening, molecular dynamics (MD) and computation of binding free energies were utilized. Our research identified furan derivatives as top-scoring lead compounds from a database of more than 1,5 million compounds curated from the ZINC20 database. Post docking analysis and trajectory analysis post-MD simulations showed that π - π interactions are vital to holding the ligand within the receptor pocket whereas hydrophobic and Van der Waals interactions are crucial for the overall bonding. Through docking, MD simulations and free energy computations, we hypothesize that ZINC000114543311, ZINC000794380763 and ZINC000158992484 (docking scores of -9.06, -8.20 and -8.12 in conjunction with ΔG values of -64.691, -63.670 and -59.024 kcal/mol, respectively) bear a great potential to pave the way to fighting antibiotic resistance for typhoid in both humans and animals. The compounds presented here can also be used as lead materials for designing other compounds targeting the Salmonella typhi toxin.
Collapse
Affiliation(s)
- Ephraim Felix Marondedze
- Department of Chemical Sciences, University of Johannesburg, P. O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa.
| | - Penny Poomani Govender
- Department of Chemical Sciences, University of Johannesburg, P. O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa
| |
Collapse
|
43
|
Ferdous UT, Balia Yusof ZN. Insight into Potential Anticancer Activity of Algal Flavonoids: Current Status and Challenges. Molecules 2021; 26:molecules26226844. [PMID: 34833937 PMCID: PMC8618413 DOI: 10.3390/molecules26226844] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Flavonoids are some of the most precious phytochemicals, believed to be found largely in terrestrial plants. With the advancement of phytochemical research and marine bioprospecting, flavonoids have also been reported by the research of microalgae and macroalgae. High growth rate with minimal nutritional and growth requirement, saving arable land and rich metabolic profile make microalgae an excellent repertoire of novel anticancer compounds, such as flavonoids. In addition, marine algae, especially seaweeds contain different types of flavonoids which are assumed to have unique chemical structures and bioactivities than their terrestrial counterparts. Flavonoids are not only good antioxidants but also have the abilities to kill cancer cells by inducing apoptosis and autophagy. However, the study of the anticancer properties of flavonoids is largely limited to terrestrial plants. This review offers an insight into the distribution of different classes of flavonoids in eukaryotic microalgae, cyanobacteria and seaweeds with their possible anticancer activities. In addition, extraction and purification methods of these flavonoids have been highlighted. Finally, prospects and challenges to use algal flavonoids as anticancer agents have been discussed.
Collapse
Affiliation(s)
- Umme Tamanna Ferdous
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Zetty Norhana Balia Yusof
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Complex (BBRC), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-397696712
| |
Collapse
|
44
|
Ahmed S, Hasan MM, Aschner M, Mirzaei H, Alam W, Mukarram Shah SM, Khan H. Therapeutic potential of marine peptides in glioblastoma: Mechanistic insights. Cell Signal 2021; 87:110142. [PMID: 34487816 DOI: 10.1016/j.cellsig.2021.110142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/14/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in humans. It is characterized by excessive cell growth and accelerated intrusion of normal brain tissue along with a poor prognosis. The current standard of treatment, including surgical removal, radiation therapy, and chemotherapy, is largely ineffective, with high mortality and recurrence rates. As a result, traditional approaches have evolved to include new alternative remedies, such as natural compounds. Aquatic species provide a rich supply of possible drugs. The physiological effects of marine peptides in glioblastoma are mediated by a range of pathways, including apoptosis, microtubule balance disturbances, suppression of angiogenesis, cell migration/invasion, and cell viability; autophagy and metabolic enzymes downregulation. Herein, we address the efficacy of marine peptides as putative safe therapeutic agents for glioblastoma coupled with detail molecular mechanisms.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Mohtasheemul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Waqas Alam
- Department of Pharmacy, University of Swabi, Pakistan
| | | | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan 23200, Pakistan.
| |
Collapse
|
45
|
Ruiz-Torres V, Forsythe N, Pérez-Sánchez A, Van Schaeybroeck S, Barrajón-Catalán E, Micol V. A Nudibranch Marine Extract Selectively Chemosensitizes Colorectal Cancer Cells by Inducing ROS-Mediated Endoplasmic Reticulum Stress. Front Pharmacol 2021; 12:625946. [PMID: 34456713 PMCID: PMC8388012 DOI: 10.3389/fphar.2021.625946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
The present study shows the putative antiproliferative mechanism of action of the previously analytically characterized nudibranch extract (Dolabella auricularia, NB) and its different effects in colon cancer cells vs. nontumor colon cells. NB extract increased the accumulation of reactive oxygen species (ROS) and increased endoplasmic reticulum (ER) stress via stimulation of the unfolded protein response. Stress scavengers, N-acetylcysteine (NAC) and 4-phenylbutyric acid (4-PBA), decreased the stress induced by NB. The results showed that NB extract increased ER stress through overproduction of ROS in superinvasive colon cancer cells, decreased their resistance threshold, and produced a nonreturn level of ER stress, causing DNA damage and cell cycle arrest, which prevented them from achieving hyperproliferative capacity and migrating to and invading other tissues. On the contrary, NB extract had a considerably lower effect on nontumor human colon cells, suggesting a selective effect related to stress balance homeostasis. In conclusion, our results confirm that the growth and malignancy of colon cancer cells can be decreased by marine compounds through the modification of one of the most potent resistance mechanisms present in tumor cells; this characteristic differentiates cancer cells from nontumor cells in terms of stress balance.
Collapse
Affiliation(s)
- Verónica Ruiz-Torres
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche, Spain
| | - Nicholas Forsythe
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Almudena Pérez-Sánchez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche, Spain
| | - Sandra Van Schaeybroeck
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Enrique Barrajón-Catalán
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche, Spain
| | - Vicente Micol
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche, Spain.,CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III, Mallorca, Spain
| |
Collapse
|
46
|
Ahmed S, Mirzaei H, Aschner M, Khan A, Al-Harrasi A, Khan H. Marine peptides in breast cancer: Therapeutic and mechanistic understanding. Biomed Pharmacother 2021; 142:112038. [PMID: 34411915 DOI: 10.1016/j.biopha.2021.112038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most prevalent invasive form of cancer in females and posing a great challenge for overcoming disease burden. The growth in global cancer deaths mandates the discovery of new efficacious natural anti-tumor treatments. In this regard, aquatic species offer a rich supply of possible drugs. Studies have shown that several marine peptides damage cancer cells by a broad range of pathways, including apoptosis, microtubule balance disturbances, and suppression of angiogenesis. Traditional chemotherapeutic agents are characterized by a plethora of side effects, including immune response suppression. The discovery of novel putative anti-cancer peptides with lesser toxicity is therefore necessary and timely, especially those able to thwart multi drug resistance (MDR). This review addresses marine anti-cancer peptides for the treatment of breast cancer.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code, 616, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code, 616, Birkat Al Mauz, Nizwa, Oman.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
47
|
Secondary Metabolites from Marine Sources with Potential Use as Leads for Anticancer Applications. Molecules 2021; 26:molecules26144292. [PMID: 34299567 PMCID: PMC8305022 DOI: 10.3390/molecules26144292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 01/11/2023] Open
Abstract
The development of novel anticancer agents is essential to finding new ways to treat this disease, one of the deadliest diseases. Some marine organisms have proved to be important producers of chemically active compounds with valuable bioactive properties, including anticancer. Thus, the ocean has proved to be a huge source of bioactive compounds, making the discovery and study of these compounds a growing area. In the last few years, several compounds of marine origin, which include algae, corals, and sea urchins, have been isolated, studied, and demonstrated to possess anticancer properties. These compounds, mainly from securamines and sterols families, have been tested for cytotoxic/antiproliferative activity in different cell lines. Bioactive compounds isolated from marine organisms in the past 5 years that have shown anticancer activity, emphasizing the ones that showed the highest cytotoxic activity, such as securamines H and I, cholest-3β,5α,6β-triol, (E)-24-methylcholest-22-ene-3β,5α,6β-triol, 24-methylenecholesta-3β,5α,6β-triol, and 24-methylcholesta-3β,5α,6β-triol, will be discussed in this review. These studies reveal the possibility of new compounds of marine origin being used as new therapeutic agents or as a source of inspiration to develop new therapeutic agents.
Collapse
|
48
|
Forero AM, Castellanos L, Sandoval-Hernández AG, Magalhães A, Tinoco LW, Lopez-Vallejo F, Ramos FA. Integration of NMR studies, computational predictions, and in vitro assays in the search of marine diterpenes with antitumor activity. Chem Biol Drug Des 2021; 98:507-521. [PMID: 34143939 DOI: 10.1111/cbdd.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/14/2021] [Accepted: 06/06/2021] [Indexed: 12/01/2022]
Abstract
Among the compounds of natural origin, diterpenes have proved useful as drugs for the treatment of cancer. Marine organisms, such as soft corals and algae, are a promising source of diterpenes, being a rich and unexplored source of cytotoxic agents. This study evaluated a library of 32 natural and semisynthetic marine diterpenes, including briarane, cembrane, and dolabellane nuclei, with the aim of determining their cytotoxicity against three human cancer cell lines (A549, MCF7, and PC3). The three most active compounds were submitted to a flow cytometry analysis in order to determine induction of apoptosis against the A549 cell line. An NMR analysis was conducted to determine and evaluate the interactions between active diterpenes and tubulin. These interactions were characterized by a computational study using molecular docking and MD simulations. With these results, two cembrane and one chlorinated briarane diterpenes were active against the three human cancer cell lines, induced apoptosis in the A549 cell line, and showed interactions with tubulin preferably at the taxane-binding site. This study is a starting point for the identification and optimization of the marine diterpenes selected for better antitumor activities. It also highlights the power of integrating NMR studies, computational predictions, and in vitro assays in the search for compounds with antitumor activity.
Collapse
Affiliation(s)
- Abel M Forero
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia.,Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| | - Leonardo Castellanos
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| | - Adrián G Sandoval-Hernández
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia.,Instituto de Genética Humana, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| | - Alvicler Magalhães
- Laboratório de Apoio ao Desenvolvimento Tecnológico (LADETEC), Instituto de Química, Avenida Horácio Macedo, Cidade Universitária, Rio de Janeiro, Brazil
| | - Luzineide W Tinoco
- Laboratório Multiusuário de Análises por RMN (LAMAR), Instituto de Pesquisas de Produtos Naturais (IPPN), Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabian Lopez-Vallejo
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| | - Freddy A Ramos
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
49
|
Shady NH, Tawfike AF, Yahia R, Fouad MA, Brachmann AO, Piel J, Abdelmohsen UR, Kamel MS. Cytotoxic activity of actinomycetes Nocardia sp. and Nocardiopsis sp. associated with marine sponge Amphimedon sp. Nat Prod Res 2021; 36:2917-2922. [PMID: 34039169 DOI: 10.1080/14786419.2021.1931865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cancer is a hazard life-threatening disease, which affect huge population worldwide. Marine actinomycetes are considered as promising source for potential chemotherapeutic agents. In our study, we carried out metabolic profiling for Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 that were cultivated from the Red Sea sponge Amphimedon sp. to investigate their chemical diversity using different media conditions. The crude culture extracts were subjected to high-resolution mass spectrometry (HRMS) analysis. The chemical profiles of the different extracts of Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 revealed their richness in diverse metabolites and consequently twenty compounds (1-20) were annotated. Moreover, the obtained extracts of the differently cultivated Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 were investigated against three cell lines HepG2, MCF-7 and CACO2 and revealed the targeted cytotoxicity of Nocardia sp. and Nocardiopsis sp. metabolites against the three cell lines.
Collapse
Affiliation(s)
- Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Ahmed F Tawfike
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Molecular Discovery Group, Computational and Analytical Science Department, Rothamsted Research, Harpenden, UK
| | - Ramadan Yahia
- Department of Microbiology and immunology, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Mostafa A Fouad
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Alexander O Brachmann
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
50
|
Bocharova EA, Kopytina NI, Slynko ЕЕ. Anti-tumour drugs of marine origin currently at various stages of clinical trials (review). REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oncological diseases for a long time have remained one of the most significant health problems of modern society, which causes great losses in its labour and vital potential. Contemporary oncology still faces unsolved issues as insufficient efficacy of treatment of progressing and metastatic cancer, chemoresistance, and side-effects of the traditional therapy which lead to disabilities among or death of a high number of patients. Development of new anti-tumour preparations with a broad range of pharmaceutical properties and low toxicity is becoming increasingly relevant every year. The objective of the study was to provide a review of the recent data about anti-tumour preparations of marine origin currently being at various phases of clinical trials in order to present the biological value of marine organisms – producers of cytotoxic compounds, and the perspectives of their use in modern biomedical technologies. Unlike the synthetic oncological preparations, natural compounds are safer, have broader range of cytotoxic activity, can inhibit the processes of tumour development and metastasis, and at the same time have effects on several etiopathogenic links of carcinogenesis. Currently, practical oncology uses 12 anti-tumour preparations of marine origin (Fludarabine, Cytarabine, Midostaurin, Nelarabine, Eribulin mesylate, Brentuximab vedotin, Trabectedin, Plitidepsin, Enfortumab vedotin, Polatuzumab vedotin, Belantamab mafodotin, Lurbinectedin), 27 substances are at different stages of clinical trials. Contemporary approaches to the treatment of oncological diseases are based on targeted methods such as immune and genetic therapies, antibody-drug conjugates, nanoparticles of biopolymers, and metals. All those methods employ bioactive compounds of marine origin. Numerous literature data from recent years indicate heightened attention to the marine pharmacology and the high potential of marine organisms for the biomedicinal and pharmaceutic industries.
Collapse
|