1
|
Ye L, Zhang B, Yang X, Huang Y, Luo J, Zhang X, Tan W, Song C, Ao Z, Shen C, Li X. Metabolomic profiling reveals biomarkers for diverse flesh colors in jelly fungi (Auricularia cornea). Food Chem 2024; 446:138906. [PMID: 38460278 DOI: 10.1016/j.foodchem.2024.138906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Auricularia cornea has garnered attention due to its nutrition, culinary applications, and promising commercial prospects. However, there is little information available regarding the metabolic profiling of various colors strains. In this study, 642 metabolites across 64 classes were identified by LC-MS/MS to understand the metabolic variations between white, pink and dark brown strains. Notably, prenol lipids, carboxylic acids and fatty acyls accounted for 46.8 % of the total. Comparative analysis revealed 17 shared differential metabolites (DMs) among them. ACP vs ACW exhibited 17 unique metabolites, including d-arginine and maleic acid, etc. ACP vs ACB showed 5 unique metabolites, with only PS(18:1(9Z)/0:0) demonstrating up-regulation. ACB vs ACW showed 8 unique metabolites, including 4-hydroxymandelic acid and 5'-methylthioadenosine, etc. KEGG enrichment analysis highlighted pathway variations, and MetPA analysis identified key-pathways influencing DMs accumulation in A. cornea. This pioneering metabolomics study offers insights into A. cornea metabolic profiling, potential applications, and guides further research.
Collapse
Affiliation(s)
- Lei Ye
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611134, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Jianhua Luo
- Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611134, China
| | - Wei Tan
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China.
| | - Chuan Song
- Luzhou Laojiao Co., Ltd, Luzhou 646000, China
| | - Zonghua Ao
- Luzhou Laojiao Co., Ltd, Luzhou 646000, China
| | | | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China; Luzhou Laojiao Co., Ltd, Luzhou 646000, China.
| |
Collapse
|
2
|
Qi Y, Guo XY, Xu XY, Hou JX, Liu SL, Guo HB, Xu AG, Yang RH, Yu XD. Widely targeted metabolomics analysis of Sanghuangporus vaninii mycelia and fruiting bodies at different harvest stages. Front Microbiol 2024; 15:1391558. [PMID: 38846565 PMCID: PMC11153664 DOI: 10.3389/fmicb.2024.1391558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Sanghuangprous vaninii is a medicinal macrofungus cultivated extensively in China. Both the mycelia and fruiting bodies of S. vaninii have remarkable therapeutic properties, but it remains unclear whether the mycelia may serve as a substitute for the fruiting bodies. Furthermore, S. vaninii is a perennial fungus with therapeutic components that vary significantly depending on the growing year of the fruiting bodies. Hence, it is critical to select an appropriate harvest stage for S. vaninii fruiting bodies for a specific purpose. With the aid of Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), metabolomics based on ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QQQ-MS) was used to preliminarily determine 81 key active metabolites and 157 active pharmaceutical metabolites in S. vaninii responsible for resistance to the six major diseases. To evaluate the substitutability of the mycelia and fruiting bodies of S. vaninii and to select an appropriate harvest stage for the fruiting bodies of S. vaninii, we analyzed the metabolite differences, especially active metabolite differences, among the mycelia and fruiting bodies during three different harvest stages (1-year-old, 2-year-old, and 3-year-old). Moreover, we also determined the most prominent and crucial metabolites in each sample of S. vaninii. These results suggested that the mycelia show promise as a substitute for the fruiting bodies of S. vaninii and that extending the growth year does not necessarily lead to higher accumulation levels of active metabolites in the S. vaninii fruiting bodies. This study provided a theoretical basis for developing and using S. vaninii.
Collapse
Affiliation(s)
- Yue Qi
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiao-Ying Guo
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xin-Yue Xu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Jian-Xuan Hou
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Shi-Lai Liu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Hong-Bo Guo
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Ai-Guo Xu
- Alpine Fungarium, Tibet Plateau Institute of Biology, Lhasa, China
| | - Rui-Heng Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiao-Dan Yu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
Xu C, Zhao S, Li Z, Pan J, Zhou Y, Hu Q, Zou Y. Identification of altered metabolic functional components using metabolomics to analyze the different ages of fruiting bodies of Sanghuangporus vaninii cultivated on cut log substrates. Front Nutr 2023; 10:1197998. [PMID: 37662599 PMCID: PMC10472941 DOI: 10.3389/fnut.2023.1197998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 09/05/2023] Open
Abstract
Sanghuangporus vaninii is a profitable traditional and medicinal edible fungus with uncommon therapeutic properties and medicinal value. The accumulation of active ingredients in this fungus that is used in traditional Chinese medicine is affected by its years of growth, and their pharmacological activities are also affected. However, the effects of age on the medicinal value of fruiting bodies of S. vaninii cultivated on cut log substrate remain unclear. In this study, an untargeted liquid chromatography mass spectrometry (LC-MS)-based metabolomics approach was performed to characterize the profiles of metabolites from 1-, 2- and 3-year-old fruiting bodies of S. vaninii. A total of, 156 differentially accumulated metabolites (DAMs) were screened based on the criterion of a variable importance projection greater than 1.0 and p < 0.01, including 75% up regulated and 25% down regulated. The results of enrichment of metabolic pathways showed that the metabolites involved the biosynthesis of plant secondary metabolites, biosynthesis of amino acids, central carbon metabolism in cancer, steroid hormone biosynthesis, linoleic acid metabolism, prolactin signaling pathway, and arginine biosynthesis, and so on. The biosynthesis of plant secondary metabolites pathway was significantly activated. Five metabolites were significantly elevated within the growth of fruiting bodies, including 15-keto-prostaglandin F2a, (4S, 5R)-4,5,6-trihydroxy-2-iminohexanoate, adenylsuccinic acid, piplartine, and chenodeoxycholic acid. 15-keto-prostaglandin F2a is related to the pathway of arachidonic acid metabolism and was significantly increased up to 1,320- and 535-fold in the 2- and 3-year-old fruiting bodies, respectively, compared with those in the 1-year-old group. The presence of these bioactive natural products in S. vaninii is consistent with the traditional use of Sanghuang, which prompted an exploration of its use as a source of natural prostaglandin in the form of foods and nutraceuticals. These findings may provide insight into the functional components of S. vaninii to develop therapeutic strategies.
Collapse
Affiliation(s)
- Congtao Xu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuang Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zihao Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinlong Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingxiu Hu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajie Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Brandalise F, Roda E, Ratto D, Goppa L, Gargano ML, Cirlincione F, Priori EC, Venuti MT, Pastorelli E, Savino E, Rossi P. Hericium erinaceus in Neurodegenerative Diseases: From Bench to Bedside and Beyond, How Far from the Shoreline? J Fungi (Basel) 2023; 9:jof9050551. [PMID: 37233262 DOI: 10.3390/jof9050551] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
A growing number of studies is focusing on the pharmacology and feasibility of bioactive compounds as a novel valuable approach to target a variety of human diseases related to neurological degeneration. Among the group of the so-called medicinal mushrooms (MMs), Hericium erinaceus has become one of the most promising candidates. In fact, some of the bioactive compounds extracted from H. erinaceus have been shown to recover, or at least ameliorate, a wide range of pathological brain conditions such as Alzheimer's disease, depression, Parkinson's disease, and spinal cord injury. In a large body of in vitro and in vivo preclinical studies on the central nervous system (CNS), the effects of erinacines have been correlated with a significant increase in the production of neurotrophic factors. Despite the promising outcome of preclinical investigations, only a limited number of clinical trials have been carried out so far in different neurological conditions. In this survey, we summarized the current state of knowledge on H. erinaceus dietary supplementation and its therapeutic potential in clinical settings. The bulk collected evidence underlies the urgent need to carry out further/wider clinical trials to prove the safety and efficacy of H. erinaceus supplementation, offering significant neuroprotective applications in brain pathologies.
Collapse
Affiliation(s)
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Daniela Ratto
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Goppa
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy
| | - Maria Letizia Gargano
- Department of Soil, Plant, and Food Sciences, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Fortunato Cirlincione
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Maria Teresa Venuti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Emanuela Pastorelli
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Wang T, Li X, Zhang C, Xu J. Transcriptome analysis of Ganoderma lingzhi (Agaricomycetes) response to Trichoderma hengshanicum infection. Front Microbiol 2023; 14:1131599. [PMID: 36910175 PMCID: PMC9996313 DOI: 10.3389/fmicb.2023.1131599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Green mold caused by Trichoderma spp. has become one of the most serious diseases which threatening the production of Ganoderma lingzhi. To understand the possible resistance mechanism of the G. lingzhi response to T. hengshanicum infection, we examined the G. lingzhi transcript accumulation at 0, 12, and 24 h after T. hengshanicum inoculation. The gene expression analysis was conducted on the interaction between G. lingzhi and T. hengshanicum using RNA-seq and digital gene expression (DGE) profiling methods. Transcriptome sequencing indicated that there were 162 differentially expressed genes (DEGs) at three infection time points, containing 15 up-regulated DEGs and 147 down-regulated DEGs. Resistance-related genes thaumatin-like proteins (TLPs) (PR-5s), phenylalanine ammonia-lyase, and Beta-1,3-glucan binding protein were significantly up-regulated. At the three time points of infection, the heat shock proteins (HSPs) genes of G. lingzhi were down-regulated. The down-regulation of HSPs genes led to the inhibition of HSP function, which may compromise the HSP-mediated defense signaling transduction pathway, leading to G. lingzhi susceptibility. Pathway enrichment analyses showed that the main enriched pathways by G. lingzhi after infection were sphingolipid metabolism, ether lipid metabolism, and valine, leucine and isoleucine degradation pathway. Overall, the results described here improve fundamental knowledge of molecular responses to G. lingzhi defense and contribute to the design of strategies against Trichoderma spp.
Collapse
Affiliation(s)
- Tiantian Wang
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Xiaobin Li
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chunlan Zhang
- College of Landscape Architecture, Changchun University, Changchun, China
| | - Jize Xu
- Agricultural College, Yanbian University, Yanji, China
- Agricultural College, Jilin Agricultural Science and Technology University, Jilin, China
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Cao L, Zhang Q, Miao R, Lin J, Feng R, Ni Y, Li W, Yang D, Zhao X. Application of omics technology in the research on edible fungi. Curr Res Food Sci 2022; 6:100430. [PMID: 36605463 PMCID: PMC9807862 DOI: 10.1016/j.crfs.2022.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Edible fungus is a large fungus distributed all over the world and used as food and medicine. But people's understanding of edible fungi is not as much as that of ordinary crops, so people have started a number of research on edible fungi in recent years. With the development of science and technology, omics technology has gradually walked into people's vision. Omics technology has high sensitivity and wide application range, which is favored by researchers. The application of omics technology to edible fungus research is a major breakthrough, which has transferred edible fungus research from artificial cultivation to basic research. Now omics technology in edible fungi has been flexibly combined with other research methods, involving multiple studies of edible fungus, such as genetic breeding, growth and development, stress resistance, and the use of special components in edible fungus as pharmaceutical additives. It is believed that in the future, the research of edible fungi will also be brought to a deeper level with the help of omics technology. This paper introduces the application progress of modern omics technology to the study on edible fungi and mentions the application prospect of edible fungi research with the constant development of omics technology, thereby providing ideas for the follow-up in-depth research on edible fungi.
Collapse
Affiliation(s)
- Luping Cao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China
| | - Yanqing Ni
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Wensheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Delong Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China,Corresponding author.
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China,Chengdu National Agricultural Science and Technology Center, Chengdu, 610299, Sichuan, China,Facility Agriculture and Equipment Research Institute, Gansu Academy of Agri-engineering Technology, Wuwei, 733006, Gansu, China,Corresponding author. Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China.
| |
Collapse
|
7
|
DNA Authentication and Chemical Analysis of Psilocybe Mushrooms Reveal Widespread Misdeterminations in Fungaria and Inconsistencies in Metabolites. Appl Environ Microbiol 2022; 88:e0149822. [PMID: 36445079 PMCID: PMC9764976 DOI: 10.1128/aem.01498-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The mushroom genus Psilocybe is best known as the core group of psychoactive mushrooms, yet basic information on their diversity, taxonomy, chemistry, and general biology is still largely lacking. In this study, we reexamined 94 Psilocybe fungarium specimens, representing 18 species, by DNA barcoding, evaluated the stability of psilocybin, psilocin, and their related tryptamine alkaloids in 25 specimens across the most commonly vouchered species (Psilocybe cubensis, Psilocybe cyanescens, and Psilocybe semilanceata), and explored the metabolome of cultivated P. cubensis. Our data show that, apart from a few well-known species, the taxonomic accuracy of specimen determinations is largely unreliable, even at the genus level. A substantial quantity of poor-quality and mislabeled sequence data in public repositories, as well as a paucity of sequences derived from types, further exacerbates the problem. Our data also support taxon- and time-dependent decay of psilocybin and psilocin, with some specimens having no detectable quantities of them. We also show that the P. cubensis metabolome possibly contains thousands of uncharacterized compounds, at least some of which may be bioactive. Taken together, our study undermines commonly held assumptions about the accuracy of names and presence of controlled substances in fungarium specimens identified as Psilocybe spp. and reveals that our understanding of the chemical diversity of these mushrooms is largely incomplete. These results have broader implications for regulatory policies pertaining to the storage and sharing of fungarium specimens as well as the use of psychoactive mushrooms for recreation and therapy. IMPORTANCE The therapeutic use of psilocybin, the active ingredient in "magic mushrooms," is revolutionizing mental health care for a number of conditions, including depression, posttraumatic stress disorder (PTSD), and end-of-life care. This has spotlighted the current state of knowledge of psilocybin, including the organisms that endogenously produce it. However, because of international regulation of psilocybin as a controlled substance (often included on the same list as cocaine and heroin), basic research has lagged far behind. Our study highlights how the poor state of knowledge of even the most fundamental scientific information can impact the use of psilocybin-containing mushrooms for recreational or therapeutic applications and undermines critical assumptions that underpin their regulation by legal authorities. Our study shows that currently available chemical studies are mainly inaccurate, irreproducible, and inconsistent, that there exists a high rate of misidentification in museum collections and public databases rendering even names unreliable, and that the concentration of psilocybin and its tryptamine derivatives in three of the most commonly collected Psilocybe species (P. cubensis, P. cyanescens, and P. semilanceata) is highly variable and unstable in museum specimens spanning multiple decades, and our study generates the first-ever insight into the highly complex and largely uncharacterized metabolomic profile for the most commonly cultivated magic mushroom, P. cubensis.
Collapse
|
8
|
Abdullah NR, Mohd Nasir MH, Azizan NH, Wan-Mohtar WAAQI, Sharif F. Bioreactor-grown exo- and endo-β-glucan from Malaysian Ganoderma lucidum: An in vitro and in vivo study for potential antidiabetic treatment. Front Bioeng Biotechnol 2022; 10:960320. [PMID: 36091430 PMCID: PMC9452895 DOI: 10.3389/fbioe.2022.960320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
This study aims to identify the roles of exo-β-glucan (EPS-BG) and endo-β-glucan (ENS-BG) extracted from Ganoderma lucidum (GL) in inhibiting the alpha-glucosidase enzyme, a target mechanism for postprandial hyperglycaemia regulation. Upscale production of GL was carried out using a 10 L bioreactor. The zebrafish embryo toxicity test (ZFET) was carried out based on OECD guidelines. The hatching rate, survival rate, heart rate, morphological malformation, and teratogenic defects were observed and determined every 24 h from 0–120 h of post-exposure (hpe). For diabetes induction, adult zebrafish (3–4 months of age) were overfed and induced with three doses of 350 mg/kg streptozotocin (STZ) by intraperitoneal injection (IP) on three different days (days 1, 3, and 5). The oral sucrose tolerance test (OSTT) and anti-diabetic activity of EPS-BG and ENS-BG were evaluated (day 7) using the developed model (n = 15). This study showed that EPS is the most potent compound with the highest inhibitory effect toward the alpha-glucosidase enzyme with an IC50 value of 0.1575 mg/ml compared to ENS extracts (IC50 = 0.3479 mg/ml). Both EPS-BG and ENS-BG demonstrated a strong inhibition of alpha-glucosidase activity similar to the clinically approved alpha-glucosidase inhibitor, acarbose (IC50 = 0.8107 mg/ml). ENS-BG is non-toxic toward zebrafish embryos with LC50 of 0.92 mg/ml and showed no significant changes in ZE hatching and normal heart rate as compared to untreated embryos (161 beats/min). Teratogenic effects of ENS-BG (<1.0 mg/ml) on zebrafish embryonic development were not observed. The DM model of zebrafish was acquired after the third dose of STZ with a fasting BGL of 8.98 ± 0.28 mmol/L compared to the normal healthy group (4.23 ± 0.62 mmol/L). The BGL of DM zebrafish after 30 min treated with EPS-BG and ENS-BG showed a significant reduction (p < 0.0001). Both EPS-BG and ENS-BG significantly reduced DM zebrafish’s peak blood glucose and the area under the curve (AUC) in OSTT. Hence, EPS-BG and ENS-BG extracted from GL showed promising inhibition of the alpha-glucosidase enzyme and are considered non-toxic in ZE. Moreover, EPS-BG and ENS-BG reduced blood glucose levels and inhibited hyperglycemia in DM zebrafish.
Collapse
Affiliation(s)
- Nur Raihan Abdullah
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Nur Hafizah Azizan
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Faez Sharif
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- *Correspondence: Faez Sharif,
| |
Collapse
|
9
|
Bhambri A, Srivastava M, Mahale VG, Mahale S, Karn SK. Mushrooms as Potential Sources of Active Metabolites and Medicines. Front Microbiol 2022; 13:837266. [PMID: 35558110 PMCID: PMC9090473 DOI: 10.3389/fmicb.2022.837266] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Mushrooms exist as an integral and vital component of the ecosystem and are very precious fungi. Mushrooms have been traditionally used in herbal medicines for many centuries. Scope and Approach There are a variety of medicinal mushrooms mentioned in the current work such as Agaricus, Amanita, Calocybe, Cantharellus, Cordyceps, Coprinus, Cortinarius, Ganoderma, Grifola, Huitlacoche, Hydnum, Lentinus, Morchella, Pleurotus, Rigidoporus, Tremella, Trametes sp., etc., which play a vital role in various diseases because of several metabolic components and nutritional values. Medicinal mushrooms can be identified morphologically on the basis of their size, color (white, black, yellow, brown, cream, pink and purple-brown, etc.), chemical reactions, consistency of the stalk and cap, mode of attachment of the gills to the stalk, and spore color and mass, and further identified at a molecular level by Internal Transcribed Spacer (ITS) regions of gene sequencing. There are also other methods that have recently begun to be used for the identification of mushrooms such as high-pressure liquid chromatography (HPLC), nuclear magnetic resonance spectroscopy (NMR), microscopy, thin-layer chromatography (TLC), DNA sequencing, gas chromatography-mass spectrometry (GC-MS), chemical finger printing, ultra-performance liquid chromatography (UPLC), fourier transform infrared spectroscopy (FTIR), liquid chromatography quadrupole time-of-flight mass spectrometry (LCMS-TOF) and high-performance thin-layer chromatography (HPTLC). Lately, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technique is also used for the identification of fungi. Key Finding and Conclusion Medicinal mushrooms possess various biological activities like anti-oxidant, anti-cancer, anti-inflammatory, anti-aging, anti-tumor, anti-viral, anti-parasitic, anti-microbial, hepatoprotective, anti-HIV, anti-diabetic, and many others that will be mentioned in this article. This manuscript will provide future direction, action mechanisms, applications, and the recent collective information of medicinal mushrooms. In addition to many unknown metabolites and patented active metabolites are also included.
Collapse
Affiliation(s)
- Anne Bhambri
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | | | | | | | - Santosh Kumar Karn
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| |
Collapse
|
10
|
Dat TD, Viet ND, Thanh VH, Nhi HND, Linh NTT, Ngan NTK, Nam HM, Thanh Phong M, Hieu NH. Optimization of Triterpenoid Extracted from Vietnamese Ganoderma lucidum via Supercritical Extraction Method and Biological Tests. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2032750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tran Do Dat
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Duc Viet
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Vuong Hoai Thanh
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Ho Nguyen Dieu Nhi
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Ngo Thi Thuy Linh
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Kim Ngan
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hoang Minh Nam
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Mai Thanh Phong
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Huu Hieu
- Vnu-hcmc Key Laboratory of Chemical Engineering and Petroleum Processing (Key Cepp Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCm), Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
11
|
Adotey G, Alolga RN, Quarcoo A, Gedel MA, Anang AK, Holliday JC. Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-TOF-MS)-based metabolomic analysis of mycelial biomass of three Ganoderma isolates from the Lower Volta River Basin of Ghana. J Pharm Biomed Anal 2021; 205:114355. [PMID: 34500238 DOI: 10.1016/j.jpba.2021.114355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 11/28/2022]
Abstract
In this work, we sought to determine the differences and/or similarities in the metabolite composition of the mycelial biomass of three ganoderma isolates (Ganoderma LVRB-1, Ganoderma LVRB-9 and Ganoderma LVRB-17) from the Lower Volta River Basin of Ghana. The cultured mycelial mass of the three isolates were subjected to DNA sequencing. BLASTn searches of the internal transcribed spacer. (ITS) sequences of the isolates were conducted in the GenBank and the data obtained subjected to ITS phylogenetic analysis. Thereafter, extracts of the cultured mycelial biomass of the three isolates were subjected to untargeted ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS)-based metabolomic analysis. A cursory examination of the total ion chromatograms of the isolates gave evidence of the differential levels of the metabolites present. Further analysis of the metabolomic data using multivariate analysis better captured these marked differences in terms of the presence and/or levels of the metabolites. Finally, four lanostane triterpenoids, namely ganoderic acid C6, ganoderenic acid A, Ganoderenic acid D and ganoderic acid G, together with two annotated compounds (ganoderic acids K and AM1) were detected in the mycelia biomass of the three ganoderma isolates from the Lower Volta River Basin of Ghana. The results provide the first ever metabolomic data on the chemical constituents of the mycelial biomass of ganoderma isolates from the Lower Volta River Basin of Ghana.
Collapse
Affiliation(s)
- Gideon Adotey
- Science Laboratory Department, Accra Technical University, P.O. Box GP 561, Barnes Road, Accra, Ghana.
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China.
| | - Abraham Quarcoo
- Science Laboratory Department, Accra Technical University, P.O. Box GP 561, Barnes Road, Accra, Ghana
| | - Mohammed Ahmed Gedel
- Science Laboratory Department, Accra Technical University, P.O. Box GP 561, Barnes Road, Accra, Ghana
| | - Abraham K Anang
- Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Ghana
| | | |
Collapse
|
12
|
Postharvest Drying Techniques Regulate Secondary Metabolites and Anti-Neuroinflammatory Activities of Ganoderma lucidum. Molecules 2021; 26:molecules26154484. [PMID: 34361637 PMCID: PMC8347575 DOI: 10.3390/molecules26154484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/11/2023] Open
Abstract
Ganoderma lucidum extract is a potent traditional remedy for curing various ailments. Drying is the most important postharvest step during the processing of Ganoderma lucidum. The drying process mainly involves heat (36 h at 60 °C) and freeze-drying (36 h at −80 °C). We investigated the effects of different postharvest drying protocols on the metabolites profiling of Ganoderma lucidum using GC-MS, followed by an investigation of the anti-neuroinflammatory potential in LPS-treated BV2 microglial cells. A total of 109 primary metabolites were detected from heat and freeze-dried samples. Primary metabolite profiling showed higher levels of amino acids (17.4%) and monosaccharides (8.8%) in the heat-dried extracts, whereas high levels of organic acids (64.1%) were present in the freeze-dried samples. The enzymatic activity, such as ATP-citrate synthase, pyruvate kinase, glyceraldehyde-3-phosphatase dehydrogenase, glutamine synthase, fructose-bisphosphate aldolase, and D-3-phosphoglycerate dehydrogenase, related to the reverse tricarboxylic acid cycle were significantly high in the heat-dried samples. We also observed a decreased phosphorylation level of the MAP kinase (Erk1/2, p38, and JNK) and NF-κB subunit p65 in the heat-dried samples of the BV2 microglia cells. The current study suggests that heat drying improves the production of ganoderic acids by the upregulation of TCA-related pathways, which, in turn, gives a significant reduction in the inflammatory response of LPS-induced BV2 cells. This may be attributed to the inhibition of NF-κB and MAP kinase signaling pathways in cells treated with heat-dried extracts.
Collapse
|
13
|
Dat TD, Viet ND, My PLT, Linh NT, Thanh VH, Linh NTT, Ngan NTK, Linh NTT, Nam HM, Phong MT, Hieu NH. The Application of Ethanolic Ultrasonication to Ameliorate the Triterpenoid Content Extracted from Vietnamese
Ganoderma lucidum
with the Examination by Gas Chromatography. ChemistrySelect 2021. [DOI: 10.1002/slct.202004242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tran Do Dat
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Duc Viet
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Phan Le Thao My
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Vuong Hoai Thanh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Thuy Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Nguyen Thi Kim Ngan
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Ngo Thi Thuy Linh
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
| | - Hoang Minh Nam
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU-HCMC Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab)
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology 268 Ly Thuong Kiet Street, Ward 14, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trang Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
14
|
Aramabašić Jovanović J, Mihailović M, Uskoković A, Grdović N, Dinić S, Vidaković M. The Effects of Major Mushroom Bioactive Compounds on Mechanisms That Control Blood Glucose Level. J Fungi (Basel) 2021; 7:58. [PMID: 33467194 PMCID: PMC7830770 DOI: 10.3390/jof7010058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a life-threatening multifactorial metabolic disorder characterized by high level of glucose in the blood. Diabetes and its chronic complications have a significant impact on human life, health systems, and countries' economies. Currently, there are many commercial hypoglycemic drugs that are effective in controlling hyperglycemia but with several serious side-effects and without a sufficient capacity to significantly alter the course of diabetic complications. Over many centuries mushrooms and their bioactive compounds have been used in the treatment of diabetes mellitus, especially polysaccharides and terpenoids derived from various mushroom species. This review summarizes the effects of these main mushroom secondary metabolites on diabetes and underlying molecular mechanisms responsible for lowering blood glucose. In vivo and in vitro data revealed that treatment with mushroom polysaccharides displayed an anti-hyperglycemic effect by inhibiting glucose absorption efficacy, enhancing pancreatic β-cell mass, and increasing insulin-signaling pathways. Mushroom terpenoids act as inhibitors of α-glucosidase and as insulin sensitizers through activation of PPARγ in order to reduce hyperglycemia in animal models of diabetes. In conclusion, mushroom polysaccharides and terpenoids can effectively ameliorate hyperglycemia by various mechanisms and can be used as supportive candidates for prevention and control of diabetes in the future.
Collapse
Affiliation(s)
- Jelena Aramabašić Jovanović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (M.M.); (A.U.); (N.G.); (S.D.); (M.V.)
| | | | | | | | | | | |
Collapse
|
15
|
Motta F, Gershwin ME, Selmi C. Mushrooms and immunity. J Autoimmun 2020; 117:102576. [PMID: 33276307 DOI: 10.1016/j.jaut.2020.102576] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
In the wide field of nutraceuticals, the effects of mushrooms on immunity, cancer and including autoimmunity have been proposed for centuries but in recent years a growing interest has led scientists to elucidate which specific compounds have bioactive properties and through which mechanisms. Glucans and specific proteins are responsible for most of the biological effects of mushrooms, particularly in terms of immunomodulatory and anti-tumor results. Proteins with bioactive effects include lectins, fungal immunomodulatory proteins (FIPs), ribosome inactivating proteins (RIPs), ribonucleases, laccases, among others. At the present status of knowledge, numerous studies have been performed on cell lines and murine models while only a few clinical trials have been conducted. As in most cases of dietary components, the multitude of variables implicated in the final effect and an inadequate standardization are expected to affect the observed differences, thus making the available evidence insufficient to justify the treatment of human diseases with mushrooms extracts. We will herein provide a comprehensive review and critically discussion the biochemical changes induced by different mushroom compounds as observed in in vitro studies, particularly on macrophages, dendritic cells, T cells, and NK cells, compared to in vivo and human studies. Additional effects are represented by lipids which constitute a minor part of mushrooms but may have a role in reducing serum cholesterol levels or phenols acting as antioxidant and reducing agents. Human studies provide a minority of available data, as well illustrated by a placebo-controlled study of athletes treated with β-glucan from Pleurotus ostreatus. Variables influencing study outcomes include different mushrooms strains, growing conditions, developmental stage, part of mushroom used, extraction method, and storage conditions. We foresee that future rigorous research will be needed to determine the potential of mushroom compounds for human health to reproduce the effects of some compounds such as lentinan which a metaanalysis demonstrated to increase the efficacy of chemotherapy in the treatment of lung cancer and in the improvement of the patients quality of life.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
16
|
Wińska K, Mączka W, Gabryelska K, Grabarczyk M. Mushrooms of the Genus Ganoderma Used to Treat Diabetes and Insulin Resistance. Molecules 2019; 24:E4075. [PMID: 31717970 PMCID: PMC6891282 DOI: 10.3390/molecules24224075] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy of diabetes mellitus, especially in the case of chronic disease when the body is no longer able to produce adequate insulin or when it cannot use the produced insulin effectively. This minireview summarizes the perspectives, recent advances, and major challenges of medicinal mushrooms from Ganoderma genus with reference to their antidiabetic activity. The most active ingredients of those mushrooms are polysaccharides and triterpenoids. We hope this review can offer some theoretical basis and inspiration for the mechanism study of the bioactivity of those compounds.
Collapse
Affiliation(s)
- Katarzyna Wińska
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | - Wanda Mączka
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | | | - Małgorzata Grabarczyk
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| |
Collapse
|