1
|
Ullrich S, Somathilake U, Shang M, Nitsche C. Phage-encoded bismuth bicycles enable instant access to targeted bioactive peptides. Commun Chem 2024; 7:143. [PMID: 38937646 PMCID: PMC11211329 DOI: 10.1038/s42004-024-01232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Genetically encoded libraries play a crucial role in discovering structurally rigid, high-affinity macrocyclic peptide ligands for therapeutic applications. Bicyclic peptides with metal centres like bismuth were recently developed as a new type of constrained peptide with notable affinity, stability and membrane permeability. This study represents the genetic encoding of peptide-bismuth and peptide-arsenic bicycles in phage display. We introduce bismuth tripotassium dicitrate (gastrodenol) as a water-soluble bismuth(III) reagent for phage library modification and in situ bicyclic peptide preparation, eliminating the need for organic co-solvents. Additionally, we explore arsenic(III) as an alternative thiophilic element that is used analogously to our previously introduced bicyclic peptides with a bismuth core. The modification of phage libraries and peptides with these elements is instantaneous and entirely biocompatible, offering an advantage over conventional alkylation-based methods. In a pilot display screening campaign aimed at identifying ligands for the biotin-binding protein streptavidin, we demonstrate the enrichment of bicyclic peptides with dissociation constants two orders of magnitude lower than those of their linear counterparts, underscoring the impact of structural constraint on binding affinity.
Collapse
Affiliation(s)
- Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Upamali Somathilake
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Minghao Shang
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
2
|
Vogt M. Chemoinformatic approaches for navigating large chemical spaces. Expert Opin Drug Discov 2024; 19:403-414. [PMID: 38300511 DOI: 10.1080/17460441.2024.2313475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Large chemical spaces (CSs) include traditional large compound collections, combinatorial libraries covering billions to trillions of molecules, DNA-encoded chemical libraries comprising complete combinatorial CSs in a single mixture, and virtual CSs explored by generative models. The diverse nature of these types of CSs require different chemoinformatic approaches for navigation. AREAS COVERED An overview of different types of large CSs is provided. Molecular representations and similarity metrics suitable for large CS exploration are discussed. A summary of navigation of CSs in generative models is provided. Methods for characterizing and comparing CSs are discussed. EXPERT OPINION The size of large CSs might restrict navigation to specialized algorithms and limit it to considering neighborhoods of structurally similar molecules. Efficient navigation of large CSs not only requires methods that scale with size but also requires smart approaches that focus on better but not necessarily larger molecule selections. Deep generative models aim to provide such approaches by implicitly learning features relevant for targeted biological properties. It is unclear whether these models can fulfill this ideal as validation is difficult as long as the covered CSs remain mainly virtual without experimental verification.
Collapse
Affiliation(s)
- Martin Vogt
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| |
Collapse
|
3
|
Zhou Y, Shen W, Gao Y, Peng J, Li Q, Wei X, Liu S, Lam FS, Mayol-Llinàs J, Zhao G, Li G, Li Y, Sun H, Cao Y, Li X. Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries. Nat Chem 2024; 16:543-555. [PMID: 38326646 DOI: 10.1038/s41557-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
DNA-encoded chemical libraries (DELs) have become a powerful technology platform in drug discovery. Dual-pharmacophore DELs display two sets of small molecules at the termini of DNA duplexes, thereby enabling the identification of synergistic binders against biological targets, and have been successfully applied in fragment-based ligand discovery and affinity maturation of known ligands. However, dual-pharmacophore DELs identify separate binders that require subsequent linking to obtain the full ligands, which is often challenging. Here we report a protein-templated DEL selection approach that can identify full ligand/inhibitor structures from DNA-encoded dynamic libraries (DEDLs) without the need for subsequent fragment linking. Our approach is based on dynamic DNA hybridization and target-templated in situ ligand synthesis, and it incorporates and encodes the linker structures in the library, along with the building blocks, to be sampled by the target protein. To demonstrate the performance of this method, 4.35-million- and 3.00-million-member DEDLs with different library architectures were prepared, and hit selection was achieved against four therapeutically relevant target proteins.
Collapse
Grants
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17318322, C7005-20G, C7016-22G, and 2122-7S04 Research Grants Council, University Grants Committee (RGC, UGC)
- 21877093, 22222702, and 91953119 National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
- Health@InnoHK Innovation and Technology Commission (ITF)
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Gao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qingrong Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Joan Mayol-Llinàs
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongzhe Sun
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
4
|
Tadesse K, Benhamou RI. Targeting MicroRNAs with Small Molecules. Noncoding RNA 2024; 10:17. [PMID: 38525736 PMCID: PMC10961812 DOI: 10.3390/ncrna10020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
MicroRNAs (miRs) have been implicated in numerous diseases, presenting an attractive target for the development of novel therapeutics. The various regulatory roles of miRs in cellular processes underscore the need for precise strategies. Recent advances in RNA research offer hope by enabling the identification of small molecules capable of selectively targeting specific disease-associated miRs. This understanding paves the way for developing small molecules that can modulate the activity of disease-associated miRs. Herein, we discuss the progress made in the field of drug discovery processes, transforming the landscape of miR-targeted therapeutics by small molecules. By leveraging various approaches, researchers can systematically identify compounds to modulate miR function, providing a more potent intervention either by inhibiting or degrading miRs. The implementation of these multidisciplinary approaches bears the potential to revolutionize treatments for diverse diseases, signifying a significant stride towards the targeting of miRs by precision medicine.
Collapse
Affiliation(s)
| | - Raphael I. Benhamou
- The Institute for Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
5
|
Pikalyova R, Zabolotna Y, Horvath D, Marcou G, Varnek A. Meta-GTM: Visualization and Analysis of the Chemical Library Space. J Chem Inf Model 2023; 63:5571-5582. [PMID: 37602843 DOI: 10.1021/acs.jcim.3c00719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
In chemical library analysis, it may be useful to describe libraries as individual items rather than collections of compounds. This is particularly true for ultra-large noncherry-pickable compound mixtures, such as DNA-encoded libraries (DELs). In this sense, the chemical library space (CLS) is useful for the management of a portfolio of libraries, just like chemical space (CS) helps manage a portfolio of molecules. Several possible CLSs were previously defined using vectorial library representations obtained from generative topographic mapping (GTM). Given the steadily growing number of DEL designs, the CLS becomes "crowded" and requires analysis tools beyond pairwise library comparison. Therefore, herein, we investigate the cartography of CLS on meta-(μ)GTMs─"meta" to remind that these are maps of the CLS, itself based on responsibility vectors issued by regular CS GTMs. 2,5 K DELs and ChEMBL (reference) were projected on the μGTM, producing landscapes of library-specific properties. These describe both interlibrary similarity and intrinsic library characteristics in the same view, herewith facilitating the selection of the best project-specific libraries.
Collapse
Affiliation(s)
- Regina Pikalyova
- Laboratory of Chemoinformatics, University of Strasbourg, 4, rue B. Pascal, Strasbourg 67081, France
| | - Yuliana Zabolotna
- Laboratory of Chemoinformatics, University of Strasbourg, 4, rue B. Pascal, Strasbourg 67081, France
| | - Dragos Horvath
- Laboratory of Chemoinformatics, University of Strasbourg, 4, rue B. Pascal, Strasbourg 67081, France
| | - Gilles Marcou
- Laboratory of Chemoinformatics, University of Strasbourg, 4, rue B. Pascal, Strasbourg 67081, France
| | - Alexandre Varnek
- Laboratory of Chemoinformatics, University of Strasbourg, 4, rue B. Pascal, Strasbourg 67081, France
| |
Collapse
|
6
|
Peterson AA, Liu DR. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov 2023; 22:699-722. [PMID: 37328653 PMCID: PMC10924799 DOI: 10.1038/s41573-023-00713-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.
Collapse
Affiliation(s)
- Alexander A Peterson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
7
|
Abstract
DNA-encoded libraries (DELs) are widely used in the discovery of drug candidates, and understanding their design principles is critical for accessing better libraries. Most DELs are combinatorial in nature and are synthesized by assembling sets of building blocks in specific topologies. In this study, different aspects of library topology were explored and their effect on DEL properties and chemical diversity was analyzed. We introduce a descriptor for DEL topological assignment (DELTA) and use it to examine the landscape of possible DEL topologies and their coverage in the literature. A generative topographic mapping analysis revealed that the impact of library topology on chemical space coverage is secondary to building block selection. Furthermore, it became apparent that the descriptor used to analyze chemical space dictates how structures cluster, with the effects of topology being apparent when using three-dimensional descriptors but not with common two-dimensional descriptors. This outcome points to potential challenges of attempts to predict DEL productivity based on chemical space analyses alone. While topology is rather inconsequential for defining the chemical space of encoded compounds, it greatly affects possible interactions with target proteins as illustrated in docking studies using NAD/NADP binding proteins as model receptors.
Collapse
Affiliation(s)
- William K Weigel
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Alba L Montoya
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M Franzini
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr., Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Monsivais D, Parks SE, Chandrashekar DS, Varambally S, Creighton CJ. Using cancer proteomics data to identify gene candidates for therapeutic targeting. Oncotarget 2023; 14:399-412. [PMID: 37141409 DOI: 10.18632/oncotarget.28420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Gene-level associations obtained from mass-spectrometry-based cancer proteomics datasets represent a resource for identifying gene candidates for functional studies. When recently surveying proteomic correlates of tumor grade across multiple cancer types, we identified specific protein kinases having a functional impact on uterine endometrial cancer cells. This previously published study provides just one template for utilizing public molecular datasets to discover potential novel therapeutic targets and approaches for cancer patients. Proteomic profiling data combined with corresponding multi-omics data on human tumors and cell lines can be analyzed in various ways to prioritize genes of interest for interrogating biology. Across hundreds of cancer cell lines, CRISPR loss of function and drug sensitivity scoring can be readily integrated with protein data to predict any gene's functional impact before bench experiments are carried out. Public data portals make cancer proteomics data more accessible to the research community. Drug discovery platforms can screen hundreds of millions of small molecule inhibitors for those that target a gene or pathway of interest. Here, we discuss some of the available public genomic and proteomic resources while considering approaches to how these could be leveraged for molecular biology insights or drug discovery. We also demonstrate the inhibitory effect of BAY1217389, a TTK inhibitor recently tested in a Phase I clinical trial for the treatment of solid tumors, on uterine cancer cell line viability.
Collapse
Affiliation(s)
- Diana Monsivais
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sydney E Parks
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Darshan S Chandrashekar
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Genomic Diagnostics and Bioinformatics, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sooryanarayana Varambally
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- The Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Korn M, Ehrt C, Ruggiu F, Gastreich M, Rarey M. Navigating large chemical spaces in early-phase drug discovery. Curr Opin Struct Biol 2023; 80:102578. [PMID: 37019067 DOI: 10.1016/j.sbi.2023.102578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/28/2023] [Accepted: 02/26/2023] [Indexed: 04/07/2023]
Abstract
The size of actionable chemical spaces is surging, owing to a variety of novel techniques, both computational and experimental. As a consequence, novel molecular matter is now at our fingertips that cannot and should not be neglected in early-phase drug discovery. Huge, combinatorial, make-on-demand chemical spaces with high probability of synthetic success rise exponentially in content, generative machine learning models go hand in hand with synthesis prediction, and DNA-encoded libraries offer new ways of hit structure discovery. These technologies enable to search for new chemical matter in a much broader and deeper manner with less effort and fewer financial resources. These transformational developments require new cheminformatics approaches to make huge chemical spaces searchable and analyzable with low resources, and with as little energy consumption as possible. Substantial progress has been made in the past years with respect to computation as well as organic synthesis. First examples of bioactive compounds resulting from the successful use of these novel technologies demonstrate their power to contribute to tomorrow's drug discovery programs. This article gives a compact overview of the state-of-the-art.
Collapse
Affiliation(s)
- Malte Korn
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg, Germany
| | - Christiane Ehrt
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg, Germany
| | - Fiorella Ruggiu
- insitro, 279 E Grand Ave., CA 94608, South San Francisco, USA
| | - Marcus Gastreich
- BioSolveIT GmbH, An der Ziegelei 79, 53757 Sankt Augustin, Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstr. 43, 20146 Hamburg, Germany.
| |
Collapse
|
10
|
Ling X, Liu S, Yang Y, Dong Q, Marcaurelle LA, Huang W, Ding Y, Wang X, Lu X. Modular Click Assembly DNA-Encoded Glycoconjugate Libraries with on-DNA Functional Group Transformations. Bioconjug Chem 2023. [PMID: 36961996 DOI: 10.1021/acs.bioconjchem.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Carbohydrates are an important class of naturally active products and play vital roles in regulating various physiological activities. To meet the demand for carbohydrate-based libraries used for the identification of potential drug candidates for pharmaceutical-related targets, we developed a set of on-DNA protocols to construct the DNA-encoded glycoconjugates, including Seyferth-Gilbert homologation, anomeric azidation, and CuAAC cyclization. These on-DNA chemistries enable the generation and modification of DNA-linked glycosyl compounds with good conversions and broad substrate scope. Finally, three DNA-linked glycoconjugate libraries were successfully generated to demonstrate their applicability and feasibility in library preparation.
Collapse
Affiliation(s)
- Xing Ling
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yixuan Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China
| | - Qian Dong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Lisa A Marcaurelle
- GlaxoSmithKline, ELT/NCE Molecular Discovery, Medicinal Science & Technology, 200 Cambridge Park Drive, Cambridge, Massachusetts 02410, United States
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Yun Ding
- GlaxoSmithKline, ELT/NCE Molecular Discovery, Medicinal Science & Technology, 200 Cambridge Park Drive, Cambridge, Massachusetts 02410, United States
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
11
|
Li L, Matsuo B, Levitre G, McClain EJ, Voight EA, Crane EA, Molander GA. Dearomative intermolecular [2 + 2] photocycloaddition for construction of C(sp 3)-rich heterospirocycles on-DNA. Chem Sci 2023; 14:2713-2720. [PMID: 36908969 PMCID: PMC9993886 DOI: 10.1039/d3sc00144j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
DNA-encoded library (DEL) screens have significantly impacted new lead compound identification efforts within drug discovery. An advantage of DELs compared to traditional screening methods is that an exponentially broader chemical space can be effectively screened using only nmol quantities of billions of DNA-tagged, drug-like molecules. The synthesis of DELs containing diverse, sp3-rich spirocycles, an important class of molecules in drug discovery, has not been previously reported. Herein, we demonstrate the synthesis of complex and novel spirocyclic cores via an on-DNA, visible light-mediated intermolecular [2 + 2] cycloaddition of olefins with heterocycles, including indoles, azaindoles, benzofurans, and coumarins. The DNA-tagged exo-methylenecyclobutane substrates were prepared from easily accessible alkyl iodides and styrene derivatives. Broad reactivity with many other DNA-conjugated alkene substrates was observed, including unactivated and activated alkenes, and the process is tolerant of various heterocycles. The cycloaddition was successfully scaled from 10 to 100 nmol without diminished yield, indicative of this reaction's suitability for DNA-encoded library production. Evaluation of DNA compatibility with the developed reaction in a mock-library format showed that the DNA barcode was maintained with high fidelity, with <1% mutated sequences and >99% amplifiable DNA from quantitative polymerase chain reaction (PCR) and next generation sequencing (NGS).
Collapse
Affiliation(s)
- Longbo Li
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Bianca Matsuo
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Guillaume Levitre
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Edward J McClain
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 North Waukegan Rd North Chicago Illinois 60064-1802 USA.,Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Eric A Voight
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 North Waukegan Rd North Chicago Illinois 60064-1802 USA
| | - Erika A Crane
- Drug Hunter, Inc. 13203 SE 172nd Ave, Suite 166 PMB 2019 Happy Valley Oregon 97086 USA
| | - Gary A Molander
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
12
|
Yen-Pon E, Li L, Levitre G, Majhi J, McClain EJ, Voight EA, Crane EA, Molander GA. On-DNA Hydroalkylation to Introduce Diverse Bicyclo[1.1.1]pentanes and Abundant Alkyls via Halogen Atom Transfer. J Am Chem Soc 2022; 144:12184-12191. [PMID: 35759692 PMCID: PMC10412002 DOI: 10.1021/jacs.2c03025] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA-encoded libraries have proven their tremendous value in the identification of new lead compounds for drug discovery. To access libraries in new chemical space, many methods have emerged to transpose traditional mol-scale reactivity to nmol-scale, on-DNA chemistry. However, procedures to access libraries with a greater fraction of C(sp3) content are still limited, and the need to "escape from flatland" more readily on-DNA remains. Herein, we report a Giese addition to install highly functionalized bicyclo[1.1.1]pentanes (BCPs) using tricyclo[1.1.1.01,3]pentane (TCP) as a radical linchpin, as well as other diverse alkyl groups, on-DNA from the corresponding organohalides as non-stabilized radical precursors. Telescoped procedures allow extension of the substrate pool by at least an order of magnitude to ubiquitous alcohols and carboxylic acids, allowing us to "upcycle" these abundant feedstocks to afford non-traditional libraries with different physicochemical properties for the small-molecule products (i.e., non-peptide libraries with acids). This approach is amenable to library production, as a DNA damage assessment revealed good PCR amplifiability and only 6% mutated sequences for a full-length DNA tag.
Collapse
Affiliation(s)
- Expédite Yen-Pon
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Longbo Li
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Edward J. McClain
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Eric A. Voight
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Erika A. Crane
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 N. Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
13
|
Siripuram VK, Sunkari YK, Nguyen TL, Flajolet M. DNA-Compatible Suzuki-Miyaura Cross-Coupling Reaction of Aryl Iodides With (Hetero)Aryl Boronic Acids for DNA-Encoded Libraries. Front Chem 2022; 10:894603. [PMID: 35774858 PMCID: PMC9237475 DOI: 10.3389/fchem.2022.894603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
An efficient method for the C-C bond formation via water soluble Na2PdCl4/sSPhos mediated Suzuki-Miyaura cross-coupling reaction of DNA-conjugated aryl iodide with (het)aryl boronic acids has been developed. This reaction proceeds at 37°C in water and acetonitrile (4:1) system. We also demonstrated that numerous aromatic and heteroaromatic boronic acids of different electronic natures, and harboring various functional groups, were highly compatible providing the desired coupling products in good to excellent yields. This DNA-compatible Suzuki-Miyaura cross-coupling reaction has strong potential to construct DNA-Encoded Libraries (DELs) in the context of drug discovery.
Collapse
Affiliation(s)
| | | | | | - Marc Flajolet
- *Correspondence: Vijay Kumar Siripuram, ; Marc Flajolet,
| |
Collapse
|
14
|
Gui Y, Wong CS, Zhao G, Xie C, Hou R, Li Y, Li G, Li X. Converting Double-Stranded DNA-Encoded Libraries (DELs) to Single-Stranded Libraries for More Versatile Selections. ACS OMEGA 2022; 7:11491-11500. [PMID: 35415338 PMCID: PMC8992267 DOI: 10.1021/acsomega.2c01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 06/06/2023]
Abstract
DNA-encoded library (DEL) is an efficient high-throughput screening technology platform in drug discovery and is also gaining momentum in academic research. Today, the majority of DELs are assembled and encoded with double-stranded DNA tags (dsDELs) and has been selected against numerous biological targets; however, dsDELs are not amendable to some of the recently developed selection methods, such as the cross-linking-based selection against immobilized targets and live-cell-based selections, which require DELs encoded with single-stranded DNAs (ssDELs). Herein, we present a simple method to convert dsDELs to ssDELs using exonuclease digestion without library redesign and resynthesis. We show that dsDELs could be efficiently converted to ssDELs and used for affinity-based selections either with purified proteins or on live cells.
Collapse
Affiliation(s)
- Yuhan Gui
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Clara Shania Wong
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Chao Xie
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Rui Hou
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| | - Yizhou Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Gang Li
- Institute
of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Xiaoyu Li
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| |
Collapse
|
15
|
Ge R, Shen Z, Yin J, Chen W, Zhang Q, An Y, Tang D, Satz AL, Su W, Kuai L. Discovery of SARS-CoV-2 main protease covalent inhibitors from a DNA-encoded library selection. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:79-85. [PMID: 35063690 PMCID: PMC8767972 DOI: 10.1016/j.slasd.2022.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent inhibitors targeting the main protease (Mpro, or 3CLpro) of SARS-CoV-2 have shown promise in preclinical investigations. Herein, we report the discovery of two new series of molecules that irreversibly bind to SARS-CoV-2 Mpro. These acrylamide containing molecules were discovered using our covalent DNA-encoded library (DEL) screening platform. Following selection against SARS-CoV-2 Mpro, off-DNA compounds were synthesized and investigated to determine their inhibitory effects, the nature of their binding, and to generate preliminary structure-activity relationships. LC-MS analysis indicates a 1:1 (covalent) binding stoichiometry between our hit molecules and SARS-CoV-2 Mpro. Fluorescent staining assay for covalent binding in the presence of cell lysate suggests reasonable selectivity for SARS-CoV-2 Mpro. And lastly, inhibition of enzymatic activity was also observed against a panel of 3CLpro enzymes from different coronavirus strains, with IC50 values ranging from inactive to single digit micromolar. Our results indicate that DEL selection is a useful approach for identifying covalent inhibitors of cysteine proteases.
Collapse
Affiliation(s)
- Rui Ge
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zuyuan Shen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jian Yin
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wenhua Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qi Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yulong An
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Dewei Tang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Wenji Su
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
| | - Letian Kuai
- WuXi AppTec(,) 55 Cambridge Parkway, 8th Floor(,) Cambridge, MA 02142, USA.
| |
Collapse
|
16
|
Badir SO, Lipp A, Krumb M, Cabrera-Afonso MJ, Kammer LM, Wu VE, Huang M, Csakai A, Marcaurelle LA, Molander GA. Photoredox-mediated hydroalkylation and hydroarylation of functionalized olefins for DNA-encoded library synthesis. Chem Sci 2021; 12:12036-12045. [PMID: 34667569 PMCID: PMC8457374 DOI: 10.1039/d1sc03191k] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022] Open
Abstract
DNA-encoded library (DEL) technology features a time- and cost-effective interrogation format for the discovery of therapeutic candidates in the pharmaceutical industry. To develop DEL platforms, the implementation of water-compatible transformations that facilitate the incorporation of multifunctional building blocks (BBs) with high C(sp3) carbon counts is integral for success. In this report, a decarboxylative-based hydroalkylation of DNA-conjugated trifluoromethyl-substituted alkenes enabled by single-electron transfer (SET) and subsequent hydrogen atom termination through electron donor-acceptor (EDA) complex activation is detailed. In a further photoredox-catalyzed hydroarylation protocol, the coupling of functionalized, electronically unbiased olefins is achieved under air and within minutes of blue light irradiation through the intermediacy of reactive (hetero)aryl radical species with full retention of the DNA tag integrity. Notably, these processes operate under mild reaction conditions, furnishing complex structural scaffolds with a high density of pendant functional groups.
Collapse
Affiliation(s)
- Shorouk O Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Alexander Lipp
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Matthias Krumb
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - María Jesús Cabrera-Afonso
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Lisa Marie Kammer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Victoria E Wu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Minxue Huang
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Adam Csakai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Lisa A Marcaurelle
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
17
|
Zhou Y, Shen W, Peng J, Deng Y, Li X. Identification of isoform/domain-selective fragments from the selection of DNA-encoded dynamic library. Bioorg Med Chem 2021; 45:116328. [PMID: 34364223 DOI: 10.1016/j.bmc.2021.116328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022]
Abstract
DNA-encoded chemical library (DEL) has emerged to be a powerful ligand screening technology in drug discovery. Recently, we reported a DNA-encoded dynamic library (DEDL) approach that combines the principle of traditional dynamic combinatorial library (DCL) with DEL. DEDL has shown excellent potential in fragment-based ligand discovery with a variety of protein targets. Here, we further tested the utility of DEDL in identifying low molecular weight fragments that are selective for different isoforms or domains of the same protein family. A 10,000-member DEDL was selected against sirtuin-1, 2, and 5 (SIRT1, 2, 5) and the BD1 and BD2 domains of bromodomain 4 (BRD4), respectively. Albeit with modest potency, a series of isoform/domain-selective fragments were identified and the corresponding inhibitors were derived by fragment linking.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Yuqing Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region; Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK, Innovation and Technology Commission, Hong Kong Special Administrative Region
| |
Collapse
|
18
|
Abstract
There is no nonhormonal contraceptive pill for men, although hundreds of genes have been identified to play roles during spermatogenesis and fertilization in the male reproductive tract. To address the absence of contraceptive drugs for men, we established a DNA-encoded chemistry technology (DEC-Tec) platform. Our drug discovery campaign on BRDT, a validated spermatogenic-specific contraceptive target, yielded rapid discovery of potent and specific inhibitors of the second bromodomain of BRDT that have unique binding characteristics to BRDT-BD2 relative to BRDT-BD1. Our study emphasizes the robustness and validation of the DEC-Tec platform where the obtained structure–affinity relationship data would allow us to identify specific protein binders immediately without performing exhaustive medicinal chemistry optimization of compounds with potential as male contraceptives. Bromodomain testis (BRDT), a member of the bromodomain and extraterminal (BET) subfamily that includes the cancer targets BRD2, BRD3, and BRD4, is a validated contraceptive target. All BET subfamily members have two tandem bromodomains (BD1 and BD2). Knockout mice lacking BRDT-BD1 or both bromodomains are infertile. Treatment of mice with JQ1, a BET BD1/BD2 nonselective inhibitor with the highest affinity for BRD4, disrupts spermatogenesis and reduces sperm number and motility. To assess the contribution of each BRDT bromodomain, we screened our collection of DNA-encoded chemical libraries for BRDT-BD1 and BRDT-BD2 binders. High-enrichment hits were identified and resynthesized off-DNA and examined for their ability to compete with JQ1 in BRDT and BRD4 bromodomain AlphaScreen assays. These studies identified CDD-1102 as a selective BRDT-BD2 inhibitor with low nanomolar potency and >1,000-fold selectivity over BRDT-BD1. Structure–activity relationship studies of CDD-1102 produced a series of additional BRDT-BD2/BRD4-BD2 selective inhibitors, including CDD-1302, a truncated analog of CDD-1102 with similar activity, and CDD-1349, an analog with sixfold selectivity for BRDT-BD2 versus BRD4-BD2. BROMOscan bromodomain profiling confirmed the great affinity and selectivity of CDD-1102 and CDD-1302 on all BET BD2 versus BD1 with the highest affinity for BRDT-BD2. Cocrystals of BRDT-BD2 with CDD-1102 and CDD-1302 were determined at 2.27 and 1.90 Å resolution, respectively, and revealed BRDT-BD2 specific contacts that explain the high affinity and selectivity of these compounds. These BD2-specific compounds and their binding to BRDT-BD2 are unique compared with recent reports and enable further evaluation of their nonhormonal contraceptive potential in vitro and in vivo.
Collapse
|
19
|
Mignani S, Shi X, Guidolin K, Zheng G, Karpus A, Majoral JP. Clinical diagonal translation of nanoparticles: Case studies in dendrimer nanomedicine. J Control Release 2021; 337:356-370. [PMID: 34311026 DOI: 10.1016/j.jconrel.2021.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Among the numerous nanomedicine formulations, dendrimers have emerged as original, efficient, carefully assembled, hyperbranched, polymeric nanoparticles based on synthetic monomers. Dendrimers are used either as nanocarriers of drugs or as drugs themselves. When used as drug carriers, dendrimers are considered 'best-in-class agents', modifying and enhancing the pharmacokinetic and pharmacodynamic properties of the active entities encapsulated or conjugated with the dendrimers. When used as drugs themselves, dendrimers represent a novel category of "first-in-class" drugs. The purpose of this original review is to analyse the different strategies involved in the development, application, and impact of dendrimers as drugs. We examine a selection of nanoparticles that use multifunctional elements and demonstrate clinical multifunctionality, and we extend these principles to applications in dendrimer nanomedicine design. Finally, for practical consideration, the concepts of vertical and diagonal translation are introduced as potential strategies to facilitate dendrimer development.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Keegan Guidolin
- Department of Surgery, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
20
|
Potowski M, Lüttig R, Vakalopoulos A, Brunschweiger A. Copper(I/II)-Promoted Diverse Imidazo[1,2-α]pyridine Synthesis on Solid-Phase Bound DNA Oligonucleotides for Encoded Library Design. Org Lett 2021; 23:5480-5484. [PMID: 34181416 DOI: 10.1021/acs.orglett.1c01834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA-encoded libraries designed around heterocyclic scaffolds have proven highly productive in target-based screening. Here, we show the synthesis of imidazopyridines on a controlled pore glass-coupled DNA oligonucleotide for solid phase-initiated encoded library synthesis. The target compounds were synthesized by a variant of the A3 coupling reaction from aminopyridines, alkynes, and aldehydes promoted by copper(I/II) and furnished diverse substituted scaffolds with functionalities for library design. Although proceeding under forcing conditions, it produced minimal DNA damage.
Collapse
Affiliation(s)
- Marco Potowski
- Faculty of Chemistry and Chemical Biology, Medicinal Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Ricarda Lüttig
- Faculty of Chemistry and Chemical Biology, Medicinal Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | | | - Andreas Brunschweiger
- Faculty of Chemistry and Chemical Biology, Medicinal Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
21
|
Shan J, Ling X, Liu J, Wang X, Lu X. DNA-encoded CH functionality via photoredox-mediated hydrogen atom transformation catalysis. Bioorg Med Chem 2021; 42:116234. [PMID: 34098191 DOI: 10.1016/j.bmc.2021.116234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023]
Abstract
We described a mode of catalytic activation that accomplished the α-alkylation of N-Boc saturated heterocycles with DNA-linked acrylamide via photoredox-mediated hydrogen atom transfer (HAT) catalysis. This C(sp3)-C(sp3) bond formation reaction tolerated five-, six- and seven-membered cyclic substrates, substantially streamline synthetic efforts to functionalize the α-position of heterocycles with native CH functional handle. This photoredox catalyzed CH functionalization proceeded in mild DNA-compatible condition, and suited for the construction of DNA-encoded libraries.
Collapse
Affiliation(s)
- Jinming Shan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xing Ling
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - JiaXiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
22
|
Huang Y, Li X. Recent Advances on the Selection Methods of DNA-Encoded Libraries. Chembiochem 2021; 22:2384-2397. [PMID: 33891355 DOI: 10.1002/cbic.202100144] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Indexed: 12/15/2022]
Abstract
DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
23
|
Mignani S, Shi X, Rodrigues J, Tomas H, Karpus A, Majoral JP. First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. Eur J Med Chem 2021; 219:113456. [PMID: 33878563 DOI: 10.1016/j.ejmech.2021.113456] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Research to develop active dendrimers by themselves or as nanocarriers represents a promising approach to discover new biologically active entities that can be used to tackle unmet medical needs including difficult diseases. These developments are possible due to the exceptional physicochemical properties of dendrimers, including their biocompatibility, as well as their therapeutic activity as nanocarriers and drugs themselves. Despite a large number of academic studies, very few dendrimers have crossed the 'valley of death' between. Only a few number of pharmaceutical companies have succeeded in this way. In fact, only Starpharma (Australia) and Orpheris, Inc. (USA), an Ashvattha Therapeutics subsidiary, can fill all the clinic requirements to have in the market dendrimers based drugs/nancocarriers. After evaluating the main physicochemical properties related to the respective biological activity of dendrimers classified as first-in-class or best-in-class in nanomedicine, this original review analyzes the advantages and disavantages of these two strategies as well the concerns to step in clinical phases. Various solutions are proposed to advance the use of dendrimers in human health.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, Rue des Saints Peres, CNRS UMR 860, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Xangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China.
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Helena Tomas
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse Cedex 4, France; Université Toulouse, 118 Route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077, Toulouse Cedex 4, France.
| |
Collapse
|
24
|
Mignani S, Shi X, Rodrigues J, Tomas H, Karpus A, Majoral JP. First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. Eur J Med Chem 2021. [DOI: https://doi.org/10.1016/j.ejmech.2021.113456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Mignani S, Bignon J, Shi X, Majoral JP. First-in-Class Phosphorus Dendritic Framework, a Wide Surface Functional Group Palette Bringing Noteworthy Anti-Cancer and Anti-Tuberculosis Activities: What Lessons to Learn? Molecules 2021; 26:molecules26123708. [PMID: 34204564 PMCID: PMC8234563 DOI: 10.3390/molecules26123708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Based on phenotypic screening, the major advantages of phosphorus dendrimers and dendrons as drugs allowed the discovery of new therapeutic applications, for instance, as anti-cancer and anti-tuberculosis agents. These biological activities depend on the nature of the chemical groups (neutral or cationic) on their surface as well as their generation. As lessons to learn, in the oncology domain, the increase in the generation of metallo-dendrimers is in the same direction as the anti-proliferative activities, in contrast to the development of polycationic dendrimers, where the most potent anti-tuberculosis phosphorus dendrimer was observed to have the lowest generation (G0). The examples presented in this original analysis of phosphorus dendrimers and dendrons provide support for the lessons learned and for the development of new nanoparticles in nanomedicine.
Collapse
Affiliation(s)
- Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, PRES Sorbonne Paris Cité, CNRS UMR 860, Université Paris Descartes, 45, Rue des Saints Peres, 75006 Paris, France
- CQM-Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence: (S.M.); (X.S.); (J.-P.M.)
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles du CNRS, 91198 Avenue de la Terrasse, CEDEX, Gif-sur-Yvette, 91190 Paris, France;
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Correspondence: (S.M.); (X.S.); (J.-P.M.)
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, CEDEX 4, 31077 Toulouse, France
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
- Correspondence: (S.M.); (X.S.); (J.-P.M.)
| |
Collapse
|
26
|
Rama-Garda R, Amigo J, Priego J, Molina-Martin M, Cano L, Domínguez E, Loza MI, Rivera-Sagredo A, de Blas J. Normalization of DNA encoded library affinity selection results driven by high throughput sequencing and HPLC purification. Bioorg Med Chem 2021; 40:116178. [PMID: 33933914 DOI: 10.1016/j.bmc.2021.116178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
The output of an affinity selection screening results in a huge amount of valuable data that, after conducting the appropriate analysis, lead to the correct identification of the compounds enriched in the target of interest. The approach chosen to perform these analyses has become a key step in the development of a successful DNA Encoded Library platform. In this paper, we describe the combination of High Performance Liquid Chromatography purification during the library production with the Next Generation Sequencing analysis of the libraries to assess the yield of the chemical reactions prior to the affinity selection. This process allows us, apart from achieving higher quality libraries, to enable a normalization analysis of the affinity selection output, thus minimizing the bias induced by the chemical yield of each reaction as a misleading factor within the analysis and subsequent compound short-listing for off-DNA synthesis.
Collapse
Affiliation(s)
- Ramón Rama-Garda
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain; BioFarma, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña 15782, Spain.
| | - Jorge Amigo
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Servizo Galego de Saúde (SERGAS), Instituto de Investigaciones Sanitarias (IDIS), A Coruña 15706, Spain
| | - Julián Priego
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Manuel Molina-Martin
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Leticia Cano
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Eduardo Domínguez
- BioFarma, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña 15782, Spain
| | - María Isabel Loza
- BioFarma, Universidad de Santiago de Compostela (USC), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), A Coruña 15782, Spain
| | - Alfonso Rivera-Sagredo
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain
| | - Jesús de Blas
- Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain.
| |
Collapse
|
27
|
Vezina-Dawod S, Angelbello AJ, Choudhary S, Wang KW, Yildirim I, Disney MD. Massively Parallel Optimization of the Linker Domain in Small Molecule Dimers Targeting a Toxic r(CUG) Repeat Expansion. ACS Med Chem Lett 2021; 12:907-914. [PMID: 34141068 PMCID: PMC8201483 DOI: 10.1021/acsmedchemlett.1c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
RNA contributes to disease pathobiology and is an important therapeutic target. The downstream biology of disease-causing RNAs can be short-circuited with small molecules that recognize structured regions. The discovery and optimization of small molecules interacting with RNA is, however, challenging. Herein, we demonstrate a massively parallel one-bead-one-compound methodology, employed to optimize the linker region of a dimeric compound that binds the toxic r(CUG) repeat expansion [r(CUG)exp] causative of myotonic dystrophy type 1 (DM1). Indeed, affinity selection on a 331,776-member library allowed the discovery of a compound with enhanced potency both in vitro (10-fold) and in DM1-patient-derived myotubes (5-fold). Molecular dynamics simulations revealed additional interactions between the optimized linker and the RNA, resulting in ca. 10 kcal/mol lower binding free energy. The compound was conjugated to a cleavage module, which directly cleaved the transcript harboring the r(CUG)exp and alleviated disease-associated defects.
Collapse
Affiliation(s)
- Simon Vezina-Dawod
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Alicia J. Angelbello
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Shruti Choudhary
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kye Won Wang
- Department
of Chemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Ilyas Yildirim
- Department
of Chemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
28
|
Ling X, Lu W, Miao L, Marcaurelle LA, Wang X, Ding Y, Lu X. Divergent On-DNA Transformations from DNA-Linked Piperidones. J Org Chem 2021; 87:1971-1976. [PMID: 33960188 DOI: 10.1021/acs.joc.1c00670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A group of highly efficient and divergent transformations for constructing multiple DNA-linked chemotypes based on a piperidone core were successfully developed. We reported the first procedure for the synthesis of a DNA-conjugated piperidine intermediate under basic conditions. Subsequently, this substructure was subjected to additional reactions to generate several privileged scaffolds, including 4-aminopiperidine, fused [1,2,4]triazolo[1,5-a]pyrimidine, and a quinoline derivative. These transformations paved the way for constructing focused scaffold-based DNA-encoded libraries with druglike properties.
Collapse
Affiliation(s)
- Xing Ling
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Lin Miao
- University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, Zhejiang 315100, P. R. China
| | - Lisa A Marcaurelle
- GlaxoSmithKline, ELT/NCE Molecular Discovery, Medicinal Science & Technology, 200 Cambridge Park Drive, Cambridge, Massachusetts 02410, United States
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Yun Ding
- GlaxoSmithKline, ELT/NCE Molecular Discovery, Medicinal Science & Technology, 200 Cambridge Park Drive, Cambridge, Massachusetts 02410, United States
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
29
|
Ma F, Li J, Zhang S, Gu Y, Tan T, Chen W, Wang S, Ma P, Xu H, Yang G, Lerner RA. DNA-Encoded Libraries: Hydrazide as a Pluripotent Precursor for On-DNA Synthesis of Various Azole Derivatives. Chemistry 2021; 27:8214-8220. [PMID: 33811386 DOI: 10.1002/chem.202100850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 01/25/2023]
Abstract
DNA-encoded combinatorial chemical library (DEL) technology, an approach that combines the power of genetics and chemistry, has emerged as an invaluable tool in drug discovery. Skeletal diversity plays a fundamental importance in DEL applications, and relies heavily on novel DNA-compatible chemical reactions. We report herein a phylogenic chemical transformation strategy using DNA-conjugated benzoyl hydrazine as a common versatile precursor in azole chemical expansion of DELs. DNA-compatible reactions deriving from the common benzoyl hydrazine precursor showed excellent functional group tolerance with exceptional efficiency in the synthesis of various azoles, including oxadiazoles, thiadiazoles, and triazoles, under mild reaction conditions. The phylogenic chemical transformation strategy provides DELs a facile way to expand into various unique chemical spaces with privileged scaffolds and pharmacophores.
Collapse
Affiliation(s)
- Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Shuyue Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
30
|
Kunig VBK, Potowski M, Klika Škopić M, Brunschweiger A. Scanning Protein Surfaces with DNA-Encoded Libraries. ChemMedChem 2021; 16:1048-1062. [PMID: 33295694 PMCID: PMC8048995 DOI: 10.1002/cmdc.202000869] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Understanding the ligandability of a target protein, defined as the capability of a protein to bind drug-like compounds on any site, can give important stimuli to drug-development projects. For instance, inhibition of protein-protein interactions usually depends on the identification of protein surface binders. DNA-encoded chemical libraries (DELs) allow scanning of protein surfaces with large chemical space. Encoded library selection screens uncovered several protein-protein interaction inhibitors and compounds binding to the surface of G protein-coupled receptors (GPCRs) and kinases. The protein surface-binding chemotypes from DELs are predominantly chemically modified and cyclized peptides, and functional small-molecule peptidomimetics. Peptoid libraries and structural peptidomimetics have been less studied in the DEL field, hinting at hitherto less populated chemical space and suggesting alternative library designs. Roughly a third of bioactive molecules evolved from smaller, target-focused libraries. They showcase the potential of encoded libraries to identify more potent molecules from weak, for example, fragment-like, starting points.
Collapse
Affiliation(s)
- Verena B. K. Kunig
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Marco Potowski
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Mateja Klika Škopić
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Andreas Brunschweiger
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| |
Collapse
|
31
|
Reiher CA, Schuman DP, Simmons N, Wolkenberg SE. Trends in Hit-to-Lead Optimization Following DNA-Encoded Library Screens. ACS Med Chem Lett 2021; 12:343-350. [PMID: 33738060 DOI: 10.1021/acsmedchemlett.0c00615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
DNA-encoded library (DEL) screens have emerged as a powerful hit-finding tool for a number of biological targets. In this Innovations article, we review published hit-to-lead optimization studies following DEL screens. Trends in molecular property changes from hit to lead are identified, and specific optimization tactics are exemplified in case studies. Across the studies, physicochemical property and structural changes post-DEL screening are similar to those which occur during hit-to-lead optimization following high throughputscreens (HTS). However, unique aspects of DEL-the combinatorial synthetic methods which enable DEL synthesis and the linker effects at the DNA attachment point-impact the strategies and outcomes of hit-to-lead optimizations.
Collapse
Affiliation(s)
- Christopher A. Reiher
- Discovery Chemistry, Janssen Research & Development, LLC, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - David P. Schuman
- Discovery Chemistry, Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Scott E. Wolkenberg
- Discovery Chemistry, Janssen Research & Development, LLC, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
32
|
Patel S, Badir SO, Molander GA. Developments in Photoredox-Mediated Alkylation for DNA-Encoded Libraries. TRENDS IN CHEMISTRY 2021; 3:161-175. [PMID: 33987530 PMCID: PMC8112611 DOI: 10.1016/j.trechm.2020.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, DNA-encoded library (DEL) technology has emerged as an innovative screening modality for the rapid discovery of therapeutic candidates in pharmaceutical settings. This platform enables a cost-effective, time-efficient, and large-scale assembly and interrogation of billions of small organic ligands against a biological target in a single experiment. An outstanding challenge in DEL synthesis is the necessity for water-compatible transformations under ambient conditions. To access uncharted chemical space, the adoption of photoredox catalysis in DELs, including Ni-catalyzed manifolds and radical/polar crossover reactions, has enabled the construction of novel structural scaffolds through regulated odd-electron intermediates. Herein, a critical discussion of the validation of photoredox-mediated alkylation in DEL environments is presented. Current synthetic gaps are highlighted and opportunities for further development are speculated upon.
Collapse
Affiliation(s)
- Shivani Patel
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Shorouk O. Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
33
|
Petersen LK, Christensen AB, Andersen J, Folkesson CG, Kristensen O, Andersen C, Alzu A, Sløk FA, Blakskjær P, Madsen D, Azevedo C, Micco I, Hansen NJV. Screening of DNA-Encoded Small Molecule Libraries inside a Living Cell. J Am Chem Soc 2021; 143:2751-2756. [DOI: 10.1021/jacs.0c09213] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lars K. Petersen
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | | | - Jacob Andersen
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | | | - Ole Kristensen
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | | | - Amaya Alzu
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Frank A. Sløk
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Peter Blakskjær
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Daniel Madsen
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Carlos Azevedo
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Iolanda Micco
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | | |
Collapse
|
34
|
Koo B, Yoo H, Choi HJ, Kim M, Kim C, Kim KT. Visible Light Photochemical Reactions for Nucleic Acid-Based Technologies. Molecules 2021; 26:556. [PMID: 33494512 PMCID: PMC7865461 DOI: 10.3390/molecules26030556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The expanding scope of chemical reactions applied to nucleic acids has diversified the design of nucleic acid-based technologies that are essential to medicinal chemistry and chemical biology. Among chemical reactions, visible light photochemical reaction is considered a promising tool that can be used for the manipulations of nucleic acids owing to its advantages, such as mild reaction conditions and ease of the reaction process. Of late, inspired by the development of visible light-absorbing molecules and photocatalysts, visible light-driven photochemical reactions have been used to conduct various molecular manipulations, such as the cleavage or ligation of nucleic acids and other molecules as well as the synthesis of functional molecules. In this review, we describe the recent developments (from 2010) in visible light photochemical reactions involving nucleic acids and their applications in the design of nucleic acid-based technologies including DNA photocleaving, DNA photoligation, nucleic acid sensors, the release of functional molecules, and DNA-encoded libraries.
Collapse
Affiliation(s)
| | | | | | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea; (B.K.); (H.Y.); (H.J.C.)
| | - Cheoljae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea; (B.K.); (H.Y.); (H.J.C.)
| | - Ki Tae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea; (B.K.); (H.Y.); (H.J.C.)
| |
Collapse
|
35
|
Liu S, Qi J, Lu W, Wang X, Lu X. Synthetic Studies toward DNA-Encoded Heterocycles Based on the On-DNA Formation of α,β-Unsaturated Ketones. Org Lett 2021; 23:908-913. [PMID: 33444029 DOI: 10.1021/acs.orglett.0c04118] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Taking advantage of the diversity-oriented synthesis strategy with α,β-unsaturated carbonyl compounds, we have successfully established the DNA-compatible transformations for various heterocyclic scaffolds. The ring-closure reactions for pyrrole, pyrrolidine, pyrazole, pyrazoline, isoxazoline, pyridine, piperidine, cyclohexenone, and 5,8-dihydroimidazo[1,2-a]pyrimidine were elegantly demonstrated in a DNA-compatible format. These efforts paved the way for preparing DNA-encoded libraries with more extensive chemical space.
Collapse
Affiliation(s)
- Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jingjing Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| |
Collapse
|
36
|
Wang X, Liu J, Yan Z, Liu X, Liu S, Suo Y, Lu W, Yue J, Chen K, Jiang H, Zhao Y, Zheng M, Dai D, Lu X. Diversified strategy for the synthesis of DNA-encoded oxindole libraries. Chem Sci 2021; 12:2841-2847. [PMID: 34164048 PMCID: PMC8179416 DOI: 10.1039/d0sc06696f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA-encoded library technology (DELT) employs DNA as a barcode to track the sequence of chemical reactions and enables the design and synthesis of libraries with billions of small molecules through combinatorial expansion. This powerful technology platform has been successfully demonstrated for hit identification and target validation for many types of diseases. As a highly integrated technology platform, DEL is capable of accelerating the translation of synthetic chemistry by using on-DNA compatible reactions or off-DNA scaffold synthesis. Herein, we report the development of a series of novel on-DNA transformations based on oxindole scaffolds for the design and synthesis of diversity-oriented DNA-encoded libraries for screening. Specifically, we have developed 1,3-dipolar cyclizations, cyclopropanations, ring-opening of reactions of aziridines and Claisen–Schmidt condensations to construct diverse oxindole derivatives. The majority of these transformations enable a diversity-oriented synthesis of DNA-encoded oxindole libraries which have been used in the successful hit identification for three protein targets. We have demonstrated that a diversified strategy for DEL synthesis could accelerate the application of synthetic chemistry for drug discovery. Constructing DNA-encoded oxindole libraries by a diversified strategy.![]()
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 P. R. China .,Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd. 4560 Jinke Road, Building No. 2, 13th Floor, Pudong Shanghai 201210 P. R. China
| | - Jiaxiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 P. R. China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 P. R. China
| | - Xiaohong Liu
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University Pudong Shanghai 201210 P. R. China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China.,University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
| | - Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 P. R. China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 P. R. China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 P. R. China
| | - Jinfeng Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 P. R. China
| | - Kaixian Chen
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University Pudong Shanghai 201210 P. R. China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China.,University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University Pudong Shanghai 201210 P. R. China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China.,University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 P. R. China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China.,University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
| | - Dongcheng Dai
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd. 4560 Jinke Road, Building No. 2, 13th Floor, Pudong Shanghai 201210 P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong Shanghai 201203 P. R. China
| |
Collapse
|
37
|
Mukai H, Watanabe Y. Review: PET imaging with macro- and middle-sized molecular probes. Nucl Med Biol 2021; 92:156-170. [PMID: 32660789 DOI: 10.1016/j.nucmedbio.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Recent progress in radiolabeling of macro- and middle-sized molecular probes has been extending possibilities to use PET molecular imaging for dynamic application to drug development and therapeutic evaluation. Theranostics concept also accelerated the use of macro- and middle-sized molecular probes for sharpening the contrast of proper target recognition even the cellular types/subtypes and proper selection of the patients who should be treated by the same molecules recognition. Here, brief summary of the present status of immuno-PET, and then further development of advanced technologies related to immuno-PET, peptidic PET probes, and nucleic acids PET probes are described.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
38
|
Conole D, H Hunter J, J Waring M. The maturation of DNA encoded libraries: opportunities for new users. Future Med Chem 2021; 13:173-191. [PMID: 33275046 DOI: 10.4155/fmc-2020-0285] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA-encoded combinatorial libraries (DECLs) represent an exciting new technology for high-throughput screening, significantly increasing its capacity and cost-effectiveness. Historically, DECLs have been the domain of specialized academic groups and industry; however, there has recently been a shift toward more drug discovery academic centers and institutes adopting this technology. Key to this development has been the simplification, characterization and standardization of various DECL subprotocols, such as library design, affinity screening and data analysis of hits. This review examines the feasibility of implementing DECL screening technology as a first-time user, particularly in academia, exploring the some important considerations for this, and outlines some applications of the technology that academia could contribute to the field.
Collapse
Affiliation(s)
- Daniel Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 80 Wood Lane, London, W12 0BZ, UK
| | - James H Hunter
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural & Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Michael J Waring
- Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural & Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
39
|
Huang Y, Meng L, Nie Q, Zhou Y, Chen L, Yang S, Fung YME, Li X, Huang C, Cao Y, Li Y, Li X. Selection of DNA-encoded chemical libraries against endogenous membrane proteins on live cells. Nat Chem 2020; 13:77-88. [PMID: 33349694 DOI: 10.1038/s41557-020-00605-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
Membrane proteins on the cell surface perform a myriad of biological functions; however, ligand discovery for membrane proteins is highly challenging, because a natural cellular environment is often necessary to maintain protein structure and function. DNA-encoded chemical libraries (DELs) have emerged as a powerful technology for ligand discovery, but they are mainly limited to purified proteins. Here we report a method that can specifically label membrane proteins with a DNA tag, and thereby enable target-specific DEL selections against endogenous membrane proteins on live cells without overexpression or any other genetic manipulation. We demonstrate the generality and performance of this method by screening a 30.42-million-compound DEL against the folate receptor, carbonic anhydrase 12 and the epidermal growth factor receptor on live cells, and identify and validate a series of novel ligands for these targets. Given the high therapeutic significance of membrane proteins and their intractability to traditional high-throughput screening approaches, this method has the potential to facilitate membrane-protein-based drug discovery by harnessing the power of DEL.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qigui Nie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Langdong Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Shilian Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yi Man Eva Fung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaomeng Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Cen Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China. .,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China. .,Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK, Hong Kong SAR, China.
| |
Collapse
|
40
|
Brom T, Reddavide FV, Heiden S, Thompson M, Zhang Y. Influence of the geometry of fluorescently labelled DNA constructs on fluorescence anisotropy assay. Biochem Biophys Res Commun 2020; 533:230-234. [PMID: 32376008 DOI: 10.1016/j.bbrc.2020.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 11/15/2022]
Abstract
DNA-encoded chemical libraries (DECLs) are powerful tools for modern drug discovery. A DECL is a pooled mixture of small molecule compounds, each of which is tagged with a unique DNA sequence which functions as a barcode. After incubation with a drug target and washing to remove non-binders, the bound molecules are eluted and submitted for DNA sequencing to determine which molecules are binding the target. While the DECL technology itself is ultra-high throughput, the following re-synthesis of identified compounds for orthogonal validation experiments remains the bottleneck. Using existing DNA-small molecule conjugates directly for affinity measurements, as opposed to complete compound resynthesis, could accelerate the discovery process. To this end, we have tested various geometries of fluorescently-labelled DNA constructs for fluorescence anisotropy (FA) experiments. Minimizing the distance between the fluorescent moiety and ligand can maximize the correlation between ligand-protein interaction and corresponding change in fluorophore rotational freedom, thus leading to larger, easier to interpret changes in FA values. However, close proximity can also cause artifacts due to potentially promiscuous interactions between fluorophore and protein. By balancing these two opposite effects, we have identified applicable fluorescently labelled DNA constructs displaying either a single ligand or pairs of fragments for affinity measurement using a FA assay.
Collapse
Affiliation(s)
- Tomas Brom
- LifeB, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; DyNAbind GmbH, Dresden, Germany
| | | | | | | | - Yixin Zhang
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
41
|
Catalano M, Bassi G, Rotondi G, Khettabi L, Dichiara M, Murer P, Scheuermann J, Soler-Lopez M, Neri D. Discovery, affinity maturation and multimerization of small molecule ligands against human tyrosinase and tyrosinase-related protein 1. RSC Med Chem 2020; 12:363-369. [PMID: 34041485 PMCID: PMC8130610 DOI: 10.1039/d0md00310g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human tyrosinase (hTYR) and tyrosinase-related protein 1 (hTYRP1) are closely-related enzymes involved in the synthesis of melanin, which are selectively expressed in melanocytes and, in a pathological context, in melanoma lesions. We used a previously described tyrosinase inhibitor (Thiamidol™) and DNA-encoded library technology for the discovery of novel hTYR and hTYRP1 ligands, that could be used as vehicles for melanoma targeting. Performing de novo selections with DNA-encoded libraries, we discovered novel ligands capable of binding to both hTYR and hTYRP1. More potent ligands were obtained by multimerizing Thiamidol™ moieties, leading to homotetrameric structures that avidly bound to melanoma cells, as revealed by flow cytometry. These findings suggest that melanoma lesions may, in the future, be targeted not only by monoclonal antibody reagents but also by small organic ligands. A series of different strategies were oriented toward the discovery of small molecule ligands binding to the human version of tyrosinase (hTYR) and tyrosinase-related protein 1 (hTYRP1), which may represent the basis for novel treatments of melanoma.![]()
Collapse
Affiliation(s)
- Marco Catalano
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Giulia Rotondi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland .,Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Lyna Khettabi
- Structural Biology Group, European Synchrotron Radiation Facility 71 Avenue des Martyrs 38000 Grenoble France.,CNRS, DCM, Université Grenoble Alpes 38000 Grenoble France
| | - Maria Dichiara
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility 71 Avenue des Martyrs 38000 Grenoble France
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| |
Collapse
|
42
|
Yuen J, Chai J, Ding Y. Condensation of DNA-Conjugated Imines with Homophthalic Anhydride for the Synthesis of Isoquinolones on DNA. Bioconjug Chem 2020; 31:2712-2718. [DOI: 10.1021/acs.bioconjchem.0c00508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Josephine Yuen
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jing Chai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Yun Ding
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
43
|
Rosenbaum MI, Clemmensen LS, Bredt DS, Bettler B, Strømgaard K. Targeting receptor complexes: a new dimension in drug discovery. Nat Rev Drug Discov 2020; 19:884-901. [PMID: 33177699 DOI: 10.1038/s41573-020-0086-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Targeting receptor proteins, such as ligand-gated ion channels and G protein-coupled receptors, has directly enabled the discovery of most drugs developed to modulate receptor signalling. However, as the search for novel and improved drugs continues, an innovative approach - targeting receptor complexes - is emerging. Receptor complexes are composed of core receptor proteins and receptor-associated proteins, which have profound effects on the overall receptor structure, function and localization. Hence, targeting key protein-protein interactions within receptor complexes provides an opportunity to develop more selective drugs with fewer side effects. In this Review, we discuss our current understanding of ligand-gated ion channel and G protein-coupled receptor complexes and discuss strategies for their pharmacological modulation. Although such strategies are still in preclinical development for most receptor complexes, they exemplify how receptor complexes can be drugged, and lay the groundwork for this nascent area of research.
Collapse
Affiliation(s)
- Mette Ishøy Rosenbaum
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Louise S Clemmensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
44
|
Schuffenhauer A, Schneider N, Hintermann S, Auld D, Blank J, Cotesta S, Engeloch C, Fechner N, Gaul C, Giovannoni J, Jansen J, Joslin J, Krastel P, Lounkine E, Manchester J, Monovich LG, Pelliccioli AP, Schwarze M, Shultz MD, Stiefl N, Baeschlin DK. Evolution of Novartis' Small Molecule Screening Deck Design. J Med Chem 2020; 63:14425-14447. [PMID: 33140646 DOI: 10.1021/acs.jmedchem.0c01332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article summarizes the evolution of the screening deck at the Novartis Institutes for BioMedical Research (NIBR). Historically, the screening deck was an assembly of all available compounds. In 2015, we designed a first deck to facilitate access to diverse subsets with optimized properties. We allocated the compounds as plated subsets on a 2D grid with property based ranking in one dimension and increasing structural redundancy in the other. The learnings from the 2015 screening deck were applied to the design of a next generation in 2019. We found that using traditional leadlikeness criteria (mainly MW, clogP) reduces the hit rates of attractive chemical starting points in subset screening. Consequently, the 2019 deck relies on solubility and permeability to select preferred compounds. The 2019 design also uses NIBR's experimental assay data and inferred biological activity profiles in addition to structural diversity to define redundancy across the compound sets.
Collapse
Affiliation(s)
- Ansgar Schuffenhauer
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Nadine Schneider
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Samuel Hintermann
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Douglas Auld
- Novartis Institutes for BioMedical Research Inc., 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jutta Blank
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Caroline Engeloch
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Nikolas Fechner
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Christoph Gaul
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Jerome Giovannoni
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Johanna Jansen
- Novartis Institutes for BioMedical Research-Emeryville, 5300 Chiron Way, Emeryville, California 94608-2916, United States
| | - John Joslin
- Genomics Institute of the Novartis Foundation, San Diego, California 92121, United States
| | - Philipp Krastel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Eugen Lounkine
- Novartis Institutes for BioMedical Research Inc., 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John Manchester
- Novartis Institutes for BioMedical Research Inc., 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Lauren G Monovich
- Novartis Institutes for BioMedical Research Inc., 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Anna Paola Pelliccioli
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Manuel Schwarze
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Michael D Shultz
- Novartis Institutes for BioMedical Research Inc., 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nikolaus Stiefl
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| | - Daniel K Baeschlin
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
| |
Collapse
|
45
|
Busby SA, Carbonneau S, Concannon J, Dumelin CE, Lee Y, Numao S, Renaud N, Smith TM, Auld DS. Advancements in Assay Technologies and Strategies to Enable Drug Discovery. ACS Chem Biol 2020; 15:2636-2648. [PMID: 32880443 DOI: 10.1021/acschembio.0c00495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Assays drive drug discovery from the exploratory phases to the clinical testing of drug candidates. As such, numerous assay technologies and methodologies have arisen to support drug discovery efforts. Robust identification and characterization of tractable chemical matter requires biochemical, biophysical, and cellular approaches and often benefits from high-throughput methods. To increase throughput, efforts have been made to provide assays in miniaturized volumes which can be arrayed in microtiter plates to support the testing of as many as 100,000 samples/day. Alongside these efforts has been the growth of microtiter plate-free formats with encoded libraries that can support the screening of billions of compounds, a hunt for new drug modalities, as well as emphasis on more disease relevant formats using complex cell models of disease states. This review will focus on recent developments in high-throughput assay technologies applied to identify starting points for drug discovery. We also provide recommendations on strategies for implementing various assay types to select high quality leads for drug development.
Collapse
Affiliation(s)
- Scott A. Busby
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| | - Seth Carbonneau
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| | - John Concannon
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| | | | - YounKyoung Lee
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| | - Shin Numao
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Nicole Renaud
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| | - Thomas M. Smith
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| | - Douglas S. Auld
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| |
Collapse
|
46
|
Catalano M, Moroglu M, Balbi P, Mazzieri F, Clayton J, Andrews KH, Bigatti M, Scheuermann J, Conway SJ, Neri D. Selective Fragments for the CREBBP Bromodomain Identified from an Encoded Self-assembly Chemical Library. ChemMedChem 2020; 15:1752-1756. [PMID: 32686307 DOI: 10.1002/cmdc.202000528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/21/2022]
Abstract
DNA-encoded chemical libraries (DECLs) are collections of chemical moieties individually coupled to distinctive DNA barcodes. Compounds can be displayed either at the end of a single DNA strand (i. e., single-pharmacophore libraries) or at the extremities of two complementary DNA strands (i. e., dual-pharmacophore libraries). In this work, we describe the use of a dual-pharmacophore encoded self-assembly chemical (ESAC) library for the affinity maturation of a known 4,5-dihydrobenzodiazepinone ring (THBD) acetyl-lysine (KAc) mimic for the cyclic-AMP response element binding protein (CREB) binding protein (CREBBP or CBP) bromodomain. The new pair of fragments discovered from library selection showed a sub-micromolar affinity for the CREBBP bromodomain in fluorescence polarization and ELISA assays, and selectivity against BRD4(1).
Collapse
Affiliation(s)
- Marco Catalano
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Mustafa Moroglu
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Petra Balbi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Federica Mazzieri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - James Clayton
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Katrina H Andrews
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Stuart J Conway
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
47
|
Farrant E. Automation of Synthesis in Medicinal Chemistry: Progress and Challenges. ACS Med Chem Lett 2020; 11:1506-1513. [PMID: 32832016 PMCID: PMC7430952 DOI: 10.1021/acsmedchemlett.0c00292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Since the 1990s, concerted attempts have been made to improve the efficiency of medicinal chemistry synthesis tasks using automation. Although impacts have been seen in some tasks, such as small array synthesis and reaction optimization, many synthesis tasks in medicinal chemistry are still manual. As it has been shown that synthesis technology has a large effect on the properties of the compounds being tested, this review looks at recent research in automation relevant to synthesis in medicinal chemistry. A common theme has been the integration of tasks, as well as the use of increased computing power to access complex automation platforms remotely and to improve synthesis planning software. However, there has been more limited progress in modular tools for the medicinal chemist with a focus on autonomy rather than automation.
Collapse
Affiliation(s)
- Elizabeth Farrant
- New Path Molecular Research
Ltd, Building 580, Babraham
Research Campus, Cambridge CB22 3AT, U.K.
| |
Collapse
|
48
|
Tran TT, Tran PH. Lead Compounds in the Context of Extracellular Vesicle Research. Pharmaceutics 2020; 12:E716. [PMID: 32751565 PMCID: PMC7463631 DOI: 10.3390/pharmaceutics12080716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
Studies of small extracellular vesicles (sEVs), known as exosomes, have been flourishing in the last decade with several achievements, from advancing biochemical knowledge to use in biomedical applications. Physiological changes of sEVs due to the variety of cargos they carry undoubtedly leave an impression that affects the understanding of the mechanism underlying disease and the development of sEV-based shuttles used for treatments and non-invasive diagnostic tools. Indeed, the remarkable properties of sEVs are based on their nature, which helps shield them from recognition by the immune system, protects their payload from biochemical degradation, and contributes to their ability to translocate and convey information between cells and their inherent ability to target disease sites such as tumors that is valid for sEVs derived from cancer cells. However, their transport, biogenesis, and secretion mechanisms are still not thoroughly clear, and many ongoing investigations seek to determine how these processes occur. On the other hand, lead compounds have been playing critical roles in the drug discovery process and have been recently employed in studies of the biogenesis and secretion of sEVs as external agents, affecting sEV release and serving as drug payloads in sEV drug delivery systems. This article gives readers an overview of the roles of lead compounds in these two research areas of sEVs, the rising star in studies of nanoscale medicine.
Collapse
Affiliation(s)
- Thao T.D. Tran
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
- The Faculty of Pharmacy, Duy Tan University, Danang 550000, Vietnam
| | - Phuong H.L. Tran
- Deakin University, School of Medicine, IMPACT, Institute for innovation in Physical and Mental health and Clinical Translation, Geelong, Australia
| |
Collapse
|
49
|
Catalano M, Oehler S, Prati L, Favalli N, Bassi G, Scheuermann J, Neri D. Complexation with a Cognate Antibody Fragment Facilitates Affinity Measurements of Fluorescein-Linked Small Molecule Ligands. Anal Chem 2020; 92:10822-10829. [DOI: 10.1021/acs.analchem.0c02304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Marco Catalano
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Luca Prati
- Philochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| |
Collapse
|
50
|
Li K, Liu X, Liu S, An Y, Shen Y, Sun Q, Shi X, Su W, Cui W, Duan Z, Kuai L, Yang H, Satz AL, Chen K, Jiang H, Zheng M, Peng X, Lu X. Solution-Phase DNA-Compatible Pictet-Spengler Reaction Aided by Machine Learning Building Block Filtering. iScience 2020; 23:101142. [PMID: 32446221 PMCID: PMC7243192 DOI: 10.1016/j.isci.2020.101142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 02/05/2023] Open
Abstract
The application of machine learning toward DNA encoded library (DEL) technology is lacking despite obvious synergy between these two advancing technologies. Herein, a machine learning algorithm has been developed that predicts the conversion rate for the DNA-compatible reaction of a building block with a model DNA-conjugate. We exemplify the value of this technique with a challenging reaction, the Pictet-Spengler, where acidic conditions are normally required to achieve the desired cyclization between tryptophan and aldehydes to provide tryptolines. This is the first demonstration of using a machine learning algorithm to cull potential building blocks prior to their purchase and testing for DNA-encoded library synthesis. Importantly, this allows for a challenging reaction, with an otherwise very low building block pass rate in the test reaction, to still be used in DEL synthesis. Furthermore, because our protocol is solution phase it is directly applicable to standard plate-based DEL synthesis.
Collapse
Affiliation(s)
- Ke Li
- DNA Encoded Library Platform, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaohong Liu
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yulong An
- DNA Encoded Library Platform, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yanfang Shen
- DNA Encoded Library Platform, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qingxia Sun
- DNA Encoded Library Platform, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaodong Shi
- DNA Encoded Library Platform, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wenji Su
- DNA Encoded Library Platform, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Weiren Cui
- DNA Encoded Library Platform, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Letian Kuai
- DNA Encoded Library Platform, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hongfang Yang
- DNA Encoded Library Platform, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Alexander L Satz
- DNA Encoded Library Platform, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Kaixian Chen
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Xuanjia Peng
- DNA Encoded Library Platform, WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|